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Abstract

We study the problem of Robust Least Squares Regression (RLSR) where several
response variables can be adversarially corrupted. More specifically, for a data
matrix X ∈ Rp×n and an underlying model w∗, the response vector is generated
as y = XTw∗ +b where b ∈ Rn is the corruption vector supported over at most
C · n coordinates. Existing exact recovery results for RLSR focus solely on L1-
penalty based convex formulations and impose relatively strict model assumptions
such as requiring the corruptions b to be selected independently of X .
In this work, we study a simple hard-thresholding algorithm called TORRENT
which, under mild conditions on X , can recover w∗ exactly even if b corrupts the
response variables in an adversarial manner, i.e. both the support and entries of b
are selected adversarially after observingX and w∗. Our results hold under deter-
ministic assumptions which are satisfied if X is sampled from any sub-Gaussian
distribution. Finally unlike existing results that apply only to a fixed w∗, generated
independently of X , our results are universal and hold for any w∗ ∈ Rp.
Next, we propose gradient descent-based extensions of TORRENT that can scale
efficiently to large scale problems, such as high dimensional sparse recovery. and
prove similar recovery guarantees for these extensions. Empirically we find TOR-
RENT, and more so its extensions, offering significantly faster recovery than the
state-of-the-art L1 solvers. For instance, even on moderate-sized datasets (with
p = 50K) with around 40% corrupted responses, a variant of our proposed
method called TORRENT-HYB is more than 20× faster than the best L1 solver.

“If among these errors are some which appear too large to be admissible,
then those equations which produced these errors will be rejected, as com-
ing from too faulty experiments, and the unknowns will be determined by
means of the other equations, which will then give much smaller errors.”

A. M. Legendre, On the Method of Least Squares. 1805.

1 Introduction

Robust Least Squares Regression (RLSR) addresses the problem of learning a reliable set of regres-
sion coefficients in the presence of several arbitrary corruptions in the response vector. Owing to the
wide-applicability of regression, RLSR features as a critical component of several important real-
world applications in a variety of domains such as signal processing [1], economics [2], computer
vision [3, 4], and astronomy [2].

Given a data matrix X = [x1, . . . ,xn] with n data points in Rp and the corresponding response
vector y ∈ Rn, the goal of RLSR is to learn a ŵ such that,

(ŵ, Ŝ) = arg min
w∈Rp

S⊂[n]:|S|≥(1−β)·n

∑
i∈S

(yi − xTi w)2, (1)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

That is, we wish to simultaneously determine the set of corruption free points Ŝ and also estimate
the best model parameters over the set of clean points. However, the optimization problem given
above is non-convex (jointly in w and S) in general and might not directly admit efficient solutions.
Indeed there exist reformulations of this problem that are known to be NP-hard to optimize [1].

To address this problem, most existing methods with provable guarantees assume that the obser-
vations are obtained from some generative model. A commonly adopted model is the following

y = XTw∗ + b, (2)
where w∗ ∈ Rp is the true model vector that we wish to estimate and b ∈ Rn is the corruption
vector that can have arbitrary values. A common assumption is that the corruption vector is sparsely
supported i.e. ‖b‖0 ≤ α · n for some α > 0.

Recently, [4] and [5] obtained a surprising result which shows that one can recover w∗ exactly even
when α . 1, i.e., when almost all the points are corrupted, by solving an L1-penalty based convex
optimization problem: minw,b ‖w‖1 + λ ‖b‖1, s.t., X>w + b = y. However, these results require
the corruption vector b to be selected oblivious of X and w∗. Moreover, the results impose severe
restrictions on the data distribution, requiring that the data be either sampled from an isotropic
Gaussian ensemble [4], or row-sampled from an incoherent orthogonal matrix [5]. Finally, these
results hold only for a fixed w∗ and are not universal in general.

In contrast, [6] studied RLSR with less stringent assumptions, allowing arbitrary corruptions in
response variables as well as in the data matrix X , and proposed a trimmed inner product based
algorithm for the problem. However, their recovery guarantees are significantly weaker. Firstly,
they are able to recover w∗ only upto an additive error α

√
p (or α

√
s if w∗ is s-sparse). Hence, they

require α ≤ 1/
√
p just to claim a non-trivial bound. Note that this amounts to being able to tolerate

only a vanishing fraction of corruptions. More importantly, even with n→∞ and extremely small
α they are unable to guarantee exact recovery of w∗. A similar result was obtained by [7], albeit
using a sub-sampling based algorithm with stronger assumptions on b.

In this paper, we focus on a simple and natural thresholding based algorithm for RLSR. At a high
level, at each step t, our algorithm alternately estimates an active set St of “clean” points and then
updates the model to obtain wt+1 by minimizing the least squares error on the active set. This
intuitive algorithm seems to embody a long standing heuristic first proposed by Legendre [8] over
two centuries ago (see introductory quotation in this paper) that has been adopted in later literature
[9, 10] as well. However, to the best of our knowledge, this technique has never been rigorously
analyzed before in non-asymptotic settings, despite its appealing simplicity.

Our Contributions: The main contribution of this paper is an exact recovery guarantee for the
thresholding algorithm mentioned above that we refer to as TORRENT-FC (see Algorithm 1). We
provide our guarantees in the model given in 2 where the corruptions b are selected adversarially
but restricted to have at most α · n non-zero entries where α < 1/2 is a global constant dependent
only on X1. Under deterministic conditions on X , namely the subset strong convexity (SSC) and
smoothness (SSS) properties (see Definition 1), we guarantee that TORRENT-FC converges at a
geometric rate and recovers w∗ exactly. We further show that these properties (SSC and SSS) are
satisfied w.h.p. if a) the data X is sampled from a sub-Gaussian distribution and, b) n ≥ p log p.

We would like to stress three key advantages of our result over the results of [4, 5]: a) we allow b
to be adversarial, i.e., both support and values of b to be selected adversarially based on X and w∗,
b) we make assumptions on data that are natural, as well as significantly less restrictive than what
existing methods make, and c) our analysis admits universal guarantees, i.e., holds for any w∗.

We would also like to stress that while hard-thresholding based methods have been studied rigor-
ously for the sparse-recovery problem [11, 12], hard-thresholding has not been studied formally
for the robust regression problem. Moreover, the two problems are completely different and hence
techniques from sparse-recovery analysis do not extend to robust regression.

Despite its simplicity, TORRENT-FC does not scale very well to datasets with large p as it solves
least squares problems at each iteration. We address this issue by designing a gradient descent

1Note that for an adaptive adversary, as is the case in our work, recovery cannot be guaranteed for α ≥ 1/2
since the adversary can introduce corruptions as bi = x>i (w̃−w∗) for an adversarially chosen model w̃. This
would make it impossible for any algorithm to distinguish between w∗ and w̃ thus making recovery impossible.
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based algorithm (TORRENT-GD), and a hybrid algorithm (TORRENT-Hyb), both of which enjoy a
geometric rate of convergence and can recover w∗ under the model assumptions mentioned above.
We also propose extensions of TORRENT for the RLSR problem in the sparse regression setting
where p � n but ‖w∗‖0 = s∗ � p. Our algorithm TORRENT-HD is based on TORRENT-FC but
uses the Iterative Hard Thresholding (IHT) algorithm, a popular algorithm for sparse regression. As
before, we show that TORRENT-HD also converges geometrically to w∗ if a) the corruption index α
is less than some constant C, b)X is sampled from a sub-Gaussian distribution and, c) n ≥ s∗ log p.

Finally, we experimentally evaluate existing L1-based algorithms and our hard thresholding-based
algorithms. The results demonstrate that our proposed algorithms (TORRENT-(FC/GD/HYB)) can
be significantly faster than the best L1 solvers, exhibit better recovery properties, as well as be more
robust to dense white noise. For instance, on a problem with 50K dimensions and 40% corruption,
TORRENT-HYB was found to be 20× faster than L1 solvers, as well as achieve lower error rates.

Paper Organization: We give a formal definition of the RLSR problem in the next section. We then
introduce our family of algorithms in Section 3 and prove their convergence guarantees in Section 4.
We present extensions to sparse robust regression in Section 5 and empirical results in Section 6.

2 Problem Formulation

Given a set of data points X = [x1,x2, . . . ,xn], where xi ∈ Rp and the corresponding response
vector y ∈ Rn, the goal is to recover a parameter vector w∗ which solves the RLSR problem (1).
We assume that the response vector y is generated using the following model:

y = y∗ + b + ε, where y∗ = X>w∗.

Hence, in the above model, (1) reduces to estimating w∗. We allow the model w∗ representing the
regressor, to be chosen in an adaptive manner after the data features have been generated.

The above model allows two kinds of perturbations to yi – dense but bounded noise εi (e.g. white
noise εi ∼ N (0, σ2), σ ≥ 0), as well as potentially unbounded corruptions bi – to be introduced
by an adversary. The only requirement we enforce is that the gross corruptions be sparse. ε shall
represent the dense noise vector, for example ε ∼ N (0, σ2 ·In×n), and b, the corruption vector such
that ‖b‖0 ≤ α·n for some corruption index α > 0. We shall use the notation S∗ = supp(b) ⊆ [n] to
denote the set of “clean” points, i.e. points that have not faced unbounded corruptions. We consider
adaptive adversaries that are able to view the generated data points xi, as well as the clean responses
y∗i and dense noise values εi before deciding which locations to corrupt and by what amount.

