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Abstract—Effective use of the memory hierarchy is crucial
to cloud computing. Platform memory subsystems must be
carefully provisioned and configured to minimize overall cost
and energy for cloud providers. For cloud subscribers, the
diversity of available platforms complicates comparisons and the
optimization of performance. To address these needs, we present
X-Mem, a new open-source software tool that characterizes the
memory hierarchy for cloud computing.

X-Mem is designed to be modular, portable, and extensible
while surpassing most capabilities of existing utilities. The
tool directly measures a number of statistics for throughput,
(un)loaded latency, and power for each level of cache and
DRAM through flexible stimuli. Its features include multi-
threading, awareness of non-uniform memory architecture,
and support for different page sizes. X-Mem can exercise
memory using many combinations of load/store width, access
pattern, and working set size per thread. The accessibility and
extensibility of our tool also facilitates other research purposes.

We demonstrate the utility of X-Mem through a series of
experimental case studies using state-of-the-art platforms. Our
results show how cloud subscribers could choose a preferred
target platform and better optimize their applications even if
the hardware/software stack is opaque. Cloud providers could
use X-Mem to fine-tune system configurations and to verify
machine performance envelopes before deployment. We envision
novel ways that researchers could extend X-Mem for purposes
such as the characterization of emerging memory architectures.

I. INTRODUCTION

By 2016, over 80% of enterprises are expected to adopt
cloud computing [1], [2] because of its economic advan-
tages. Cloud providers seek to minimize capital (CapEx)
and operational (OpEx) expenses while satisfying a service-
level agreement. Cloud subscribers want to extract maximum
performance from their resources. These complementary ob-
jectives influence the entire hardware/software stack.

The needs of cloud providers and subscribers particularly
pressure the memory subsystem. From the provider’s per-
spective, memory procurement costs dominate CapEx, with
128 GiB of DRAM costing as much as $2000 per server
[3]. In OpEx, up to 30 percent of total server power is con-
sumed by memory [4], [5], [6]. For subscribers, application
performance is dependent on the properties of the memory
hierarchy, from CPU caches to DRAM [7]. Thus, careful
characterization of the memory hierarchy is crucial for both
the cloud provider and the subscriber to maximize the perfor-
mance/cost ratio. However, existing memory characterization
tools fail to meet the following four functional requirements
driven by cloud platforms.

(A) Access pattern diversity. Cloud applications span
many domains. They express a broad spectrum of compu-
tational behaviors, and access memory in a mix of structured
and random patterns. These patterns exhibit a variety of read-
write ratios, spatio-temporal localities, and working-set sizes.
Replication of these memory access patterns using controlled
micro-benchmarks facilitates the study of their performance.
This can be used by cloud providers to create cost-effective
hardware configurations for different classes of applications,
and by subscribers to optimize their applications.

(B) Platform variability. Cloud servers are built from a
mix of instruction set architectures (ISAs, e.g., x86-64 [8], [9]
and ARM [10], [11]), machine organizations (e.g., memory
model and cache configuration), and technology standards
(e.g., DDR, PCIe, NVMe, etc.). They also include unique
hardware capabilities, such as extended ISAs that feature
vectorized loads and stores. Platforms also span a variety
of software stacks and operating systems (OSes, e.g., Linux
and Windows [8], [9]). The interfaces and semantics of OS-
level memory management features such as large pages and
non-uniform memory access (NUMA) also vary. In order
to objectively cross-evaluate competing platforms and help
optimize an application for a particular platform, a memory
characterization tool should support as many permutations of
these features as possible.

(C) Metric flexibility. Both the subscriber’s application-
defined performance and the provider’s costs depend on
memory performance and power. These can be described
using statistical distributions of several different metrics. For
example, the distribution of DRAM loaded latency might be
correlated with the distribution of search query latency in a
heavily loaded server. Meanwhile, both the peak and average
main memory power consumption are important metrics to
the cloud provider, as they impact both CapEx and OpEx
respectively. Memory power could also impact application
performance indirectly due to a system-level power cap [12].
However, most characterization tools do not expose these
flexible statistics or integrate memory power measurement.

(D) Tool extensibility. Cloud platforms have changed
considerably over the last decade and will continue to evolve
in the future. Emerging non-volatile memories (NVMs), such
as phase-change memory (PCM), spin-transfer torque RAM
(STT-RAM), and resistive RAM (RRAM) [20], [21] intro-
duce new capabilities and challenges that will require special
consideration. The metrics of interest may also change with

CONFIDENTIAL DRAFT, revised Jan. 26, 2016
To appear at ISPASS in April 2016
Uppsala, Sweden



(A) (B) (C) (D)
Tool Thru- Lat. Loaded Multi- NUMA Lrg. Power Cache & Native Native x86 x86-64 ARM Vector Open Lang. Acc. Patt. Platf. Metric Tool

put Lat. Thrd. Pages Mem. Linux Win. Inst. Src. Divers. Var. Flex. Extens.

STREAM v5.10 [13] X m m X X m m X C, FORTRAN
STREAM2 v0.1 [14] X m m X X m m X FORTRAN

lmbench3 [15] X X X m X X m m X C
TinyMemBench v0.3.9 [16] X X X X X X m m X X C

mlc v2.3 [17] X X X X X X X X X X X
X-Mem v2.2.3 [18], [19] X X X X X X X X X X X X X X X C++ X X X X

TABLE I: High-level feature comparison of X-Mem with other memory benchmarking tools. m indicates partial feature support.
No existing tool provides the same breadth of capability as X-Mem.

future applications and cloud management techniques. Un-
fortunately, most existing characterization tools are not easily
extensible, hampering their usefulness in these scenarios.

To address these four key requirements for both providers
and subscribers of cloud services, we present X-Mem: an
open-source, cross-platform, and eXtensible Memory char-
acterization software tool written in C++.

This paper includes the following contributions:
• A description of the design philosophy and implementation

details of X-Mem, that promotes the understanding of
its functionality and facilitates rapid modifications by the
research community.

• A characterization of memory hierarchy performance, that
demonstrates how cloud subscribers can optimize applica-
tions for the memory organization of a particular platform.

