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Abstract

For a compiler writer, generating good machine code for a variety of platforms is
hard work. One might try to reuse a retargetable code generator from another compiler,
but code generators are complex and difficult to use, and they limit one’s choice of
implementation language. One might try to use C as a portable assembly language,
but C limits the compiler writer’s flexibility and the performance of the resulting code.
The wide use of C, despite these drawbacks, argues for a portable assembly language.

C--1is anew language designed expressly as a portable assembly language. C-- elim-
inates some of the performance problems associated with C, but in its originally-
proposed form it does not provide adequate support for garbage collection, exception
handling, and debugging. The problem is that neither the high-level compiler nor the
C-- compiler has all of the information needed to support these run-time features.
This paper proposes a three-part solution: new language constructs for C--, run-time
support for C--, and restrictions on optimization of C-- programs.

The new C-- language constructs enable a high-level compiler to associate initialized
data with spans of C-- source ranges and to specify “alternate continuations” for calls to
procedures that might raise exceptions. The run-time support is an interface (specified
in C) that the garbage collector, exception mechanism, and debugger can use to get
access to both high-level and low-level information, provided that the C-- program is
suspended at a safe point. High- and low-level information is coordinated by means
of the C-- spans and a common numbering for variables. Finally, the C-- optimizer
operates under the constraints that the debugger or garbage collector can change the
values of local variables while execution is suspended, and that a procedure call with
alternate continuations can return to more than one location.

This three-part solution also provides adequate support for concurrency, so the paper
illustrates the problem and the proposed solution with examples from garbage collection,
exception handling, debugging, and threads. The paper also includes a model of the
dataflow behavior of C-- calls.

A number of open problems remain. The most serious have to do with apparent re-
dundancies among spans and safe points, and with the interaction of debugging support
with optimization.
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1 Introduction

Suppose you are writing a compiler for a high-level language. How are you to generate
high-quality machine code? You could do it yourself, or you could try to take advantage
of the work of others by using an off-the-shelf code generator. Curiously, despite the huge
amount of research in this area, only three retargetable, optimizing code generators are
freely available: VPO (Benitez and Davidson 1988), ML-RISC (George 1996), and the gcc
back end (Stallman 1992). Each of these impressive systems has a rich, complex, and ill-
documented interface. Of course, these interfaces are quite different from one another, so
once you start to use one, you will be unable to switch easily to another. Furthermore, they
are language-specific. To use ML-RISC you must write your front end in ML, to use the
gcc back end you must write it in C, and so on.

All of this is rather unsatisfactory. It would be much better to have one portable assembly
language that could be generated by a front end and implemented by any of the avail-
able code generators. So pressing is this need that it has become common to use C as a
portable assembly language (Atkinson et al. 1989; Henderson, Conway, and Somogyi 1995;
Pettersson 1995; Peyton Jones 1992; Tarditi, Acharya, and Lee 1992; Bartlett 1989b). Un-
fortunately, C was never intended for this purpose — it is a programming language, not
an assembly language. C locks the implementation into a particular calling convention,
makes it impossible to compute targets of jumps, and provides no support for garbage
collection, exceptions, or debugging, except such debugging support as may be provided
by a particular C compiler. An earlier paper discusses C’s shortcomings in more detail
(Peyton Jones, Oliva, and Nordin 1998).

The obvious way forward is to design a language specifically as a compiler target language.
Such a language should serve as the interface between a compiler for a high-level language
(the front end) and a retargetable code generator (the back end). What makes the problem
interesting is that we want to retain the high performance one would expect from a code
generator crafted specifically for the front end. The design of a portable assembly language
should enable the front end to make choices that maximize performance, while enabling the
back end to apply the best known code-improvement technology.

Separating the front and back ends complicates run-time support. In general, a front end
will be designed in conjunction with a run-time system, which helps implement such high-
level features as garbage collection, exception handling, debugging, and concurrency. To
avoid repetition we refer to such features as high-level run-time services. The difficulty
is that some of the information required by these run-time services, such as the locations
of variables, is known only to the back end. The back end must therefore have its own
run-time system, which supports the front-end run-time system.

The primary contribution of this paper is a specification that makes it possible to keep these
two run-time systems separate, so that different front ends (and their run-time systems)
can be used with different back ends (and their run-time systems), provided both front
and back end conform to the specification. The specification has two parts. The front end
communicates with the back end by emitting programs in a portable assembly language
called C--. The front-end run-time system communicates with the back-end run-time
system through a run-time interface (specified in C) called the C-- run-time interface.

This paper builds on the existing design of C-- (Peyton Jones, Oliva, and Nordin 1998).
The new material, which enables C-- to support garbage collection, exception handling,
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/* Ordinary recursion */ /* Loops */
export spil; export sp3;
spl( word32 n ) { sp3( word32 n ) {
word32 s, p; word32 s, p;
if n == 1 { s=1;p=1;
return( 1, 1 );
} else { loop:
s, p=spl( n-1); if n==1 {
return( s+n, p*n ); return( s, p );
} } else {
} s = s+n;
p = p*n;
/* Tail recursion */ n = n-1;
export sp2; goto loop;
sp2( word32 n ) { }
jump sp2_help( n, 1, 1 ); }
}
sp2_help( word32 n, word32 s, word32 p ) {
if n==1 {
return( s, p );
} else {
jump sp2_help( n-1, s+n, p*n )
}
}

Figure 1: Three functions that compute the sum }; ; ¢ and product []}_; 7, written in C—-.

and debugging, is in three parts: new language constructs for C--, run-time support for
C--, and restrictions on optimization of C-- programs. The paper contains many examples
of C-- code and C code. These examples have not been compiled, so they are surely riddled
with errors and inconsistencies.

CAVEAT: This draft is being circulated for comment while the design is still incomplete.
Some paragraphs may bear marginal notes discussing unresolved issues. Particularly sticky
issues may be marked as “caveats,” as is this paragraph. Caveats may not be intelligible
unless you’ve read the whole paper.

2 The main features of C--

An earlier paper describes the basic design of C-- (Peyton Jones, Oliva, and Nordin 1998).
We sketch the design here, with emphasis on those aspects that are relevant for understand-
ing run-time support. Figure 1 gives examples of some C-- procedures that give a flavour
of the language. C-- has the following features:

e A C-- program has a well-defined semantics that is independent of any machine. It
is not, however, necessarily true that a front end will generate the same C-- program



for each target architecture, or that a single C-- program will compile for every target
architecture. For front ends, our goal is easy retargetability. In some cases, retargeting
may be simplified by putting some knowledge of the architecture into the front end,
e.g., the sizes of the data types that are most naturally used on that architecture.

e A C-- program is a sequence of procedure, data, const, global, import, and export
declarations. Procedures, data, and constants are private to their compilation units
unless named in an export directive. Procedures and addresses may be imported
from other units using the import directive. global variables must be declared in
every compilation unit.

e C-- supports a bare minimum of data types: a family of word types (word8, word16,
word32, word64), and a family of floating-point types (float32, float64, £10at80).
These types encode only the size (in bits) and the kind of register (general-purpose
or floating-point) required for the datum. Not all types are available on all machines.

The word types are used for characters, bit vectors, integers, and addresses (pointers).
On each machine, one of the word types (typically word32 or word64) is designated the
“native word size” of the machine. One (probably the same one) is also designated the
“native pointer type.” Exported and imported names must have the native pointer

type.

e As in any assembler, the operations on the values determine what kind of data is
intended; for example, * multiplies two signed integers in two’s-complement represen-
tation, while *u multiplies two unsigned integers.

e Memory access (loads and stores) are typed, and denoted with square brackets. Thus
the statement:

word32[foo] = word32[foo] + 1;

loads a word32 from the location whose address is in foo, adds one to it, and stores it
at the same location. The mnemonic for this syntax is to think of word32 as a C-like
array representing all of memory, and word32[foo] as a particular element of that
array. The semantics of the address is not C-like, however; the expression in brackets
is the byte address of the item.

e Data declarations include labels and initialized data. For example:

data {
foo: word32 0O;
word32 27;
baz: float64[10] 0.0;

The keyword data specifies that the data is to be put in the data section. The data
block contains two 32-bit words and an array of ten 64-bit floats. foo is the address
of the first word, and baz is the address of the array. foo and baz are immutable
addresses; they cannot be assigned to.

e C-- also supports multiple, named data sections. For example:
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data "debug" {

¥

This syntax declares the block of data to belong to the section named "debug".
Code is by default placed in the section "text", and a data directive with no ex-
plicit section name defaults to the section "data". Procedures can be enclosed in
code "mytext" { ... } to place them in a named section "mytext".