We denote the unit sphere in p dimensions using Sp−1. For any γ ∈ (0, 1], we let Sγ =
{S ⊂ [n] : |S| = γ · n} denote the set of all subsets of size γ · n. For any set S, we let XS :=
[xi]i∈S ∈ Rp×|S| denote the matrix whose columns are composed of points in that set. Also, for
any vector v ∈ Rn we use the notation vS to denote the |S|-dimensional vector consisting of those
components that are in S. We use λmin(X) and λmax(X) to denote, respectively, the smallest and
largest eigenvalues of a square symmetric matrix X . We now introduce two properties, namely,
Subset Strong Convexity and Subset Strong Smoothness, which are key to our analyses.
Definition 1 (SSC and SSS Properties). A matrix X ∈ Rp×n satisfies the Subset Strong Convexity
Property (resp. Subset Strong Smoothness Property) at level γ with strong convexity constant λγ
(resp. strong smoothness constant Λγ) if the following holds:

λγ ≤ min
S∈Sγ

λmin(XSX
>
S ) ≤ max

S∈Sγ
λmax(XSX

>
S ) ≤ Λγ .

Remark 1. We note that the uniformity enforced in the definitions of the SSC and SSS properties is
not for the sake of convenience but rather a necessity. Indeed, a uniform bound is required in face of
an adversary which can perform corruptions after data and response variables have been generated,
and choose to corrupt precisely that set of points where the SSC and SSS parameters are the worst.

3 TORRENT: Thresholding Operator-based Robust Regression Method

We now present TORRENT, a Thresholding Operator-based Robust RegrEssioN meThod for per-
forming robust regression at scale. Key to our algorithms is the Hard Thresholding Operator which
we define below.
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Algorithm 1 TORRENT: Thresholding Operator-
based Robust RegrEssioN meThod

Input: Training data {xi, yi} , i = 1 . . . n, step length
η, thresholding parameter β, tolerance ε

1: w0 ← 0, S0 = [n], t← 0, r0 ← y
2: while

∥∥rtSt∥∥2 > ε do
3: wt+1 ← UPDATE(wt, St, η, r

t, St−1)
4: rt+1

i ←
(
yi −

〈
wt+1,xi

〉)
5: St+1 ← HT(rt+1, (1− β)n)
6: t← t+ 1
7: end while
8: return wt

Algorithm 2 TORRENT-FC

Input: Current model w, current active set S
1: return arg min

w

∑
i∈S

(yi − 〈w,xi〉)2

Algorithm 3 TORRENT-GD

Input: Current model w, current active set S, step
size η

1: g← XS(X>S w − yS)
2: return w − η · g

Algorithm 4 TORRENT-HYB

Input: Current model w, current active set S, step
size η, current residuals r, previous active set S′

1: // Use the GD update if the active
set S is changing a lot

2: if |S\S′| > ∆ then
3: w′ ← UPDATE-GD(w, S, η, r, S′)
4: else
5: // If stable, use the FC update
6: w′ ← UPDATE-FC(w, S)
7: end if
8: return w′

Definition 2 (Hard Thresholding Operator). For any vector v ∈ Rn, let σv ∈ Sn be the permutation
that orders elements of v in ascending order of their magnitudes i.e.

∣∣vσv(1)

∣∣ ≤ ∣∣vσv(2)

∣∣ ≤ . . . ≤∣∣vσv(n)

∣∣. Then for any k ≤ n, we define the hard thresholding operator as

HT(v; k) =
{
i ∈ [n] : σ−1

v (i) ≤ k
}

Using this operator, we present our algorithm TORRENT (Algorithm 1) for robust regression. TOR-
RENT follows a most natural iterative strategy of, alternately, estimating an active set of points which
have the least residual error on the current regressor, and then updating the regressor to provide a
better fit on this active set. We offer three variants of our algorithm, based on how aggressively the
algorithm tries to fit the regressor to the current active set.

We first propose a fully corrective algorithm TORRENT-FC (Algorithm 2) that performs a fully
corrective least squares regression step in an effort to minimize the regression error on the active set.
This algorithm makes significant progress in each step, but at a cost of more expensive updates. To
address this, we then propose a milder, gradient descent-based variant TORRENT-GD (Algorithm 3)
that performs a much cheaper update of taking a single step in the direction of the gradient of the
objective function on the active set. This reduces the regression error on the active set but does not
minimize it. This turns out to be beneficial in situations where dense noise is present along with
sparse corruptions since it prevents the algorithm from overfitting to the current active set.

Both the algorithms proposed above have their pros and cons – the FC algorithm provides significant
improvements with each step, but is expensive to execute whereas the GD variant, although efficient
in executing each step, offers slower progress. To get the best of both these algorithms, we propose
a third, hybrid variant TORRENT-HYB (Algorithm 4) that adaptively selects either the FC or the GD
update depending on whether the active set is stable across iterations or not.

In the next section we show that this hard thresholding-based strategy offers a linear convergence
rate for the algorithm in all its three variations. We shall also demonstrate the applicability of this
technique to high dimensional sparse recovery settings in a subsequent section.

4 Convergence Guarantees

For the sake of ease of exposition, we will first present our convergence analyses for cases where
dense noise is not present i.e. y = X>w∗ + b and will handle cases with dense noise and sparse
corruptions later. We first analyze the fully corrective TORRENT-FC algorithm. The convergence
proof in this case relies on the optimality of the two steps carried out by the algorithm, the fully
corrective step that selects the best regressor on the active set, and the hard thresholding step that
discovers a new active set by selecting points with the least residual error on the current regressor.

4
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Theorem 3. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖b‖0 ≤ α · n. Let Algorithm 2 be executed on this data with the thresholding
parameter set to β ≥ α. Let Σ0 be an invertible matrix such that X̃ = Σ

−1/2
0 X satisfies the

SSC and SSS properties at level γ with constants λγ and Λγ respectively (see Definition 1). If the

data satisfies (1+
√

2)Λβ
λ1−β

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains an

ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.

Proof (Sketch). Let rt = y −X>wt be the vector of residuals at time t and Ct = XStX
>
St

. Also
let S∗ = supp(b) be the set of uncorrupted points. The fully corrective step ensures that

wt+1 = C−1
t XStySt = C−1

t XSt

(
X>Stw

∗ + bSt
)

= w∗ + C−1
t XStbSt ,

whereas the hard thresholding step ensures that
∥∥∥rt+1
St+1

∥∥∥2

2
≤
∥∥rt+1
S∗

∥∥2

2
. Combining the two gives us

∥∥bSt+1

∥∥2

2
≤
∥∥∥X>S∗\St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

ζ1
=

∥∥∥∥X̃>S∗\St+1

(
X̃StX̃

T
St

)−1

X̃StbSt

∥∥∥∥2

2

+ 2 · b>St+1
X̃>St+1

(
X̃StX̃

T
St

)−1

X̃StbSt

ζ2
≤

Λ2
β

λ2
1−β
· ‖bSt‖

2
2 + 2 · Λβ

λ1−β
· ‖bSt‖2

∥∥bSt+1

∥∥
2
,

where ζ1 follows from setting X̃ = Σ
−1/2
0 X and X>S C

−1
t XS′ = X̃>S (X̃StX̃

>
St

)−1X̃S′ and ζ2
follows from the SSC and SSS properties, ‖bSt‖0 ≤ ‖b‖0 ≤ β · n and |S∗\St+1| ≤ β · n. Solving
the quadratic equation and performing other manipulations gives us the claimed result.

Theorem 3 relies on a deterministic (fixed design) assumption, specifically (1+
√

2)Λβ
λ1−β

< 1 in order
to guarantee convergence. We can show that a large class of random designs, including Gaussian
and sub-Gaussian designs actually satisfy this requirement. That is to say, data generated from these
distributions satisfy the SSC and SSS conditions such that (1+

√
2)Λβ

λ1−β
< 1 with high probability.

Theorem 4 explicates this for the class of Gaussian designs.

Theorem 4. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix with each xi ∼ N (0,Σ). Let
y = X>w∗+b and ‖b‖0 ≤ α ·n. Also, let α ≤ β < 1

65 and n ≥ Ω
(
p+ log 1

δ

)
. Then, with proba-

bility at least 1−δ, the data satisfies (1+
√

2)Λβ
λ1−β

< 9
10 . More specifically, after T ≥ 10 log

(
1√
n

‖b‖2
ε

)
iterations of Algorithm 1 with the thresholding parameter set to β, we have

∥∥wT −w∗
∥∥ ≤ ε.

Remark 2. Note that Theorem 4 provides rates that are independent of the condition number λmax(Σ)
λmin(Σ)

of the distribution. We also note that results similar to Theorem 4 can be proven for the larger class
of sub-Gaussian distributions. We refer the reader to Section G for the same.

Remark 3. We remind the reader that our analyses can readily accommodate dense noise in addition
to sparse unbounded corruptions. We direct the reader to Appendix A which presents convergence
proofs for our algorithms in these settings.

Remark 4. We would like to point out that the design requirements made by our analyses are very
mild when compared to existing literature. Indeed, the work of [4] assumes the Bouquet Model
where distributions are restricted to be isotropic Gaussians whereas the work of [5] assumes a more
stringent model of sub-orthonormal matrices, something that even Gaussian designs do not satisfy.
Our analyses, on the other hand, hold for the general class of sub-Gaussian distributions.

We now analyze the TORRENT-GD algorithm which performs cheaper, gradient-style updates on
the active set. We will show that this method nevertheless enjoys a linear rate of convergence.
Theorem 5. Let the data settings be as stated in Theorem 3 and let Algorithm 3 be executed on this
data with the thresholding parameter set to β ≥ α and the step length set to η = 1

Λ1−β
. If the data

5
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satisfies max
{
η
√

Λβ , 1− ηλ1−β
}
≤ 1

4 , then after t = O
(

log
(
‖b‖2√
n

1
ε

))
iterations, Algorithm 1

obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.

