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Building Hierarchical Representations for Oracle
Character and Sketch Recognition
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and Yong Rui, Fellow, IEEE

Abstract— In this paper, we study oracle character recognition
and general sketch recognition. First, a data set of oracle
characters, which are the oldest hieroglyphs in China yet remain
a part of modern Chinese characters, is collected for analysis.
Second, typical visual representations in shape- and sketch-
related works are evaluated. We analyze the problems suffered
when addressing these representations and determine several
representation design criteria. Based on the analysis, we propose
a novel hierarchical representation that combines a Gabor-related
low-level representation and a sparse-encoder-related mid-level
representation. Extensive experiments show the effectiveness of
the proposed representation in both oracle character recognition
and general sketch recognition. The proposed representation
is also complementary to convolutional neural network (CNN)-
based models. We introduce a solution to combine the
proposed representation with CNN-based models, and achieve
better performances over both approaches. This solution has
beaten humans at recognizing general sketches.

Index Terms— Oracle character recognition, sketch
recognition, hierarchical representation.

I. INTRODUCTION

THE STUDY of invaluable historical hieroglyphs has
played an important role in archeology and philology.

Oracle characters, the oldest hieroglyphs in China, were carved
on animal bones or turtle shells for divination purposes during
the Bronze Age in ancient China [1], [2]. These hieroglyphs
recorded the development of civilization during that period,
thereby constituting a foundation for the study of Chinese
etymologies and calligraphy as well as providing a glimpse
into the history of China. Fig. 1 shows a piece of a turtle shell
with characters.

Manuscript received July 25, 2014; revised December 5, 2014,
May 13, 2015, and September 29, 2015; accepted October 28, 2015. Date of
publication November 11, 2015; date of current version December 3, 2015.
The work of J. Guo and H. Chao was supported in part by the Guangdong
Natural Science Foundation, China, under Grant S2011020001215, in part
by the Guangzhou Science and Technology Program, China, under Grant
201510010165, and in part by the National Natural Science Foundation of
China under Grant 61173081. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Sylvain Paris.
(Corresponding author: Changhu Wang.)

J. Guo and H. Chao are with the School of Data and Com-
puter Science and the SYSU-CMU Shunde International Joint Research
Institute, Sun Yat-sen University, Guangzhou 510006, China (e-mail:
artanis.protoss@outlook.com; isschhy@mail.sysu.edu.cn).

C. Wang and Y. Rui are with Microsoft Research, Beijing 100080, China
(e-mail: chw@microsoft.com; yongrui@microsoft.com).

E. Roman-Rangel is with the Computer Vision and Multimedia Lab-
oratory, University of Geneva, Geneva GE-1227, Switzerland (e-mail:
edgar.romanrangel@unige.ch).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2500019

Fig. 1. A turtle shell with multiple oracle instances carved on it. Strokes in
the red rectangle form an instance of oracle characters.

Currently, more than four thousand oracle characters have
been discovered from hundreds of thousands of oracle bones,
of which approximately fifty-five percent have been recog-
nized. Unfortunately, identifying unlabeled or newly collected
instances is a very time-consuming task, even for domain
experts in archeology or paleography. Such experts usually
have to manually scan printed catalogs such as [3] to find
similar annotated instances to make further judgments.

However, despite continuous efforts from archaeologists and
paleographists since the discovery of oracle bones one century
ago, there is little research on oracle character analysis from
the perspective of computer vision and no relevant public
datasets. Thus, in this work, we attempt to analyze oracle
characters via visual representations. On the one hand, we
hope to develop an effective representation for encoding oracle
characters, based on which automatic recognition / retrieval
algorithms and tools can be developed to facilitate the work
of archaeologists and paleographists. On the other hand, as
hieroglyphs that remain alive in modern Chinese characters,
oracle characters can be considered as wonderful and time-
tested sketches of ancestors of objects in the real world, as
shown in Fig. 2. We hope that the visual analysis of oracle
characters can contribute to general sketch-related research.
Note that in this paper a general sketch means a hand-drawn
sketch of a general object in our daily life, not limited to an
oracle character.

Generally, there are four major contributions in this work.
First, to perform the above study, we collected 20,000+ legible
oracle character images. To the best of our knowledge, this
dataset is the largest oracle character dataset in computer
vision and multimedia communities.
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Fig. 2. Objects in the real world and their corresponding oracle characters,
traditional Chinese characters, and simplified Chinese characters.

A big challenge for domain research such as oracle character
recognition is the scarcity of domain-specific data. Although
our dataset is large in the area of oracle recognition, it
is still insufficient to directly learn a complex recognition
model (see Section VI-D), i.e., domain-specific priors may
be required. Thus, as our second contribution, based on the
collected dataset, we attempt to look inside oracle characters
to figure out important representation design criteria. We hope
that this analysis can be generalized to sketch recognition as
well. To achieve this goal, eleven popular low-level visual
representations for shape / sketch recognition are investigated
mainly from four perspectives: performance (classification
accuracy), sampling strategy, filters for edge discovery, and
scopes of local representations. Moreover, we conduct exper-
iments to investigate the effectiveness of mid-level visual
representations by combining the aforementioned low-level
representations and the Bag-of-Words [4] framework.

Third, following the above analysis, we carefully
develop our representation. In particular, inspired by the
representation developed by Eitz et al. [5], which obtained
good performances in the above experiments, we propose a
hierarchical representation consisting of a low-level and a mid-
level representation. In contrast to Eitz’s work, the low-level
representation is built on symmetric Gabor filters and dense
sampling to better utilize edge information. Meanwhile, the
sparse-encoder-related mid-level representation in conjunction
with multiple-kernel-codebook quantization attempt to dis-
cover more salient patterns and combine both global structures
and local details. Extensive experiments are conducted to
evaluate the effects of different factors in the proposed repre-
sentation as well as the overall comparison with mainstream
representations applied to both oracle character recognition
and general sketch recognition. Our experiments demonstrate
the effectiveness of the proposed representation when applied
to these two tasks. This meets our expectation that the analysis
on oracle data does benefit general sketch-related research.

Recent works, including [6]–[8], show that, when external
data are available, supervised pre-training on an auxiliary
task, followed by fine tuning on domain-specific data, may
represent an effective paradigm for learning complicated
domain-specific models. In this work, we also conduct exper-
iments to verify the usefulness of transfer learning in oracle
character / general sketch recognition, and show that, with the

help of external data, the proposed representation can also
be combined with CNN-based solutions to achieve a large
performance improvement in contrast to the case without
auxiliary data, even outperforming humans in general sketch
recognition. This is considered as the fourth contribution.

The proposed representation may bring three potential
applications: 1) helping museum visitors recognize oracle
characters using mobile devices, 2) assisting archaeologists
and paleographists explore the evolution of Chinese characters,
and 3) enabling computers to understand users’ drawings and
perform sketch-based image search on touch-screen devices.

The remainder of the paper is organized as follows. Sec. II
briefly browses related low-level / mid-level representations.
Sec. III introduces the collected oracle dataset, followed by a
detailed comparison and analysis of existing visual represen-
tations in Sec. IV. The proposed representation is presented in
Sec. V. Extensive experiments and potential applications are
provided in Sec. VI and Sec. VII. We discuss some limitations
and conclude the paper in Sec. VIII and Sec. IX.