C-- assigns no semantics to the names of data sections, except that, when linking ob-
ject files, the linker is required to concatenate sections with the same name. Particular
implementations may, however, assign machine-dependent semantics. For example, a
MIPS implementation might assume that data in sections named sdata is addressable
from the global pointer and that data in sections named rodata is read-only.

e Like other assemblers, C-- gives programmers the ability to name compile-time con-
stants, e.g., by

const GC = 2;

e C-- variables may be declared global, in which case the C-- compiler attempts to
put them in registers. For example, given the declaration

global {
word32 hp;
X

the implementation attempts to put variable hp in a register, but if no register is
available, it puts hp in memory. C-- programs use and assign to hp without knowing
whether it is in a register or in memory. Unlike a name declared by data, a name
declared by global is not an address. In fact, there is no such thing as “the address of
a global,” and memory stores to unknown addresses cannot affect the value of a global.
This guarantee permits a global to be held in a register, and even if it has to be held in
memory, the optimizer does not need to reload it after a store to an unknown memory
address. All separately compiled modules must have ¢dentical global declarations,
or horribly strange things will happen.

global declarations may name specific registers, for example:

global {
word32 hp "%heax";
word32 hplim "Yebx";
}

Register names are implementation-dependent.

2.1 Procedures

C-- suports procedures that are both more and less general than C procedures (e.g., mul-
tiple results and full tail calls but no varargs). Specifically:
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A C-- procedure, like sp1 in Figure 1, has parameters, like n, and local variables, like
s and p. Parameters and variables are expected to be mapped onto machine regis-
ters where possible, and only spilled to the stack when necessary. In this absolutely
conventional way C-- abstracts away from the number of machine registers actually
available.

C-- supports fully general tail calls, identified as “jumps.” Control does not return
from jumps, and C-- implementations must deallocate the caller’s stack frame be-
fore each jump. For example, the procedure sp2_help in Figure 1 uses a jump to
implement tail recursion.

C-- supports procedures with multiple results, just as it supports procedures with
multiple arguments. Indeed, a return is somewhat like a jump to a procedure whose
address happens to be held in the topmost activation record on the control stack,
rather than being specified explicitly. All the procedures in Figure 1 return two
results; procedure spl contains a call site for such a procedure.

A C-- procedure call is always a complete statement, which passes expressions as

parameters and assigns results to local variables. In particular, a call cannot occur in

an expression, as most high-level languages allow. For example, it is illegal to write
r=1(gkx ); /* illegal */

because result returned by g(x) cannot be an argument to f. Instead one must write:

g(x);
£(y);

R <
o

This restriction makes explicit the order of evaluation, the location of each call site,
and the names and types of temporaries used to hold the results of calls.

To handle high-level variables that can’t be represented using C--’s primitive types,
C-- can be asked to allocate named areas in the procedure’s activation record.

f (word32 x) {
word32 y;

stack { p : word32;
q : word32[40];
b
/* Here, p and q are the addresses of the relevant chunks of
data. Their type is the native pointer type of the machine. */

stack is rather like data; it has the same syntax between the braces, but it allocates
on the stack. As with data, the names are bound to the addresses of the relevant
locations, and they are immutable. C-- makes no provision for dynamically-sized
stack allocation (yet).
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e The name of a procedure is a value whose type is the native pointer type. The
procedure in a call can be an arbitrary expression, not simply the statically-visible
name of a procedure. For example, the following statements are both valid, assuming
the procedure sp1 is defined in this compilation unit:

word32[ptr] = spi; /* Store procedure address */
r,s = (word32[ptr+4]1)( 4 ); /* Call some stored procedure */

e A C-- procedure, like sp3 in Figure 1, may contain gotos and labels, but they serve
only to allow a textual representation of the control-flow graph. Unlike procedure
names, labels are not values, and they have no representation at run time. Because
this restriction makes it impossible for front ends to build jump tables, C-- includes
a switch statement, for which the C-- back end generates efficient code.

2.2 Calling conventions

The calling convention for C-- procedures is entirely a matter for the C-- implementa-
tion—we call it the standard C-- calling convention. In particular, C-- need not use the
C calling convention.

The calling convention includes not only a specification of how parameters are passed during
calls, but also a specification of how values are returned. The standard calling convention
places no restrictions on the number of arguments passed to a function or the number of
results returned from a function. The only restrictions are that the number and types of
actual parameters must match those in the procedure declaration, and similarly, that the
number and types of values returned must match those expected at the call site. These re-
strictions enable efficient calling sequences with no dynamic checks. (A C-- implementation
is not required to check that C-- programs meet these restrictions.)

We note the following additional points:

e If a C-- function does not “escape” — if all sites where it is called can be identified
statically — then the C-- back end is free to create and use specialized instances,
with specialized calling conventions, for each call site. Escape analysis is necessarily
conservative, but a function may be deemed to escape only if it is used other than in
a call, or if it is named in an export directive.

e Support for unrestricted tail calls requires an unusual calling convention, so that a
procedure making a tail call can deallocate its activation record while still leaving
room for parameters that do not fit in registers. Section 7.5.1 discusses the issue in
detail.

e C-- programs may use multiple calling conventions within a single program. Calling

Maybe foreign conventions other than the standard one are identified by name, as follows:
jump would be

OK too; but I’'m . .

not sure. SLPJ. foreign convention-name r = £( parameters ) ;

foreign convention-name return( results );
foreign convention-name £( parameters ) { body };



foreign calls and returns may be to other C-- procedures or to truly foreign code,
provided, of course, that a foreign return returns to a foreign call.

Depending on the linker support available, names exported from C-- compilation
units may be visible to foreign code. For example, the following C-- procedure can
be called from C:

foreign "C" inc( word32 x ) {
foreign "C" return( x+1 );

}

The calling convention used at each call site must match the calling convention given
in the procedure declaration. Foreign calling conventions may be more restrictive
than C--’s standard convention; for example, the C calling convention only permits
one return value. A C-- implementation is not required to implement any calling
conventions other than the standard one. Section 7.5 discusses this and related issues
to be considered by designers and implementors of C-- calling conventions.

3 The problem of run-time support

When a front end and back end are written together, as part of a single compiler, they can
cooperate intimately to support high-level run-time services, such as garbage collection,
exception handling, debugging, and concurrency'. The primary contribution of this paper
is to propose a means by which the front and back end might cooperate at arm’s length,
and still get good performance. Our guiding principle is this:

C-- should make it possible to implement high-level run-time services, but it
should not actually ¢mplement any of them. Rather, it should provide just
enough “hooks” to allow the front-end run-time system to implement them.

This paper identifies the hooks.

Keeping the front end and back end at arm’s length requires complex interfaces at both
compile time and run time. It might appear more palatable to incorporate garbage collec-
tion, exception handling, and debugging into the C-- language, as (say) the Java Virtual
Machine does. But doing so would guarantee that C-- would never be used. Different
source languages require different support, different object layouts, and different excep-
tion semantics—especially when performance matters. No one back end could satisfy all
customers.

Why are the interfaces complex? High-level run-time services need to inspect and modify
the state of a suspended program. A garbage collector must find, and perhaps modify, all
live pointers. An exception handler must navigate, and perhaps unwind, the call stack. A
debugger must allow the user to inspect, and perhaps modify, the values of variables. All
of these tasks require information from both front and back ends. The rest of this section
elaborates.

!We view debuggers as part of the front-end run-time system, even though on many machines debuggers
run in separate address spaces, using operating-system services to manipulate the program being debugged.
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3 THE PROBLEM OF RUN-TIME SUPPORT

Finding roots for garbage collection. If the high-level language requires accurate gar-

bage collection, then the garbage collector must be able to find all the roots that
point into the heap. If, furthermore, the collector supports compaction, the locations
of heap objects may change during garbage collection, and the collector must be able
to redirect each root to point to the new location of the corresponding heap object.

The difficulty is that neither the front end nor the back end has all the knowledge
needed to find roots at run time. Only the front end knows which source-language
variables, and therefore which C-- variables, represent pointers into the heap. Only
the back end, which maps variables to registers and stack slots, knows where those
variables are located at run time. Even the back end can’t always identify exact
locations; variables mapped to callee-saves registers may be saved arbitrarily far away
in the call stack, at locations not identifiable until run time.

Printing values in a debugger. A debugger needs compiler support to print the values

Loci

of variables. For this task, information is divided in much the same way as for garbage
collection. Only the front end knows how source-language variables are mapped onto
(collections of) C-- variables. Only the front end knows how to print the value of a
variable, e.g., as determined by the variable’s high-level-language type. Only the back
end knows where to find the values of the C-- variables.

of control A debugger must be able to identify the “locus of control” in each activa-
tion, and to associate that locus with a source-code location. This association is used
both to plant breakpoints and to report the source-code location when a program
faults.

An exception mechanism also needs to identify the locus of control, because in some
high-level languages, that locus determines which handler should receive the exception.
When it identifies a handler, the exception mechanism unwinds the stack and changes
the locus of control to refer to the handler.

At run time, loci of control are represented by values of the program counter (e.g.,
return addresses), but at the source level, loci of control are associated with statements
in a high-level language or in C--. Only the front end knows how to associate high-
level source locations or exception-handler scopes with C-- statements. Only the
back end knows how to associate C-- statements with the program counter.

Liveness. Depending on the semantics of the original source language, the locus of control

may determine which variables of the high-level language are visible. Depending on
the optimizations performed by the back end, the locus of control may determine
which C-- variables are live, and therefore have values. Debuggers should not print
dead variables. Garbage collectors should not trace them; tracing dead pointers could
cause space leaks. Worse, tracing a register that once held a root but now holds a
non-pointer value could violate the collector’s invariants. Again, only the front end
knows which variables are interesting for debugging or garbage collection, but only
the back end knows which are live at a given locus of control.