Similar to TORRENT-FC, the assumptions made by the TORRENT-GD algorithm are also satisfied
by the class of sub-Gaussian distributions. The proof of Theorem 5, given in Appendix D, details
these arguments. Given the convergence analyses for TORRENT-FC and GD, we now move on to
provide a convergence analysis for the hybrid TORRENT-HYB algorithm which interleaves FC and
GD steps. Since the exact interleaving adopted by the algorithm depends on the data, and not known
in advance, this poses a problem. We address this problem by giving below a uniform convergence
guarantee, one that applies to every interleaving of the FC and GD update steps.
Theorem 6. Suppose Algorithm 4 is executed on data that allows Algorithms 2 and 3 a convergence
rate of ηFC and ηGD respectively. Suppose we have 2 ·ηFC ·ηGD < 1. Then for any interleavings of the
FC and GD steps that the policy may enforce, after t = O

(
log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 4

ensures an ε-optimal solution i.e. ‖wt −w∗‖ ≤ ε.

We point out to the reader that the assumption made by Theorem 6 i.e. 2 · ηFC · ηGD < 1 is readily
satisfied by random sub-Gaussian designs, albeit at the cost of reducing the noise tolerance limit. As
we shall see, TORRENT-HYB offers attractive convergence properties, merging the fast convergence
rates of the FC step, as well as the speed and protection against overfitting provided by the GD step.

5 High-dimensional Robust Regression

In this section, we extend our approach to the robust high-dimensional sparse recovery setting. As
before, we assume that the response vector y is obtained as: y = X>w∗ + b, where ‖b‖0 ≤ α · n.
However, this time, we also assume that w∗ is s∗-sparse i.e. ‖w∗‖0 ≤ s∗. As before, we shall
neglect white/dense noise for the sake of simplicity. We reiterate that it is not possible to use existing
results from sparse recovery (such as [11, 12]) directly to solve this problem.

Our objective would be to recover a sparse model ŵ so that ‖ŵ −w∗‖2 ≤ ε. The challenge here
is to forgo a sample complexity of n & p and instead, perform recovery with n ∼ s∗ log p samples
alone. For this setting, we modify the FC update step of TORRENT-FC method to the following:

wt+1 ← inf
‖w‖0≤s

∑
i∈St

(yi − 〈w,xi〉)2
, (3)

for some target sparsity level s� p. We refer to this modified algorithm as TORRENT-HD. Assum-
ing X satisfies the RSC/RSS properties (defined below), (3) can be solved efficiently using results
from sparse recovery (for example the IHT algorithm [11, 13] analyzed in [12]).
Definition 7 (RSC and RSS Properties). A matrix X ∈ Rp×n will be said to satisfy the Restricted
Strong Convexity Property (resp. Restricted Strong Smoothness Property) at level s = s1 + s2 with
strong convexity constant αs1+s2 (resp. strong smoothness constant Ls1+s2 ) if the following holds
for all ‖w1‖0 ≤ s1 and ‖w2‖0 ≤ s2:

αs ‖w1 −w2‖22 ≤
∥∥X>(w1 −w2)

∥∥2

2
≤ Ls ‖w1 −w2‖22

For our results, we shall require the subset versions of both these properties.
Definition 8 (SRSC and SRSS Properties). A matrix X ∈ Rp×n will be said to satisfy the Subset
Restricted Strong Convexity (resp. Subset Restricted Strong Smoothness) Property at level (γ, s)
with strong convexity constant α(γ,s) (resp. strong smoothness constant L(γ,s)) if for all subsets
S ∈ Sγ , the matrix XS satisfies the RSC (resp. RSS) property at level s with constant αs (resp. Ls).

We now state the convergence result for the TORRENT-HD algorithm.
Theorem 9. Let X ∈ Rp×n be the given data matrix and y = XTw∗ + b be the corrupted
output with ‖w∗‖0 ≤ s∗ and ‖b‖0 ≤ α · n. Let Σ0 be an invertible matrix such that Σ

−1/2
0 X

satisfies the SRSC and SRSS properties at level (γ, 2s+s∗) with constants α(γ,2s+s∗) and L(γ,2s+s∗)

respectively (see Definition 8). Let Algorithm 2 be executed on this data with the TORRENT-HD
update, thresholding parameter set to β ≥ α, and s ≥ 32

(
L(1−β,2s+s∗)
α(1−β,2s+s∗)

)
.
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Figure 1: (a), (b) and (c) Phase-transition diagrams depicting the recovery properties of the TORRENT-FC,
TORRENT-HYB and L1 algorithms. The colors red and blue represent a high and low probability of success
resp. A method is considered successful in an experiment if it recovers w∗ upto a 10−4 relative error. Both
variants of TORRENT can be seen to recover w∗ in presence of larger number of corruptions than the L1 solver.
(d) Variation in recovery error with the magnitude of corruption. As the corruption is increased, TORRENT-FC
and TORRENT-HYB show improved performance while the problem becomes more difficult for the L1 solver.

If X also satisfies 4L(β,s+s∗)
α(1−β,s+s∗)

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2

obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.
In particular, if X is sampled from a Gaussian distribution N (0,Σ) and n ≥
Ω
(
s∗ · λmax(Σ)

λmin(Σ) log p
)

, then for all values of α ≤ β < 1
65 , we can guarantee ‖wt −w∗‖2 ≤ ε

after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations of the algorithm (w.p. ≥ 1− 1/n10).

Remark 5. The sample complexity required by Theorem 9 is identical to the one required by analyses
for high dimensional sparse recovery [12], save constants. Also note that TORRENT-HD can tolerate
the same corruption index as TORRENT-FC.

6 Experiments

Several numerical simulations were carried out on linear regression problems in low-dimensional,
as well as sparse high-dimensional settings. The experiments show that TORRENT not only offers
statistically better recovery properties as compared to L1-style approaches, but that it can be more
than an order of magnitude faster as well.

Data: For the low dimensional setting, the regressor w∗ ∈ Rp was chosen to be a random unit norm
vector. Data was sampled as xi ∼ N (0, Ip) and response variables were generated as y∗i = 〈w∗,xi〉.
The set of corrupted points S∗ was selected as a uniformly random (αn)-sized subset of [n] and the
corruptions were set to bi ∼ U (−5 ‖y∗‖∞ , 5 ‖y∗‖∞) for i ∈ S∗. The corrupted responses were
then generated as yi = y∗i + bi + εi where εi ∼ N (0, σ2). For the sparse high-dimensional setting,
supp(w∗) was selected to be a random s∗-sized subset of [p]. Phase-transition diagrams (Figure 1)
were generated by repeating each experiment 100 times. For all other plots, each experiment was
run over 20 random instances of the data and the plots were drawn to depict the mean results.

Algorithms: We compared various variants of our algorithm TORRENT to the regularized L1 algo-
rithm for robust regression [4, 5]. Note that the L1 problem can be written as minz ‖z‖1 s.t.Az = y,
where A =

[
X> 1

λIm×m
]

and z∗ = [w∗> λb>]>. We used the Dual Augmented Lagrange Mul-
tiplier (DALM) L1 solver implemented by [14] to solve the L1 problem. We ran a fine tuned grid
search over the λ parameter for the L1 solver and quoted the best results obtained from the search. In
the low-dimensional setting, we compared the recovery properties of TORRENT-FC (Algorithm 2)
and TORRENT-HYB (Algorithm 4) with the DALM-L1 solver, while for the high-dimensional case,
we compared TORRENT-HD against the DALM-L1 solver. Both the L1 solver, as well as our meth-
ods, were implemented in Matlab and were run on a single core 2.4GHz machine with 8 GB RAM.

Choice of L1-solver: An extensive comparative study of various L1 minimization algorithms was
performed by [14] who showed that the DALM and Homotopy solvers outperform other counterparts
both in terms of recovery properties, and timings. We extended their study to our observation model
and found the DALM solver to be significantly better than the other L1 solvers; see Figure 3 in the
appendix. We also observed, similar to [14], that the Approximate Message Passing (AMP) solver
diverges on our problem as the input matrix to the L1 solver is a non-Gaussian matrixA = [XT 1

λI].
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Figure 2: In low-dimensional (a,b), as well as sparse high dimensional (c,d) settings, TORRENT offers better
recovery as the fraction of corrupted points α is varied. In terms of runtime, TORRENT is an order of magnitude
faster than L1 solvers in both settings. In the low-dim. setting, TORRENT-HYB is the fastest of all the variants.

Evaluation Metric: We measure the performance of various algorithms using the standard L2 error:
rŵ = ‖ŵ −w∗‖2. For the phase-transition plots (Figure 1), we deemed an algorithm successful on
an instance if it obtained a model ŵ with error rŵ < 10−4 · ‖w∗‖2. We also measured the CPU
time required by each of the methods, so as to compare their scalability.

6.1 Low Dimensional Results

Recovery Property: The phase-transition plots presented in Figure 1 represent our recovery exper-
iments in graphical form. Both the fully-corrective and hybrid variants of TORRENT show better
recovery properties than the L1-minimization approach, indicated by the number of runs in which
the algorithm was able to correctly recover w∗ out of a 100 runs. Figure 2 shows the variation in
recovery error as a function of α in the presence of white noise and exhibits the superiority of TOR-
RENT-FC and TORRENT-HYB over L1-DALM. Here again, TORRENT-FC and TORRENT-HYB
achieve significantly lesser recovery error than L1-DALM for all α <= 0.5. Figure 3 in the ap-
pendix show that the variations of ‖ŵ −w∗‖2 with varying p, σ and n follow a similar trend with
TORRENT having significantly lower recovery error in comparison to the L1 approach.