II. RELATED WORKS

A. Low-Level Representations

The lack of color, texture and intensity information
limits the choice of algorithms in oracle character recognition.
Below, we list some low-level representations used in shape
and sketch analysis.

Shape Context (SC) [9] is a local shape representation
originally designed for recognizing shapes of simple objects
and thus can be used for oracle character analysis. It describes
each of N randomly sampled points using the relative positions
of the N − 1 remaining points, which are found in a log-polar
grid defined around each sample point. Such N descriptors
are then merged as an SC representation. Built on top of SC,
Histogram of Orientation Shape Context (HOOSC) [10] was
developed to address limitations of SC when applied to
complex shapes, such as syllabic Maya hieroglyphs. HOOSC
replaces the simple count of the N−1 points with a distribution
of local orientations for each cell of the grid.

In addition to shape-related representations, such as
SC and HOOSC, appearance representations may be applied,
because oracle characters can also be regarded as normal
gray images. Histograms of Oriented Gradients (HOG) [11]
is a popular representation that computes histograms of local
edge orientations on a grid of small cells that are uniformly
spaced over the entire image and later groups histograms
within a block (consisting of adjacent cells) into a bigger
block to improve robustness. Similarly, GIST [12] aver-
ages the responses obtained by applying Gabor filters to
non-overlapping blocks that split the image into well-localized
sections to capture the “gist” of an image into a low-
dimensional signature vector. Binary Coherent Edge Descrip-
tor (BiCE) [13] does not encode relative gradient magnitudes.
Instead, it encodes edge positions, orientations and local linear
lengths to achieve robustness to intra-category appearance
variation. Moreover, Fixed-Scale-and-Dense-Sampling Scale-
Invariant Feature Transform (FD-SIFT) [5], a single-scale
version of the dense SIFT representation [14], was proposed
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to build slightly offset invariant representations for sketches
by computing fixed-scale SIFT descriptors [15] over regularly
sampled points. Note that FD-SIFT is equivalent to SHOG [16]
when applied to oracle characters / sketches.

All the above-mentioned representations are vector-based
representations. In contrast, Chamfer Matching (CM) [17],
a non-vector-based matching method, measures the similar-
ity of different shapes by calculating their Chamfer dis-
tance. Oriented Chamfer Matching (OCM) [18], which is
based on Chamfer Matching, utilizes quantized orientations
of edge pixels to enhance discrimination. Hitmap (HIT) [19],
introduced by Mindfinder [20], is a variant of OCM for
the purposes of indexing and improving local robustness
and was demonstrated to work well in sketch-based image
retrieval [21]. Recently proposed matching methods, includ-
ing Exemplar SVM (ESVM) [22] and Discriminative Visual
Elements (DVE) [23] (well applied in [24]), favor exemplar
classification. ESVM learns a linear SVM for each query,
taking the query as a single positive example and a large
set of randomly selected patches as the negative examples;
subsequently, it matches the dataset and the query based on the
learned weight vector. DVE works in reverse order – exemplar
classifiers are pre-computed from the dataset to avoid the
computationally expensive online learning in ESVM and to
overcome some partial occlusions or significant deformations.
These two methods have produced promising results in image
matching.

B. Mid-Level Representations

Although low-level representations can be manually
designed, mid-level representations that combine low-level
representations are substantially more difficult to be manually
explored. Popular mid-level representations are designed using
various types of learning procedures.

The most famous mid-level representation is the Bag-of-
Words (BoW) framework [4], which learns a representation
via k-means quantization. More precisely, this method first
constructs a codebook by performing k-means on input vectors
and then quantizes these inputs by assigning them to the
nearest codeword to build the “one-hot” mid-level represen-
tation. Van Gemert et al. [25] introduced a variant of BoW
by replacing the hard quantization by a soft quantization and
achieved some improvements.

In addition to BoW, sparse coding also represents a popular
choice for building mid-level representations. Approaches of
this type usually use a linear combination of a small number
of codewords to approximate inputs, with the combinatorial
coefficients being the mid-level representation. Yang et al. [26]
and methods providing several improvements, such
as [27] and [28], obtained state-of-the-art results in certain
vision tasks and demonstrated that sparse codes are able to
capture salient properties of visual patterns and provide good
performance with linear classifiers.

Recently, deep neural networks have become popular
in building mid-level representations. Multi-layer Restricted
Boltzmann Machines (RBMs) [29], multi-layer sparse
auto-encoders [30], [31] and deep convolutional neural
networks (CNNs) [32] are driving various advances, especially

Fig. 3. The distribution of oracle character instances in Oracle-20K.
Categories are ordered by number of instances.

in recognition. With the success of CNNs in large-scale
image classification [33]–[35], it is also appealing to trans-
fer a learned representation via fine tuning to other vision
tasks [6]–[8].

III. THE ORACLE DATASET

As the earliest known Chinese inscriptions, oracle hiero-
glyphs were carved on animal bones or turtle shells to record
divination results of various aspects of ancient China, such
as fortune, state power, decision making, weather predic-
tion, trading and warfare, during the late Shang dynasty
(1250 BC – 1046 BC) [36].

Following their discovery in 1899, at the excavation site
of Xiaotun in the city of Anyang, China, the last capital
of the Shang dynasty, many oracle hieroglyphs were grad-
ually unearthed through efforts by civil organizations and
governments. Currently, approximately 160, 000 bone and
turtle fragments have been found [36], including instances
of approximately 4, 500 oracle characters [37]. Unfortunately,
deciphering these characters is not an easy task. The real
number of oracle characters is still unknown, and only some
of their instances have been recognized.

We developed a crawling tool to collect oracle character
instances and their labels from a website,1 wherein there
are 31, 876 instances of 952 individual characters obtained
from a classical oracle character dictionary [38]. Due to the
scarcity of resources, many characters only contain a small
number of instances, despite the dictionary that the website
relies on being one of the largest oracle character dictionaries
in the world. To properly define the recognition task so
that stable and comparable experiments can be conducted,
we discarded characters with less than 25 instances. As a
result, a dataset composed of 20, 039 oracle character instances
belonging to 261 categories (unique characters) was obtained.
The largest category consists of 291 instances, whereas the
smallest categories contain 25. The distribution of instances
is shown in Fig. 3. For convenience, we call this dataset
Oracle-20K.

Fig. 4 shows example instances from Oracle-20K.
We observe that shapes of oracle instances usually have
high degrees of inner-class variance. This is because oracle

1http://www.chineseetymology.org/
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Fig. 4. Example instances in Oracle-20K. Instances from the same category
are grouped together. The text below each group is the contemporary meaning
of its instances. (a) Danger. (b) Spring. (c) Elk. (d) Dragon.

