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a  b  s  t  r  a  c  t

Quantification  of  coronary  arterial  stenoses  is  useful  for the  diagnosis  of  several  coronary  heart  diseases.
Being  noninvasive,  economical  and  informative,  computed  tomographic  angiography  (CTA)  has  become
a common  modality  for monitoring  disease  status  and  treatment  effects.  Here,  we  present  a  new  method
for  detecting  and  quantifying  coronary  arterial  stenosis  in  CTA  using  fuzzy  distance  transform  (FDT)
approach  and  a new  coherence  analysis  of  observed  data  for computing  expected  local  diameter.  FDT
allows computing  local  depth  at each  image  point  in  the  presence  of  partial  voluming  and  thus,  eliminates
the  need  for  binarization,  commonly,  associated  with  inclusion  of  additional  errors.  In  the  current  method,
coronary  arterial  stenoses  are detected  and  their  severities  are  quantified  by analyzing  FDT  values  along
the medial  axis  of  an  arterial  tree obtained  by  its skeletonization.  A  new  skeletal  pruning  algorithm  has
been developed  toward  improving  the quality  of medial  axes  and  thereby,  enhancing  the  accuracy  of
stenosis  detection  and  quantification.  Further,  we have  developed  a  new  method  to  estimate  “expected
diameter”  along  a given  arterial  branch  using  a new  coherence  analysis  of observed  diameter  values  along
the branch.  The  overall  method  is  completed  in  the  following  steps  – (1)  fuzzy  segmentation  of  coronary
artery  in  CTA,  (2)  FDT  computation  of coronary  arteries,  (3)  medial  axis  computation,  (4)  estimation  of
observed  and  expected  diameters  along  arteries  and  (5)  detection  of  stenoses  and  quantification  of  arterial
blockage.  The  performance  of  this  method  has  been  quantitatively  evaluated  on  a realistic  coronary  artery
phantom dataset  with  randomly  simulated  stenoses  and  the  results  have been compared  with  a binary
distance  transform  based  and  a conventional  binary  algorithm.  The  method  has  also  been  applied  on a
clinical  CTA  dataset  from  thirteen  heart  patients  and  the results  have  been  compared  with  an  expert’s

quantitative  assessment  of  stenoses.  Results  of  the  phantom  experiment  indicate  that  the  new method
(error:  0.53%)  is  significantly  more  accurate  as compared  to  both  binary  distance  transform  based  (error
2.11%) and  conventional  binary  (error  3.71%)  methods.  Also,  the  results  of  the  clinical  study  indicate
that  the new  FDT-based  method  (kappa  coefficient  =  87.9%)  is highly  in  agreement  with  the  expert’s
assessments  and,  in  this  respect,  outperforms  the  other  two  methods  (kappa  coefficients  =  75.2%  and
69.5%).
. Introduction

Quantification of stenoses in coronary arteries is highly effective
nd often essential for the diagnosis of several coronary heart dis-

ases [1–5]. Recent advancements of medical imaging techniques
6] have opened avenues for noninvasive imaging for diagnosis
nd treatment monitoring of several diseases. Computed tomo-
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graphic angiography (CTA) has become a commonly recommended
imaging modality for clinical diagnostic purposes in different heart
diseases, especially, for quantification of coronary arterial stenosis
[2–5,7–11]. Research efforts have been devoted toward segment-
ing coronary arterial trees [12–18] and quantification of stenoses
[4,16,19–22] via CTA. Riedel et al. [12] developed a topology adap-
tive active surface model for segmenting coronary arterial tree
via CTA using a priori knowledge of vessel geometry and locally
adaptive gray-scale statistics. Florin et al. [13] presented another

coronary artery tree segmentation method via CTA using particle
filtering and a Monte-Carlo sampling rule with parallel propaga-
tion of multiple hypotheses dealing with bifurcations and multiple
branches. Szymczak et al. [14] adopted a topological approach of
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xtracting a connected forest of persistent maxima in a CTA image
nd the coronary artery trees were segmented from the forest using

 geometric filtering. Yang et al. [15,17] developed a hybrid strategy
or automatic segmentation of coronary arteries using multi-scale
ltering and a Bayesian probabilistic approach within the level
et segmentation model. Wang et al. [18] presented a vessel tree
egmentation method by optimizing a “virtual contrast injection”
lgorithm using fuzzy connectivity [23–27].  Lesage et al. [28] pre-
ented a thorough review of state-of-the-art methods on vascular
egmentation and analyzed different methods along three differ-
nt axes, namely, models, features and extraction schemes. Also,
hey discussed the theoretical and practical properties of recent
pproaches and highlighted the most advanced and promising
nes.

Current methods for the quantification of coronary arterial
tenosis via CTA vary in their performance and the amount of
ser intervention required. Antiga et al. [19,20] used a 3D level
et approach to segment arteries from CTA images and compute
he maximal sphere inscribed inside a binary vascular region for
tenosis quantification. Chen and Molloi [21] developed another
lgorithm for automatic quantification of coronary arterial steno-
is using skeletonization and geometric analysis of branch length,
iameter and bifurcation angles. Boskamp et al. [22] developed a
esearch software tool for visualization and quantitative analysis
f vessels and stenosis in CTA data sets using different morpholog-
cal filtering, skeletonization and interactive masking. Yang et al.
16] developed a harmonic function to extract the centerline of
ubular-tree structure and combined it with local cross-sectional
rea for detection and quantification of arterial stenosis. Black-
on et al. [10] presented an automated volumetric plaque analysis

lgorithm to measure non-calcified plaque burden in coronary
T angiography using centerline computation, thresholding and
anual identification of lesions and adjustment of vessel diam-

ters above and below the lesion. They have observed a high
eproducibility of plaque measurements among experienced and
nexperienced observers. Cordeiro et al. [7] proposed a modified
utomatic 3D approach using manual vessel isolation and different
indow or level settings and semi-automatic centerline detection

o evaluate ≥50% stenoses. They have observed that the modi-
ed automatic 3D method is equivalent to and significantly less
ime consuming than traditional manual 2D methods. Recently,

 thorough survey of coronary CTA based stenosis detection and
uantification methods including automated measures has been
eported in [11]. Manual plaque labeling using multi-planar format-
ing [8,9] is popularly used in clinical studies to detect and quantify
oronary stenoses.