• A comparison of memory hierarchies across seven differ-
ent platforms, that shows how cloud subscribers can select
the appropriate platform for their application.

• An evaluation of system configurations on main memory
performance, that helps cloud providers provision and fine-
tune their systems for different applications.
X-Mem source code, binaries, user manuals,

programmer documentation, selected datasets,
and various scripts are available online at
https://nanocad-lab.github.io/X-Mem/ [18],
[19]. The tool is being actively maintained and extended for
ongoing research needs; the contents of this paper are based
on “v2.2.3” of the software as documented online.

II. RELATED WORK

In this section, we summarize the pertinent literature on
characterization and optimization of cloud platforms and
memory systems. We then review current memory bench-
marking tools and highlight how X-Mem extends the state-
of-the-art.

Several studies have evaluated the performance of cloud-
hosted applications [22], [23], [24]. Ferdman et al. [25] and
Kozyrakis et al. [26] derived infrastructure-level insights by
analyzing cloud-scale workloads. CloudCmp [27] contrasted
the performance and cost of different providers’ platforms.
Blem et al. [28] explored differences in CPU energy and per-
formance as a function of the instruction set itself. However,
none of these cloud studies focused on memory.

With a broad scope that includes the cloud, there have been
many studies that optimize memory systems. Memory-aware
policies for dynamic voltage/frequency scaling (DVFS) of
CPUs have been suggested [29], [30]. Many techniques for
improving DRAM energy efficiency via scheduling and alter-
native hardware organizations [31], [32], [33], [34] have been

explored. After Barroso and Hölzle described the problem
of memory energy proportionality [4], [5], other researchers
recommended using DVFS for the memory bus as a solu-
tion [35], [36], [37], [38], [39]. Recently, researchers have
taken a different angle, studying how to improve memory
and cache energy by opportunistic exploitation of hardware
manufacturing variations [40], [41], [42].

With regard to hardware variability, two studies are of
particular interest. Chandrasekar et al. [43] described a novel
procedure to optimize DDR3 timing parameters for DRAM
modules. However, they did not discuss the application-level
benefits of their approach. Adaptive-Latency DRAM (AL-
DRAM) [44] explored this idea further, evaluating it using a
suite of benchmarks on a real system. However, the authors
did not study the impact of variation-aware tuning on the
memory performance itself. Without this low-level insight,
it is unclear why applications benefit. We briefly revisit this
question at the end of our third case study; our observations
appear to contradict the conclusions in AL-DRAM [44].

Several existing micro-benchmark suites are available
to quantify memory system performance. They include
STREAM [45], [46], [13], STREAM2 [14], lmbench3 [15],
TinyMemBench [16], and mlc [17]. We surveyed their capa-
bilities that relate to the cloud-specific needs described earlier
in Sec. I, namely: (A) access pattern diversity; (B) platform
variability; (C) metric flexibility; and (D) tool extensibility.
A high-level comparison of these tools’ features is shown in
Table I. Intel’s Memory Latency Checker (mlc) [17] is the
closest tool to X-Mem in terms of feature support, but like the
others, does not address these four important requirements.

Some relevant studies used custom micro-benchmarks to
study certain aspects of cache and memory performance [47],
[48], [49], [50]. Murphy et al. [51] proposed idealized ana-
lytical models to examine application sensitivity to memory
bandwidth and latency in order to better address system
bottlenecks. However, none of these works have described
or released a tool suitable for use by others.

X-Mem generally surpasses the capabilities of prior tools
while being usable by the broader community. To the best
of our knowledge, no previous work has created or used
a memory characterization tool with the same breadth of
features as X-Mem. We believe that our tool will make
characterization and evaluation studies easier to conduct
in the future, while opening new avenues for exploration
through its versatility, portability, and extensibility.

III. X-MEM: DESIGN AND IMPLEMENTATION

We now discuss the important design decisions and im-
plementation details behind X-Mem. These are organized
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according to the four functional requirements for cloud
platforms described in the introduction. The tool extensibility
aspect is divided among subsections for access pattern diver-
sity (Sec. III-A), platform variability (Sec. III-B), and metric
flexibility (Sec. III-C). Fig. 1 depicts the high-level software
organization that will be referred throughout the section.

A. Access Pattern Diversity

The diversity of access patterns supported by X-Mem is
important for characterizing and designing cloud systems.
Even without writing custom extensions, users can often
stimulate memory using a specific access pattern that re-
sembles an important phase of application behavior. This
can enable cloud subscribers to better optimize their code
for the memory organization of their target platform. Cloud
providers can use such functionality to evaluate candidate
memory configurations for different classes of applications.
Computer architects could even use X-Mem to evaluate mem-
ory system optimizations early in the design or prototyping
phases without running a full application.

At a high level, the user input causes a set of unique
memory Benchmarks to be constructed by a global
BenchmarkManager. The manager object generally
allocates a large contiguous array on each NUMA node
using a specified page size, and carves up the space as
needed for each Benchmark. Benchmarks are run
one at a time, where each is multi-threaded. There are
two types of Benchmark: ThroughputBenchmark
and LatencyBenchmark. Benchmarks can employ
LoadWorker threads that measure memory throughput,
and LatencyWorker threads to measure either loaded or
unloaded latency, depending on whether other LoadWorker
threads are running concurrently. Both workers types are
descended from the MemoryWorker class.

To ensure consistency of results, each benchmark must
be primed before execution. To avoid OS interference,
MemoryWorkers lock themselves to designated logical
CPU cores and elevate their thread scheduling priority. The
workers then prime their tests by running them several
times before an official timed pass. This helps to accom-
plish three things: (i) the instruction cache is warmed up
with the core benchmark code; (ii) the data cache(s) are
warmed up with (part of) the working set; and (iii) the
CPU is stressed sufficiently enough that it is likely in a
high-performance state when the benchmark begins (e.g.,
maximum voltage/frequency setting).