Fig. 5. Example instances in Sketch-20K. Instances from the same category
are grouped together. The text below each group is the object label of its
instances. (a) Plane. (b) Alarm Clock. (c) Book. (d) Bridge.

bones were produced over several historic periods in multiple
regions and were carved by random ancients without much
standardization [1]. Moreover, the engraving medium, i.e.,
animal bones and turtle shells, also imposed surface-related
restrictions in terms of size and spatial arrangement.

IV. EVALUATION OF VISUAL REPRESENTATIONS

This section provides evaluations of the eleven above-
mentioned low-level representations and their combinations
with the BoW framework. In all experiments, we used
our Oracle-20K dataset and a general sketch dataset [5],
Sketch-20K, as benchmarks. Sketch-20K was compiled by
Eitz et al. [5] for sketch recognition and contains 20,000 hand-
drawn sketches in 250 object categories, as shown in Fig. 5.
This dataset was adopted to 1) improve the credibility of our
evaluation and 2) verify the usefulness of oracle character
analysis in general sketch-related research.

To achieve scale and translation invariance, we applied a
preprocessing procedure to both datasets. First, each image
was rescaled so that the longer side would be 224 pixels.
Then, it was placed in the center of a blank image with a

size of 256 ∗256 to produce a blank border with a width of at
least 16 pixels. Such borders can avoid boundary effects that
may occur during the execution of certain operations such as
filtering. Finally, morphological thinning [39] was applied to
ensure equal edge widths for different images.

Following the protocol of [5], the experiments were
conducted using three-fold cross-test, and the mean clas-
sification accuracy was reported. Since the datasets were
partitioned randomly, to obtain reliable results, we ran each
experiment under several different partitions and recorded
the worst mean classification accuracy. Considering the large
number of experiments, to reduce computational costs while
maintaining acceptable accuracy, we employed k-NN and
logistic regression for the classification. k-NN was used due to
the presence of non-vector-based representations; this method
can simultaneously confirm the results of logistic regression.
The performance of logistic regression is typically similar
to that of linear SVMs. Hyperparameters of each represen-
tation and classifier are selected by cross-validation using the
training set.

A. Comparisons of Low-Level Representations

Our evaluation results are presented in Table I. We did not
report the classification accuracy of the logistic regression for
CM, OCM, HIT, ESVM, and DVE because they only provide
distances between dataset instances. Note that the rankings of
performance over the two datasets are quite consistent:

1) When logistic regression is available (e.g., in recognition
tasks), BiCE outperformed other low-level representa-
tions on both datasets, followed by FD-SIFT and HOG.
In contrast, GIST, SC and HOOSC performed poorly,
mainly suffering from their sampling strategy (which
will be analyzed later).

2) Only considering k-NN, OCM and HIT outperformed
other low-level representations on the Oracle-20K
dataset. They also achieved acceptable performance on
Sketch-20K, although DVE obtained the highest accu-
racy. CM generated almost the worst results because
of its insufficiency in distinguishing edges of different
orientations. ESVM was mediocre, consistent with [22],
which reported unsatisfactory precision when applying
ESVM to sketch-based image retrieval. This is reason-
able because ESVM attempts to remove background,
which is non-existent in oracle characters / sketches;
in addition, is unable to address partial occlusions or
significant deformations in queries [23].

In summary, these results demonstrate the success of BiCE
and FD-SIFT when applied to oracle character / sketch recog-
nition. Note that BiCE can be viewed as a set representation
wherein values of 1 indicate the presence of edges; therefore,
it can be used in conjunction with min-hash to achieve efficient
searching.

In addition, note that retrieval tasks are strongly related
to classification tasks using k-NN, and in particular, HIT is
capable of quickly retrieving indexed images [19]. Therefore,
HIT may be suitable for oracle character / sketch retrieval.
DVE is also worth considering if the dataset is not excessively
large.
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TABLE I

MEAN CLASSIFICATION ACCURACIES ON ORACLE-20K AND SKETCH-20K. REPRESENTATIONS ENDING WITH “BOW” ARE QUANTIZED BY THE BOW
FRAMEWORK WITH A KERNEL CODEBOOK [25]. D-GIST IS A VARIANT OF GIST BASED ON DENSE UNIFORM OVERLAPPING SUB-WINDOWS.

D-SC AND D-HOOSC ARE VARIANTS OF SC AND HOOSC. THEY EXTRACT DESCRIPTORS ON DENSE UNIFORM SAMPLING POINTS.
FS-SIFT IS A VARIANT OF FD-SIFT WHICH BUILDS DESCRIPTORS FROM ORACLE CHARACTER / SKETCH CONTOUR POINTS

B. Effectiveness of Mid-Level Representations

To investigate the effectiveness of mid-level representations
in oracle character recognition, we fed local low-level repre-
sentations, including SC, HOOSC, BiCE and FD-SIFT, into
the famous BoW framework with a kernel codebook [25].
We also quantized HOG via BoW, regarding the histogram
from each block as a local descriptor. For simplification,
the term “+ BoW” appears as a postfix when a low-level
representation is quantized by BoW, e.g., SC + BoW means
SC quantized by BoW. The results in Table I show that BoW
usually not only reduced the representation dimensions but
also greatly improved classification performance, thus empha-
sizing the importance of building mid-level representations.
One exception is BiCE – after being processed by BoW,
the accuracy dropped a lot. This may be because BiCE is
a binary representation, which does not span a continuous
space, as required by BoW. We also note the effectiveness of
FD-SIFT + BoW on Oracle-20K, although this method
performed slightly worse than did HOG + BoW on
Sketch-20K.

In addition, our evaluation shows that BoW with max
pooling performed significantly better than with average
pooling on Sketch-20K, which is consistent with the results of
Boureau et al. [40]. However, these two pooling approaches
performed comparably when applied to oracle character
recognition. Such disparity implies unknown differences
between oracle characters and natural images (on which
Boureau et al. performed their study) / general sketches.

Thus, domain-specific studies are required to better understand
oracle character data.

C. Sampling Strategy
We have observed the mediocre performance of SC,

HOOSC and GIST on both datasets. GIST relies on a set of
non-overlapping sub-windows, thus resulting in sparse local
descriptions. Moreover, SC and HOOSC sample local patches
based on points from oracle character / sketch contours, which
might make their local descriptors extracted from those local
patches unstable to shape variation. We suspected that such
sparse / uncertain sample strategies had negative effects on
their performance.

To validate this hypothesis, we extracted GIST represen-
tations based on a set of dense uniform overlapping sub-
windows and built local descriptors for SC and HOOSC on
dense uniform sampling points, resulting in D-GIST, D-SC and
D-HOOSC. Moreover, as a negative example, FD-SIFT was
twisted to extract descriptors based on the points at contours,
leading to FS-SIFT.

The new results are also shown in Table I. For local
representations, including D-SC, D-HOOSC and FS-SIFT,
we only report the results of their use in conjunction
with the BoW framework due to the better obtained
performances. As expected, D-GIST, D-SC + BoW and
D-HOOSC + BoW outperformed their original versions,
namely, GIST, SC + BoW and HOOSC + BoW, respec-
tively, and FS-SIFT + BoW performed much worse than did
FD-SIFT + BoW. Therefore, we conclude that, to achieve
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good performances in oracle character / sketch recognition,
dense uniform sampling is highly recommended.