Exception values. In addition to unwinding the stack and changing the locus of control,

the exception mechanism may have to communicate a value to an exception handler.
Only the front end knows which variable should receive this value, but only the back
end knows where variables are located.
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Succinctly stated, each of these operations must combine two kinds of information:

e Information that only the front end has:

— Which C-- parameters and local variables are heap pointers.

— How to map source-language variables to C-- variables and how to associate
source-code locations with C-- statements.

— Which exception handlers are in scope at which C-- statements, and which
variables are visible at which C-- statements.

o Information that only the back end has:

— Whether each C-- local variable and parameter is live, where it is located (if
live), and how this information changes as the program counter changes.

— Which program-counter values correspond to which C-- statements.

— How to find activations of all active procedures and how to unwind stacks.

In the following section, we propose compile-time mechanisms that the front end can use
to record its information, and we propose a run-time interface that gives the front-end
run-time system access to both front-end and back-end information.

4 Support for high-level run-time services

We assume that executable programs are divided into three parts, each of which may be
found in object files, libraries, or a combination.

e The front end compiler translates the high-level source program into one or more C--
modules, which is separately translated to object code by the C-- compiler.

e The front end comes with a (probably large) front-end run-time system. This run-
time system includes the garbage collector, exception handler, and whatever else the
source language needs. It is written in a programming language designed for humans,
not in C--; in what follows we assume that the front end run-time system is written

in C.

e Every C-- implementation comes with a (hopefully small) C-- run-time system. The
main goal of this run-time system is to maintain and provide access to information
that only the back end can know. It makes this information available to the front end
run-time system through a C-language run-time interface, which we describe below.
Different front ends may interoperate with the same C-- run-time system.

To make an executable program, we link generated object code with both run-time systems.

Within this setting, our proposal has three main elements:

e Garbage collection, exception handling, and debugging necessarily affect the semantics
of procedure calls. In particular, the values of some local variables can be changed
unexpectedly, and some procedures can return to more than one location. Section 4.1
describes how these effects are manifested in a C-- program.
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e Section 4.2 describes C-- language mechanisms that enable the front end to record
private information and to associate it with information available only to the back
end. These mechanisms make it possible to solve the information-combining problem
described above.

e Section 4.3 discusses how control can be transferred between generated code and a
front-end run-time system, and in particular, how a front-end runtime can suspend
and inspect running C-- code.

Section 4.4 shows how these elements are realized in a detailed run-time interface. This
interface is to be used by the front-end run-time system and to be implemented by the
back-end run-time system. It enables the front-end runtime to control interactions between
parts of the program, to get access to back-end information, and to recover information
deposited by the front end.

In what follows, we use the term “variable” to mean either a parameter of the procedure
or a locally-declared variable.

4.1 Semantics of calls, or constraints on the optimizer

High-level run-time services often inspect and modify the state of a running program. This
observation necessarily imposes some constraints on the C-- optimizer, because such state
changes might violate invariants that it could otherwise maintain. In this section we identify
the constraints, and describe C-- language mechanisms that minimise their impact.

4.1.1 Call-site invariants

In the presence of garbage collection and debugging, calls have an unusual property: live
local variables are potentially modified by any call. For example, a compacting garbage
collector might modify pointers saved across a call. Consider

£f( word32 a ) {

word32[a+8] = 10; /* store 10 in 32-bit word pointed to by a+8 */
gl a);
word32[a+8] = 0; /* store O in 32-bit word pointed to by a+8 */
return;

}

If g invokes the garbage collector, the collector might modify a during the call to g, so the
code generator must recompute a+8 after the call—it would be unsafe to save the common
subexpression a+8 across the call. The same constraint supports a debugger that might
change the values of local variables. Calls may also modify C-- values that are declared to
be allocated on the stack.

A compiler writer might reasonably object to the performance penalty imposed by this
constraint; the back end pays for compacting garbage collection whether the front end
needs it or not. To eliminate this penalty, the front end can mark C-- parameters and
variables as invariant across calls, using the keyword invariant, thus:
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f( invariant word32 a ) {
invariant wordl6 b;
word32 c;

g(a, b, c); /* "a" and "b" are not modified by the call,
but "c" might be */

¥

The invariant keyword places an obligation on the front-end run-time system, not on the
caller of £. The keyword constitutes a promise to the C-- compiler that the value of an
invariant variable will not change “unexpectedly” across a call. The run-time system and
debugger may not change the values of invariant variables.

In the absence of a debugger, a front end can safely mark non-pointer variables as invariant
across calls, and front ends using mostly-copying collectors (Bartlett 1988; Bartlett 1989a)
or non-compacting collectors (Boehm and Weiser 1988) can safely mark all variables as
invariant across calls.

4.1.2 Multiple return continuations

Some high-level run-time services, such as an exception dispatcher or debugger, may need
to change the locus of control. They can’t simply change the program counter, because two
different program points may hold their live variables in different locations, and they may
have different ideas about the layout of the activation record and the contents of callee-saves
registers. They may even have different ideas about which variables are alive and which
are dead. Unconstrained, dynamic changes in locus of control also make life hard for the
optimizer: if the program counter can change arbitrarily, there is no such thing as dead
code, and a variable live anywhere is live everywhere.

We address these problems in two ways. To support synchronous exception handling, we tell
the optimizer exactly how the program counter might be changed dynamically, as described
below. To support asynchronous exception handling and debugging, we give the optimizer
substantial freedom, requiring only that it record decisions it makes. The debugger can
make a reasonable effort at run time, as described in Section 6.3.

When exceptions are synchronous, it is reasonable to assume that raising an exception
requires a call.

Typically, handling an exception involves first unwinding the stack to the caller of the cur-
rent procedure, or its caller, etc., and then directing control to an “exception handler.” We
support such exceptions by making the following extension to the semantics of a procedure
call: a call might return to more than one location, and the C-- programmer specifies ex-
plicitly all the locations to which a call could return. In effect, the call has many possible
continuations instead of just one. An example syntax? is:

r=1°(x)
also returns v to { /* alternate continuation 1 */ }
also returns wl, w2 to { /* alternate continuation 2 */ }
also aborts;

*We are still arguing over syntax!
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/* code for the normal case */

This statement establishes four possible continuations for the call £(x). The “main” con-
tinuation simply follows the call, as usual; if this continuation is taken the result is assigned
to r. The two “alternate” continuations are in the blocks that follow the returns ... to
clauses. If alternate continuation 2 were taken, the net effect would be just as if the call
above were replaced by:

wli, w2 = £f( x ) ;
/* alternate continuation 2 */

That is, the results would be assigned to wl and w2, and the appropriate code would be
executed. To avoid confusion, C-- requires that alternate continuations end with an explicit
control transfer (goto, jump, or return).

Unlike also returns, also aborts does not identify an explicit continuation. Instead, it
indicates that the exception dispatcher can terminate this procedure by going to a handler
in some calling procedure. In effect, also aborts introduces a flow edge from the call site to
the procedure exit node, so that the optimizer does not eliminate assignments before the call
that might otherwise be considered dead (Hennessy 1981). Any call site in a procedure P
that could raise an exception not handled in P should be annotated with also aborts.

How are these multiple continuations used? A return statement causes execution to transfer
to the “main” continuation in the caller. However, an exception dispatcher may abort a
running C-- procedure and cause it to return to an alternate continuation, by using the C--
run-time procedures described in Section 4.4. Section 6.2 presents an example exception
dispatcher that uses this method.

So far as the optimizer is concerned, then, such a call site is simply a fork in the control
graph. The flow edges from the call site to each continuation (or to the exit node) guarantee
that the variable locations, liveness, etc., are consistent no matter which continuation gets
control after the call. Alternate continuations are assumed to be rarely used, and back ends
are encouraged to exploit this assumption, e.g., when allocating registers or deciding on the
placement of spills.

Programmers and compiler writers may expect there to be virtually no execution-time
penalty for associating alternate continuations with a call site. There may, however, be
a significant cost associated with the C-- run-time procedure that finds the alternative
continuation, though it is unlikely to be so large as to dominate the cost of exception
dispatching. Section 5 discusses implementation techniques.

A future revision of C-- may specify a means by which alternate return addresses could be
communicated to £, the locations into which £ could place returned values, and a mechanism
by which generated C-- code could arrange a return to an alternate continuation.

CAVEAT: The also returns mechanism limits potential exception implementations. In
particular, it presumes that the exception dispatcher restores callee-saves registers, and it
requires that exception dispatch be implemented in the run-time system (because there is
no C-- value that represents the also returns continuation). These limitations preclude
“ML-style” exceptions, which are very efficient to raise but which have a modest overhead
in the normal case. Possible support for such exceptions is presented in Section 7.4.2.
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4.2 Front-end information

Front ends can use a data directive to record arbitrarily complex static information in the
form of initialized data. For example, to support garbage collection, a front end could
build a data block that says which of the parameters and local variables of a procedure
are heap pointers. Only the front-end run-time system depends on the format of such data
blocks. We need C-- language support only to identify the interesting data blocks at run
time. For example, when tracing a particular procedure activation, the garbage collector
needs the block describing the local variables of that procedure. For debugging or exception
handling, the front end may record information that applies only to parts of procedures, or
to individual C-- statements. We address all these applications by providing a mechanism
for mapping suspended procedure activations to associated data blocks.