Despite radical advancements in CTA technology, limited signal-
o-noise ratio (SNR) and resolution, currently achievable in clinical
cans, leads to significant partial voluming effect, especially, for
mall-scale structures like an arterial tree. Therefore, “hard deci-
ion” such as binarization should preferably be avoided or delayed
o the very end of a coronary stenoses detection and quantification
rocessing chain. Here, we  introduce a method that obviates binary
egmentation and effectively handles partial voluming effects in
mages at currently achievable resolution regime.

The method of detecting and quantifying coronary arterial
tenosis in CTA utilizes fuzzy distance transform (FDT) approach
nd a new coherence analysis of observed data for computing
xpected local diameter. Specifically, FDT [29] used to achieve sub-
oxel accuracy which is instrumental in early detection of diseases.
rdinary distance transform (DT) [30–35] requires a binary seg-
entation of an object in an image and is based on finding a
hortest distance measure from the background. DT has been popu-
arly adopted in many digital geometric applications [36] of binary
bjects. Borgefors [33–35] extensively studied DTs for binary 3D
bjects and presented the integer-valued approximation of the
ng and Graphics 36 (2012) 11– 24

optimal local step lengths that are widely used by others. Local
step optimization and accuracy of DT has further been studied by
other research groups [37–39].  Recently, Saha et al. [29] have intro-
duced a generalized fuzzy distance transform and established its
metric property. Applications of FDT have been investigated by dif-
ferent research groups [40–44].  Effectiveness of FDT in measuring
trabecular bone thickness at limited in vivo resolution regime has
been shown [40,45–47].  Here, we  adopt a similar approach for mea-
suring local diameters along a coronary artery centerline and use
these values for detecting and quantifying stenoses. Although, it
is desirable to compute arterial centerline from its fuzzy repre-
sentation, such developments demand significant new theoretical
research related to topology and shape preservation in fuzzy
objects. In the current work, binary representation of coronary
artery is used for skeletonization. A comprehensive framework
for evaluating centerline detection algorithms for coronary vas-
culature has been presented by Rotterdam coronary axis tracking
evaluation group [48]. Another major challenge in automatic quan-
tification of stenoses is how to determine expected diameters
at different locations in an arterial tree. We  have developed a
new method to estimate “expected diameter” along a given arte-
rial branch using a new coherence analysis of observed diameter
values along the branch. This paper is organized as follows. In
Section 2, we describe the theory and algorithms of individual
steps involved in detection and quantification of coronary arterial
stenoses. Section 3 presents our experimental setup and methods
evaluating the new stenosis detection and quantification algo-
rithm. Finally, experimental results and discussion are presented
in Section 4.

2. Theory and algorithms

In this section, we describe the theory and algorithms for detec-
tion and quantification of coronary arterial stenoses. The method is
completed in the following steps – (1) fuzzy segmentation of coro-
nary artery in CTA, (2) FDT computation of coronary arteries, (3)
medial axis computation, (4) estimation of expected and observed
diameters along arteries and (5) detection of stenoses and quan-
tification of arterial blockage. The first step is accomplished using
a previously published method by Yang et al. [15,17] (see Section
3.2 for a short description). In the following, we  describe the theory
and algorithms of other steps involved in the current method.

2.1. Fuzzy distance transform [29]

A fuzzy subset S of any set S is a set of ordered pairs S = {(x,
�s(x))|x ∈ S} whose first element is a member of the underlying
regular set S and the second element �s:S → [0,1], often, referred
to as the membership function, yields the membership value of x
in S. Throughout this paper, we will use script letters to denote
fuzzy subsets and “�” subscripted by the fuzzy subset to denote
its membership function. A digital space [49] D is often repre-
sented as an ordered pair D = (Z3, ˛), where Z denotes the set
of integers and Z3 represents the underlying “3-D cubic grid” (in
short, “cubic grid”);also,� is a binary relation on Z3 indicating
the adjacency between every two  elements in Z3. An element of
the cubic grid is referred to as a voxel and is represented by a
triple of integer coordinates. In this paper, standard 26-adjacency
[50] is adopted for ˛, i.e., two  voxels (x1, x2, x3) and (y1, y2, y3)
in Z3 are adjacent if and only if, max  1≤i≤3|xi − yi| ≤ 1, where |·|
gives the absolute value. A 26-adjacent voxel of a voxel p is also

referred to as a 26-neighbor of p; the set of all 26-neighbors of
p excluding itself is denoted as N26(p). In the rest of this paper,
by “adjacency” we will understand “26-adjacency” unless stated
otherwise. A digital object O is a fuzzy subset {(p, �O(p))|p ∈ Z3} of



 Imagi

Z

p
a
a
t
t
d
i

〈
s
a
p
T
(
n
d
t

I

B
l
q
�
a
l

ω

T
O

a
t
{
i
Z

˝

F
a
F

Y. Xu et al. / Computerized Medical

3. As pointed out earlier, the current application aims to com-
ute both observed and expected diameters at each location along

 coronary artery tree via CTA. Following our target application,
 digital object O represents a fuzzily segmented coronary artery
ree and at any voxel p, the membership value �O(p) represents
he partial content of arterial lumen at p. The support �(O) of a
igital object O is the set of all voxels with nonzero membership,

.e., �(O) = {p|p ∈Z3 and �O(p) /= 0}.
A path � in a set S of voxels from p ∈ S to q ∈ S is a sequence

p = p0, p1, . . . , pn−1 = q 〉 of voxels in S such that every two succes-
ive voxels are adjacent. For the purpose of defining the length of

 path, we use the notion of a “link” and its length. A link is sim-
ly a path 〈p, q〉 consisting of exactly two adjacent voxels p, q ∈Z3.
he length of a link 〈p, q〉 in a digital object O is calculated as
1/2)(�O(p) + �O(q))||p − q||, where || · || denotes any Euclidean L2
orm. The length of a path � =〈 p0, p1, . . .,  pn−1 〉 in a digital object O,
enoted by IIO(�), is defined as the sum of lengths of all links along
he path, i.e.,