Each Benchmark gives its MemoryWorkers a pointer
to an appropriate benchmark kernel function and a corre-
sponding dummy benchmark kernel function. The dummy
is used to quantify the overheads associated with the non-
memory access parts of the benchmark kernel function, which
may include the function call and sparse branch instructions.
During a benchmark, each MemoryWorker repeatedly ex-
ecutes its benchmark kernel function until the cumulative
elapsed time reaches a target raw duration, Traw, which is
configurable at compile-time and defaults to 250 ms. The
number of iterations of the benchmark kernel function is
recorded; the dummy benchmark kernel function is repeated
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Fig. 1: The high-level X-Mem software organization facilitates
portability through rigid OS/hardware abstractions. Its modular
design enables simple prototyping of extended capabilities (E).

for same number of times. The execution time for the dummy
kernel Tdummy is subtracted from Traw to obtain the worker’s
final adjusted time, Tadjusted.

Each benchmark kernel accesses exactly 4 KiB of memory
before returning. This allows the function caller to measure
the throughput/latency distribution of the memory access pat-
tern over many chained iterations, regardless of the thread’s
working set size, which might vary from KiBs to GiBs. The
decision to use 4 KiB per function call is a compromise
between precision, accuracy, flexibility, and overhead. It
provides sufficiently fine granularity to benchmark small L1
caches and avoids crossing typical page boundaries. At the
same time, it is large enough to keep the function overhead
low and to be accurately captured with high resolution timers.

X-Mem’s low-level benchmark kernel functions include
many different memory access patterns. Each of these global
kernel functions implements a unique combination of the
following: (i) type, currently pure-load or pure-store; (ii)
structure, which currently include sequential, strided, and
purely random addressing; and (iii) chunk size, which is
the access width for a single memory instruction. X-Mem
presently supports strides in both forward and reverse direc-
tions, with lengths of ±{1,2,4,8,16} chunk multiples. We
currently include four chunk sizes in the standard release
of X-Mem as of v2.3: 32, 64, 128, and 256 bits wide.
Unsupported chunk sizes for each platform are disabled.

The random access benchmark kernel functions (used by
the LatencyWorker as well as some LoadWorkers)
were implemented as a pointer-chasing scheme that creates
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a chain of dependent reads to random addresses. This forces
only one memory request to be outstanding at a time,
ensuring that the average access latency can be accurately
measured over many chased pointers. In this work, the chain
is constructed by initializing a contiguous array of pointers
to all point at themselves and then randomly shuffling the
array. An alternative technique is to construct a random
Hamiltonian Cycle of pointers. Both techniques are O(N),
but the random shuffle approach ran much faster on our
machines. However, with the random shuffle method, a
series of pointers may occasionally form a small cycle that
“traps” the kernel function, effectively shrinking the intended
working set size. This can cause incorrect results but can
be mitigated by using multiple iterations or by using the
Hamiltonian Cycle technique instead. Nevertheless, in most
cases, the latency measurements generated using the two
methods are indistinguishable.

The number of unique micro-benchmarks is many times
greater than the 88 currently-included benchmark kernel
functions would suggest. For instance, the user may specify
the number of worker threads for each micro-benchmark.
Each thread can have a different memory region working
set size and kernel benchmark function. These working set
regions can be allocated in a NUMA-aware fashion with
configurable page size and adjustable alignment. It is also
possible for groups of worker threads to use overlapped
memory regions.

Although X-Mem currently implements a diverse set of
memory access patterns, the tool may see uses beyond the
case studies presented in this paper. Thus, we designed the
tool to allow for the addition of new access patterns with
minimal modifications. We believe this is a key requirement
for cloud providers that host diverse third-party applica-
tions and also for the subscribed application developers.
Rich functionality can be added by merely writing a few
extra specialized benchmark kernel functions. To leverage
these, developers can lightly modify existing derivations
of the Benchmark and MemoryWorker classes to use
their new kernels, or write their own derived classes. A
simple extension might support wider vector memory in-
structions such as AVX-512 [52]. This could be done with
a new 512-bit chunk size option and copying and modifying
the existing 256-bit benchmark kernels to use the wider
instructions and registers. In another example, the stan-
dard X-Mem release includes a third derived Benchmark
type: the DelayInjectedLatencyBenchmark. This
class implements a special version of the multi-threaded
loaded LatencyBenchmark, where the LoadWorker use
slightly modified benchmark kernel functions with nop in-
structions interspersed between memory access instructions.
This has proven useful for characterizing main memory
latency when subjected to a wide range of load traffic.

More radical extensions are also possible with relatively
little effort. Specialized access patterns for benchmarking
translation-lookaside buffer (TLB) performance or measuring
inter-cache communication latency with variable load inter-
ference can be built on top of the existing codebase. For
security research, a small benchmark kernel can be added
that performs Rowhammer-like DRAM attacks [53], [54].

A memory power “virus” might be written to test server
power capping techniques. Benchmarks for characterizing
data dependence of memory power [40] and performance
could be crafted.

B. Platform Variability

To help cloud subscribers gain insight on various plat-
forms, we designed X-Mem to support different combinations
of hardware and software. X-Mem currently runs on many
cloud-relevant platforms that span different ISAs, hardware
features, and OSes. Currently supported architectures in-
clude x86, x86-64 with optional AVX extensions, ARMv7-
A with optional NEON extensions, and ARMv8 (64-bit).
GNU/Linux and Windows are currently supported on each
architecture.

X-Mem abstracts OS and hardware-specific interfaces and
semantics wherever possible. Two classic C/C++ language
features were used to achieve this: (i) typedef is used
to abstract ISA-specific datatypes for vector-based wide
memory access, and (ii) pre-processor macros that guard
OS or architecture-specific code. In addition to language
features, X-Mem wraps OS APIs. For example, generic
functions are used to pin worker threads to logical cores and
to elevate thread priority. However, X-Mem cannot control
the semantics of these OS services. Whenever they cannot
be controlled, the tool is clear to the user and programmer
about possible sources of deviation in reported results.

Each benchmark kernel function and its dummy had to be
carefully hand-crafted to stimulate memory in a “correct”
manner for characterization on each platform. Whenever
possible, the implementations of the benchmark kernel func-
tions use several tricks to defeat compiler optimizations
in the important sections of code without resorting to un-
portable inline assembly. Two examples include manual loop
unrolling to control branching overheads, and the use of the
volatile keyword to keep the compiler from pruning away
“meaningless” memory reads and writes that are critical to
benchmark correctness.