As an example, suppose we have a function f(x, y), with no other variables, in which
x holds an integer and y holds a pointer into the heap. The front end can encode the
heap-pointer information by emitting a data block, or descriptor, associating 0 with x and
1 with y:

data {
gcl: word32 2; /* this procedure has two variables */
word8 O0; /* x is a non-pointer */
word8 1; /* y is a pointer */
}

This encoding does not use the names of the variables; instead, each variable is assigned an
integer index, based on the textual order in which it appears in the definition of £. Therefore
x has index 0 and y has index 1. A more compact encoding would use the indexes more
intelligently, consuming only one bit per variable.

To associate this descriptor with £, the front end places the definition of £ in a C-- span:

span GC gcl {
f( word32 x, word32 y ) {
...code for f...
}
}

A span may apply to a sequence of function definitions, or to a sequence of statements
within a function definition. In this case, the span applies to all of £. If execution of
f is suspended to perform some run-time service, the back end must be able to map the
suspended activation of £, plus the token GC, to the value gcl. More concretely, the C--
run-time system provides the C procedure

void *GetDescriptor( activation *a, int token ).

A run-time call to GetDescriptor, passing an “activation handle” a and the token GC,
returns the address gcl. Activation handles are discussed in Section 4.4.

There are no constraints on the form of the descriptor that gc1 labels; that form is private
to the front end and its run-time system. All C-- does is transform span directives into
mappings from program counters to values.
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Spans cannot overlap, but they can nest; the innermost span bearing a given token takes
precedence. One can achieve the effect of overlapping by binding the same data block to
multiple spans.

There may be several independent mappings in use simultaneously, e.g., one for garbage
collection, one for debugging, and so on. The “token” is an integer used to distinguish these
mappings from one another. Again, C-- takes no interest in the tokens; it simply provides
a map from a (token, pc) pair to an address.

For exception handling, a mapping may indicate which handler should receive control upon
an exceptional return from a procedure call. Handlers may be implemented using alternate
continuations. The C-- runtime provides procedures that enable the front-end exception
mechanism to transfer control to to alternate continuations, which are identified by number,
according to the order in which they are attached to the call.

The C-- back end has considerable freedom to optimize programs; in particular, front ends
may not assume that each span maps to a contiguous sequence of machine instructions.
All that a front end can count on is that the optimizer preserves the mapping of program
counter to span value. In particular,

e The optimizer may split any span into pieces. Pieces map to the same value as the
original span.

e The optimizer may freely reorder code (and spans) enclosed within a span.

e The optimizer may remove dead, redundant, or partially redundant code from a span
(e.g., it may reuse a common subexpression computed in another span).

e The optimizer may not move code across span boundaries.

CAVEAT: Giving the optimizer this much freedom makes things hard for the debugger.
For example, it’s not clear what the debugger should do to set a breakpoint. Most of the
problems seem to go away if the optimizer is prevented from splitting spans, i.e., if every
span maps to a contiguous set of object-code locations.

4.3 Suspension and introspection

All our intended high-level run-time services must be able to suspend a C-- computation,
inspect its state, and modify it, before resuming execution.

What does “the state of a suspended C-- computation” look like? In addition to the
contents of memory, it includes a logical stack of procedure activations. This stack may
not correspond exactly to the programmer’s intuition about calls and returns, because
activations of procedures that end in tail calls may have disappeared. The logical stack is
probably, though not necessarily, implemented as a physical stack of activation records, the
layouts of which are determined by the back end.

In many implementations of high-level languages, the run-time system runs on the same
physical stack as the program itself. In such implementations, walking the stack or unwind-
ing the stack requires a thorough understanding of system calling conventions, especially if

3Provided, of course, that the common subexpression is invariant across any intervening safe points, as
discussed below.
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an interrupt can cause a transfer of control from generated code to the run-time system.
We prefer to imagine that the generated code and the run-time system run on separate
stacks, as separate threads:

e The system thread runs on the system stack supplied by the operating system. Front-
end run-time system code runs in the system thread, and it can easily inspect and
modify the state of the C-- thread.

e The C-- thread runs on a separate C-- stack. When execution of the C-- thread is
suspended, the state of the C-- thread is saved in the C-- thread-control block, or
TCB.

Though we call them “threads,” “coroutine” may be a more accurate term. The system
thread never runs concurrently with the C-- thread, and the two can be implemented by a
single operating-system thread.

4.3.1 A coroutine implementation

The C-- run-time system provides a synchronous control mechanism, which a front-end
run-time system can use to run as a coroutine with C-- code. The front-end runtime calls
the C procedure Resume (t) to transfer control to the C-- thread described by thread-
control block t. Execution continues in the C-- thread until it calls the C-- procedure
yield(r), which suspends execution of the C-- thread, saves its state in its control block,
and co-routines back to the system thread’s Resume call. The value r that is passed as a
parameter to yield is returned as the result of Resume; it is the thread’s yield code.

To start a program, execution begins in the front-end run-time system, which uses the
C procedure InitTCB to initialize the C-- thread, to which it can then transfer control
with Resume. These C procedures are described in greater detail in Section 4.4.

Though it is not the focus of this paper, we intend that C-- should support many very
lightweight threads, in the style of Concurrent ML (Reppy 1991), Concurrent Haskell (Pey-
ton Jones, Gordon, and Finne 1996), and many others. The C procedures InitTCB and
Resume, together with the C-- procedure yield, are sufficient for front-end run-time sys-
tems to implement a complete non-preemptive threads package, as we discuss in Section 6.4.

4.3.2 Safe points

At a call to yield, as at any other call, the code generator guarantees that the live variables
are tidily saved away in the activation record or in callee-saves registers. yield stores the
callee-saves registers, as well as the rest of the thread state, in the thread-control block, so
at this point the execution of the C-- thread can safely be suspended, and the front-end
runtime has full access to the state of the C-- thread. We call such a point a safe point.

More precisely, a program-counter value within a procedure is a safe point if it is safe to
suspend execution of the procedure at that point, and to inspect and modify its variables.
Accordingly, we require the following precondition for execution in the front-end run-time
system:

A C-- thread can be suspended only at a safe point.
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Because any procedure could call yield, the code generator must make a safe point at every
call site. This safe point is associated with the state in which the call as been made and
the procedure is suspended awaiting the return.

It is impractical to try to make every instruction a safe point; recording local-variable
liveness and location information for every instruction might represent a truly onerous
burden. The front end can therefore insert extra safe points with the C-- statement

safepoint;

The existence of a safe point constrains the optimizer in the following way:

e the value of any non-invariant variable may change, and hence any use of that variable
dominated by the safe point must not be moved before it;

o the safe point uses the values of non-invariant variables, and hence any definitions of
such variables that dominate the safe point must not be moved after it;

e the values in memory may change, and hence any memory loads dominated by the
safe point must not be moved before it;

e the safe point uses memory, and hence any memory stores that dominate the safe
point must not be moved after it.

The optimizer is otherwise free to move code across safe points and to make the static
ordering of safepoints in the object code differ from the order in the source code.

CAVEAT: A stronger restriction would prevent the optimizer from moving assignments to
C-- variables as well as memory loads and stores. This restriction might be sufficient to
ensure that the observable state of the machine at a safe point would be consistent with
the C-- source code, where “observable” means “observable by the procedures defined in
Section 4.4”. (Front ends can achieve such an effect by making all variables non-invariant.)
It also might, if enough safepoints are introduced to support debugging, effectively disable
the optimizer, which we don’t want. We would like to give the optimizer as much freedom
as possible without creating a heroic task for the debugger; how to do this is a topic for
research.

A safepoint directive may have an optional name, which the back end binds to the program
counter that corresponds to the safe point. This name is visible anywhere in the compilation
unit containing the function that contains the safe point. A safe-point name is not a label
and may not be the target of a goto. Safe points may have names in order to support
debugging; a front end can use the names in data declarations to build maps from source
locations to program counters.

CAVEAT: We give safe points names only to support debugging; the debugger has to have
a map from source-code locations to object-code locations. Safe-point names seem like an
ugly wart; it might be better to supply a map from spans to sets of PCs, but in that case,
it’s not clear how to ensure that suspension occurs at a safe point.

4.3.3 Pre-emption

So far we have suggested that a C-- program can only yield control voluntarily, through a
yield call. What happens if an interrupt or fault occurs, transferring control to the front-
end run-time system, and the currently executing C-- procedure is not at a safe point?
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This may happen if a user deliberately causes an interrupt, e.g., to request that the stack
be unwound or the debugger invoked. It may happen if a hardware exception (e.g., divide
by zero) is to be converted to a software exception. It may happen in a concurrent program
if timer interrupts are used to pre-empt threads.