IO(�) =
n−2∑
i=0

1
2

(�O(pi) + �O(pi+1))||pi − pi+1||.

etween any two voxels p, q ∈ Z3, there exist infinitely many paths;
et P(p, q) denote the set of all paths from p to q. A path �p,q ∈ P(p,
) is one of the shortest paths from p to q in O, if and only if, for all

 ∈ P(p, q). The fuzzy distance between two voxels p, q ∈Z3 (which
re not necessarily distinct), denoted by ωO(p,q) or ωO(q,p), is the
ength of one of the shortest paths from p to q, i.e.,

O(p, q) = ωO(q, p) = min
� ∈ P(p,q)

IIO(�).

heorem 1. For any digital space D = (Z3, ˛), for any digital object
 on D, the fuzzy distance ωO is a metric over the support �(O) of O.

The above theorem states the metric property of fuzzy distance;
 proof of this theorem is available in [29]. The fuzzy distance
ransform or FDT of a digital object O is represented as an image
(p, ˝O(p))|p ∈Z3}, where ˝O(p) denotes the FDT value at p which
s the fuzzy distance between p and the nearest voxel in �(O) =
3 − �(O). In other words,

O(p) = min
q ∈ �(O)

ωO(p, q).

inally, it may  be noted that the FDT value at any voxel p ∈ �(O) is
lways“0”. In the following, we present an algorithm for computing
DT of a digital object.
ng and Graphics 36 (2012) 11– 24 13

The above algorithm computes FDT value at every voxel q using a
wave propagation approach through a dynamic programming algo-
rithm. The wave propagation process is initiated by setting a large
value (i.e., the FDT value is currently unknown) inside the object
region (Step 1) and by initiating waves at the background adjacent
to the object region (Step 2); note that the queue Q keeps track
of all active waves. In Step 3, these waves are taken out of Q one
by one and propagated inside the object region through a dynamic
programming approach and whenever the current FDT value at a
voxel q is changed, a new wave is created and pushed into Q. Finally,
the algorithm terminates when Q is exhausted.

2.2. Skeletonization

Here, we  adopt a previously reported skeletonization algorithm
[51]. It is clearly desirable to utilize the skeleton of an object directly
computed from its fuzzy representation by taking into account the
fuzzy membership value at each voxel. However, such an approach
demands significant additional research developments, which are
beyond the scope of the current paper. We  therefore applied the
binary skeletonization to the support �(O) of an object O to obtain
its medial axis representation by selecting the method reported by
Saha et al. [51] which is further improved here by incorporating a
new noise-pruning algorithm described hereafter. It may be noted
that no explicit threshold is required to define the support �(O)
and therefore, the resulting skeleton is not threshold sensitive.

The method by Saha et al. [51] completes the skeletonization
process in two steps, namely, surface skeletonization and curve
skeletonization. Again, each of the surface and curve skeletoniza-
tions is accomplished in two  steps – primary skeletonization and
secondary skeletonization. Primary surface skeletonization iter-
atively erodes object voxels from the current outer layer while
preserving the topology and so-called “shape” of an object. The
authors introduced the notions of s-, e-, and v-open voxels and
processed those voxels separately to better preserve the geometry
of different types of corners in an object [51]. In order to pre-
serve object topology, only simple voxels [52] are considered for
erosion. A voxel p is a simple voxel if its deletion preserves the
topology of the object and it has been shown that a voxel is a sim-
ple voxel [52,53] if and only if the number of objects �(p) in N26(p)
is ‘1’ and the number of tunnels �(p) and that of cavities ı(p) in
N26(p) are both zero (see Saha and Rosenfeld [49] for definitions
of tunnels and cavities). Both surface- and arc-like shape voxels
[51] are preserved during the erosion process. The output of pri-

mary surface skeletonization, as described in [51], may  include
two-voxel thick surfaces and curves. These extra thick voxels are
subsequently eliminated using an extra iteration which is referred
to as secondary surface skeletonization. Primary curve skeletoniza-
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F ed coronary artery tree. (b) Curve skeleton of (a) without noise pruning; voxels identified
a ed in red. (c) The result after noise pruning.
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Fig. 2. An illustration of shape distance transform. Both black and textured pixels
indicate skeletal pixels in the given shape. Black pixels survive in the skeletonization
process as shape pixels, i.e., saved to preserve local shape of the structure. On the
ig. 1. Results of curve skeletonization and noise pruning. (a) A region from a binariz
s  noise using the proposed post-skeletonization noise pruning algorithm are color

ion is a process similar to primary surface skeletonization where
urface skeletal voxels are iteratively eroded along surface edges
hile preserving the topology and shape of the surface. Unlike sur-

ace skeletonization, here only arc-like shape voxels are preserved;
nally, two-voxel thick curve voxels [51] are removed during the
econdary curve skeletonization. It may  be noted that, surface
keleton produced a digital structure consisting of both arcs and
urfaces. These arcs need no further thinning while the surfaces are
onverted into arcs during arc-skeletonization (see Fig. 10 in [51]).

The output of curve skeletonization is presented in Fig. 1(b);
lthough, the method attempts to reduce the effects of noise in the
keleton, it does so using only the local context of object geometry
nd therefore, is bound to fail in a larger context. Here, we present a
ew post-skeletonization algorithm to identify and eliminate noisy
ranches in a skeleton. Unlike, the noise removal approaches, com-
only adopted in a skeletonization algorithm, the current method

efines noise in a global context of skeletal geometry. Let S denote
he set of all voxels in a surface/curve skeleton. Although, the

ethod is applied here on curve skeletons of arterial trees, it is
qually applicable to a surface skeleton. The basic idea here is to
istinguish skeletal branches contributed by true geometric fea-
ures in the original object from those originated by noisy bumps
r dents common in digital images. However, a small branch orig-
nating from a one- or two-voxel protrusion may  grow iteratively
ue to the topology preservation constraint and eventually leading
o a long branch in the final skeleton (see Fig. 2). Frequently, such
ranches appear to be an important feature in a skeleton and may
ot be recognized as a noisy branch without additional information.
o overcome this problem, in a skeletal branch, we distinguish vox-
ls needed to maintain object shape features from those survived
erely for topology preservation. Fortunately, the skeletonization
ethod adopted here keeps record of the voxels surviving for shape