V. THE PROPOSED REPRESENTATION

The aforementioned visual representations performed well
in their specific domains; however, their performances remain
unsatisfactory in oracle character and sketch recognition.
We have experimentally studied and observed the superiority
of FD-SIFT + BoW. This inspired us to develop a new
low-level representation that strongly follows the skeleton of
FD-SIFT, upon which we learn a more abstract representation.
Based on these studies, we propose a hierarchical repre-
sentation for oracle character and sketch recognition, which
combines a carefully designed low-level representation and an
effective mid-level representation.

First, a Gabor-based low-level representation that follows
the skeleton of FD-SIFT but that addresses several important
issues is introduced.

Next, we rely on a fast feed-forward network to learn sparse
codes to build the mid-level representation, mainly following
the multi-layer sparse auto-encoder [30], [31].

Finally, we construct a hierarchical representation
based on the low-level and mid-level representations. The
following are in contrast to the multi-layer (sparse) auto-
encoder [30], [31]:

1) Due to restrictions concerning available oracle character/
sketch data, directly learning an auto-encoder on raw
image data did not produce good results (see Sec. VI-B).
Hence, our auto-encoder is built upon the proposed
low-level representation.

2) The proposed hierarchical representation is composed
of not only the highest level representation but also
representations from lower levels so as to combine
global structures and local details.

3) We do not directly rely on pooling approaches to gener-
ate the final representation. Instead, to reduce informa-
tion loss during dimensional reduction resulting from
pooling, we first perform quantization with multiple
kernel codebooks. We also observe that quantization
seems to generate a more robust final representation and
thus improves performance (see Sec. VI-C).

In the following sub-sections, we will introduce our low-
level and mid-level representations and the strategy used to
combine them.

A. Low-Level Representation

We first introduce the skeleton of how to extract the pro-
posed low-level representation, followed by some representa-
tion design criteria.

1) The Skeleton of Low-Level Representation: Similar to
FD-SIFT, our low-level representation consists of multiple
local descriptors. The process used to compute such descrip-
tors is shown in Fig. 6. Given a shape image I as input, we
first apply a bank of Gabor filters to extract edge information,
resulting in R response images ri (e.g., Fig. 6b):

ri = I ∗ g (θi ) , i = 1, 2, . . . , R, (1)

Fig. 6. Illustration of low-level descriptor extraction using 4 orientations
and 36 uniformly sampled points. We first convolve the input image I with 4
Gabor filters (a), mapping I to 4 response images (b). These response images
are then sampled and a partial descriptor is extracted at each sample point (c).
Partial descriptors centered at the same spatial position but originating
from different response images are finally concatenated into a complete
descriptor (d). In this figure, partial descriptors h18, h28, h38, h48 centered at
the 8-th sample point of each response image form the complete descriptor d8.

where g (θi ) is the Gabor filter with orientation θi . In addition,
a set of P points are selected via the dense uniform sampling
(as analyzed in Sec. IV-C) of I , and their positions are mapped
to each of the response images ri so that all response images
have the same set of sampled points.

Having both the set of points and the set of response images,
a group of local patches centered at each of the sampled
points are extracted from each response image. More precisely,
centered at the sampled point p j , a local patch li j is extracted
from the response image ri (e.g., Fig. 6c).

At this point, the input image I is represented by a set of
R × P local patches. To generate a robust representation for
each patch li j , we describe the patch by binning its Gabor
responses into a histogram hi j of S × S indexed spatial bins.
To smooth the energy changes at bin boundaries, all Gabor
responses are linearly interpolated into the neighboring bins.

Then, the corresponding R histograms at each point p j

(i.e., the histograms computed from each response image) are
stacked together to generate a local descriptor d j :

d j =
[
hT

1 j , hT
2 j , . . . , hT

Rj

]T
. (2)

Each local descriptor d j is an S × S × R-dimensional vector,
as shown in the example of Fig. 6d. This local descriptor is
normalized such that

∥∥d j
∥∥

2 = 1.
In conclusion, the low-level representation of an image I

is a set of local descriptors D = [d1, d2, . . . , dP ]T . In this
work, the number of densely sampled points P , the orientation
number in Gabor filter R, and the spatial binning parameter S
are set to P = 28 × 28, R = 9, and S = 4, respectively.

2) Low-Level Representation Design Criteria: Now, we
discuss the design criteria for our low-level representation,
including the approach to estimating local edge orientations
and the scope of the local descriptors.

a) Local Edge Orientation Estimation: Edges are impor-
tant for recognizing shapes. Estimation based on image gradi-
ents and direct detection are among the most frequently used
approaches in computer vision to estimate local edge orien-
tations. The former first computes image gradients ( ∂ I

∂x , ∂ I
∂y )

by convolving the image with anti-symmetric filters, such as
Sobel filters or the first-order derivatives of a Gaussian (dG),
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Fig. 7. Illustration of a symmetric pattern filtered by Sobel. For clarity, here,
we use a thinned oracle instance (a). We observe that a symmetric pattern
(surrounded by a blue rectangle) is present in this instance (b). The red point
in this symmetric pattern, when convolved with two 2D Sobel filters (c), will
have responses of ∂ I

∂x = ∂ I
∂y = 0, leading to zero gradient magnitude (d).

and then estimates local edge orientations by computing the
ratio of ∂ I

∂y and ∂ I
∂x . The latter directly detects local edge

orientations by convolving the image with symmetric filters
such as Gabor filters with zero phase, or the second-order
derivatives of a Gaussian.

Although both approaches are widely used when addressing
natural images, the former approach does not perform well
in oracle character recognition because anti-symmetric filters
do not effectively address edge junctions. Fig. 7 shows an
example. In this figure, when convolved with a 2D Sobel
filter, the magnitude of the gradient at the red point is zero,
equal to that of a trivial point on a flat background, which
is clearly unexpected. Similarly, convolving such a red point
with a 1D anti-symmetric filter [−1, 1] does not allow it to
be differentiated from a trivial isolated point. Overall, when
addressing binary images such as oracle characters, gradient-
based approaches are not recommended for extracting edge
information. FD-SIFT suffered from this issue in our analysis.

In contrast, symmetric filters are able to capture such
patterns. These filters will produce a large response if an
edge with the same orientation exists in both the image and
the filter. Thus, as discussed in the last section, our low-
level representation extracts edge information using a bank
of Gabor filters at different orientations. In this work, we fix
other parameters, i.e., scale, the wavelength of the sinusoidal
factor, and the spatial aspect ratio of the Gabor filters, to 4,
10, and 1, respectively.

b) Scope of Local Descriptors: In contrast to natural
images, where most pixels provide relevant information, oracle
characters and sketches have a large number of pixels that
correspond to empty background. Thus, large patches are
required to avoid only capturing trivial local patterns such as
small piece of lines, which are less expressive (see Fig. 8).
However, this would cause spatial information loss when
building descriptors for very large patches, which might lead
to low discriminability. Thus, the low-level representation uses
local patches covering at least one sixteenth and at most one
sixth of the input image because we observed that these values
provided good performances (see Sec. VI-A).