How can we achieve the safe-point invariant in the presence of such asynchronous events?
There are the following conventional alternatives:

o Allow only asynchronous events that do not inspect or modify the state of the running
C-- thread, and always resume it when the event handler completes. An example of
such an event would be a timer interrupt. This choice is very restrictive.

e Make sure that wherever execution is suspended, the run-time system safely advances
the machine to the next safe point, and that such advancement takes only bounded
time. The C-- run-time interface provides the procedure ExecuteToNextSafePoint,
so the front end need only ensure that time is bounded, which it can do by inserting
a safe point into every loop and before every call. (The automatic safe point at a call
is not useful; it applies only when the procedure is suspended at the call site, which
is probably not what is desired.)

e Suspend execution between safe points, breaking the safe-point invariant. This alter-
native is most relevant to debugging; if a program is faulty, it may be undesirable, or
even impossible, to advance it to the next safe point. In that case, a simple debug-
ger may give approximate or inaccurate results. A more ambitious debugger should
find the activation-record descriptor for a nearby safe point, then reason forward or
backward by examining the machine instructions.

Asynchronous pre-emption is difficult to implement not only in C--, but in any system.
Chase (1994b) discusses some implementation techniques.

To implement pre-emption, the C-- runtime must sit between the operating-system in-
terrupt mechanism and the front-end runtime. When it takes an interrupt, it bundles up
the C-- thread state into its thread-control block, and it transfers control to the front-end
handler. If the C-- thread was suspended at a safe point, all operations in Section 4.4 are
valid. If not, only a restricted set of operations are valid. This restricted set must include
ExecuteToNextSafePoint. It also must include some support for the debugger, in case a
fault makes forward execution impossible. The details are a topic for research.

4.4 The C-- run-time interface

This section presents the detailed interface that a front-end run-time system can use to
create C-- threads, to transfer control to them, and to inspect and modify their state.
Rather than specify representations of thread-control blocks or activation records, we hide
them behind simple abstractions. In particular, we specify a set of C procedures that must
be provided by the C-- runtime, and that together allow the state of a C-- thread to be
inspected and modified.

The state of a C-- thread consists of some saved registers and a logical stack of procedure
activations. This logical stack is usually implemented as some sort of physical stack, but the
correspondence between the two may not be very direct. In particular, callee-saves registers
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that logically belong with one activation are not necessarily stored with that activation, or
even with the adjacent activation; they may be stored in the physical record of an activation
that is arbitrarily far away. This problem is the reason that C’s setjmp and longjmp
functions don’t necessarily restore callee-saves registers, which is why some C compilers
make pessimistic assumptions when compiling procedures containing set jmp.

We hide this complexity behind a simple abstraction, the activation. The idea of an acti-
vation of procedure P is that it approzimates the state the machine will be in when control
returns to P. The approximation is not completely accurate because other procedures may
change the global store or P’s stack variables before control returns to P. At the machine
level, the activation corresponds to the “abstract memory” of Ramsey (1992), Chapter 3,
which gives the contents of memory, including P’s activation record (stack frame), and of
registers. The contents of volatile registers are undefined, and such registers are treated as
unavailable.

The activation abstraction hides machine-dependent details and raises the level of abstrac-
tion to the C-- source-code level. In particular, the abstraction hides:

e The layout of a thread-control block,

e The layout of an activation record, and the encoding used to record that layout for
the benefit of the front end runtime,

e The details of manipulating callee-saves registers, the number of which varies from
one architecture to another, and

e The direction in which the stack grows.

All of these matters become private to the back end and the C-- runtime.

In the C-- run-time interface, an activation record is represented by an “activation han-
dle,” which is a value of type activation. Arbitrary registers and memory addresses are
represented by variables, which are referred to by number. Values of the program counter
are restricted to safe points.

The procedures in the C-- run-time interface are:

void InitTCB( tcb *t, int size, program_counter pc ) initialises the thread-control
block of a new C-- thread. The control block is pointed to by tcb and is size bytes
long. The initial N bytes, where N is a machine-dependent constant, are used for
the actual control block; the remaining bytes are used for the thread’s stack. When
execution of the thread is begun, it begins at program counter pc, which should be
the address of a C-- procedure with no parameters. CAVEAT: Probably, InitTCB
should take two pointers: one to a fixed-size TCB, and one to a stack block. That
way, the client is free to allocate stacks and TCBs in different places, which might
improve locality.

int Resume( tcb *t ) resumes execution of the C-- thread whose control block is pointed
to by t. When the thread yields control back to the system thread, the value it
transfers is returned as the result of Resume; this value is the thread’s yield code.
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void

void

void

*GetDescriptor ( activation *a, int token ). Asnoted above, GetDescriptor
returns the address of the data block associated with the smallest C-- span tagged
with token and containing the safe point where the activation is suspended.

*FindVar ( activation *a, int var_index ) interrogates an activation handle for
the location of any parameter or local variable in the activation record to which the
handle refers. As mentioned earlier, variables are indexed by numbering them in the
order in which they are declared, starting with zero. FindVar returns the address of
the location containing the value of the specified variable. The front end is thereby
able to examine or modify the value. FindVar returns NULL if the variable is dead. It
is a checked runtime error to pass a var_index that is out of range.

Names bound by stack declarations are considered variables for purposes of FindVar,
even though they are immutable. For such names, FindVar returns the value that the
name has in C-- source code, i.e., the address of the stack-allocated block of storage.
Storing through this address is meaningful; it alters the contents of the activation
record a. Stack locations are not subject to liveness analysis.

*FindDeadVar( activation *a, int var_index ). If a variable is dead, but its
value is still sitting in a register or stack location, it would be unfair to hide the value
from a debugger. Accordingly, FindDeadVar(a, v) returns a pointer to a location
containing the last known value of v, if any such location exists, and NULL otherwise.
It is an unchecked run-time error to store into such a location.

void FirstActivation( tcb *t, activation *a ). When execution of a C-- program

is suspended, its state is captured in its thread-control block. FirstActivation uses
the thread-control block to initialise an activation handle that corresponds to the
procedure that will execute when the thread’s execution is resumed.

int NextActivation( activation *a ) modifies the activation handle a to refer to the

void

void

void

activation record of a’s caller, or more precisely, to the activation to which control will
return when a returns. NextActivation returns nonzero if there is such an activation
record, and zero if there is not. That is, NextActivation(&a) returns zero if and
only if activation handle a refers to the bottom-most record on the C-- stack.

SetActivation( tcb *t, activation a ) modifies the thread-control block t so
that the execution of the thread will resume with activation a. It is used to unwind
the stack, e.g., when handling exceptions.

SetContinuation( tcb *t, int cont_index ). If thread t is suspended at a call
site, SetContinuation arranges that when the thread is resumed, it will do so at the
continuation whose ordinal number is cont_index. The normal continuation counts
as continuation 0, so SetContinuation(t, k) may be called only when thread t is
suspended at a call site with more than k return continuations.

*FindReturnLocation( tcb *t, int result_index ). If thread t is suspended at
a call site, FindReturnLocation returns a pointer to the location in which the thread
expects to receive the value(s) returned by the call. result_index is the ordinal
number of the result, starting from 0. FindReturnLocation(a, n) may be called
only when thread t is suspended at a call site which will resume with a continuation
expecting more than n return values.
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InitTCB(t, n, pc) Initialises a thread-control block t of size n, with initial program
counter pc.
Resume (t) Resumes C-- thread t.

GetDescriptor(&a, token) Returns pointer to data block associated with the smallest span

FindVar(a, v) Returns pointer to mutable location containing value of param-
eter or local variable v in activation a.

FindDeadVar(a, v) Returns pointer to location containing last known value of v.

FirstActivation(t, &a) Sets a to “currently executing” activation of thread t.

NextActivation(&a) Mutates a to point to the activation to which a will return (nor-

SetActivation(t, a) Mutates thread-control block so thread t will resume execution
SetContinuation(t, k) Mutates thread-control block so thread t will resume execution
FindReturnLocation(t, n) Returns a pointer to the location in which the n’th return value

SetSafePoint(t, sp) Sets the safe point at which the thread will resume.
ExecuteToNextSafePoint (t) Runs thread t until it reaches a safe point.

tagged with token and containing the point where activation a
is suspended.

mally a’s caller).
with activation a.
at its k’th continuation.

will be returned to thread t.

void

void

Table 1: The C-- run-time interface

We use result_index, not the number of the variable that will receive the result,
because we expect that doing so will significantly reduce the amount of information
that must be saved by the back end. For example, under a C-like calling convention,
FindReturnLocation(a, 0) might always return the same register.

Notice that, unlike FindVar, FindReturnLocation only applies to the top-most acti-
vation — hence we pass a pointer to the thread-control block, rather than an activation
handle. For other activations it is nonsense to talk of the return locations, whereas
for the topmost activation it makes perfect sense; for example, the first return value
might be returned in register 1, which is held in the thread-control block.

SetSafePoint( tcb *t, safe_point sp ) isa more drastic operation, used mainly
by debuggers. It forcibly changes the safe point at which the thread will resume to
sp, which must itself be a safe point in the suspended procedure. CAVEAT: This
procedure is just flailing at the general problem of altering control flow from within
the debugger. It should be ignored until someone has a chance to think out a more
complete proposal.