reservation during skeletonization; we will refer to those voxels
s shape voxels in a skeleton and will use SS to denote the set of
ll shape voxels in the skeleton S. In order to determine the impor-
ance of a branch in a skeleton, we only consider shape voxels in
ength computation and ignore voxels survived merely for topol-
gy preservation. The idea of shape distance transform (STD) may
e better understood using an example as illustrated in Fig. 2. Let

s consider a linear digital shape as shown in the figure that con-
ains a noisy pixel. Following that shape pixels/voxels are always
efined locally, a noisy pixel/voxel may  slip through the constraint
f a shape pixel/voxel. Depending upon the constraints for a shape
other hand textured pixels are preserved to maintain the topology. Shape distance
only counts shape voxels on a path. For example, only one shape voxel contributes
to  the shape length of the path �.

point, it is always possible to create an example of a noisy protru-
sion that is wrongly chosen as a shape pixel/voxel. Here, we have
used a simple example as our main intention is to illustrate the idea
of SDT. Although, only one pixel in a noisy protrusion is selected as a
shape pixel, it leads to a long branch in the final skeleton caused by
topology preservation. Therefore, just by looking at the skeleton, it
is often difficult to decide whether a branch is caused by noisy pro-
trusion or it carries meaningful information of the original shape.
We formulate SDT such that only shape pixels/voxels contribute
to the “shape length” of a path (or a branch) and the pixels/voxels
survived merely because of topology preservation are ignored. Thus
only one pixel will contribute to shape length of the path � that later
makes it easy to decide the path as a noisy branch. Shape length is

formulated using a new membership function �SS

which takes ‘1’
value when a voxel is a shape voxel and ‘0’, otherwise.

Using the digital topological classification method [50], we can
identify junction, interior and edge voxels in a skeleton. Let SE
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enote the set of all edge voxels and let SJ denote the set of all junc-
ion voxels in the skeleton S. A 26-path � =〈 p = p0, p1, . . .,  pn−1 = q 〉
etween two  voxels p, q ∈ S is called a 26-valid path in S if �r  ∈ Sj and

 ≤ i < n such that ||pi − pi+1|| > max(||pi − r||, ||r − pi+1||). A violation
f the validity condition of a path is considered as a “crossing” with

 junction, because, the path . . .,  pi, r, pi+1, . . . is more natural than
he path . . .,  pi, pi+1, . . . in the sense that the former path requires
horter steps to move from pi to pi+1. Shape length of any 26-valid
ath � =〈 p0, p1, . . .,  pn−1 〉 on a skeleton S, denoted by IISS

(�) is
efined as follows
ISS
(�) =

n−2∑
i=o

1
2

(�SS
(pi) + �SS

(pi+1))||pi − pi+1||,
ng and Graphics 36 (2012) 11– 24 15

where

�SS
(p) =

{
1, if p ∈ SS,
0, otherwise.

Shape distance transform or SDT of a voxel p ∈ S, denoted by
SDT(p) is the shape length of one of the shortest (w.r.t. shape
length) 26-valid paths from p to any voxel q ∈ SE; if there is
no 26-valid path from p to a voxel q ∈ SE, the SDT value SDT(p)
is set to +∞ or equivalently, a very large number. The algo-
rithm for computing shape distance transform is presented in the
following.
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Table 1
Average values and scores for overlap (OA), overlap until first error (OF), overlap
with clinically relevant part of the vessel (OT) and average inside (AI) computed from
eight training datasets following the Rotterdam coronary axis tracking evaluation
framework.

Measure Average Score

OV (%) 90.1 72.7
OF  (%) 71.2 61.5
OT  (%) 89.3 68.6
6 Y. Xu et al. / Computerized Medical

The above algorithm for computing shape distance transform
orks similar as the FDT computation algorithm except that ini-

ial waves are placed only at edge voxels of a skeleton (Step 2).
lso, in the wave propagation process (Step 3), only shape voxels
ontribute in shape distance as discussed earlier. The conditions in
teps 3a and b are used to check validity of paths to avoid undesired
rossing with junctions.

The noise pruning is accomplished using the following algo-
ithm where noisy branches are unglued at junctions by removing
ll voxels around junctions with SDT value less than a threshold.
tep 2 defines seed voxels with STD value above the threshold and
tep 3 allows it to grow the skeleton over the region with noise
ranches unglued at Step 1.

The result of noise pruning is illustrated in Fig. 1(c); all vox-
ls identified as noisy voxels are colored in red in the original
urve skeleton in Fig. 1(b). Here, we have used thr = 3 voxel
nits. Performance of our arc skeletonization algorithm has been
valuated using the eight training datasets from the Rotterdam
oronary axis tracking evaluation framework [48] available online
http://coronary.bigr.nl/) and the results are presented in Table 1.
he performance of the skeletonization algorithm is satisfactory.

.3. Computation of expected and observed arterial diameters

As mentioned earlier, our stenosis detection/quantification

lgorithm is essentially based on comparing between expected and
bserved diameters of arterial lumen along the arterial tree. In this
aper, we use “arterial diameter”, “lumen diameter”, and “arterial

umen diameter” synonymously and “arterial blockage” to indicate
AI  (mm)  0.32 38.5

the inverse of “arterial diameter”. FDT provides the depth mapping
at each voxel within the support of a coronary arterial tree and the
principle of FDT-based thickness computation is to sample depth
values along the medial axis of coronary artery, thus, providing the
regional thickness distribution along the artery. Here, this approach
is adopted to compute “observed diameter” at each axial location
along an arterial tree. Skeletonization is a widely used technique to
generate a medial axis representation of an object. Therefore, the
distribution of regional thickness is computed by sampling the FDT
values along the curve skeleton of an artery.