The execution time for an unrolled loop of benchmark
kernels is measured using X-Mem’s start_timer() and
stop_timer() functions. Internally, these functions use
a high-resolution timer, whose implementation is specified
at compile-time as an OS-based or hardware-based timer.
Hardware timers are less portable, even for the same ISA,
but they enable finer-grain timing for very short routines. Our
testing has shown that for the default Traw = 250ms bench-
mark duration, there is no measurable difference between
hardware and OS timers in X-Mem. OS timers are used by
default to aid portability, although this option and Traw can
be easily changed at compile time.

The tool generates results as fairly as possible to allow
for “apples-to-apples” comparisons of memory systems. We
use Python-based SCons [55] to simplify the build process
and maximize portability. On GNU/Linux builds, we veri-
fied that the g++ compiler generates the intended code on
each platform by disassembling and inspecting the X-Mem
executables. On Windows builds, the Visual C++ compiler
cannot generate AVX instructions for our variables that
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were intentionally tagged with the volatile keyword. On
the other hand, it also does not support inline assembly
code for an x86-64 target. Thus, on Windows/x86-64/AVX-
specific builds, we were forced to implement all SIMD-based
benchmark kernels by hand in the assembler. Nevertheless,
compiled code and our manual implementations were nearly
identical. We also verified the equivalence of benchmark
results experimentally.

Ports to other OSes and architectures are possible with
relatively straightforward extensions to X-Mem’s source code
and build toolchain, thanks to its heavy use of abstractions.
Many platform-specific features can be enabled or disabled
at compile time through the use of included preprocessor
switches.

C. Metric Flexibility

X-Mem can measure performance and power of the mem-
ory hierarchy, where a number of statistics can be recorded
for each of X-Mem’s diverse access patterns. X-Mem cur-
rently reports on several application-visible performance cat-
egories such as unloaded latency (no background traffic),
loaded latency (variable controlled background traffic) and
aggregate throughput. It can also sample memory power
during stimulated performance benchmarking. Measurements
can be made for each level of the memory hierarchy, from
CPU caches all the way to main memory.

X-Mem’s metric flexibility is useful to both cloud sub-
scribers and providers in quantifying subtle hardware char-
acteristics. For example, a programmer working on a search
application could find that the distribution of DRAM loaded
latency is strongly correlated with the distribution of query
latency. Such an insight would not be possible to achieve with
only the arithmetic mean of memory latency. Specifically for
cloud providers, average power can be used for optimizing
performance per Watt, and peak power can be used for power
provisioning purposes [12].

With regard to performance benchmarking, X-Mem ac-
tively stimulates memory and measures the real behavior of
the hierarchy as could be seen by an application running
on the CPU. The metrics capture the overall impact of the
underlying platform architecture and associated configuration
settings on performance, but low-level secondary effects are
not disaggregated. This is distinct from a passive performance
counter-based approach, which is better suited to breaking
down individual performance components, but often cannot
make end-to-end measurements. We believe the active stimu-
lation method used by X-Mem is a more useful measurement
approach for the cloud usage model, which is concerned
primarily about ground truth memory hierarchy performance
from the application’s point of view. It also has the benefit
of being much more flexible and portable than approaches
that rely on model-specific performance counters.

Each user-visible benchmark iteration is composed of
many passes. For each iteration, X-Mem maintains the arith-
metic mean of the relevant metrics. If the benchmark is run
for more than one iteration, these extra samples track the met-
ric’s distribution over time. We consider this a useful feature
for evaluating interference effects, as concurrent execution of

other applications on the platform can influence the measure-
ment of unloaded latency. In the absence of interference, by
the central limit theorem, we expect the per-iteration results
to approach a normal distribution. However, if there time-
varying interference, the distribution can shift. For example,
a second application can begin accessing DRAM heavily
halfway through an X-Mem benchmark, which might add
noise to X-Mem’s active measurement of DRAM latency.
The transient effects of this interference can be captured up
to the resolution of a single benchmark iteration. This is on
the order of 10s to 100s of milliseconds. The tool can be
easily modified to trade off sampling accuracy for higher
iteration sampling rates by adjusting Traw at compile time.

Performance metrics are captured as follows. Memory
throughput is reported in MiB/s by accumulating the results
from all LoadWorker instances that execute concurrently.
The unloaded latency metric is reported in ns/access without
any other MemoryWorkers executing. For loaded latency,
results are reported in ns/access from the LatencyWorker
given a concurrent load stimulus driven by LoadWorkers
and reported in MiB/s.

With regard to power metrics, average and peak num-
bers are indirectly measured for each benchmark iteration
(sample). To achieve this, X-Mem provides the virtual
PowerReader class as an interface that needs to be im-
plemented for each a specific system. PowerReader exe-
cutes a low-overhead background thread that regularly polls
the power consumption of the memory during benchmark
execution at a fixed sampling rate. The implementation of
the PowerReader interface is left as an extended feature,
as power instrumentation varies widely between systems and
end-user needs often differ. By default, X-Mem includes the
WindowsDRAMPowerReader extension, which leverages
a generic software power meter exposed by the OS. On our
Server platform evaluated later in the paper, this meter relies
on architecture-dependent Intel RAPL features to expose
total DRAM power per socket. One could also implement
PowerReader by using a dedicated hardware multimeter
for each DIMM [40], [41], improving measurement accuracy,
precision, and granularity.

X-Mem can be easily extended to add new metrics of
interest. For example, STT-RAM can have data-dependent
energy consumption. It might be characterized in a novel
way by using new data-based benchmark kernels along with
data-aware power book-keeping. Systems with PCM could
have their endurance and wear-leveling mechanisms [56]
tested with a specialized load generator. Thus, our tool is
flexible enough to suit specific needs of cloud providers and
subscribers.