ExecuteToNextSafePoint ( tcb *t ) runs thread t until its topmost activation gets
to a safe point. If the topmost activation of thread t is already suspended at a
safe point, ExecuteToNextSafePoint is a no-op. This procedure is needed to put
the C-- stack into a safe state when its execution is interrupted asynchronously.
ExecuteToNextSafePoint may cause a fault without reaching a safe point, and it may
run arbitrarily long. If a front-end run-time system uses ExecuteToNextSafePoint,
it is up to the front end to ensure that every loop is cut by a safe point.

Table 1 summarises the C-- run-time interface.
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5 Implementing the C-- run-time interface

Can spans, multiple return continuations, and the C-- run-time interface can be imple-
mented efficiently? By sketching a possible implementation, we argue that they can. Be-
cause the implementation is private to the back end and the back-end run-time system, there
is wide latitude for experimentation. Any technique is acceptable provided it implements
the semantics above at reasonable cost. We argue below that well-understood techniques
do just that.

5.1 Implementing spans

The span mappings of Section 4.2 take their inspiration from table mappings for exception
handling, and they can be implemented in similar ways (Chase 1994a). The most common
way is to use tables sorted by program counter. If suitable linker support is available, tables
for different tokens can go in different sections, and they will automatically be concatenated
at link time. Otherwise, tables can be chained together (or consolidated) by an initialisation
procedure called at program initialisation time.

5.2 Implementing stack walking

In our sketch implementation, the call stack is a contiguous stack of activation records.
An activation handle is a static record consisting of a pointer to an activation record
on the stack, together with pointers to the locations containing the values that the non-
volatile registers® had at the moment when control left the activation record (Figure 2).
FirstActivation initialises the activation handle to point to the topmost activation record
on the stack and to the locations in the thread-control block that hold the values of registers.
Depending on the mechanism used to suspend execution, the thread-control block might
hold values of all registers or only of non-volatile registers, but this detail is hidden behind
the run-time interface. Ramsey (1992) discusses retargetable stack walking in Chapters
3 and 8.

The run-time system executes only when execution of C-- procedures is suspended. We
assume that the front-end run-time system uses one of the techniques mentioned in Sec-
tion 4.3.3 to ensure that C-- execution is suspended only at safe points. For each safe
point, the C-- code generator builds a statically-allocated activation-record descriptor that
gives:

e The size of the activation record; NextActivation can use this to move to the next
activation record.

e The liveness of each local variable, and the locations of live variables, indexed by vari-
able number. The “location” of a live variable might be an offset within the activation
record, or it might be the name of a callee-saves register. GetVar uses this “location”
to find the address of the true memory location containing the variable’s value, either

“The non-volatile registers are those registers whose values are unchanged after return from a procedure
call. They include not only the classic callee-saves registers, but also registers like the frame pointer, which
must be saved and restored but which aren’t always thought of as callee-saves registers.
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Bottom of stack

Activation handle Activation

Pointer to an _ record
activation record

Pointer to first
callee-save register

Y

Pointer to second
callee-save register

Top of stack

The activation handle points to an activation record, which may
contain values of some local variables. Other local variables may
be stored in callee-saves registers, in which case their values are
not saved in the current activation record, but in the activa-
tion records of one or more called procedures. These activation
records can’t be determined until run time, so the stack walker
incrementally builds a map of the locations of callee-save regis-
ters, by noting the saved locations of each procedure.

Figure 2: Walking a stack

by computing an address within the activation record itself, or by returning the ad-
dress of the location holding the appropriate callee-saves register, as recorded in the
activation handle.

o If the safe point is a call site, the locations where the callee is expected to put results
returned from the call.®

e The locations where the caller’s callee-saves registers may be found. Again, these may
be locations within the activation record, or they may be this activation’s callee-saves
registers. NextActivation uses this information to update the pointers-to-callee-
saves-registers in the activation handle.

o If the safe point is a call site, pointers to the code for the alternate continuations.

It would be more efficient to store this information with the callee, because then it could be stored
once per function instead of once per call site. Unfortunately, this information is needed to implement
FindReturnLocation just after the callee has exited, and therefore when the callee may not be known.
Therefore, the information has to be stored at each call site. Luckily, this information is determined by the
calling convention, so most of it can be shared.
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The C-- runtime can map activations to descriptors using the same mechanism it uses
to implement the span mappings of Section 4.2. The run-time interface can cache these
descriptors in the activation handle, so the lookup need be done only when NextActivation
is called, i.e., when walking the stack. An alternative that avoids the lookup is to store
a pointer to the descriptor in the code space, immediately following the call, and for the
call to return to the instruction after the pointer. The SPARC C calling convention uses a
similar trick for functions returning structures (SPARC 1992, Appendix D).

The details of descriptors and mapping of activations to descriptors are important for per-
formance. At issue is the space overhead of storing descriptors and maps, and the time
overhead of finding descriptors that correspond to PCs. Liskov and Snyder (1979) suggests
that sharing descriptors between different call sites has a significant impact on performance.
Luckily, these details are private between the back end and the back-end run-time system,
so we can experiment with different techniques without changing the approach, the run-time
interface, or the front end.

6 Using the C-- run-time interface

This section explains how the C-- run-time interface might be used to help implement a
garbage collector, an exception mechanism, a debugger, and a threads package. The first
three all use the same technique to walk the stack: allocate an activation handle, initialize
it with FirstActivation, and call NextActivation to move from one activation record to
the next.

6.1 Garbage collection

Our primary concern is how the collector finds, and possibly updates, roots. Other tasks,
like finding pointers in heap objects and compacting the heap, can be managed entirely by
the front-end run-time system (allocator and collector) with no support from the back end.
C-- takes no responsibility for heap pointers passed to code written in other languages.
It’s up to the front end to pin such pointers or to negotiate changing them with the foreign
code.

To help the collector find roots in global variables, the front end can arrange to deposit
the addresses of such variables in a special data section. To find roots in local vari-
ables, the collector must walk the activation stack. For each activation handle a, it calls
GetDescriptor(&a, GC) to get the garbage-collection descriptor deposited by the front
end. The descriptor tells it how many variables there are and which contain pointers. For
each pointer variable, it gets the address of that variable by calling FindVar. If the result
is non-NULL, the collector marks or moves the object the variable points to, and it may
redirect the variable to point to the object’s new location. Note that the collector need not
know which variables were stored on the stack and which were kept in callee-saves registers;
FindVar provides the location of the variable no matter where it is. Figure 3 shows a simple
collector based on Appel (1989), targeted to the C-- run-time interface and the descriptors
shown in Section 4.2.

A more complicated collector might have to do more work to decide which variables represent
heap pointers. TIL is the most complicated example we know of (Tarditi et al. 1996). In
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struct gc_descriptor {
unsigned var_count;
char heap_ptr[1];

s

void gc(void) {
activation a;

FirstActivation(tcb, &a);
for (5;) {
struct gc_descriptor *d = GetDescriptor(&a, GC);
if (d) {
int i;
for (i = 0; i < d->var_count; i++)
if (d->heap_ptr[i]) {
typedef void *pointer;
pointer *rootp = FindVar(a, i);
*xrootp = gc_forward(*rootp); /* copying forward as per Appel */

}
}
if (!NextActivation(&a))
break;
¥
gc_copy(); /* from-space to to-space, as per Appel */
}

Figure 3: Part of a simple copying garbage collector

TIL, whether a parameter is a pointer or not may depend on the value of another parameter.
For example, a C-- procedure generated by TIL might look like this:

f( word32 ty, word32 a, word32 b ) { ... }

The first parameter, ty, is a pointer to a heap-allocated type record. It is not statically
known, however, whether a is a heap pointer. At run time, the first field of the type record
that ty points to describes whether a is a pointer. Similarly, the second field of the type
record describes whether b is a pointer.

To support garbage collection, we attach to f’s body a span that points to a statically
allocated descriptor, which encodes precisely the information in the preceding paragraph.
How this encoding is done is a private matter between the front end and the garbage
collector; even this rather complicated situation is easily handled with no further support
from C--.

Garbage collection is invoked, via a call to yield, when the allocator runs out of space. For
example, here is how the code might look if allocation takes place in a single contiguous
area bounded by heap_limit:

f( word32 a,b,c ) {
while (hp+12) > heap_limit {
yield( GC ); /* Need to GC */
}
hp = hp+12;
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PROCEDURE TryAMove() =
BEGIN
TRY
makeMove (getMove (player)) ;
next := (next + 1) MOD NUMBER(players) ;

EXCEPT

| IllegalMove(why) => player.illegalmove (why) ;

| NoMoreTiles => player.illegalmove("not enough tiles left");
END;

INC(movesTried);

END TryAMove;

Figure 4: Example Modula-3 procedure

6.2 Exceptions

Exceptions have a rich history, and many models of exceptions and exception handling have
been proposed and implemented (Goodenough 1975; Liskov and Snyder 1979; Drew and
Gough 1994). Exceptions may be associated with handlers statically, by source-language
constructs, or dynamically, by calls to primitives like the POSIX sigaction. The raising
of an exception transfers control to a handler, which may terminate, resume, or retry the
code that raised the exception. Finally, there are synchronous exceptions, which occur only
at well-defined points in the program, and asynchronous exceptions, which may occur at
arbitrary points.