B. Mid-Level Representation

The mid-level representation is based on a multi-layer sparse
auto-encoder [30], [31]. We first present the construction of the

single-layer sparse auto-encoder, followed by the multi-layer
version.

1) Single-Layer Sparse Auto-Encoder: Let X be a set of
M input vectors in an N-dimensional vector space, i.e.,
X = [x1, . . . , xM ]T ∈ R

M×N . The single-layer auto-encoder
starts from an encoder that maps each input vector xi to yi

under a transform F : yi = F(xi). yi is regarded as the
code computed from xi . This encoder is accompanied by a
decoder, which maps yi back to the input space under another
transform G, thus producing a reconstruction: ri = G(yi ).

The single-layer auto-encoder is parametrized through its
encoder and decoder and attempts to reconstruct the original
input as well as possible, i.e., it attempts to make ri ≈ xi .

After applying the sparsity regularization to codes, the auto-
encoder is forced to learn a sparse representation of the input.
Such a sparse auto-encoder must reconstruct each input vector
using a compacted representation of the input vector, thus
encouraging the auto-encoder to discover unknown common
patterns in X. Therefore, with the sparsity regularization, the
auto-encoder is able to build more abstract representations for
the input.

In this work, both the encoder and decoder are defined as
affine transforms followed by a nonlinear mapping:

F(x) = sig(W1x + b1), (3)

G(y) = sig(W2y + b2), (4)

where sig(x) = 1/(1 + e−x) is the sigmoid function.
We choose the negative log-likelihood as the measurement

of reconstruction error, i.e., the loss arising from the use of ri

to represent the input vector xi . The negative log-likelihood
between x and r is given by the following:

Lrec(x, r) = −
N∑

k=1

xklog(rk) + (1 − xk)log(1 − rk), (5)

where xk and rk are the k-th components of x and r,
respectively.

For the sparsity constraint, we do not employ the L1 penalty
due to its high optimization cost. Instead, we utilize the
KL divergence as in [41]:

Lspa(y) =
∑

k

ρlog(
ρ

yk
) + (1 − ρ)log(

1 − ρ

1 − yk
), (6)

where yk is the k-th component of y, and ρ is a small
number close to 0. The above equation would encourage each
component of y to approach ρ.

Finally, the single-layer sparse auto-encoder is trained to
minimize the combination of the reconstruction error and the
sparsity constraint over the entire dataset X:

min
�

M∑
i=1

Lrec(xi ,G(F(xi ))) + λLspa(F(xi)), (7)

where � = {W1, b1, W2, b2}. In this work, we set ρ and
λ equal to 0.05 and 0.15, respectively, and minimize Eq. 7
via stochastic gradient descent with a gradually decreasing
learning rate. More complex solvers, e.g., L-BFGS, were also
attempted, but they produced very similar results.
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Fig. 8. Illustration of the effects of patch size. For convenience, here, we use non-overlapping patches and two (256 × 256)-pixel ideal instances.
Fig. (a) shows that, when small patches are used, two instances cannot be well distinguished because their distributions of local patterns are similar, implying
the triviality of patterns in patches. On the contrary, in Fig. (b), large patches cover more complex patterns, leading to a better discrimination because half
the local patterns from the two instances are different. (a) Patch Size: 32 × 32. (b) Patch Size: 128 × 128.

Fig. 9. Illustration of the proposed hierarchical representation. Given an input image, we first convolve it with a bank of Gabor filters and extract local
descriptors on Gabor response images to build low-level representations (for clarity, we only show 9 descriptors). These descriptors are encoded by the sparse
auto-encoder of the first layer, and the output vectors, i.e., the codes, are fed into the sparse auto-encoder of the second layer. The local descriptors and the
output from all sparse auto-encoders are concatenated and quantized to build the final hierarchical representation. For clarity, please see the electronic version.

2) Multi-Layer Sparse Auto-Encoder: The construction of
a multi-layer sparse auto-encoder is rather straightforward:
each layer is separately trained using the outputs from the
previous layer. More precisely, the multi-layer auto-encoder
is built in a stacked fashion, therein consisting of multiple
single-layer sparse auto-encoders. Each auto-encoder takes the
representation learned from the previous layer (or the low-level
representation for the first auto-encoder) as input.

C. Final Hierarchical Representation

The final representation is first constructed by combining
low-level and mid-level representations and is then quantized
using multiple kernel codebooks. Fig. 9 shows the entire
pipeline.

1) Combining Multi-Level Representations: Given a (train-
ing) dataset, we first build low-level representations for all
images and subsequently construct a multi-layer sparse auto-
encoder over these low-level representations. In this way, an
image I is first transformed into a representation consisting
of a set of local descriptors D = [d1, d2, . . . , d28∗28]T . Then,
these local descriptors are encoded by the trained multi-layer
sparse auto-encoder layer by layer. In this work, we use a
two-layer, 160-dimensional sparse auto-encoder; a descriptor

di is first encoded by the auto-encoder of the first layer
as y(1)

i ∈ R
160 and then encoded by the second layer as

y(2)
i ∈ R

160.
Note that higher level representations tend to model global

shapes and structures. Thus, we also branch outputs from
lower levels into our hierarchical representation to capture
local details. More precisely, we build the raw hierarchical
representation by concatenating the low-level representation
and outputs from sparse auto-encoders of all layers:

F = [f1, f2, . . . , f28∗28]T , (8)

where

fi = [dT
i , y(1)T

i , y(2)T
i ]T . (9)

Such a raw representation is a high-dimensional representa-
tion. Thus, we feed it into the BoW framework with multiple
kernel codebooks, which perform quantization and produce
the final representation.

2) Multiple Kernel Codebooks: Again, let X be a set
of M vectors in an N-dimensional vector space, i.e.,
X = [x1, . . . , xM ]T ∈ R

M×N . The BoW framework trains
over X to obtain a codebook T = [t1, . . . , tC ]T ∈ R

C×N ,
where C is the number of visual words, and then encodes each
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vector xi as vi . A raw representation consisting of multiple
vectors is finally quantized via average / maximum pooling
on codes of these vectors.

For the BoW framework with a kernel codebook [25], vi is
calculated with a Gaussian kernel:

vi = [vi1, vi2, . . . , viC ]T , (10)

where

vi j = ex p(−‖xi − t j‖2/2σ 2)∑
tk

ex p(−‖xi − tk‖2/2σ 2)
. (11)

Note that after applying the BoW framework, each input
vector xi is reconstructed as Tvi , resulting in a residue
ei = xi −Tvi . Inspired by the work of [42] and [43], we refine
the BoW quantization by re-coding the residues of all input
vectors, i.e., by reapplying BoW (with a kernel codebook)
to the residues. Thus, an improved reconstruction of xi is
the concatenation of its code and the code of its residue.
The quantization of a raw representation is correspondingly
updated.

In this work, we only re-code residues once to balance
classification accuracy with computational cost.