IV. EXPERIMENTAL PLATFORMS AND VALIDATION

In this section, we describe the experimental platforms
used in the rest of the paper and validate our tool. We
picked seven systems to highlight the applicability of X-
Mem to various platforms that may be used in the cloud.
The details of each system are shown in the top half of
Table II. The systems span different ISAs (x86-64 and
ARMv7), OSes (Windows and GNU/Linux), power budgets
(wimpy and brawny systems), and virtualization (bare metal
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System Name ISA CPU No. Cores CPU Freq. L1$ L2$ L3$ $ Blk. Process OS NUMA ECC

Desktop x86-64 Intel Core i7-3820 4 3.6 GHz*, split, private, private, shared, 64 B 32 nm Linux
w/ AVX (Sandy Bridge-E) 1.2 GHz 32 KiB, 8-way 256 KiB, 8-way 10 MiB, 20-way

Server x86-64 Dual Intel Xeon 12 2.4 GHz split, private, private, shared, 64 B 22 nm Win. X X
w/ AVX2 E5-2600 v3 series per CPU 32 KiB, 8-way 256 KiB, 8-way 30 MiB, 20-way

(Haswell-EP)
Microserver x86-64 Intel Atom S1240 2 1.6 GHz split, private, private, - 64 B 32nm Win. X

(Centerton) 24 KiB 6-way data, 512 KiB, 8-way
32 KiB 8-way inst.

PandaBoard (ES) ARMv7-A TI OMAP 4460 2 1.2 GHz split, private, shared, - 32 B 45 nm Linux
w/ NEON (ARM Cortex-A9) 32 KiB, 4-way 1 MiB

AzureVM x86-64 AMD Opteron 4 2.1 GHz split, private, private, shared, 64 B 45 nm Linux X
4171 HE 64 KiB, 2-way 512 KiB, 16-way 6 MiB, 48-way

AmazonVM x86-64 Intel Xeon E5-2666 v3 4 2.9 GHz split, private, private, shared, 64 B 22 nm Linux X
w/ AVX2 (Haswell-EP) 32 KiB, 8-way 256 KiB, 8-way 25 MiB, 20-way

ARMServer ARMv7-A Marvell Armada 370 4 1.2 GHz split, private, private, - 32 B unk. Linux unk.
(ARM Cortex-A9) 32 KiB, 4/8-way (I/D) 256 KiB, 4-way

System Config. Name Memory No. DPC RPD DIMM Chan. nCAS - clk nRCD - clk nRP - clk nRAS - clk
Name Type Channels Capacity MT/s (tCAS - ns) (tRCD - ns) (tRP - ns) (tRAS - ns)

Desktop* 1333 MT/s, Nominal Timings 4C DDR3 U 4 2 2 2 GiB 1333 9 (13.5 ns) 9 (13.5 ns) 11 (16.5 ns) 24 (36.0 ns)
Desktop 1333 MT/s, ≈33% Slower Timings 4C DDR3 U 4 2 2 2 GiB 1333 12 (18.0 ns) 12 (18.0 ns) 15 (22.5 ns) 32 (48.0 ns)
Desktop 800 MT/s, Nominal Timings 4C DDR3 U 4 2 2 2 GiB 800 7 (17.5 ns) 7 (17.5 ns) 8 (20.0 ns) 16 (40.0 ns)
Desktop 800 MT/s, ≈33% Slower Timings 4C DDR3 U 4 2 2 2 GiB 800 10 (25.0 ns) 10 (25.0 ns) 11 (27.5 ns) 22 (55.0 ns)
Desktop 1333 MT/s, Nominal Timings 1C DDR3 U 1 2 2 2 GiB 1333 9 (13.5 ns) 9 (13.5 ns) 11 (16.5 ns) 24 (36.0 ns)
Desktop 1333 MT/s, ≈33% Slower Timings 1C DDR3 U 1 2 2 2 GiB 1333 12 (18.0 ns) 12 (18.0 ns) 15 (22.5 ns) 32 (48.0 ns)
Desktop 800 MT/s, Nominal Timings 1C DDR3 U 1 2 2 2 GiB 800 7 (17.5 ns) 7 (17.5 ns) 8 (20.0 ns) 16 (40.0 ns)
Desktop 800 MT/s, ≈33% Slower Timings 1C DDR3 U 1 2 2 2 GiB 800 10 (25.0 ns) 10 (25.0 ns) 11 (27.5 ns) 22 (55.0 ns)
Server* 1333 MT/s, Nominal Timings DDR3 R 4 per CPU 1 2 16 GiB 1333 9 (13.5 ns) 9 (13.5 ns) 9 (13.5 ns) 24 (36.0 ns)
Server 1333 MT/s, ≈33% Slower Timings DDR3 R 4 per CPU 1 2 16 GiB 1333 12 (18.0 ns) 12 (18.0 ns) 12 (18.0 ns) 32 (48.0 ns)
Server 1600 MT/s, Nominal Timings DDR3 R 4 per CPU 1 2 16 GiB 1600 11 (13.75 ns) 11 (13.75 ns) 11 (13.75 ns) 29 (36.25 ns)
Server 1600 MT/s, ≈33% Slower Timings DDR3 R 4 per CPU 1 2 16 GiB 1600 15 (18.75 ns) 15 (18.75 ns) 15 (18.75 ns) 38 (47.5 ns)
Server 1867 MT/s, Nominal Timings DDR3 R 4 per CPU 1 2 16 GiB 1867 13 (13.92 ns) 13 (13.92 ns) 13 (13.92 ns) 34 (36.42 ns)
Server 1867 MT/s, ≈33% Slower Timings DDR3 R 4 per CPU 1 2 16 GiB 1867 18 (19.28 ns) 18 (19.28 ns) 18 (19.28 ns) 46 (49.27 ns)

TABLE II: Top: platforms used for X-Mem validation and case studies. Bottom: main memory configurations for the Desktop
and Server platforms, where * indicates our default setting.

and VM). These platforms are: a Desktop workstation; a
many-core rack-mountable cloud Server; a low-power x86
Microserver; an ARM PandaBoard ES [57]; an Azure cloud
VM (AzureVM) [8]; an Amazon EC2 cloud VM (AmazonVM)
[9]; and a Scaleway bare metal ARM cloud microserver
(ARMServer) [10]. On Intel-based platforms, HyperThread-
ing (SMT) and TurboBoost (DVFS) were disabled in the
BIOS to obtain consistent results across multiple runs of X-
Mem. The bottom half of Table II describes the main memory
configurations used for the Desktop and Server. They are
used to illustrate the impact of tuning various main memory
parameters on performance in Case Study 3.