This paper addresses exceptions that are associated with handlers statically; by definition,
dynamically associated handlers need no compile-time support. The C-- run-time interface
supports termination and retry models, but not the resumption model. It also supports syn-
chronous exceptions, and possibly asynchronous exceptions via ExecuteToNextSafePoint
(Section 4.3.3).

C-- does not enforce a particular model of or semantics for exceptions; instead, C-- provides
hooks that enable different front-end run-time systems to implement different high-level
exception semantics. These hooks do not impose undue overhead on the normal case. (The
designers of Modula-3 (Cardelli et al. 1992) urge implementors to spend 10,000 instructions
in the exceptional case to save 1 instruction in the normal case.) We illustrate the idea of
using a single set of hooks to implement various high-level exception semantics by sketching
how one might implement exception dispatchers for Modula-3, Eiffel, and Exceptional C.

6.2.1 Modula-3 exceptions

Figure 4 shows a fragment from a game-playing program written Modula-3. Modula-3 uses
TRY-EXCEPT-END to show handlers and their scopes. The statement sequences to the right
of the arrows (=>) are handlers for the exceptions I1legalMove and NoMoreTiles. If either
of these exceptions is raised anywhere between TRY and EXCEPT, control transfers to the
appropriate handler. Otherwise, after the assignment to next, control skips directly from
EXCEPT to END. After execution of a handler, control also transfers to END.
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void TryAMove() {
word32 s, t;
span EXN ex1 {
t = getMove(player) also returns s to {goto H1;} also returns to {goto H2;};

makeMove (t) also returns s to {goto H1;} also returns to {goto H2;};
t = word32[players]; /* load size of array from its descriptor */
next = (next + 1) mod t;

¥

finish:

movesTried = movesTried + 1;
return;
Hi:
t = word32[word32[player]+12]; /* load address of illegalmove method */
t (s);
goto finish;

H2:
t = word32[word32[player]+12]; /* load address of illegalmove method */
t (1litl);
goto finish;
}
data {
1litl : word8[22] "not enough tiles left\0";
exl : align 4;
word32 2; /* two handlers in scope */
word32 Exn_Illegallove;
word32 0; /* assign argument to variable 0 (s) */
word32 Exn_NoMoreTiles;
word32 -1; /* no argument x*/
}

Figure 5: C-- implementation of Modula-3 TryAMove.

This code might be translated into the C-- procedure shown in Figure 5. The data section
contains both a string literal and an “exception descriptor” that shows which exceptions
are handled in the C-- span tagged with ex1.

To see how exception dispatch works, let us suppose that getMove terminates normally, but
makeMove discovers that the move cannot be made because there would be no more tiles.
makeMove would contain the Modula-3 statement

RAISE IllegalMove("Your play goes off the board");

which might be translated into a yield to awaken the system thread, using the yield code
to request exception handling service. The details of the particular exception would be
pushed onto a global “exception stack.”

push_exn_info(Exn_MoMoreTiles, 1it19);
yield( EXCEPTION );

The system thread would invoke the exception dispatcher. The dispatcher would in turn
call FirstActivation(tcb, &a) to get the activation handle for makeMove, and then call
GetDescriptor(&a, EXN) to find handlers. GetDescriptor might return NULL if, for exam-
ple, makeMove contained no handlers. The dispatcher would then call NextActivation(&a)
to get the next frame. This time, GetDescriptor (&a, EXN) would return a pointer to ex1,
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struct exn_descriptor {
int handler_count;
struct { void *exn_tag; int arg_number; } handlers[1];

}

void dispatcher() {
activation a;
void *exn_tag, *argument;

pop_exn_info(&exn_tag, &argument) ;
FirstActivation(tcb, &a);
for (;;) {
struct exn_descriptor *d;
d = GetDescriptor(&a, EXN);
if (@) {
int i;
for (i1 = 0; i < d->handler_count; i++)
if (d->handlers[i].exn_tag == exn_tag) {
SetActivation(tcb, &a); /* unwind stack */
SetContinuation(tcb, i+1); /* choose handler */
if (d->handlers[i].arg_number >= 0) { /* exn expects value */
void *result;
result = FindReturnLocation(tcb, d->handlers[i].arg_number);
*result = argument; /* Assign result */

3

return; }

}
if (!NextActivation(&a))
abort(); /* unhandled exception: dump core */

Figure 6: A simplified exception dispatcher for Modula-3

and the dispatcher would identify handler 0 as the handler for the Modula-3 exception
IllegalMove. It would then use SetActivation(tcb, &a) to establish a as the activation
to resume, and SetContinuation(tcb, 1) to cause resumption at the first alternate con-
tinuation. Then it would use FindReturnLocation(tcb, 0) to find the location to which
to assign the value stored on the exception stack as the result to return.

Figure 6 shows a simple dispatcher implemented in C. A real dispatcher for Modula-3
would be more complicated, because it would have to provide for finalization (TRY-FINALLY-
END), for handlers that receive multiple exceptions, and for better recovery from unhandled
exceptions. The dispatcher included with DEC SRC Modula-3 even includes performance
optimizations, such as efficient finalization of locks.

6.2.2 Eiffel exceptions

The Eiffel language (Meyer 1992) provides a somewhat different exception model, but one
that can be implemented using the same C-- mechanisms. In Eiffel, exception handlers
may not be attached to arbitrary sequences of statements, but only to whole procedures
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(called routines). Multiple handlers are not permitted; a handler, if present, receives all
possible exceptions. Finally, handlers may not terminate normally, but must either retry
the execution of their routines or terminate their routines and propagate the exception up
the call stack. The high-level semantics are significantly different from Modula-3 semantics,
but the implementation in C-- is almost the same. The new element is the retry, which
can be implemented in C-- by a simple branch (goto) to the beginning of the routine.
Propagating the exception requires re-invoking the run-time exception dispatcher, which is
also possible in Modula-3.

6.2.3 Exceptional C exceptions

Exceptional C (Gehani 1992) offers a limited form of asynchronous exceptions with resump-
tion. In Exceptional C, handlers for asynchronous exceptions do not have access to the local
variables of the functions in which they appear; such handlers have access only to global
variables. Such handlers can be compiled into C-- procedures, just as they are compiled
into C functions in Gehani’s implementation. Because the handler does not touch the state
of the suspended C-- procedure, it can resume that procedure even when the procedure
is suspended at an unsafe point. Unfortunately, the C-- run-time interface provides no
general way to find the handler or to implement Exceptional C’s retry or next. (Retry
resumes execution at the beginning of the block protected by the handler, and next resumes
execution at the end of the block protected by the handler.) The problem is that, if an
asynchronous exception occurs at an arbitrary point, it is unsafe to call NextActivation
to search for the handler—think about interrupting a procedure that is in the middle of
saving callee-saves registers. If exceptions are truly asynchronous, all these problems can
be solved by guaranteeing that ExecuteToNextSafePoint terminates in bounded time, and
C-- can be used for the implementation.

6.3 Debugging

Debugging is not a solved problem. Questions remain in how compilers should support
debuggers, how debuggers can be made retargetable, and how debuggers interact with
optimizers. This paper does not address these questions. The paper does argue that the
C-- run-time interface provides adequate support for parts of debuggers that are well
understood, and that it is compatible with some simple but useful optimizations. Moreover,
we illustrate how C-- can be used to express some tradeoffs between flexibility for the
optimizer and power in the debugger.

CAVEAT: This is the weakest section in the paper. The main issues are (1) that named
safe points seem redundant with spans, and (2) it’s not at all clear what restrictions on
the optimizer are needed even to do something as simple as set a breakpoint. We certainly
don’t have answers to the more complicated questions, e.g., suppose I don’t want to pay
the performance penalty of having a safepoint at every source-level statement. In this case,
how do I set a breakpoint at a statement, and what can I assume about the machine’s state
when the breakpoint is taken?

The tasks of a source-level debugger are

e to display variables and their values,
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to evaluate expressions and assignments,

to show what procedures are active and where they are suspended,

to plant and remove breakpoints,

to change control flow in the target program,

to call procedures in the target program, and

e to control and interact with different target programs.

For simplicity, this paper ignores the problems of interacting with target programs. It
assumes that the debugger runs in the same address space as the target, can call the C--
run-time interface directly, and can change values with simple loads and stores. Some
debuggers may run in separate address spaces and use operating-system services to control
their targets. Such debuggers might include a C-- run-time system modified to operate on
a different address space.

6.3.1 Debugging information

Much of the information the debugger needs is known to the front end. Although many
current compilers use specialized “stabs” or other machine-dependent formats to communi-
cate these “debugging symbols” to the debugger, such specialized support is not necessary;
ordinary initialized data is sufficient. It is helpful, but not necessary, to have some link-
time support so this data can be put in a separate section and not automatically loaded
into the target program’s memory. The exact format of this data is a private matter be-
tween the front end and the debugger; we note in passing that this format need not be
machine-dependent (Ramsey and Hanson 1992).