Figure 1(d) brings out an interesting trend in the recovery property of TORRENT. As we increase
the magnitude of corruption from U (−‖y∗‖∞ , ‖y∗‖∞) to U (−20 ‖y∗‖∞ , 20 ‖y∗‖∞), the recov-
ery error for TORRENT-HYB and TORRENT-FC decreases as expected since it becomes easier to
identify the grossly corrupted points. However the L1-solver was unable to exploit this observation
and in fact exhibited an increase in recovery error.

Run Time: In order to ascertain the recovery guarantees for TORRENT on ill-conditioned problems,
we performed an experiment where data was sampled as xi ∼ N (0,Σ) where diag(Σ) ∼ U(0, 5).
Figure 2 plots the recovery error as a function of time. TORRENT-HYB was able to correctly recover
w∗ about 50× faster than L1-DALM which spent a considerable amount of time pre-processing the
data matrix X . Even after allowing the L1 algorithm to run for 500 iterations, it was unable to reach
the desired residual error of 10−4. Figure 2 also shows that our TORRENT-HYB algorithm is able to
converge to the optimal solution much faster than TORRENT-FC or TORRENT-GD. This is because
TORRENT-FC solves a least square problem at each step and thus, even though it requires signifi-
cantly fewer iterations to converge, each iteration in itself is very expensive. While each iteration of
TORRENT-GD is cheap, it is still limited by the slow O

(
(1− 1

κ )t
)

convergence rate of the gradient
descent algorithm, where κ is the condition number of the covariance matrix. TORRENT-HYB, on
the other hand, is able to combine the strengths of both the methods to achieve faster convergence.

6.2 High Dimensional Results

Recovery Property: Figure 2 shows the variation in recovery error in the high-dimensional setting
as the number of corrupted points was varied. For these experiments, n was set to 5s∗ log(p) and
the fraction of corrupted points α was varied from 0.1 to 0.7. While L1-DALM fails to recover w∗
for α > 0.5, TORRENT-HD offers perfect recovery even for α values upto 0.7.

Run Time: Figure 2 shows the variation in recovery error as a function of run time in this setting.
L1-DALM was found to be an order of magnitude slower than TORRENT-HD, making it infeasible
for sparse high-dimensional settings. One key reason for this is that the L1-DALM solver is signifi-
cantly slower in identifying the set of clean points. For instance, whereas TORRENT-HD was able to
identify the clean set of points in only 5 iterations, it took L1 around 250 iterations to do the same.
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A Convergence Guarantees with Dense Noise and Sparse Corruptions

We will now present recovery guarantees for the TORRENT-FC algorithm when both, dense noise,
as well as sparse adversarial corruptions are present. Extensions for TORRENT-GD and TORRENT-
HYB will follow similarly.
Theorem 10. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b + ε
be the corrupted output with sparse corruptions ‖b‖0 ≤ α · n as well as dense bounded noise ε.
Let Algorithm 2 be executed on this data with the thresholding parameter set to β ≥ α. Let Σ0 be
an invertible matrix such that X̃ = Σ

−1/2
0 X satisfies the SSC and SSS properties at level γ with

constants λγ and Λγ respectively (see Definition 1). If the data satisfies
4
√

Λβ√
λ1−β

< 1, then after t =

O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤

ε+ C
‖ε‖2√
n

for some constant C > 0.

Proof. We being by observing that the optimality of the model wt+1 on the active set St ensures∥∥ySt −X>Stwt+1
∥∥

2
=
∥∥X>St(w∗ −wt+1) + εSt + bSt

∥∥
2
≤
∥∥yt −X>Stw∗∥∥2

= ‖εSt + bSt‖2 ,
which, upon the application of the triangle inequality, gives us∥∥X>St(w∗ −wt+1)

∥∥
2
≤ 2 ‖εSt + bSt‖2 .

Since
∥∥X>St(w∗ −wt+1)

∥∥
2
≥
√
λ1−β

∥∥w∗ −wt+1
∥∥

2
, we get∥∥w∗ −wt+1

∥∥
2
≤ 2√

λ1−β
‖εSt + bSt‖2 ≤

2√
λ1−β

(‖ε‖2 + ‖bSt‖2) .

The hard thresholding step, on the other hand, guarantees that∥∥∥X>St+1
(w∗ −wt+1) + εSt+1 + bSt+1

∥∥∥2

2
=
∥∥∥ySt+1 −X>St+1

wt+1
∥∥∥2

2

≤
∥∥yS∗ −X>S∗wt+1

∥∥
2

=
∥∥X>S∗(w∗ −wt+1) + εS∗

∥∥2

2
.

As before, let CRt+1 = St+1\S∗ and MDt+1 = S∗\St+1. Then we have∥∥∥X>CRt+1
(w∗ −wt+1) + εCRt+1

+ bCRt+1

∥∥∥
2
≤
∥∥∥X>MDt+1

(w∗ −wt+1) + εMDt+1

∥∥∥
2
.

An application of the triangle inequality and the fact that
∥∥bCRt+1

∥∥
2

=
∥∥bSt+1

∥∥ gives us∥∥bSt+1

∥∥
2
≤
∥∥∥X>MDt+1

(w∗ −wt+1)
∥∥∥

2
+
∥∥∥X>CRt+1

(w∗ −wt+1)
∥∥∥

2
+
∥∥εCRt+1

∥∥
2

+
∥∥εMDt+1

∥∥
2

≤ 2
√

Λβ
∥∥w∗ −wt+1

∥∥
2

+
√

2 ‖ε‖2 ,

=
4
√

Λβ√
λ1−β

‖bSt‖2 + (
4
√

Λβ√
λ1−β

+
√

2) ‖ε‖2

≤ η · ‖bSt‖2 + (1 +
√

2) ‖ε‖2 ,
where the second step uses the fact that max {|CRt+1| , |MDt+1|} ≤ β ·n and the Cauchy-Schwartz

inequality, and the last step uses the fact that for sufficiently small β, we have η :=
4
√

Λβ√
λ1−β

. Using

the inequality for
∥∥wt+1 −w∗

∥∥
2

again gives us∥∥w∗ −wt+1
∥∥

2
≤ 2√

λ1−β
(‖ε‖2 + ‖bSt‖2)

≤ 4 + 2
√

2√
λ1−β

‖ε‖2 +
2 · ηt√
λ1−β

‖b‖2

For large enough n we have
√
λ1−β ≥ O (

√
n), which completes the proof.
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Notice that for random Gaussian noise, this result gives the following convergence guarantee.

Corollary 11. Let the date be generated as before with random Gaussian dense noise i.e. y =
XTw∗ + b + ε with ‖b‖0 ≤ α · n and ε ∼ N (0, σ2 · I). Let Algorithm 2 be executed on
this data with the thresholding parameter set to β ≥ α. Let Σ0 be an invertible matrix such that
X̃ = Σ

−1/2
0 X satisfies the SSC and SSS properties at level γ with constants λγ and Λγ respectively

(see Definition 1). If the data satisfies
4
√

Λβ√
λ1−β

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations,

Algorithm 2 obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε + 2σC, where C > 0 is the
constant in Theorem 10.

Proof. Using tail bounds on Chi-squared distributions [15], we get, with probability at least 1− δ,

‖ε‖22 ≤ σ
2

(
n+ 2

√
n log

1

δ
+ 2 log

1

δ

)
.

Thus, for n > 4 log 1
δ , we have ‖ε‖22 ≤ 2σn which proves the result.

Remark 6. We note that the design assumptions made by Theorem 10 (i..e
4
√

Λβ√
λ1−β

< 1) are similar

to those made by Theorem 3 and would be satisfied with high probability by data sampled from
sub-Gaussian distributions (see Appendix G for details).

B Proof of Theorem 3

Theorem 3. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖b‖0 ≤ α · n. Let Algorithm 2 be executed on this data with the thresholding
parameter set to β ≥ α. Let Σ0 be an invertible matrix such that X̃ = Σ

−1/2
0 X satisfies the

SSC and SSS properties at level γ with constants λγ and Λγ respectively (see Definition 1). If the

data satisfies (1+
√

2)Λβ
λ1−β

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains an

ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.

Proof. Let rt = y −X>wt be the vector of residuals at time t and Ct = XStX
>
St

. Since λα > 0
(something which we shall establish later), we get

wt+1 = C−1
t XStySt = C−1

t XSt

(
X>Stw

∗ + bSt
)

= w∗ + C−1
t XStbSt .

Thus, for any set S ⊂ [n], we have

rt+1
S = yS −X>S wt+1 = bS −X>S C−1

t XStbSt

This, gives us∥∥bSt+1

∥∥2

2
=
∥∥∥bSt+1 −X>St+1

C−1
t XStbSt

∥∥∥2

2
−
∥∥∥X>St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

ζ1
≤
∥∥bS∗ −X>S∗C−1

t XStbSt
∥∥2

2
−
∥∥∥X>St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

ζ2
=
∥∥X>S∗C−1

t XStbSt
∥∥2

2
−
∥∥∥X>St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

≤
∥∥∥X>S∗\St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

ζ3
=

∥∥∥∥X̃>S∗\St+1

(
X̃StX̃

T
St

)−1

X̃StbSt

∥∥∥∥2

2

+ 2 · b>St+1
X̃>St+1

(
X̃StX̃

T
St

)−1

X̃StbSt

ζ4
≤

Λ2
β

λ2
1−β
· ‖bSt‖

2
2 + 2 · Λβ

λ1−β
· ‖bSt‖2

∥∥bSt+1

∥∥
2
,
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where ζ1 follows since the hard thresholding step ensures
∥∥∥rt+1
St+1

∥∥∥2

2
≤
∥∥rt+1
S∗

∥∥2

2
(see Claim 19 and

use the fact that β ≥ α), ζ2 notices the fact that bS∗ = 0. ζ3 follows from setting X̃ = Σ
−1/2
0 X and

X>S C
−1
t XS′ = X̃>S (X̃StX̃

>
St

)−1X̃S′ . ζ4 follows from the definition of SSC and SSS properties,
‖bSt‖0 ≤ ‖b‖0 ≤ β · n and |S∗\St+1| ≤ β · n. Solving the quadratic equation gives us∥∥bSt+1

∥∥
2
≤ (1 +

√
2) · Λβ

λ1−β
· ‖bSt‖2 . (4)

Let η :=
(1+
√

2)Λβ
λ1−β

denote the convergence rate in (4). We shall show below that for a large family
of random designs, we have η < 1 if n ≥ Ω

(
p+ log 1

δ

)
. We now recall from our earlier discussion

that wt+1 = w∗ + C−1
t XStbSt which gives us∥∥wt+1 −w∗
∥∥

2
=
∥∥C−1

t XStbSt
∥∥

2
≤
√

Λβ

λ1−β
· ‖bSt‖2 ≤ η

t ·
√

Λβ

λ1−β
‖b‖2 ≤ ε,

for t ≥ log 1
η

(√
Λβ

λ1−β
· ‖b‖2ε

)
. Noting that

√
Λβ

λ1−β
≤ O

(
1√
n

)
establishes the convergence result.