We validated X-Mem against a variety of tools on several
platforms wher applicable. For instance, we compare against
Intel’s Memory Latency Checker (mlc) v2.3 [17] for loaded
DRAM latency. We choose mlc because it is a tool that
has the most overlap in capabilities (see Table I). We use
our Desktop with configuration 1333 MT/s, Nominal Timings
4C* at 3.6 GHz, running both Linux and Windows. The
validation results are shown in Fig. 2, which shows the
average total main memory latency versus the aggregate read-
based memory load. We find close agreement in these results
as well as other closely-matched tests that are not depicted.
However, mlc is less portable, because it relies on Intel’s
proprietary hardware performance counters that may not be
available in other systems. No existing tool supports the
majority of X-Mem’s other features that might be validated.

V. CASE STUDY EVALUATIONS

In this section, we leverage X-Mem’s four key features –
diverse access patterns, platform variability, flexible metrics,
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Fig. 2: Validation of X-Mem vs. mlc [17] shows close agreement
for total loaded latency measurements from CPU to DRAM on
both Windows and Linux.

and tool extensibility – to present a trio of experimental case
studies. The first two cover uses of X-Mem for cloud sub-
scribers, while the last case study addresses cloud providers.

A. Case Study 1: Characterization of the Memory Hierarchy
for Cloud Subscribers

Cloud subscribers would benefit from understanding the
memory hierarchy of their platform. X-Mem facilitates this
by mapping the memory performance with respect to applica-
tion parameters such as number of threads, working set size,
access patterns/granularity, and OS memory management
policies. This procedure can reveal the underlying cache and
memory hardware organization, allowing the programmer to
exploit it.

We propose an intuitive visualization technique, the mem-
ory landscape, that depicts the aggregate memory throughput
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Fig. 3: Cache organization insights obtained using X-Mem can
help cloud subscribers optimize application performance. The
results shown are for the Sandy Bridge-E Desktop with config.
1333 MT/s, Nominal Timings 4C* at 3.6 GHz.

or latency as a surface plot over working set size per
thread, number of threads, and chunk size. Fig. 3(a) shows
the throughput landscape using a forward sequential read
access pattern on the Desktop workstation. We make several
observations. (i) Throughput falls off with increasing working
set size (x axis), leaving a clear demarcation of cache/DRAM
boundaries (labeled at the top of the figure). (ii) L1 and
L2 throughput scales linearly with the number of threads (y
axis). This confirms that the smaller caches are private to each
core. In contrast, the sharing of the L3 cache among cores
is illustrated by the outline of the “foothills” next to the flat
DRAM “plain”. (iii) DRAM performance scales linearly with
number of threads and chunk size (y axis).Such visualization
enables programmers to reason about the general memory
performance of their target cloud platform.

Another important consideration for programmers is the
cache configuration, which could be hidden by the provider.
We focus on the L1 data cache (L1D) of the Sandy Bridge-
based Desktop as an example. Using X-Mem with a single
thread and a working set size of just 4 KiB, we swept the
chunk size and stride length (as a multiple of load chunk
size). The results are shown in Fig. 3(b). We present three
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Fig. 4: X-Mem reveals how significant main memory perfor-
mance asymmetry may arise from the interaction of NUMA
and page size. Results shown are for the Windows Server with
configuration 1333 MT/s, Nominal Timings*.

observations. (i) Observing the drops in throughput as a
function of chunk and stride reveals the cache block/line
size (64 B). (ii) AVX 256-bit reads using the vmovdqa
instruction perform no better than the 128-bit version for
normal sequential accesses. Unlike the other chunk sizes, the
256-bit accesses maintain their performance as stride length
increases. This suggests that a cache port is just 128 bits
wide, and 256-bit accesses are simply split into two µ-ops.
(iii) L1D bandwidth can only be saturated using vectorized
loads. Thus, for workloads that are already cache-friendly,
further performance gains might be achieved through explicit
SIMD memory-access optimization. X-Mem enables similar
observations in the absence of public information on the
micro-architecture.

In addition to the hardware factors described thus far, OS
memory management affects performance. To study this, we
use a dual-socket NUMA Server platform running Windows
that is typical of a cutting-edge cloud deployment. Fig. 4
shows the interaction of NUMA and page size on the loaded
latency trend of main memory. We present three observations.
(i) The cross-socket QPI link forms a performance bottle-
neck for both memory latency and bandwidth. The latency
curves stay flat until the load approaches the peak theoretical
bandwidth, where queuing and contention begin to dominate
delay, resulting in a latency wall. Remote access (triangles)
incurs a latency penalty compared to local access (circles)
even when there is no bandwidth starvation. (ii) Large 2
MiB pages (pink points) reduce latency overall compared
to regular-sized 4 KiB pages (black and gray points) due to
reduced thrashing of the TLBs. (iii) For regular-sized pages,
the two NUMA nodes have asymmetric local memory access
latency. CPU node 0 (black points) has better latency than
node 1 (gray points). This suggests that page tables are stored
on NUMA node 0 in Windows. For applications running
on NUMA systems where large pages are not feasible, this
could become a significant performance limitation. These
three observations support the push for NUMA-aware cloud
platforms [58]. Moreover, subscribers should consider using
large page sizes for memory-bound applications. If this is not
possible, then it may be preferable to use NUMA node 0 to
obtain better memory performance (at least under Windows).

In this case study, X-Mem revealed micro-architectural
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Fig. 5: X-Mem enables general cross-platform comparisons of
cache and memory latency to help subscribers choose suitable
providers for their applications. Results shown are for our seven
diverse example systems.

and OS factors in memory performance for our Desktop
and Server, enabling us to make recommendations for ap-
plications written for our particular platforms. In a similar
fashion, cloud subscribers can apply X-Mem to their own
platforms of interest and derive their own relevant insights
to help optimize application performance.