Computation of “expected diameter” is more challenging as
observed diameter is the only available information in CTA-based
stenosis detection/quantification and it fails to provide a reliable
measure of expected diameter around a diseased region which, in
contrast, is the primary region of interest. Therefore, an algorith-
mic  scheme for computing expected diameter needs to account for
abnormalities in observed diameters. One possible solution [54]
is to use the observed diameter at two  end points of an arterial
branch and determine the expected diameter elsewhere inside the
branch using linear interpolation. However, a major disadvantage
of this method is that, often, stenoses appear near bifurcations of
arterial branches leading to a significant source of inaccuracies in
measurement of expected diameter at branch endpoints. Here, we
present a new method of computing expected diameters along
an arterial branch using its observed data. Let 〈p0, p1, . . . , pn−1 〉
denote the sequence of skeletal voxels along an arterial branch
with p0 and pn−1 being the two end points of the branch; let xi
denote the arc-length from p0 to pi along the skeletal branch. Let
Dobserved(p) denote the observed arterial diameter at any skeletal
voxel p. Fig. 3(a) illustrates a partial coronary arterial tree with
no visible stenosis on the test branch. A plot of observed arterial
diameter as a function of skeletal arc-length from p0 is presented
in Fig. 3(b) for the test branch. Fig. 3(c) and (d) illustrate the same
as Fig. 3(a) and (b), respectively, but for an arterial branch with a
visible stenosis. A preferred method of computing expected arterial
diameter should be able to exclude the diameter values around a
stenosis while capturing the statistical trend of diameter readings
over healthy regions on the branch. Our method is based on coher-
ence analysis of observed data along an arterial branch. Specifically,

we find a set of a predefined number of mutually coherent observed
diameters along an arterial branch and is accomplished by itera-
tively dropping a data-point most non-coherent with the current
data-trend as presented in the following algorithm.

http://coronary.bigr.nl/
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ig. 3. (a and b) Results of expected arterial diameter computation on a healthy arte
long  the arterial branch. (c and d) Same as (a) and (b) but for a branch with a vis
bserved diameters around the stenosis.

Although, the above method uses a linear model for diameter
valuation, a nonlinear model, e.g., an exponential model may  be

sed within the same framework. Here, we have adopted a lin-
ar diameter evaluation, because of the computational simplicity.
esults of application of the algorithm for computing expected
iameter along the test branches indicated in Fig. 3(a) and (c) are
ranch. The straight line shown in (b) predicts the expected diameter at any location
enosis. It is notable in (d) that the method successfully eliminates the artifacts in

presented in Fig. 3(b) and (d). It is notable in Fig. 3(d) that the

algorithm has successfully dropped the points around the stenosis
and thus eliminates effects of the depression in observed diame-
ters caused by the stenosis. It ensures that the expected diameters
are computed from observed diameters over healthy regions only.
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ere we have used X = 30, i.e., the method uses the most coherent
0% of observed diameters along an arterial branch to compute its
xpected diameters. Our algorithm of computing expected arterial
iameter has been found to be quite robust with the choice of X.
he same algorithm was run with three different values of X and
he equation of the final straight line predicting arterial diameters
aried only minimally as follows:

Test branch of Fig. 3(a):

a) y = −0.0184x + 3.8895|x=30%
b) y = −0.0181x + 3.8854|x=40%
c) y = −0.0181x + 3.8856|x=50%

Test branch of Fig. 3(b):

a) y = −0.0595x + 4.0202|x=30%
b) y = −0.0606x + 4.0562|x=40%
c) y = −0.0614x + 4.0846|x=50%

Further, the method is presumed to be less sensitive to sud-
en changes in arterial diameter after bifurcation and the expected
iameters along an arterial branch is computed from the measured
iameters on the entire branch and not just at two ends.

.4. Stenosis detection and quantification of arterial blockage

In coronary angiograms, “percent stenosis” is a widely used
easure for lesions for assessing severity of arterial diseases.

ercent stenosis is calculated by dividing the minimum lumen
iameter (MLD) by a nearby “normal” or “reference” diameter.
owever, location of nearby “normal” lumen and computation
f “reference” diameter are largely empirical and to some extent
naccurate, especially, in the presence of lesions. As a result,
omputed percent stenosis frequently underestimates the patho-
ogically authentic stenosis. It has been reported [55] that the
ifferences between computed percent stenosis and the authen-
ic stenosis observed by pathologic tests may  vary from 20% to
0%. To solve this problem, we have developed a new method, pre-
ented in Section 2.3,  for computing expected diameter along an
rterial branch that successfully drops the non-coherent diame-
er values around stenoses ensuring that expected diameters are
etermined from observed diameters over healthy regions only.
ractional occupancy of lumen at any voxel p on the curve skeleton
r medial axis of an artery is defined as the ratio of its observed
iameter Dobserved(p) and expected diameter Dexpected(p). The per-
entage of stenosis at p is computed using the following equation

tenosis(p) =
{

0, if Dobserved(p) ≥ Dexpected(p),

1 − Dobserved(p)
Dexpected(p)

, otherwise.
(1)

ffects of random errors in stenosis computation are reduced by
pplying a smoothing operation on the observed stenosis values
long the arterial skeletal tree with a Gaussian kernel of � = 1.5
oxel unit; in the rest of this paper, by “observed stenosis” we
ill refer to the value after the smoothing operation. A stenosis

 is defined as a set of 26-connected voxels p on the arterial curve
keleton with observed stenosis (p) ≥ 12.5%. Finally, the grade of a
tenosis 	 , denoted by S(	), is defined as the maximum observed
tenosis among all voxels p ∈ 	 , i.e., S(	) = maxp∈	 stenosis(p). In
his paper, we quantify severity of a stenosis into five different
ategories as follows:
0% stenosis: grade of the stenosis is less than 12.5%;
25% stenosis: grade of the stenosis is greater than equal to 12.5%
but less than 37.5%;
ng and Graphics 36 (2012) 11– 24

50% stenosis: grade of the stenosis is greater than equal to 37.5%
but less than 62.5%;
75% stenosis: grade of the stenosis is greater than equal to 62.5%
but less than 87.5%;
100% stenosis: grade of the stenosis is greater than equal to 87.5%.