VI. EXPERIMENTS

In Sec. IV, we presented the experimental results of several
low-level visual representations and their combinations with
BoW applied to oracle and sketch recognition. In this section
we evaluate the proposed hierarchical representation as well
as the effects of certain key factors in this representation.
The experimental setup is similar to that in Sec. IV, i.e.,
each experiment is run several times and the worst mean
classification accuracy of three-fold cross-test is reported.
If not noted specifically, logistic regression is employed to
ensure computational efficiency. We do not consider k-NN
here because all representations involved in this section are
vector-based representations; in this case, k-NN is always
dominated by logistic regression.

A. Low-Level Representation

We first compare our low-level representation (LL) with
FD-SIFT and HOG due to their outstanding performances
when used in conjunction with BoW (see Sec. IV). BiCE is
skipped because it could not match up with FD-SIFT + BoW
or HOG + BoW, although it performs best in the absence
of BoW. We also design three variants of LL by replacing
Gabor filters with anti-symmetric filters, i.e., Sobel (LL(T1)),
[−1, 1] (LL(T2)) and [−1, 0, 1] (LL(T3)), for comparison.

As shown in Table II, the proposed low-level representation
significantly outperforms FD-SIFT, HOG, and other visual rep-
resentations mentioned in Sec. IV. Moreover, after replacing
Gabor filters with anti-symmetric filters, the performance of
LL drops a lot. This result verifies the discussion about edge
orientation estimation in Sec. V-A2.

Cross-validation shows that the optimal patch size for LL is
one eighth of an input image. We vary the patch size to other
scales, the results of which are shown in the last four rows
of Table II. We can see that the performance of LL gradually

TABLE II

PERFORMANCE OF THE PROPOSED LOW-LEVEL REPRESENTATION AND
OTHER VISUAL REPRESENTATIONS. “AVG” AND “MAX” DENOTE

AVERAGE AND MAX POOLING. THE NUMBERS AFTER “LL”
ILLUSTRATE THE SIZE (THE PERCENTAGE OF AN IMAGE)
OF LOCAL PATCHES. NUMBERS FOLLOWED BY ‘*’ ARE

ESTIMATED BY CROSS-VALIDATION. IF SUCH

NUMBERS ARE NOT PRESENTED, THE

OPTIMAL SIZE (DETERMINED VIA
CROSS-VALIDATION) IS USED

decreases whenever the patch size increases or decreases. This
result confirms the importance of using a large but suitable
scope of descriptors as discussed in Sec. V-A2.

B. Mid-Level and Final Representation

The proposed hierarchical representation is an extension of
the multi-layer sparse auto-encoder, which is however different
from the original version in the following three ways (see
Sec. V-B): 1) the mid-level representation is based on the
proposed low-level representation rather than the raw image,
2) the final representation includes information from both low-
level and mid-level representations, and 3) multiple kernel
codebooks are used for quantization.

Here, we evaluate the first two factors, leaving the last one
for the next sub-section. We denote the multi-layer sparse auto-
encoder with N layers as MA(N). MA(N)-Raw / MA(N)-LL
represents the variants of MA(N) that take raw image data /
our low-level representation as the initial input. In contrast
to MA(N)-LL, which only employs outputs from the final
layer for quantization, MA(N)-LL-All combines the low-level
representation and outputs from each layer of the mid-level
representation. To save space, we do not differentiate between
average pooling and max pooling, i.e., only the best results
are reported.

The first four rows of Table III clearly show the improve-
ments obtained using the following:

1) Building mid-level representations upon manually
designed low-level representations;

2) Branching outputs from lower levels into the final
representation.

The first improvement is obtained by comparing
MA(2)-Raw + BoW or MA(3)-Raw + BoW with
MA(2)-LL + BoW. Note that MA(3)-Raw + BoW can
be viewed as a variant of MA(2)-LL + BoW, which adds an
extra layer at the bottom to learn low-level representations
from raw image data, thereby playing a similar role as the
manually designed low-level representation. The inferior
performance of MA(3)-Raw + BoW demonstrates the
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TABLE III

PERFORMANCE OF MID-LEVEL AND FINAL HIERARCHICAL
REPRESENTATIONS. THE NUMBERS FOLLOWING “RAW”

OR “LL” ARE THE SPARSITY LEVEL λS, AND THE

NUMBERS FOLLOWING “BOW” INDICATE THE

SIZES OF CODEBOOKS C . NUMBERS
FOLLOWED BY ‘*’ ARE ESTIMATED

BY CROSS-VALIDATION. OPTIMAL

PARAMETERS (DETERMINED BY
CROSS-VALIDATION) WERE

USED IF NOT SPECIFIED

necessity of manually designed low-level representations
when domain-specific data are scarce.

The second improvement could be observed after comparing
MA(2)-LL + BoW with MA(2)-LL-All + BoW. Such an
improvement, although not significant, illustrates the effect of
combining local details with global structures.

In addition, we also investigate the influence of the sparsity
level λ in Rows 5-10 of Table III. Compared with the results in
Rows 1-3 of Table III, it can be observed that the sparsity term
moderately affects the accuracy and tends to have a greater
impact when the number of layers increases. In addition, for
very small λ, MA seems to learn an identity transform and
fails to discover salient patterns, whereas an excessively large
λ leads to substantial information loss. In both cases, the
performances are degraded.

C. BoW With Multiple Kernel Codebooks

We construct the final representation by quantizing outputs
from MA(2)-LL-All using BoW with multiple kernel code-
books. Notice that BoW works by first learning the codebooks
and then coding the outputs using pooling. To obtain a fair
comparison, we also employ a variant by adding an additional
layer on top of MA(2)-LL-All and then performing pooling
on this layer, i.e., pooling on the outputs of MA(3)-LL-All.
The additional layer serves as a replacement for BoW.

Let us compare MA(2)-LL-All + BoW (Row 4) with
MA(2)-LL-All (Row 11) or MA(3)-LL-All (Row 12) in
Table III. The results show that the representation quan-
tized by BoW with a kernel codebook outperforms those
directly originating from MA(2)-LL-All or MA(3)-LL-All.
This phenomenon has resulted in an emphasis on discovering
better coding schema and is consistent with the conclusion of
Coates et al. [44].

We have shown that, with a 1500-word codebook,
MA(2)-LL-All + BoW (Row 4) performed quite well. By con-
ducting two additional experiments, i.e., MA(2)-LL-All-BoW

TABLE IV

COMPARISON WITH THE STATE OF THE ART (NO EXTERNAL DATA)

using a 3000-word codebook / two 1500-word codebooks
(one for quantizing the outputs of MA and the other for quan-
tizing the residues), we also determined that, with multiple
kernel codebooks, BoW (Row 14) performed better than did
the single kernel codebook version (Row 4 & Row 13). More
precisely, with two 1500-word codebooks (Row 14) BoW
achieved a higher accuracy than when using one 1500-word
codebook (Row 4) or even one 3000-word codebook (Row 13).
This result proves that our multiple kernel codebooks can
reduce information losses by learning codebooks on residues,
thus increasing classification accuracy.