B. Case Study 2: Cross-Platform Insights for Cloud Sub-
scribers

In this case study, we demonstrate X-Mem’s ability to
characterize the memory hierarchy of diverse platforms with
a single tool. This is useful to cloud subscribers, who
need to evaluate alternative platform choices as objectively
as possible. We compare general performance aspects of
caches and main memory across our seven platforms listed
in Table II, exposing the differences in (i) caches and main
memory unloaded latency, (ii) main memory loaded latency,
and (iii) read/write behavior among the systems. In our two
public cloud virtual machines (AzureVM and AmazonVM),
we had no way to directly control for interference from

other cloud subscribers nor server-to-server heterogeneity in
the datacenter; we repeated our experiments several times to
ensure that our measurements were consistent over time.

An important step in choosing a suitable cloud platform
is to understand the subtleties in memory hierarchy per-
formance, which is heavily influenced by the cache or-
ganization (as discussed in Case Study 1). We examine
average unloaded latency of each cache level by sweep-
ing the working set size, which works even on virtualized
hardware or if the cloud provider deliberately hides the
specification. Fig. 5(a) illustrates the results for all seven plat-
forms. We find that the brawny high-power systems (Desk-
top/Server/AzureVM/AmazonVM) and the wimpy low-power
systems (Microserver/PandaBoard/ARMServer) form latency
clusters, with considerable variation within each group. The
Desktop and ARMServer slightly outperform their intra-group
rivals at all cache levels. This is because they feature fewer
cores and higher clock frequencies than their peers, but their
cache sizes are not the largest. With regard to virtualization,
the latency of AmazonVM does not suffer in comparison to its
bare metal Server counterpart, which has near-identical CPU
hardware (differences arise in clock frequencies, number
of cores, and effective L3 cache size). AzureVM’s weaker
showing is due to its much older hardware; it is possible
there are more competitive VM instances in Azure that we
did not receive. These hardware insights may be important to
a programmer who only needs a few cores for an application
that prefers fast cache access over capacity. In addition to
helping subscribers choose an appropriate platform, X-Mem
can help detect any performance heterogeneity across VM
instances from a single provider.

The loaded latency of main memory is especially important
in a cloud setting, where interference can play a significant
role in application performance. Fig. 5(b) depicts results for
our seven example platforms (x-axis in log scale). Again,
performance falls into the same two clusters: brawny and
wimpy. We make two observations. (i) The location of the
latency wall varies drastically across platforms. The large
latency gap between the low power Microserver and the
other brawnier Intel systems is primarily due to its low
clock frequency and also its in-order core design. Although
the PandaBoard has better unloaded cache latency than the
Atom-based Microserver, the former cannot match the latter’s
DRAM peak throughput or loaded latency curve. (ii) While
the Server hits a steep latency wall, the other systems do not
saturate as severely. This can be attributed to the balance
between CPU performance (e.g., clock frequency and the
number of cores) and memory performance (e.g., peak chan-
nel bandwidth and rank/bank-level parallelism). For memory-
intensive multi-threaded or multi-programmed workloads, the
Server system would benefit from higher DDR frequencies.
Thus, X-Mem’s ability to characterize the latency wall can
be useful to cloud subscribers, who should choose platforms
with an appropriate balance of performance. They could also
use X-Mem’s latency measurement capabilities to quantify
the extent of cross-VM memory interference that results in
performance inconsistency.

Finally, X-Mem can help reveal important performance
aspects of memory read and write behavior that vary among
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Mem. Channel Frequency → 1867 MT/s 1867 MT/s 1600 MT/s 1600 MT/s 1333 MT/s 1333 MT/s 800 MT/s 800 MT/s
Platforms ↓ Timings → Nom. ≈ 33% Slow Nom. ≈ 33% Slow Nom. ≈ 33% Slow Nom. ≈ 33% Slow

Server (NUMA Local, Lrg. Pgs.) 91.43 91.54 91.66 95.74 91.99* 97.61 - -
Server (NUMA Remote, Lrg. Pgs.) 126.51 128.54 129.62 139.25 133.59* 141.69 - -

Desktop 4C @ 3.6 GHz - - - - 73.33* 81.91 97.21 110.89
Desktop 1C @ 3.6 GHz - - - - 72.38 80.94 97.36 109.56
Desktop 4C @ 1.2 GHz - - - - 109.65 118.25 131.86 145.76
Desktop 1C @ 1.2 GHz - - - - 108.44 117.09 131.85 144.46

TABLE III: Sensitivity of unloaded main memory latency (in ns/access) with respect to various frequencies and timing parameters,
enabled by X-Mem. Timing parameters have the greatest effect on unloaded latency when the CPU is fast and the memory bus
is slow.

platforms. The results are not illustrated for brevity. From
our analysis, we make two observations. (i) The PandaBoard
featured nearly flat write throughput across the memory
hierarchy, only outperforming reads for large working sets
in DRAM. This indicates a combination of write-through
and write-around cache policies. The other systems did not
exhibit this effect. Instead, X-Mem revealed their write-
back and write-allocate cache policies. (ii) Our Intel systems
exhibited a 2:1 read to write peak throughput ratio throughout
the memory hierarchy; this means they have half as many
L1 write ports as read ports. Such kinds of observations, en-
abled by X-Mem, can help cloud subscribers understand the
strengths and weaknesses of different memory hierarchies,
helping them to choose the right platform for their read/write
patterns.

Having a single cross-platform memory characterization
tool facilitates the direct comparisons in this case study,
aiding cloud subscribers to choose the right provider for
their application. Such decisions are not trivial. For instance,
memory latency-sensitive and throughput-sensitive applica-
tions may be suited to different platforms. We believe X-Mem
helps to fulfill this important role.

C. Case Study 3: Impact of Tuning Platform Configurations
for Cloud Providers

The memory system plays an important role in CapEx
and OpEx for cloud providers. The system must deliver
competitive performance for as many applications as pos-
sible without incurring prohibitive provisioning and power
delivery costs. At the same time, providers often cannot
afford to specialize their hardware at design time for each
class of application. In this final case study, we apply X-
Mem to examine the efficacy of an alternative approach:
tuning platform configurations to cater to DRAM main mem-
ory performance requirements as needed. Specifically, we
consider (i) unloaded latency and (ii) loaded latency trends
as functions of various firmware-controlled knobs. These
knobs include CPU frequency, number of DRAM channels,
channel frequency, and DRAM device timing parameters. To
facilitate this study, we use the Desktop and Server platforms,
each with two alternate DRAM timing settings as shown in
Table II: Nominal Timings and ≈33% Slower Timings. In
the latter case, DDR3 timing parameters tCAS, tRCD, tRP,
and tRAS [59] were each slowed down on all channels by
approximately 33% to imitate a slower (and cheaper) memory
module.