Although several separate narrowings may be present on the
same arterial branch, only the most severe one is detected and oth-
ers are ignored. An expected stenosis, known from the ground truth,
and an observed stenosis are considered matching if they lie on
the same arterial tree branch. Although the proposed definition of
matching stenoses is a little generous, it simplifies the comparative
evaluation between clinical experts and computerized algorithms
as experts denote a stenosis address using branch name.

3. Methods and experimental setup

Two experiments have been conducted to examine the effec-
tiveness of the proposed FDT-based stenosis quantification method.
The first experiment is designed to evaluate the accuracy of the
method based on realistic coronary artery phantom data with ran-
domly simulated stenoses while the second one is aimed to assess
the performance of the method on clinical setup. The performance
of the new method was  compared with two other methods:

(1) A classical binary algorithm [56] was  implemented based on
analyzing local cross-sectional area of the binarized artery-tree
on a plane perpendicular to the centerline at that location; we
will refer to it as a “conventional” method.

(2) A non-FDT version of the current new method was  imple-
mented with a standard binary distance transform (BDT)
[30–35] and a standard skeletonization algorithm [51] followed
by the same steps as in the current method; we will refer to it
as the BDT-based method.

Both conventional and BDT-based methods were applied to the
same dataset for detecting stenoses and grading them using the
same protocol described in Section 2.4.  In the following, we present
data description, methods and the setup for each of the two exper-
iments.

3.1. Simulated phantom experiment

Five healthy coronary artery tree phantoms were simulated fol-
lowing the method described by Leung et al. [57] to examine the
accuracy of the proposed FDT-based stenosis detection and quan-
tification method. Each simulated coronary arterial tree includes
right coronary artery (RCA) and acute marginal (AM) in the right
coronary tree and left main coronary artery (LM), proximal left
anterior descending artery (LAD), first diagonal (FD), second diago-
nal (SD) and proximal left circumflex artery (LC) in the left coronary
tree; an example of a healthy phantom is presented in Fig. 4(a).
Normal diameter of each branch in the right and left coronary
tree was  assigned according to the average diameter values rec-
ommended by Chalopin et al. [58]. On a given healthy phantom,
a stenosis was simulated using a sinusoidal depression model
[59] in arterial diameters along the skeletal line of an arterial
branch. The width of a stenosis was  randomly selected over10–25%
of corresponding branch length. In order to generate the effects
of blurring, each original image was generated at high resolu-
tion of 0.143 × 0.143 × 0.417 mm3 which was down sampled at

0.43 × 0.43 × 1.25 mm3 yielding a fuzzy representation. Further, an
additive Gaussian random noise of SNR 10 was subjected to each
down sampled image to obtain a final simulated data for test. An
example of a test phantom with simulated stenoses of varying
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Fig. 4. Illustration of stenosis simulation. (a) A simulated 3D coronary artery tree and labeling of different branches – right coronary tree: right coronary artery (RCA) and
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cute  marginal (AM); left coronary tree: left main coronary artery (LM), proximal lef
eft  circumflex artery (LC). (b) An example of simulated stenoses on the original pha
rojection (MIP) of the image of (b) in the presence of partial voluming and noise.

egrees of severity is presented in Fig. 4(b) and (c). Stenoses of
ifferent severities – 25%, 50%, 75%, and 100% – were randomly sim-
lated on different branches of a coronary arterial tree. A total of 20
imulated coronary artery phantom images were generated from
he five initial healthy phantoms. The number of stenoses on each
mage was randomly selected between one and five and at most
ne stenosis was selected on each branch. Also, the arterial branch
nd the location of a stenosis on the branch were both selected
andomly.

Stenoses on each phantom image were detected and graded
sing the algorithm described in Section 2. Finally, for each sim-
lated (or, observed by a computerized method) stenosis 	 , the
atching observed (respectively, simulated) stenosis, if any, was

dentified and an error was computed as follows.

rror(	) =

⎧⎨
⎩

1 − Sobserved(	)
Ssimulated(	)

, if Ssimulated > Sobserved,

Ssimulated(	)
, otherwise,
Sobserved(	)

here Ssimulated(	) denotes the simulated grade of the stenosis
	) while Sobserved denotes the grade of (	) computed by a com-
uterized method; in case a simulated stenosis is missed by a
rior descending artery (LAD), first diagonal (FD), second diagonal (SD) and proximal
data of (a). Locations and severity of stenoses are marked. (c) A maximum intensity

computerized method, Sobserved is considered to be zero and vice
versa.

3.2. A clinical study

To evaluate the performance of the proposed method from
clinical perspective, an experimental study was designed on a
clinical CTA database of thirteen patients (sex: 11 M and 2 F;
mean and standard deviation of age: 53.6 Y and 9 Y). Patients
were suffering from various vascular lesions and were scanned
on a GE LightSpeed16 clinical CTA scanner under the follow-
ing protocol −120 kVp, 400 mAs, patient position: brust, image
matrix: 512 × 512, 80–110 slices, FOV: 22 × 22 cm2, slice thickness:
1.25 mm,  pixel size: 0.43 × 0.43 mm2. Fuzzy segmentation of coro-
nary arteries from CTA images was performed using a recently
published coronary segmentation method by Yang et al. [15,17]
prior to applying the stenosis detection/quantification algorithm
presented in Section 2. Also, three expert clinicians independently

identified and graded stenoses on each CTA as the percent measure
of blockage (25%, 50%, 75% or 100%). A consensus grading from the
three experts (described later) was used as the ground truth and
was compared with the percent of stenosis measure produced by
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he FDT-based computerized method. To compare the performance
f the proposed method with the conventional [56] and BDT-based
ethods, the same experiment was run by replacing the FDT-based
ethod with the respective method. In the following paragraphs
e describe the methods for fuzzy segmentation of coronary artery

nd stenosis grading by a clinician.