D. Comparison With the State of the Art (No External Data)

To the best of our knowledge, the state of the art in general
sketch recognition on Sketch-20K can achieve an accuracy of
56.0% by feeding FD-SIFT + BoW into a kernel SVM [5].
Moreover, our evaluation in Sec. IV confirmed the effective-
ness of FD-SIFT + BoW on Oracle-20K. To further investigate
our hierarchical representation, we also implemented other
typical works in natural image recognition and shape analysis.
We compared our representation with the following:

1) Eitz et al. [5] – the aforementioned state of the art in
general sketch recognition.

2) ScSPM [26] – mid-level representations built by sparsely
encoding SIFT representations. We also introduce a
variant by building upon our proposed low-level rep-
resentation. These two ScSPMs are denoted as ScSPM-
SIFT and ScSPM-LL, and their outputs are classified by
a linear SVM because we do not observe better results
when a kernel SVM was applied.

3) LeNet [32] – a small convolutional neural network
applied in digit recognition. We directly train the net-
work on Oracle-20K / Sketch-20K and classify the
output using an SVM with an RBF kernel (although not
shown, using a linear SVM decreases the accuracies by
approximately 0.5% on both datasets).

4) TaoNet [45] – applied in alphabet recognition. This
method is similar to LeNet; however, the two convo-
lutional layers are slightly larger, therein consisting of
96 8-by-8 and 256 2-by-2 filters. We also directly train
this network and classify its output using an SVM with
an RBF kernel (a linear SVM slightly decreases the
performances by approximately 1% on both datasets).

5) Our method – feeding MA(2)-LL-ALL + BoW
(1500 + 1500) into an SVM with a χ2 kernel.

Row 2 of Table IV shows the unsatisfactory performances
of the original ScSPM (ScSPM-SIFT). Replacing SIFT with
our proposed low-level representation (ScSPM-LL) produces
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Fig. 10. The top five similar instances of four randomly selected queries for Oracle-20K and Sketch-20K using the proposed representation. The first column
shows the query images. Relevant instances are enclosed by blue rectangles. (a) Oracle-20K. (b) Sketch-20K.

a large improvement and exceeds the state of the art, which
again verifies the effectiveness of our low-level representation.
Moreover, when processing a given test image, our approach
does not need to solve an optimization problem and thus is
much faster than ScSPM.

Due to the restriction on available domain data, only
small CNNs can be directly trained without producing seri-
ous overfitting. However, it is difficult for small networks
to detangle useful properties from input. As shown in
Rows 4-5 of Table IV, directly applying LeNet or TaoNet
to oracle character or sketch recognition does not seem to
produce very good results. This phenomenon again encourages
domain-specific studies when external data are inaccessible.

E. Comparison With the State of
the Art (With External Data)

Recently it is believed that a representation learned from
one dataset can capture underlying common factors, which
may benefit tasks in other domains. Thus, when external data
are available, reusing representations trained on large-scale
external data may facilitate domain research wherein data are
scarce such as research on oracle character recognition.

Here, we pre-train three complicated convolutional
neural networks called AlexNet [33], VGGNet [34] and
GoogLeNet [35] on ImageNet [46], a large dataset containing
millions of natural images, and then fine tune the learned
networks on Oracle-20K / Sketch-20K. Inspired by the
success of ensemble [35], we also train 5 independent
GoogLeNets differing in sampling methodologies and the
order of input images. Their predictions are aggregated for
testing (GoogLeNet-Ensemble). In addition, we attempt to
combine the fine-tuned representation (i.e., outputs of the last
but one fully connected layer) with our designed hierarchical
representation by simply concatenating them (AlexNet +
Ours, VGGNet + Ours, and GoogLeNet + Ours). The
classification results based on logistic regression are reported
in Table V. Our network implementations were based on
Caffe [47].

TABLE V

COMPARISON WITH THE STATE OF THE ART (WITH EXTERNAL DATA)

It is appealing that the recognition performance can be
greatly increased using external data. Without significant man-
ual exploration, fine-tuned AlexNet achieves an accuracy of
greater than 92% in oracle character recognition and even out-
performs human beings in sketch recognition, thereby demon-
strating the power of transfer learning. More complicated
networks, i.e., VGGNet and GoogLeNet generate better results
on both datasets. The ensemble of 5 GoogLeNets also slightly
improves the accuracy, but at the cost of much longer training
/ testing time (5 times compared with a single GoogLeNet).
Nevertheless, incorporating the proposed representation with
AlexNet, VGGNet or GoogLeNet can further improve the
obtained performance by a moderate margin. This shows that
our domain-specific work may complement models learned on
external data.

F. Similar Oracle / Sketch Search

Fig. 10 shows the top five similar (measured by the proposed
representation) instances of four randomly selected queries
for each database. Relevant instances are enclosed in blue
rectangles. We observe that, in the top results, most wrongly
matched instances have shapes that are quite similar to the
queries.

G. Oracle Character Analysis

In this section, we conduct an unsupervised intra-category
analysis on Oracle-20K using the proposed representation.
To reduce intra-category variance, we rotate the oracle char-
acters according to their principle orientations in advance.
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Fig. 11. Iconic representations of example categories of Oracle-20K. The
text below each category is its contemporary meaning.

TABLE VI

THE CLUSTER NUMBERS FOR 5 SELECTED ORACLE CHARACTER
CATEGORIES AND THE AVERAGE FOR ALL 105 CATEGORIES

HAVING AGE INFORMATION. THE RESULTS ARE LISTED IN

ORDER OF HISTORICAL PERIOD (FROM EARLIEST

TO LATEST). THE NUMBERS OUTSIDE THE
PARENTHESES ORIGINATE FROM MEAN-

SHIFT CLUSTERING; THE NUMBERS

INSIDE THE PARENTHESES WERE

MANUALLY COUNTED

1) Intra-Category Distribution: We are interested in the
distribution of oracle characters in the proposed representation
space. As mentioned in Sec. III, there is large diversity among
oracle characters within the same category for historical rea-
sons, implying that there might be more than one cluster within
each category. To determine the cluster numbers, we separately
apply adaptive mean-shift [48] to hierarchical representations
of each category. The average number of clusters within each
category is 2.6 (with our manual clustering result being 3.2),
indicating that most categories distribute over several distinct
clusters in the representation space.

To visualize such categories, we identify iconic characters
that can be viewed as good representatives of a category
based on the clustering results. The oracle character with
minimum Euclidean distance to the cluster center is regarded
as the iconic representative of that cluster. Several examples
are shown in Fig. 11.

2) Analysis Over Historic Periods: The existence of mul-
tiple clusters within a category has aroused our interest in
analyzing the intra-class variability over time in detail. In the
field of archeology, ages of oracle characters are arranged
into multiple periods such as Bin, Chu, and Huang [49].
Unfortunately, only a few characters (a total of 105 categories)
in Oracle-20K were collected along with their age information.
We apply the previous clustering algorithm to these characters
and provide various results in Table VI. To confirm these
results, we also manually count the cluster numbers and
present them in the table.

First, we can observe that the first historical period (Zi)
contains a moderate number of clusters for selected and overall

characters, whereas the second and third periods (Bin and Li)
exhibit the highest variabilities. Moreover, the distributions
of the latest three periods (Chu, He and Huang) are quite
concentrated. This analysis might suggest that, for a small set
of our dataset, the visual layout underwent a standardization
process across time (i.e., the average cluster number decreased
over time). This initial result will be validated with more data
in the future.