We consider the parameters influencing DRAM unloaded
latency first. The results are summarized in Table III. We
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Fig. 6: X-Mem enables read-loaded main memory latency
measurements for various channel frequencies and DRAM
timing configurations. Channel width and frequency have a
strong effect on loaded latency, unlike the timing parameters.

make several observations. (i) Using the Desktop, CPU
frequency has a significant impact: overall latency increases
by up to 50% when the clock is scaled down from 3.6 GHz to
1.2 GHz. This is because the chip’s “uncore” is slowed down
along with the cores, causing the cache levels to consume
more time in the critical path of DRAM access. (ii) On
both systems, slower DDR3 DRAM timing parameters have a
moderate effect at the 1333 MT/s baseline channel frequency
(up to 12% on the Desktop), with generally less sensitivity
on the Server system (up to 6%). This is because the Server
has higher baseline cache latencies than the Desktop (as
shown earlier in Case Study 2). The impact of even an
aggressive ≈33% slowdown in DRAM timings on the Server
is significantly less than the penalty of accessing remote
NUMA memory. (iii) The gap between nominal and slower
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Benchmark Config. 1T 2T 3T 4T

canneal 1333 MT/s 4C* 9.74% 9.02% 8.83% 8.89%
canneal 800 MT/s 1C 9.90% 9.29% 8.38% 7.83%

streamcluster 1333 MT/s 4C* 11.14% 11.53% 11.82% 12.24%
streamcluster 800 MT/s 1C 8.10% 5.93% 2.63% 1.24%

TABLE IV: Percent slowdown caused by DRAM ≈33% Slower
Timings for two memory-sensitive PARSEC applications on the
Desktop system at 3.6 GHz with different application memory
intensities (thread count).

DRAM timing configurations narrows as DDR3 channel
frequency is scaled up. At 1867 MT/s, the Server’s memory
latency is impacted by as little as 1% for an aggressive ≈33%
slowdown in DRAM timings. (iv) As the CPU frequency is
reduced, the overall memory latency becomes less sensitive
to DRAM timing (from 12% at 3.6 GHz to 7% at 1.2 GHz on
the Desktop). (v) Finally, reducing the number of channels on
the Desktop (4C to 1C) has virtually no impact on unloaded
memory latency (only ≈ 1 ns). This is because interleaving
only affects the mapping of linear (physical) addresses to
memory locations, and should have no impact when there is
only one outstanding memory request at a time (as is done
by X-Mem, which measures latency with random pointer
chasing). These five observations suggest that cloud providers
should carefully consider the platform configuration as a
whole when making memory provisioning decisions.

Next, we discuss the impact of memory channel width and
transfer rates on main memory loaded latency. The results
are depicted in Fig. 6 for the two platforms. Unlike the
unloaded latency case, we find that both the number of
channels and the channel frequency play significant roles.
The number of channels (Fig. 6(a)) is the most important
variable for memory performance under heavy loading, as the
multiplication of available bandwidth dramatically flattens
the latency wall. The quad-channel 1333 MT/s memory
configuration is easily over-provisioned for the quad-core
Desktop, but the same setup is woefully under-provisioned for
the 12-core per socket Server. The latter requires frequencies
of up to 1867 MT/s to mitigate the latency wall.

For the remainder of this case study, we focus on the
impact of DRAM timing parameters on memory loaded
latency and draw parallels to measured application perfor-
mance. Our results obtained with X-Mem are shown in
Fig. 6 (light circles for nominal DRAM timings and dark
triangles for slower timings). The results indicate that the
impact of DRAM timing parameters is relatively minor for
loaded latency, in comparison to the unloaded latency case
discussed earlier. This is because when the memory system
is loaded, overall delay becomes increasingly dominated
by resource contention, and less dependent on the “native”
DRAM latency. However, in AL-DRAM [44], the authors
found that tuning DRAM timings could significantly improve
application performance, especially when memory bandwidth
is scarce under loaded conditions. Our memory performance
results seem to contradict those of AL-DRAM.

Thus, we decided to study this discrepancy further with
two memory-intensive PARSEC benchmarks used in AL-
DRAM. The results are shown in Table IV for two configura-
tions on our Desktop. The table shows the percent difference
in benchmark run-time, averaged over five runs, for each

memory channel configuration (table rows) and number of
PARSEC benchmark threads (table columns). We find that
both canneal and streamcluster are moderately sensitive to
DRAM timings when there is sufficient memory bandwidth
available (approximately 8% to 12% performance difference
for the 1333 MT/s, 4C* cases). However, when the available
channel bandwidth is reduced, or more load is placed on
the memory, the sensitivity generally decreases (i.e., the 800
MT/s, 1C cases, or increasing the number of threads). This
small study appears to validate our claims made above using
X-Mem: tuning DRAM timings should have a greater effect
on lightly-loaded systems running latency-sensitive applica-
tions, but further investigation may be required. Nevertheless,
X-Mem should prove to be an invaluable tool in conducting
such investigations.

This case study highlights the ability of X-Mem to help
cloud providers provision and configure their platforms to
suit different performance requirements. It also could be used
to infer third-party “black box” application memory per-
formance characteristics without intrusive instrumentation.
These application-level inferences could be useful for cloud
providers to properly match subscribers’ applications with
best-configured available hardware.

VI. CONCLUSION

In this paper, we introduced X-Mem: a new open-source
memory characterization tool [18], [19]. X-Mem will bring
value to both cloud subscribers and providers by helping
them characterize the memory hierarchy and study its impact
on application-visible performance and power. In contrast
with prior tools, X-Mem addresses four key needs of cloud
platforms: access pattern diversity, platform variability, met-
ric flexibility, and tool extensibility. Our three case studies
showed several examples of how the tool can be used to
gain insights. Our future work will use and extend the tool
to focus on more specific aspects of cloud infrastructure and
applications. We hope that the broader community finds X-
Mem useful and will extend it for future research.
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