C Proof of Theorem 4

Theorem 4. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix with each xi ∼ N (0,Σ). Let
y = X>w∗+b and ‖b‖0 ≤ α ·n. Also, let α ≤ β < 1

65 and n ≥ Ω
(
p+ log 1

δ

)
. Then, with proba-

bility at least 1−δ, the data satisfies (1+
√

2)Λβ
λ1−β

< 9
10 . More specifically, after T ≥ 10 log

(
1√
n

‖b‖2
ε

)
iterations of Algorithm 1 with the thresholding parameter set to β, we have

∥∥wT −w∗
∥∥ ≤ ε.

Proof. We note that whenever x ∼ N (0,Σ) then Σ−1/2x ∼ N (0, I). Thus, Theorem 15 assures
us that with probability at least 1 − δ, the data matrix X̃ = Σ−1/2X satisfies the SSC and SSS
properties with the following constants

Λβ ≤ βn
(

1 + 3e

√
6 log

e

β

)
+O

(√
np+ n log

1

δ

)

λ1−β ≥ n− βn
(

1 + 3e

√
6 log

e

β

)
− Ω

(√
np+ n log

1

δ

)
Thus, the convergence given be Algorithm 1, when invoked with Σ0 = Σ, relies on the quantity
η =

(1+
√

2)Λβ
λ1−β

being less than unity. This translates to the requirement (1 +
√

2)Λβ ≤ λ1−β . Using
the above bounds translates that requirement to

(2 +
√

2)β

(
1 + 3e

√
6 log

e

β

)
︸ ︷︷ ︸

(A)

+O

(√
p

n
+

1

n
log

1

δ

)
︸ ︷︷ ︸

(B)

< 1.

For n = Ω
(
p+ log 1

δ

)
, the second quantity (B) can be made as small a constant as necessary.

Tackling the first quantity (A) turns out to be more challenging. However, we can show that for all

β < 1
190 , we get η =

(1+
√

2)Λβ
λ1−β

< 9
10 which establishes the claimed result. Thus, Algorithm 1 can

tolerate a corruption index of upto α ≤ 1
190 . However, we note that using a more finely tuned setting

of the constant ε in the proof of Theorem 15 and a more careful proof using tight tail inequalities for
chi-squared distributions [15], we can achieve a better corruption level tolerance of α < 1

65 .

D Proof of Theorem 5

Theorem 5. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖b‖0 ≤ α · n. Let X satisfy the SSC and SSS properties at level γ with

12
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constants λγ and Λγ respectively (see Definition 1). Let Algorithm 1 be executed on this data with
the GD update (Algorithm 3) with the thresholding parameter set to β ≥ α and the step length set
to η = 1

Λ1−β
. If the data satisfies max

{
η
√

Λβ , 1− ηλ1−β
}
≤ 1

4 , then after t = O
(

log
(
‖b‖2√
n

1
ε

))
iterations, Algorithm 1 obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.

Proof. Let rt = y −X>wt be the vector of residuals at time t and Ct = XStX
>
St

. We have

wt+1 = wt + η ·XStr
t
St = wt + η ·XSt(ySt −X>Stw

t)

The thresholding step ensures that
∥∥∥rt+1
St+1

∥∥∥2

2
≤
∥∥rt+1
S∗

∥∥2

2
(see Claim 19 and use β ≥ α) which

implies ∥∥∥rt+1
CRt+1

∥∥∥2

2
≤
∥∥∥rt+1

MDt+1

∥∥∥2

2
,

where CRt+1 = St+1\S∗ are the corrupted recoveries and MDt+1 = S∗\St+1 are the clean points
missed out from detection. Note that |CRt+1| ≤ α · n and |MDt+1| ≤ β · n. Since bS∗ = 0 and
MDt+1 ⊆ S∗, we get∥∥∥bCRt+1

+X>CRt+1
(w∗ −wt+1)

∥∥∥
2
≤
∥∥∥X>MDt+1

(w∗ −wt+1)
∥∥∥

2

Using the SSS conditions and the fact that
∥∥bSt+1

∥∥
2

=
∥∥bSt+1\S∗

∥∥
2

gives us∥∥bSt+1

∥∥
2

=
∥∥bCRt+1

∥∥
2
≤ (
√

Λα +
√

Λβ)
∥∥w∗ −wt+1

∥∥
2
≤ 2
√

Λβ
∥∥w∗ −wt+1

∥∥
2

Now, using the expression for wt+1 gives us∥∥w∗ −wt+1
∥∥

2
≤
∥∥(I − ηCt)(w∗ −wt)

∥∥
2

+ η ‖XStbSt‖2
We will bound the two terms on the right hand separately. We can bound the second term easily as

η ‖XStbSt‖2 ≤ η
√

Λα ‖bSt‖2 ≤ η
√

Λβ ‖bSt‖2 ,
since ‖bSt‖0 ≤ α · n. For the first term we observe that for η ≤ 1

Λ1−β
, we have

‖I − ηCt‖2 = sup
v∈Sp−1

∣∣1− η · v>Ctv∣∣ = sup
v∈Sp−1

{
1− η · v>Ctv

}
≤ 1− ηλ1−β ,

which we can use to bound∥∥w∗ −wt+1
∥∥

2
≤ (1− ηλ1−β)

∥∥w∗ −wt
∥∥

2
+ η
√

Λβ ‖bSt‖2
This gives us, for η = 1

Λ1−β
,∥∥bSt+1

∥∥
2
≤ 2
√

Λβ
∥∥w∗ −wt+1

∥∥
2
≤ 2

(
1− λ1−β

Λ1−β

)
︸ ︷︷ ︸

(P )

√
Λβ
∥∥w∗ −wt

∥∥
2

+ 2
Λβ

Λ1−β︸ ︷︷ ︸
(Q)

‖bSt‖2 .

For Gaussian designs and small enough β, we can show (Q) ≤ 1
4 as we did in Theorem 4. To bound

(P ), we use the lower bound on λ1−β given by Theorem 15 and use the following tighter upper
bound for Λ1−β :

Λ1−β ≤
(

(1− β) + 3e

√
6β(1− β) log

e

β

)
n+O

(√
np+ n log

1

δ

)
The above bound is obtained similarly to the one in Theorem 15 but uses the identity

(
n
k

)
=
(
n

n−k
)
≤(

en
n−k

)n−k
for values of k ≥ n/2 instead. For small enough β and n = Ω

(
κ2(Σ)(p+ log 1

δ )
)
,

we can then show (P ) ≤ 1
4 as well. Let Ψt :=

√
n ‖w∗ −wt‖2 + ‖bSt‖. Using elementary

manipulations and the fact that
√

Λβ ≥ Ω (
√
n), we can then show that

Ψt+1 ≤ 3/4 ·Ψt.

Thus, in t = O
(

log
((
‖w∗‖2 +

‖b‖2√
n

)
1
ε

))
iterations of the algorithm, we arrive at an ε-optimal

solution i.e. ‖w∗ −wt‖2 ≤ ε. A similar argument holds true for sub-Gaussian designs as well.

13
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E Proof of Theorem 6

Theorem 6. Suppose Algorithm 4 is executed on data that allows Algorithms 2 and 3 a convergence
rate of ηFC and ηGD respectively. Suppose we have 2·ηFC ·ηGD < 1. Then for any interleavings of the
FC and GD steps that the policy may enforce, after t = O

(
log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 4

ensures an ε-optimal solution i.e. ‖wt −w∗‖ ≤ ε.

Proof. Our proof shall essentially show that the FC and GD steps do not undo the progress made by
the other if executed in succession and if 2 · ηFC · ηGD < 1, actually ensure non-trivial progress. Let

ΨFC
t = ‖bSt‖2

ΨGD
t =

√
n
∥∥wt −w∗

∥∥+ ‖bSt‖2
denote the potential functions used in the analyses of the FC and GD algorithms before. Then we
will show below that if the FC and GD algorithms are executed in steps t and t+ 1 then we have

ΨFC
t+2 ≤ 2 · ηFC · ηGD ·ΨFC

t

Alternatively, if the GD and FC algorithms are executed in steps t and t+ 1 respectively, then

ΨGD
t+2 ≤ 2 · ηFC · ηGD ·ΨGD

t

Thus, if algorithm executes the FC step at the time step t, then it would at least ensure ΨFC
t ≤

(2 · ηFC · ηGD)
t/2 ·ΨFC

0 (similarly if the last step is a GD step). Since both the FC and GD algorithms

ensure ‖wt −w∗‖2 ≤ ε for t ≥ O
(

log
(

1√
n

‖b‖2
ε

))
, the claim would follow.