In addition, we observe that the mean-shift-generated results
are quite similar to the counts mainly obtained by humans,
implying the good separability of our representation. Note
that not every character distributes across all historical periods,
and the sets of iconic representatives for different periods are
highly overlapped. Thus, the average number of clusters within
each category is much smaller than the summation of the
average cluster numbers of each period. We should also note
that unsupervised clustering is somewhat subjective and that
different people may have different opinions. Nevertheless,
when a dataset is large and manual clustering is impossible,
our representation is worth considering.

VII. POTENTIAL APPLICATIONS

In this section, we introduce several potential applications
based on the proposed representation.

A. Recognizing Oracle Characters in Photos

Museum visitors are often amazed by these invaluable
historical hieroglyphs. However, it is quite a pity that non-
professional visitors are typically unable to understand such
attractive ancient characters carved on cultural objects. In an
attempt to solve this problem, a mobile App can be designed
to detect and classify oracle characters in real time. When a
visitor takes a photo of a historical hieroglyph, the following
procedure is run:

1) Use sliding windows of adaptive sides to detect oracle
characters in the photo;

2) Extract the hierarchical representation for each detected
oracle character;

3) Classify the character using a logistic regression classi-
fier;

4) Display the predicted labels.
The entire procedure is fully feed-forward and does not need
to solve any optimization problem on usage. Hence, the App
can run very fast; see Fig. 12(a) for an example.

B. Exploring the Evolution of Chinese Characters

Chinese characters have experienced a long evolution.
Started from oracle characters, Chinese characters evolved into
bronze characters, seal characters, etc. sequentially. Currently,
traditional Chinese characters and simplified Chinese charac-
ters are widely used in China.

However, discovering relations between characters from
different historical periods remains challenging because many
historical records have been lost over time. Inspired by the
visual similarity between characters, we extend our hierarchi-
cal representation to address characters of all types. Given two
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Fig. 12. Applications enabled by the proposed representation. (a) Recognize
oracle characters in a photo. For clarity, we only show three recognized
characters. (b) Similarity of oracle characters (red), bronze characters (yellow),
seal characters (green), and a traditional/simplified Chinese character (black).
The Euclidean distance between two characters measures their similarity (the
closer two characters are, the more similar they are). We bound characters
with the same meaning using blue rectangles. The three groups are ‘mountain’,
‘water’, and ‘soil’. Note that the high similarity between characters indicates
an evolutionary relation.

Fig. 13. Illustration of sketch-based image search. Each column contains a
sketch query, the most similar image in the dataset, and the corresponding
edge map.

characters from different historical periods, if the distance
between their representations is sufficiently small, this pro-
duces a hypothesis that one is likely to be evolved from
the other. We hope such computational similarity can assist
archaeologists; see Fig. 12(b) for an example.

C. Sketch-Based Image Search

We have demonstrated the effectiveness of the proposed
representation in general sketch recognition. This inspires us
to think about another potential application, i.e., sketch-based
image retrieval [16], [19], as shown in Fig. 13.

A typical sketch-based image retrieval method consists of
first extracting edge maps from images, followed by per-
forming a sketch query to edge map matching supported by
a well-designed indexing strategy [16], [19]. As shown in
Fig. 13, the edge maps of top results are quite similar to
users’ sketch queries. For example, in the first column of
Fig. 13, given a sketch query (Row 1), the system outputted
an image of a temple containing several vertical pillars and a
tent-like roof (Row 2), the edge map (Row 3) of which having
much in common with the query. Hence, the edge maps can
be considered as an intermediary to bridge the gap between
natural images and binary sketches.

Based on the above concept, in the offline stage, the edge
map [50] of each image in the database can be encoded by the

Fig. 14. Example instances that mainly differ in orientations: instances
belonging to (b) appear similar to the 90-degree rotated versions of instances
belonging to (a), and instances belonging to (d) seem to be the reflected
versions of instances belonging to (c).

proposed representation. In the online stage, users can draw a
sketch of the expected images as the query. Then, the system
extracts its hierarchical representation, compares with database
images, and returns the most similar ones to users. Fig. 13
shows some preliminary results from a small dataset composed
of thousands of images downloaded from the Internet. For
larger datasets, an indexing technology must be leveraged to
speed up the process. This will be our future work.

VIII. DISCUSSIONS AND LIMITATIONS

The representation proposed in this paper has produced
promising results in not only oracle character recognition but
also general sketch recognition. However, this method still
suffers from certain limitations, which we will discuss below.

A. Other Representations

Our representation is built upon the famous bag-of-words
framework, which does not encode any spatial layout informa-
tion. To make use of such information, we have experimented
with spatial pyramid matching [51] developed for natural
image analysis but did not observe an obvious improvement.
Moreover, our representation is currently based on the early
work of sparse auto-encoders. We have also tried later works,
such as contractive auto-encoders [52], but no attractive results
were produced. Nevertheless, we have shown that, with a few
twists, multi-layer sparse encoders could perform well when
applied to oracle and sketch recognition. Thus, we believe
that our hierarchical representation can be enhanced if we
can find a better method of encoding spatial information.
However, such representations might require priors from oracle
characters, similar hieroglyphs or sketches, which would be
different from those explored from natural images.

B. Rotation Invariance

In Sec. III, we demonstrated that certain oracle charac-
ters are similar to the rotated / reflected versions of other
characters in the same category (see Fig. 4); thus, it seems
that the classification accuracy can be increased if we can
properly address rotation variance. Unfortunately, the perfor-
mance of our method slightly decreased after rotating oracle
characters relative to their principal orientations. This may
be because some oracle characters belonging to different
categories mainly differ in orientations (see Fig. 14). Rotating
such characters to a specific orientation would harm the
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discriminability. We will conduct additional experiments on
this issue in the future.

IX. CONCLUSION AND FUTURE WORK

In this work, computer vision techniques were leveraged
to analyze oracle characters. Due to the unavailability of
public oracle character data, we generated the Oracle-20K
dataset, which is hoped to be helpful to the community
in the future. Several popular shape- / sketch-related visual
representations were studied and analyzed, based on which
a novel hierarchical representation was proposed. We con-
ducted extensive analysis on factors that might influence the
proposed representation and compared it with related works.
The experimental results demonstrated the superiority of the
proposed representation over state-of-the-art representations
on not only Oracle-20K but also Sketch-20K. This result
verified the generalizability of the proposed representation on
shape- / sketch-related works. We also showed that, when
auxiliary data are available, the proposed representation can
also be combined with CNN-based solutions to achieve a
large performance improvement. In addition, we performed an
unsupervised analysis on Oracle-20K and found that oracle
characters tend to have less visual variability in subsequent
periods. This trend will be validated on more data in the future.

We only explored mainstream low-level representations and
certain simple mid-level representations; we leave the study
of sophisticated representations and classification models as
future work. We also would like to evaluate the proposed
representation on more shape- / sketch-related problems.
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