.2.1. Computation of a fuzzy representation of coronary arteries
Segmentation plays a crucial role in detection and quantifica-

ion of coronary arterial stenoses and may  be a research project
n itself. Here, we have implemented the coronary artery segmen-
ation method via CTA published by Yang et al. [15,17] who have
lso studied the robustness and accuracy of their method. An exam-
le of coronary artery segmentation and its 3D reconstruction are

llustrated in Fig. 5(a) and (b). In order to capture the full extent
f partial volume voxels, the original segmented region for arteries
as dilated by one voxel; let A denote the set of voxels in seg-
ented and then dilated arterial region. A fuzzy representation of

he arterial tree was computed as follows:

A(p) =

⎧⎪⎨
⎪⎩

0, if p /∈ A
ICTA(p) − Inon-artery

Iconfident-artery − Inon-artery
Inon-artery ≤ ICTA(p) ≤ Iconfiden

1 ICTA(p) > Iconfident-artery,

here ICTA is the CTA intensity function and Inon-arter and
confident-artery are the manually identified intensity values for non-
rtery and confident-artery voxels.

.2.2. Grading of arterial stenosis by a clinician
CardIQ analysis software was used by each of three trained clin-

cians to interactively detect and grade stenoses in CTA images.
hese results were considered as the ground truth for evaluating
he effectiveness of a computerized method. The following proto-
ol was pursued for interactively detecting and grading stenoses
sing the CardIQ software.

1) Reconstruct the 3D heart and coronary arteries and view using
3D volume rendering as illustrated in Fig. 6(a).

2) Manually trace centerline of a pathological coronary artery
and manually select the optimal angle to generate a two-
dimensional curve reformatted view (see Fig. 6(b)).

3) The vessel in the curved reformatted view is then straightened
out using the analytic computing facilities within software gen-
erating the so-called ‘lumen view’ and measurements of the
vessel diameter and area are reported (see Fig. 6(c)). Once a
stenosis is recognized by the clinician, the measure of steno-
sis may  be reported either in millimeter or as a percent of
arterial blockage. The CardIQ software automatically generates
local diameter and/or cross-sectional area measures. Both the
region of a stenosis and expected local normal diameter are
determined by the expert who calculates the latter by observ-
ing diameter values over normal regions at the vicinity of the
stenosis.

4) The above three steps are followed for each pathological arterial
tree branch using the reference of center line and the graphical
interface supported by the software.

Consensus grading of a stenosis was derived from its grades by
hree independent experts as follows. Let a, b, c be the percent
rades by three experts for a given stenosis. Consensus grade of

he stenosis is defined as

onsensus grade = arg min
x ∈ {0,25,50,75,100}

∣∣∣x − a + b + c

3

∣∣∣ ,
ng and Graphics 36 (2012) 11– 24

ry,

i.e., the consensus grade falls under the category closest to the aver-
age of three expert grades. Also, the percent of variation among
three experts under each category is defined as follows. Let ai, bi,
ci|i = 1, . . .,  nx be the stenosis grades by three experts for all stenoses
under the category x ∈ {0, 25, 50, 75, 100}. Grade variation for a
given category is defined as

grade variation (x) =

√√√√ 1
3nx

nx∑
i=1

(ai − x)2 + (bi − x)2 + (ci − x)2.

Finally, the overall grade variation among experts is defined as
follows

overall grade variation

=

√√√√ 1

3
∑

x ∈ {0,25,50,75,100}nx

∑
x ∈ {0,25,50,75,100}

nx∑
i=1

(ai − x)2 + (bi − x)2 + (ci − x)2·

Finally, for each consensus (or, detected by a computerized
method) stenosis 	 , the matching computer-detected (respec-
tively, consensus) stenosis, if any, was identified and an error was
computed as follows.

errorclinical(	) = |Sdetected(	) − Sconsensus(	)|,
where Sdetected (	) denotes the computer-detected grading of the
stenosis 	 while Sconsensus denotes the consensus grading of 	; in
case a consensus stenosis is missed by a computerized method,
Sdetected is considered to be zero and vice versa. The overall error
was determined by adding Errorclinical for all stenoses and then
dividing it by the number of consensus stenoses.

4. Results and discussion

Results of application of different stages of the proposed method
are illustrated in Fig. 5. It may  be noted that, despite the presence
of significant unevenness along the arterial surface in Fig. 5(b), the
noise cleaned curve skeleton appears to be free of noisy branches.
The performance of the proposed noise cleaning algorithm, also
demonstrated in Fig. 1, has been found to be satisfactory in our
applications on all data sets used for the current experimental
set up. The noise cleaning algorithm along with the FDT technol-
ogy has significantly enhanced the robustness and accuracy of our
approach as may  be visually observed in the examples illustrated
in Figs. 5 and 7.

Accuracy of the proposed method has been quantitatively eval-
uated using the simulated stenosis phantom dataset and the error
measure described in Section 3.1.  Results of comparison between
the three methods for different severity of stenosis and different
anatomic arterial branches are presented in Fig. 8. Average errors
by the new FDT- and BDT-based and the conventional methods
are 0.53%, 2.11% and 3.71%, respectively, showing that the new
method reduces stenosis quantification errors by four to sevenfold
as compared to the BDT-based and conventional methods.

Results of stenosis grading by three independent experts are
shown in Table 2. The study involved a database of clinical CTA

of thirteen heart patients. Altogether 60 consensus stenoses were
detected by the three experts. One expert detected an extra stenosis
with 25% grade. Except for the first category, percent variation was
less than 10%; overall percent variation among three experts was
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Fig. 5. Results of FDT-based computerized coronary arterial stenosis quantification via CTA. (a) A slice image from a CTA image acquired at 0.43 × 0.43 × 1.25 mm3 resolution
a orona
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long  with boundaries of segmented coronary arteries. (b) 3D rendition of the left c
rtery  tree after applying skeletal pruning. (d) A color-coded display of observed loc
nd  quantification of stenoses. (For interpretation of the references to color in this 

.68%. Results of a comparative study of coronary arterial stenosis
uantification by the two computerized methods and that by three
xperts using the CardIQ software are presented in Table 3. In both
ables, the abscissa denotes consensus grades of stenoses by three
ndependent experts while the ordinate indicates the grades gen-
rated by a computerized method. Here, it may  be pointed out that

ot all stenoses detected in this study satisfy the clinical definition.
enerally, for most clinical diagnostic purpose, a stenosis consti-

utes 70% or more arterial blockage. Here, we intentionally detect

ig. 6. Illustration of the graphical user interface supported by the CardIQ software for d
oronary arteries. (b) The graphical view using the curved image reformatting. (b) The lu
entral  line. (For interpretation of the references to color in this figure legend, the reader 
ry artery tree derived from CTA. (c) The medial axis representation of the coronary
meter in 3D coronary artery tree; the color scale is shown. (e) FDT-based detection
legend, the reader is referred to the web version of this article.)

stenoses with lesser blockage to examine the performance of the
method at early stage of disease.