We now prove the two claimed results regarding the two types of interleaving below

1. FC −→ GD
The FC step guarantees

∥∥bSt+1

∥∥
2
≤ ηFC · ‖bSt‖ as well as

∥∥wt+1 −w∗
∥∥

2
≤ ηFC ·

‖bSt‖√
n

,
whereas the GD step guarantees ΨGD

t+2 ≤ ηGD ·ΨGD
t+1. Together these guarantee

√
n
∥∥wt+2 −w∗

∥∥
2

+
∥∥bSt+2

∥∥
2
≤ ηGD ·

√
n
∥∥wt+1 −w∗

∥∥
2

+
∥∥bSt+1

∥∥
2

≤ 2 · ηFC · ηGD · ‖bSt‖2
Since

√
n
∥∥wt+2 −w∗

∥∥
2
≥ 0, this yields the result.

2. GD −→ FC
The GD step guarantees ΨGD

t+1 ≤ ηGD · ΨGD
t whereas the FC step guarantees

∥∥bSt+2

∥∥
2
≤

ηFC ·
∥∥bSt+1

∥∥ as well as
∥∥wt+2 −w∗

∥∥
2
≤ ηFC ·

‖bSt+1‖√
n

. Together these guarantee
√
n
∥∥wt+2 −w∗

∥∥
2

+
∥∥bSt+2

∥∥
2
≤ 2ηFC

∥∥bSt+1

∥∥
2

≤ 2 · ηFC · ηGD ·ΨGD
t ,

where the second step follows from the GD step guarantee since
√
n
∥∥wt+1 −w∗

∥∥
2
≥ 0.

This finishes the proof.

F Proof of Theorem 9

Theorem 9. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖w∗‖0 ≤ s∗ and ‖b‖0 ≤ α · n. Let Algorithm 2 be executed on this data
with the IHT update from [12] and thresholding parameter set to β ≥ α. Let Σ0 be an invertible
matrix such that Σ

−1/2
0 X satisfies the SRSC and SRSS properties at level (γ, 2s+s∗) with constants

α(γ,2s+s∗) and L(γ,2s+s∗) respectively (see Definition 8) for s ≥ 32
(
L(γ,2s+s∗)
α(γ,2s+s∗)

)
with γ = 1−β. If

X also satisfies 4L(β,s+s∗)
α(1−β,s+s∗)

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains

14
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an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε. In particular, if X is sampled from a Gaussian
distribution N (0,Σ) and n ≥ Ω

(
(2s+ s∗) log p+ log 1

δ

)
, then for all values of α ≤ β < 1

65 , we
can guarantee recovery as ‖wt −w∗‖2 ≤ ε.

Proof. We first begin with the guarantee provided by existing sparse recovery techniques. The
results of [12], for example, indicate that if the input to the algorithm indeed satisfies the RSC and
RSS properties at the level (1−β, 2s+s∗) with constants α2s+s∗ and L2s+s∗ for s ≥ 32

(
L2s+s∗

α2s+s∗

)
,

then in time τ = O
(
L2s+s∗

α2s+s∗
· log

(
‖b‖2
ρ

))
, the IHT algorithm [12, Algorithm 1] outputs an updated

model wt+1 that satisfies
∥∥wt+1

∥∥
0
≤ s, as well as∥∥ySt −X>Stwt+1

∥∥2

2
≤
∥∥ySt −X>Stw∗∥∥2

2
+ ρ.

We will set ρ later. Since the SRSC and SRSS properties ensure the above and y = X>w∗+b, this
gives us∥∥X>St(wt+1 −w∗)

∥∥2

2
≤ 2(wt+1 −w∗)>X>StbSt + ρ = 2(wt+1 −w∗)>X>St∩S̄∗bSt∩S̄∗ + ρ,

since bS = 0 for any set S ∩ S̄∗ = φ. We now analyze the two sides separately below using the
SRSC and SRSS properties below. For any S ⊂ [n], denote X̃S := Σ

−1/2
0 X .∥∥X>St(wt+1 −w∗)

∥∥2

2
=
∥∥∥X̃>StΣ1/2

0 (wt+1 −w∗)
∥∥∥2

2
≥ α(1−β,s+s∗)

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥2

2∥∥XSt∩S̄∗(w
t+1 −w∗)

∥∥ =
∥∥∥X̃St∩S̄∗Σ

1/2
0 (wt+1 −w∗)

∥∥∥ ≤√L(β,s+s∗)

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2
.

Now, if
∥∥wt+1 −w∗

∥∥
2
≥ ε, then

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2
≥
√
λmin(Σ0) · ε. This give us

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2
≤

2
√
L(β,s+s∗)

α(1−β,s+s∗)

∥∥bSt∩S̄∗∥∥2
+

ρ

α(1−β,s+s∗)

=
2
√
L(β,s+s∗)

α(1−β,s+s∗)
‖bSt‖2 +

ρ

ε ·
√
λmin(Σ0) · α(1−β,s+s∗)

.

We note that although we declared the SRSC and SRSS properties for the action of matrices on
sparse vectors (such as w∗ − wt+1), we instead applied them above to the action of matrices on
sparse vectors transformed by Σ

1/2
0 (Σ1/2

0 (w∗ −wt+1)). Since Σ
1/2
0 v need not be sparse even if v

is sparse, this appears to pose a problem. However, all we need to resolve this is to notice that the
proof technique of Theorem 18 which would be used to establish the SRSC and SRSS properties,
holds in general for not just the action of a matrix on the set of sparse vectors, but on vectors in the
union of any fixed set of low dimensional subspaces.

More specifically, we can modify the RSC and RSS properties (and by extension, the SRSC and
SRSS properties), to requiring that the matrix X act as an approximate isometry on the following
set of vectors Sp−1

(s,Σ0) :=
{
v : v = Σ

−1/2
0 v′ for some v′ ∈ Sp−1

s

}
. We refer the reader to the work

of [16] which describes this technique in great detail. Proceeding with the proof, the assurance of
the thresholding step, as used in the proof of Theorem 5, along with a straightforward application of
the (modified) SRSS property gives us∥∥bSt+1

∥∥
2
≤
∥∥∥X>CRt+1

(wt+1 −w∗)
∥∥∥

2
+
∥∥∥X>MDt+1

(wt+1 −w∗)
∥∥∥

2

=
∥∥∥X̃>CRt+1

Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2

+
∥∥∥X̃>MDt+1

Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2

≤ 2
√
L(β,s+s∗)

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2

≤
4L(β,s+s∗)

α(1−β,s+s∗)
‖bSt‖2 +

2ρ
√
L(β,s+s∗)

ε ·
√
λmin(Σ0) · α(1−β,s+s∗)
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Thus, whenever
∥∥wt+1 −w∗

∥∥
2
> ε, in successive steps, ‖bSt‖2 undergoes a linear decrease. De-

noting η :=
4L(β,s+s∗)
α(1−β,s+s∗)

, we get∥∥bSt+1

∥∥
2
≤ ηt · ‖b‖2 +

(
1− ηt

1− η

)
2ρ
√
L(β,s+s∗)

ε ·
√
λmin(Σ0) · α(1−β,s+s∗)

and using
∥∥∥Σ

1/2
0 (wt −w∗)

∥∥∥
2
≥
√
λmin(Σ0) ‖wt −w∗‖2 gives us

∥∥wt+1 −w∗
∥∥

2
≤

2
√
L(β,s+s∗)√

λmin(Σ0) · α(1−β,s+s∗)

∥∥bSt+1

∥∥
2

+
ρ

λmin(Σ0) · α(1−β,s+s∗)

≤ ηt
2
√
L(β,s+s∗)√

λmin(Σ0) · α(1−β,s+s∗)
‖b‖2 +

36ρ

ε · λmin(Σ0) · α(1−β,s+s∗)
,

where we have assumed that 4L(β,s+s∗)
α(1−β,s+s∗)

< 9/10, something that we shall establish below. Note that
λmin(Σ0) > 0 since Σ is assumed to be invertible. In the random design settings we shall consider,

we also have
√
L(β,s+s∗)√

λmin(Σ0)·α(1−β,s+s∗)
= O

(
1√
n

)
. Then setting ρ ≤ 1

72ε
2 · λmin(Σ0) · α(1−β,s+s∗)

proves the convergence result.

As before, we can use the above result to establish sparse recovery guarantees in the statistical setting
for Gaussian and sub-Gaussian design models. If our data matrix X is generated from a Gaussian
distribution N (0,Σ) for some invertible Σ, then the results in Theorem 18 can be used to establish
that Σ−1/2X satisfies the SRSC and SRSS properties at the required levels and that for α < 1

190 and
n ≥ Ω

(
(2s+ s∗) log p+ log 1

δ

)
, we have η =

2L(β,s+s∗)
α(1−β,s+s∗)

< 9/10.

Thus, the above result can be applied with Σ0 = Σ to get convergence guarantees in the general
Gaussian setting. We note that the above analysis can tolerate the same level of corruption as Theo-
rem 4 and thus, we can improve the noise tolerance level to α ≤ 1

65 here as well. We also note that
these results can be readily extended to the sub-Gaussian setting as well.

G Robust Statistical Estimation

This section elaborates on how results on the convergence guarantees of our algorithms can be used
to give guarantees for robust statistical estimation problems. We begin with a few definition of
sampling models that would be used in our results.
Definition 12. A random variable x ∈ R is called sub-Gaussian if the following quantity is finite

sup
p≥1

p−1/2 (E |x|p)1/p
.

Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x
and denoted as ‖x‖ψ2

.
Definition 13. A vector-valued random variable x ∈ Rp is called sub-Gaussian if its unidimen-
sional marginals 〈x,v〉 are sub-Gaussian for all v ∈ Sp−1. Moreover, its sub-Gaussian norm is
defined as follows

‖X‖ψ2
:= sup

v∈Sp−1

‖〈x,v〉‖ψ2

We will begin with the analysis of Gaussian designs and then extend our analysis for the class of
general sub-Gaussian designs.
Lemma 14. Let X ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any ε > 0, with probability at least 1− δ, X satisfies

smax(XX>) ≤ n+ (1− 2ε)−1

√
cnp+ c′n log

2

δ

smin(XX>) ≥ n− (1− 2ε)−1

√
cnp+ c′n log

2

δ
,

where c = 24e2 log 3
ε and c′ = 24e2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Proof. We will first use the fact that X is sampled from a standard Gaussian to show that its covari-
ance concentrates around identity. Thus, we first show that with high probability,∥∥XX> − nI∥∥

2
≤ ε1

for some ε1 < 1. Doing so will automatically establish the following result

n− ε1 ≤ smin(XX>) ≤ smax(XX>) ≤ n+ ε1.

Let A := XX> − I . We will use the technique of covering numbers [17] to establish the above.
Let Cp−1(ε) ⊂ Sp−1 be an ε cover for Sp−1 i.e. for all u ∈ Sp−1, there exists at least one v ∈ Cp−1

such that ‖u− v‖2 ≤ ε. Standard constructions [17, see Lemma 5.2] guarantee such a cover of size
at most

(
1 + 2

ε

)p ≤ ( 3
ε

)p
. Now for any u ∈ Sp−1 and v ∈ Cp−1 such that ‖u− v‖2 ≤ ε, we have∣∣u>Au− v>Av

∣∣ ≤ ∣∣u>A(u− v)
∣∣+
∣∣v>A(u− v)

∣∣ ≤ 2ε ‖A‖2 ,

which gives us ∥∥XX> − nI∥∥
2
≤ (1− 2ε)−1 · sup

v∈Cp−1(ε)

∣∣∣∥∥X>v∥∥2

2
− n

∣∣∣ .
Now for a fixed v ∈ Sn−1, the random variable

∥∥X>v∥∥2

2
is distributed as a χ2(n) distribution with

n degrees of freedom. Using Lemma 20, we get, for any µ < 1,

P
[∣∣∣∥∥X>v∥∥2

2
− n

∣∣∣ ≥ µn] ≤ 2 exp

(
−min

{
µ2n2

24ne2
,
µn

4
√

3e

})
≤ 2 exp

(
− µ

2n

24e2

)
.

Setting µ2 = c · pn + c′ · log 2
δ

n , where c = 24e2 log 3
ε and c′ = 24e2, and taking a union bound over

all Cp−1(ε), we get

P

[
sup

v∈Cp−1(ε)

∣∣∣∥∥X>v∥∥2

2
− n

∣∣∣ ≥√cnp+ c′n log
2

δ

]
≤ 2

(
3

ε

)p
exp

(
− µ

2n

24e2

)
≤ δ.

This implies that with probability at least 1− δ,∥∥XX> − nI∥∥
2
≤ (1− 2ε)−1

√
cnp+ c′n log

2

δ
,

which gives us the claimed bounds on the singular values of XX>.

Theorem 15. LetX ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any γ > 0, with probability at least 1 − δ, the matrix X
satisfies the SSC and SSS properties with constants

ΛGauss
γ ≤ γn

(
1 + 3e

√
6 log

e

γ

)
+O

(√
np+ n log

1

δ

)

λGauss
γ ≥ n− (1− γ)n

(
1 + 3e

√
6 log

e

1− γ

)
− Ω

(√
np+ n log

1

δ

)
.

Proof. For any fixed S ∈ Sγ , Lemma 14 guarantees the following bound

smax(XSX
>
S ) ≤ γn+ (1− 2ε)−1

√
cγnp+ c′γn log

2

δ
.

Taking a union bound over Sγ and noting that
(
n
k

)
≤
(
en
k

)k
for all 1 ≤ k ≤ n, gives us

Λγ ≤ γn+ (1− 2ε)−1

√
cγnp+ c′γ2n2 log

e

γ
+ c′γn log

2

δ

≤ γn
(

1 + (1− 2ε)−1

√
c′ log

e

γ

)
+ (1− 2ε)−1

√
cγnp+ c′γn log

2

δ
,
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which finishes the first bound after setting ε = 1/6. For the second bound, we use the equality

XSX
>
S = XX> −XS̄X

>
S̄ ,

which provides the following bound for λγ

λγ ≥ smin(XX>)− sup
T∈S1−γ

XTX
>
T = smin(XX>)− Λ1−γ .

Using Lemma 14 to bound the first quantity and the first part of this theorem to bound the second
quantity gives us, with probability at least 1− δ,

λγ ≥ n− γ′n
(

1 + (1− 2ε)−1

√
c′ log

e

γ′

)
− (1− 2ε)−1

(
1 +

√
γ′
)√

cnp+ c′n log
2

δ
,

where γ′ = 1− γ. This proves the second bound after setting ε = 1/6.

We now extend our analysis to the class of isotropic subGaussian distributions. We note that this
analysis is without loss of generality since for non-isotropic sub-Gaussian distributions, we can
simply use the fact that Theorem 3 can admit whitened data for calculation of the SSC and SSS
constants as we did for the case of non-isotropic Gaussian distributions.
Lemma 16. LetX ∈ Rp×n be a matrix with columns sampled from some sub-Gaussian distribution
with sub-Gaussian norm K and covariance Σ. Then, for any δ > 0, with probability at least 1− δ,
each of the following statements holds true:

smax(XX>) ≤ λmax(Σ) · n+ CK ·
√
pn+ t

√
n

smin(XX>) ≥ λmin(Σ) · n− CK ·
√
pn− t

√
n,

where t =
√

1
cK

log 2
δ , and cK , CK are absolute constants that depend only on the sub-Gaussian

norm K of the distribution.

Proof. Since the singular values of a matrix are unchanged upon transposition, we shall prove the
above statements for X>. The benefit of this is that we get to work with a matrix with independent
rows, so that standard results can be applied. The proof technique used in [17, Theorem 5.39] (see
also Remark 5.40 (1) therein) can be used to establish the following result: with probability at least
1− δ, with t set as mentioned in the theorem statement, we have∥∥∥∥ 1

n
XX> − Σ

∥∥∥∥ ≤ CK√ p

n
+

t√
n

This implies that for any v ∈ Sp−1, we have∣∣∣∣ 1n ∥∥X>v∥∥2

2
− v>Σv

∣∣∣∣ =

∣∣∣∣ 1nv>XX>v − v>Σv

∣∣∣∣ ≤ ∣∣∣∣ 1nXX>v − Σv

∣∣∣∣ ≤ CK√ p

n
+

t√
n
.

The results then follow from elementary manipulations and the fact that the singular values and
eigenvalues of real symmetric matrices coincide.

Theorem 17. Let X ∈ Rp×n be a matrix with columns sampled from some sub-Gaussian distribu-
tion with sub-Gaussian norm K and covariance Σ. Let cK , CK and t be fixed to values as required
in Lemma 16. Note that cK and CK are absolute constants depend only on the sub-Gaussian norm
K of the distribution. Let γ ∈ (0, 1] be some fixed constant. Then, with we have the following:

ΛsubGauss(K,Σ)
γ ≤

(
λmax(Σ) · γ +

√
γ

cK
log

e

γ

)
· n+ CK ·

√
γpn+ t

√
n.

Furthermore, fix any ε ∈ (0, 1) and let γ be a value in (0, 1) satisfying the following

γ > 1−min

{
ε · λmin(Σ)

λmax(Σ)
, exp

(
1 +W−1

(
−cKε

2 · λ2
min(Σ)

e

))}
,

where W−1(·) is the lower branch of the real valued restriction of the Lambert W function. Then we
have, with the same confidence,

λsubGauss(K,Σ)
γ ≥ (1− 2ε) · λmin(Σ) · n− CK

(
1 +

√
1− γ

)√
pn− 2t

√
n
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Proof. The first result follows from an application of Lemma 16, a union bound over sets in Sγ , as
well as the bound

(
n
k

)
≤
(
en
k

)k
for all 1 ≤ k ≤ n which puts a bound on the number of sparse sets

as log |Sγ | ≤ γ · n log e
γ .

For the second result, we observe that XSX
>
S = XX> − XS̄X

>
S̄

, so that smin(XSX
>
S ) ≥

smin(XX>)− smax(XS̄X
>
S̄

). This gives us

inf
S∈Sγ

smin(XSX
>
S ) ≥ smin(XX>)− sup

S∈S1−γ
smax(XSX

>
S ).

Using Lemma 16 and the first part of this result gives us

inf
S∈Sγ

smin(XSX
>
S ) ≥ λmin(Σ) · n− CK ·

√
pn− t

√
n

−
(
λmax(Σ)(1− γ) +

√
1− γ
cK

log
e

1− γ

)
n− CK

√
(1− γ)pn− t

√
n

=

(
λmin(Σ)− λmax(Σ)(1− γ)−

√
1− γ
cK

log
e

1− γ

)
n

− CK
(

1 +
√

1− γ
)√

pn− 2t
√
n

≥ (1− 2ε) · λmin(Σ) · n− CK
(

1 +
√

1− γ
)√

pn− 2t
√
n,

where the last step follows from the assumptions on γ and by noticing that it suffices to show the
following two inequalities to establish the last step

1. λmax(Σ)(1− γ) ≤ ε · λmin(Σ)

2. (1− γ) log e
1−γ ≤ cKε

2 · λ2
min(Σ)

The first part gives us the condition γ > 1 − ε·λmin(Σ)
λmax(Σ) in a straightforward manner. For the second

part, denote v = cKε
2 · λ2

min(Σ). Note that for v ≥ 1, all values of γ ∈ (0, 1] satisfy the inequality.

Otherwise we require the use of the Lambert W function (also known as the product logarithm
function). This function ensures that its value W (z) for any z > −1/e satisfies z = W (z)eW (z). In
our case, making a change of variable (1 − γ) = eη gives us the inequality (η − 1)eη−1 ≥ −v/e.
Note that since v ≤ 1 in this case, −v/e ∈ (−1/e, 0) i.e. a valid value for the Lambert W function.
However, (−1/e, 0) is also the region in which the Lambert W function is multi-valued. Taking
the worse bound for γ by choosing the lower branch W−1(·) gives us the second condition γ ≥
1− exp

(
1 +W−1

(
− cKε

2·λ2
min(Σ)
e

))
.

It is important to note that for any −1/e ≤ z < 0, we have exp (1 +W−1(z)) > 0 which means
that the bounds imposed on γ by Theorem 17 always allow a non-zero fraction of the data points
to be corrupted in an adversarial manner. However, the exact value of that fraction depends, in
a complicated manner, on the sub-Gaussian norm of the underlying distribution, as well as the
condition number and the smallest eigenvalue of the second moment of the underlying distribution.

We also note that due to the generic nature of the previous analysis, which can handle the entire class
of sub-Gaussian distributions, the bounds are not as explicitly stated in terms of universal constants
as they are for the standard Gaussian design setting (Theorem 15).

We now establish that for a wide family of random designs, the SRSC and SRSS properties are
satisfied with high probability as well. For sake of simplicity, we will present our analysis for the
standard Gaussian design. However, the results would readily extend to general Gaussian and sub-
Gaussian designs using techniques similar to Theorem 17.

Theorem 18. LetX ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any γ > 0 and s ≤ p, with probability at least 1 − δ, the
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matrix X satisfies the SRSC and SRSS properties with constants

LGauss
(γ,s) ≤ γn

(
1 + 3e

√
6 log

e

γ

)
+ Õ

(√
ns+ n log

1

δ

)

αGauss
(γ,s) ≥ n− (1− γ)n

(
1 + 3e

√
6 log

e

1− γ

)
− Ω̃

(√
ns+ n log

1

δ

)
.

Proof. The proof of this theorem proceeds similarly to that of Theorem 15. Hence, we simply point
out the main differences. First, we shall establish, that for any ε > 0, with probability at least 1− δ,
X satisfies the RSC and RSS properties at level s with the following constants

Ls ≤ n+ (1− 2ε)−1

√
bns+ b′n log

2

δ

αs ≥ n− (1− 2ε)−1

√
bns+ b′n log

2

δ
,

where b = 24e2 log 3ep
εs and b′ = 24e2. To do so we notice that the only change needed to be made

would be in the application of the covering number argument. Instead of applying the union bound
over an ε-cover Cp−1 of Sp−1, we would only have to consider an ε-cover Cp−1

s of the set Sp−1
s of

all s-sparse unit vectors in p-dimensions. A straightforward calculation shows us that∣∣Cp−1
s

∣∣ ≤ (p
s

)(
1 +

2

ε

)s
≤
(

3ep

εs

)s
.

Thus, setting µ2 = b · sn + b′ · log 2
δ

n , where b = 24e2 log 3ep
εs and b′ = 24e2, we get

P

[
sup

v∈Cp−1
s

∣∣∣‖Xv‖22 − n
∣∣∣ ≥√bns+ b′n log

2

δ

]
≤ δ,

which establishes the required RSC and RSS constants forX . Now, moving on to the SRSS constant,
it follows simply by applying a union bound over all sets in Sγ much like in Theorem 15. One can
then proceed to bound the SRSC constant in a similar manner.

We note that the nature of the SRSC and SRSS bounds indicate that our TORRENT-FC algorithm
in the high dimensional sparse recovery setting has noise tolerance properties, characterized by
the largest corruption index α that can be tolerated, identical to its low dimnensional counterpart -
something that Theorem 9 states explicitly.

H Supplementary Results

Claim 19. Given any vector v ∈ Rn, let σ ∈ Sn be defined as the permutation that orders elements
of v in descending order of their magnitudes i.e.

∣∣vσ(1)

∣∣ ≥ ∣∣vσ(2)

∣∣ ≥ . . . ≥
∣∣vσ(n)

∣∣. For any
0 < p ≤ q ≤ 1, let S1 ∈ Sq be an arbitrary set of size q·n and S2 = {σ(i) : n− p · n+ 1 ≤ i ≤ n}.
Then we have ‖vS2‖

2
2 ≤

p
q ‖vS1‖

2
2 ≤ ‖vS1‖

2
2.

Proof. Let S3 = {σ(i) : n− q · n+ 1 ≤ i ≤ n} and S4 = {σ(i) : n− q · n+ 1 ≤ i ≤ n− p · n}.
Clearly, we have ‖vS3‖

2
2 ≤ ‖vS1‖

2
2 since S3 contains the smallest q · n elements (by magnitude).

Now we have ‖vS3
‖22 = ‖vS2

‖22 + ‖vS4
‖22. Moreover, since each element of S4 is larger in magni-

tude than every element of S2, we have

1

|S4|
‖vS4

‖22 ≥
1

|S2|
‖vS2

‖22 .

This gives us

‖vS2
‖22 = ‖vS3

‖22 − ‖vS4
‖22 ≤ ‖vS3

‖22 −
|S4|
|S2|
‖vS2

‖22 ,

which upon simple manipulations, gives us the claimed result.
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Lemma 20. LetZ be distributed according to the chi-squared distribution with k degrees of freedom
i.e. Z ∼ χ2(k). Then for all t ≥ 0,

P [|Z − k| ≥ t] ≤ 2 exp

(
−min

{
t2

24ke2
,

t

4
√

3e

})
Proof. This lemma requires a proof structure that traces several basic results in concentration in-
equalities for sub-exponential variables [17, Lemma 5.5, 5.15, Proposition 5.17]. The purpose of
performing this exercise is to explicate the constants involved so that a crisp bound can be provided
on the corruption index that our algorithm can tolerate in the standard Gaussian design case.

We first begin by establishing the sub-exponential norm of a chi-squared random variable with a
single degree of freedom. Let X ∼ χ2(1). Then using standard results on the moments of the
standard normal distribution gives us, for all p ≥ 2,

(E|X|p)1/p = ((2p− 1)!!)1/p =

(
(2p)!

2pp!

)1/p

≤
√

3

2
p

Thus, the sub-exponential norm of X is upper bounded by
√

3/2. By applying the triangle inequal-
ity, we obtain, as a corollary, an upper bound on the sub-exponential norm of the centered random
variable Y = X − 1 as ‖Y ‖ψ1

≤ 2 ‖X‖ψ1
≤
√

3.

Now we bound the moment generating function of the random variable Y . Noting that EY = 0, we
have, for any |λ| ≤ 1

2
√

3e
,

E exp(λY ) = 1+

∞∑
q=2

E(λY )q

q!
≤ 1+

∞∑
q=2

(
√

3|λ|q)q

q!
≤ 1+

∞∑
q=2

(
√

3e|λ|)q ≤ 1+6e2λ2 ≤ exp(6e2λ2).

Note that the second step uses the sub-exponentially of Y , the third step uses the fact that q! ≥
(q/e)q , and the fourth step uses the bound on |λ|. Now let X1, X2, . . . Xk be k independent random
variables distributed as χ2(1). Then we have Z ∼

∑k
i=1Xi. Using the exponential Markov’s

inequality, and the independence of the random variables Xi gives us

P [Z − k ≥ t] = P
[
eλ(Z−k) ≥ eλt

]
≤ e−λtEeλ(Z−k) = e−λt

k∏
i=1

E exp(λ(Xi − 1)).

For any |λ| ≤ 1
2
√

3e
, the above bounds on the moment generating function give us

P [Z − k ≥ t] ≤ e−λt
k∏
i=1

exp(6e2λ2) = exp(−λt+ 6ke2λ2).

Choosing λ = min
{

1
2
√

3e
, t

12ke2

}
, we get

P [Z − k ≥ t] ≤ exp

(
−min

{
t2

24ke2
,

t

4
√

3e

})
.

Repeating this argument gives us the same bound for P [k − Z ≥ t]. This completes the proof.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

I Supplementary Experimental Results

0 500 1000
0

0.5

1

Dimensionality

‖w
−
w

∗
‖
2

 

 

n = 2000 alpha = 0.25 sigma = 0.2

TORRENT−FC
TORRENT−HYB
L1−DALM

0 0.2 0.4 0.6
0

0.5

1

Sigma (White Noise)

‖w
−
w

∗
‖
2

 

 

p = 500 n = 2000 alpha = 0.25

TORRENT−FC
TORRENT−HYB
DALM−L1

1000 2000 3000 4000
0

0.5

1

Total Points

‖w
−
w

∗
‖
2

 

 

p = 500 alpha = 0.25 sigma = 0.2

TORRENT−FC
TORRENT−HYB
L1−DALM

0 20 40 60 80
0

1

2

3
p = 500 n = 2000 alpha = 0.25 sigma = 0.2

Time (in sec)

‖w
−
w

∗
‖
2

 

 

DALM
PALM
Homotopy

(a) (b) (c) (d)

Figure 3: (a), (b), (c) Variation of recovery error with varying p, σ and n. TORRENT was found to outperform
DALM-L1 in all these settings. (d) Recovery error as a function of runtime for various state-of-the-art L1

solvers as indicated in [14].
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