Table 3(a) presents the performance of the new FDT-based
method in terms of its agreement with the experts grading of
stenoses while Table 3(b) and (c) present the same but for the BDT-
based and conventional methods. In all three tables, zero percent

stenosis is used to represent false positives and false negatives of
computerized stenosis detection algorithms. Table 3(a) shows that
the FDT-based computerized method produced only one case of

etecting and grading coronary arterial stenoses. (a) 3D reconstruction of heart and
men view and the measurement of local diameter profile (green) along the arterial
is referred to the web version of this article.)
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ig. 7. Illustrations of more results of coronary artery stenosis quantification. (a) A
oundaries of segmented coronary arteries. (b) Detection and quantification of sten

alse positive (i.e., marked a stenosis with zero consensus grading)
nd one case of false negative (i.e., missed a stenosis with ≥25%
onsensus grading) while these numbers for BDT-based and the
onventional method are 1, 2 and 1,3, respectively (Table 3(b) and

c)). For all three tables, large numbers appear at diagonal cells
nd a few small numbers adhere to adjacent cells. This observation
emonstrates good agreement between computerized grading of
tenoses and that by an expert. However, the values at diagonal

ig. 8. An illustrative comparison of performances by the current FDT- and BDT-
ased and conventional methods for quantifying coronary arterial stenoses in
imulated realistic phantoms. Here, the total height of each bean represents the
verage percentage error by a specific method at a particular severity of stenosis;
he height of each color band in a given bin indicates the percent error committed
n  a specific arterial branch.
mage from a CTA dataset acquired at 0.43 × 0.43 × 1.25 mm3 resolution along with
(c and d) Same as (a) and (b) but for CTA of another patient.

cells in Table 3(a) are always greater than corresponding values in
Table 3(b) and (c) demonstrating that the FDT-based method pro-
duces larger agreement with the expert’s stenosis quantification as
compared to the BDT-based and conventional methods. We  com-
puted kappa coefficients [60,61] for Table 3(a)–(c) and the values
observed are 87.9%, 75.2% and 69.5%, respectively, showing that
the FDT based method is in better agreement with the consensus
grading as compared to the BDT-based and conventional methods.

It may  be observed in all three tables that computerized meth-
ods slightly underestimate the grades of stensoses as compared to
the experts’ grading which may  be explained as follows. Plaque and
calcium deposits in coronary artery tree change local intensities

resulting in errors in FDT-based diameter computation. Intensities
of plaque and calcium deposits are brighter than that of the nor-
mal  vessel producing artifactual increase in FDT values and over
estimating local diameters of coronary artery leading to under esti-

Table 2
Results of quantitative stenosis grading by three independent observers using the
CardIQ software. The first column lists the stenosis grades, while the second one lists
their consensual counts; the third column shows variations among three experts
under each category.

Stenosis grade (%) Consensus counts Grade variation (%)

0 1 14.43
25 22 5.33
50 22 9.23
75  9 8.33

100 6 5.89
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Table  3
Comparative results of coronary arterial stenosis detection and quantification on a
CTA  database of thirteen heart patients. (a) The confusion matrix comparing agree-
ments of stenoses quantification by the FDT-based method and an expert using
the CardIQ software. (b and c) Same as (a) but for the BDT-based and conventional
methods.

Consensus grading of stenoses by three experts

0% 25% 50% 75% 100%

(a) FDT-based computerized stenosis detection/grading
0% 1
25% 1 20 2
50% 1 19 1
75% 1 8
100% 6

(b) BDT-based computerized stenosis detection/grading
0%  2
25% 1 18 4
50% 2 17 1
75% 1 7 2
100% 1 4

(c)  Conventional computerized stenosis detection/grading
0% 3
25% 1 16 5
50% 3 16 1
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75% 1 7 2
100% 1 4

ate in stenosis grading. It may  be a shortcoming of a computerized
utomatic stenosis quantification method and may  be overcome by
mproving the fuzzy segmentation method for arterial tree.

Overall, a new method for quantifying coronary arterial stenosis
ia CTA using fuzzy distance transform method has been pre-
ented. A new skeletal pruning algorithm has been developed
oward improving quality of medial axis of a coronary which
ignificantly enhances the accuracy of quantification of coronary
rterial stenosis. Also, a new algorithm has been presented for
etermining expected arterial diameters along an arterial branch
rom observed values based on finding a set of coherent observed
iameters. The algorithm has been found to be successful in elim-

nating the effects of the depression in observed diameters caused
y a stenosis ensuring that expected diameters are computed from
bserved diameters over healthy regions only. At the same time,
he algorithm creates no bias for healthy branches. The accuracy
f the method has been evaluated using both realistic simulated
hantoms and CTA datasets from thirteen heart patients and by
omparing with manual identification and grading of stenosis. The
ethod has been compared with the conventional and BDT-based
ethods. Comparative experimental results with the two meth-

ds have demonstrated the benefits of using FDT together with a
ew SDT-based pruning and the approach of stenosis grading based
n expected/observed diameters. Although the new method com-
ares very favorably with the selected existing methods, the gap
ay  be smaller if compared with more recent methods. In the cur-

ent non-optimized implementation the new FDT based stenosis
etection and quantification method takes approximately 1 min  for
ach patient CTA dataset running on an Intel Core PC with 2.33 Hz
ntel(R) 2 Duo CPU and 2G RAM memory. The conventional binary

ethod takes approximately 5 min  for each dataset where most
ime is required to compute cross-sectional area in the orthogonal
lane.
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