As an example of supporting a debugger using C--, this paper sketches a scheme derived
from Ramsey (1992), Chapter 4. Debugging symbols emitted by a high-level front end
might include

e For each compilation unit, a table of global symbols, a list of procedures, and a table
mapping the names of source files to the procedures generated from those source files.

e For each procedure, a list of all the safe points. For each safe point, a record of its
source-code and object-code locations. (The front end has access to the object-code
location by means of the safe-point name.) This list is used to set breakpoints in
object code when source locations are specified by the user.

e Spans pointing to tables that provide information about the names of the high-level
language variables. One table per procedure is not adequate; in languages with nested
scopes, the same name may denote an integer at one program point and a floating-
point value at another.

The tables record the location and type of each variable. Locations of global variables
are placed directly in the debugging symbols; locations of local variables are given as
indices and looked up at debug time using FindVar. The type contains the information
needed to print the value of the variable and to evaluate expressions involving that
variable.
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e Spans mapping object-code locations to source-code locations, so the debugger can
make an accurate report if a fault occurs when the program is not at a safe point.

These debugging symbols contain the information the debugger needs to display variables
and their values and to evaluate expressions and make assignments. From the C-- run-time
interface, the debugger would need GetDescriptor to find the information associated with
the current safe point, and FindVar to read and change the values of local variables.

To show active procedures and where they are suspended, the debugger would use proce-
dures FirstActivation and NextActivation, and also the source-code locations stored in
the safe-point spans.

6.3.2 Breakpoints and flow of control

To plant and remove breakpoints, a debugger must be able to map source-code locations to
object-code locations. Typical debuggers use a two-level strategy, mapping a source file to
a list of procedures, and each procedure to a list of safe points. They then search the safe
points for the one nearest the specified source location.

CAVEAT: The problem with setting breakpoints at safepoints is that for them to be of
any use at all, one must restrict the optimizer. We haven’t yet figured out a good set of
restrictions.

A debugger can use SetSafePoint to change the flow of control in a suspended procedure.
As ever, arbitrary changes in the flow of control are unsafe: for example, what does it mean
to transfer control to the middle of a sequence of instructions used to restore callee-saves
registers in a procedure epilog? As its name suggests, SetSafePoint supports only transfer
of control between safe points.

Even if control is transferred only from one safe point to another, the back end may have
made different assumptions about the states of C-- variables at different safe points. For
example, what if local variable x is currently held in a register, but at the new PC, x is
expected to be on the stack? Worse, what if local variable y is dead, but the debugger
changes to a safe point at which y is live? Some compilers and debuggers handle this
problem by making worst-case assumptions at code-generation time, e.g., by putting all
variables on the stack at every safe point in the procedure. The C-- run-time interface
makes such pessimistic assumptions unnecessary. Before the debugger calls SetSafePoint,
it must consult FindVar to discover, and separately record, the values of all live variables.
After calling SetSafePoint, must again consult FindVar to find the locations of all variables
live at the new safe point, and store the values it previously extracted. In the example
above, this sequence of calls would copy the value of x from its register location to its stack
location. Furthermore, if the debugger discovers that the new safe point is associated with
a live variable that is currently dead, it must supply a new value for the variable, perhaps
by consulting the user.

6.3.3 Debugging and optimization

Even when supporting a debugger, C-- gives the back end some freedom to optimize code,
and the front end some ability to trade off debuggability and optimization. Given the
specification of SetSafepoint, the back end is free to put variables in registers, to split live
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ranges, and to use state-of-the-art register allocation (Briggs, Cooper, and Torczon 1994;
George and Appel 1996). The back end is also free to reorder spans, to break up spans, and
to use global-optimization techniques within spans. (The optimizer must not move code
across span boundaries.) If the relevant variables are marked as invariant, the optimizer
can save common subexpressions across calls and other safe points.

The front end has two ways of controlling optimization. Marking variables as invariant
across calls gives the optimizer more opportunities for common-subexpression or partial-
redundancy elimination, at the cost of preventing a garbage collector or debugger from
changing these variables. Defining larger spans and reducing the number of safe points gives
the optimizer larger regions in which to operate and more opportunities for optimization,
at the cost of providing less precise information and control at debug time.

6.4 Concurrency

Section 4.3, above, describes C--’s support for very lightweight threads. Here we briefly
outline how the interface described there can be used to support a simple, conventional
threads package. As ever, our goal is to provide the minimal hooks to make a threads
package possible; the bulk of the implementation should be in the front end runtime, not
the C-- runtime.

When forking a thread, the front-end runtime allocates a thread-control block, which in-
cludes space for a stack. It initializes the block by passing to InitTCB a pointer that actually
points a few words past the start of the allocated area. These initial few words are under
the complete control of the front end runtime, to use for any per-thread data it wishes. We
call this area the thread-local data block. The front-end runtime starts the thread by calling
Resume. We expect it puts a pointer to the thread-local data block in a known place, and
the generated C-- code probably moves that pointer to a register.

Since threads are not interrupted asynchronously, mutual exclusion is not an issue. When
a thread wants to synchronise with another thread or block awaiting some event, it simply
mutates the state of the appropriate semaphore (or whatever), and yields to the front-end
runtime with a suitable yield code. All of this can be done with a call to a support library
written in C--, and provided along with the front-end runtime.

This model of concurrency may support a weak form of preemption by allowing “preempted”
threads to continue to the next safe point. Front ends can ensure atomicity by keeping safe
points out of critical sections. A similar strategy was used with Argus, made cheaper by
forcing safe points to coincide with stack-limit checks (Liskov et al. 1987). This style of con-
currency is very cheap. The operating system is not involved, no protection boundaries are
crossed, and shared data structures can be manipulated without OS-level synchronization.
The resulting system can have thousands of threads.

6.4.1 High-level threads

Most high-level threads packages will wish to pass arguments to threads, and to have threads
return results upon termination. This can be done by putting a closure in thread-local data,
and by passing something like the following function to InitTCB.



34 7 DISCUSSION AND RELATED WORK

extern word32 "register 7" localdata;
extern word32 initial_localdata;

void run_a_closure () {
word32 f, arg, answer, closure;

localdata = initial_localdata;

closure = word32[localdata+closure_slot];
f = word32[closurel;

arg = word32[closure+4];

answer = f(arg);
word32[localdata+answer_slot] = answer;
yield (I_HAVE_FINISHED) ;

6.4.2 Blocking

Multiplexing lots of C-- threads onto one operating-system thread is all very well, but if
a system call blocks, then all C-- threads block. A standard solution for this well-known
problem is to use non-blocking I/O exclusively, but not all I/O libraries can be made to use
non-blocking I/0.

If the operating system provides multiple threads, an alternative solution is possible. When
a C-- thread wants to make a call that may block, it builds a data structure describing
the call. Then it yields to the front-end runtime, with a code indicating that it wants a
possibly-blocking call to be made. The front-end runtime keeps a pool of OS threads handy,
and sends the request to it. Meanwhile, it blocks the C-- thread, and schedules another.
When the OS thread completes the call, and the front end runtime is next awakened, it
re-schedules the original C-- thread.

6.4.3 Stack overflow

What should happen if the stack of a C-- thread overflows? Since the stack is under the
control of C--, it must be C-- that detects stack overflow. This is primarily an implemen-
tation issue, but it bears on the run-time interface because the C-- runtime must be able to
ask the front-end runtime to allocate additional stack space. It should do so by arranging
to yield to the front end with a suitable yield code. This way the front end can run the
garbage collector if it needs to. (It may be necessary to allocate a small amount of space
statically to ensure that there is room enough to save the thread’s state in case of stack
overflow.) This aspect of C--’s design is not fully thought out.

7 Discussion and related work

7.1 Alternatives to a portable assembler

What are the alternatives to a portable assembly language? One possibility is to use existing
retargetable code generators. In the introduction, we mentioned that such code generators
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are complex, language-specific, and often poorly documented. They are also surprisingly
few:

e The simplest and best documented such code generator is the lcc code generator
(Fraser and Hanson 1991), but it implements no global optimizations.

e Gnu C (Stallman 1992) has been used the most successfully with different front ends,
but folklore suggests that the cost is disproportionate. One known problem is that
the Gnu C “tree” interface is not documented, but the “RTL” interface assumes that
its input was generated from Gnu C “trees.”

e SUIF (Hall et al. 1996) offers many optimizations, including parallizing optimizations,
but it has only one native-code back end; otherwise, it compiles to C.

e Vpo (Benitez and Davidson 1988) has been used with a few different front ends, but
it enforces C’s calling conventions, does not optimize tail calls, and does not provide
hooks for supporting garbage collection.

e ML-RISC (George 1996) is a promising new code generator, but it is still under de-
velopment, and its interfaces still appear complex.

An alternative to using existing code generators is to use existing virtual machines.

e The Java Virtual Machine (Lindholm and Yellin 1997) is machine-independent and
can be expected to be widely implemented, but even the most heavily optimized JVM
compiler is unlikely to approach the performance possible with a custom code genera-
tor, or with C--. In particular, Java’s security model may forbid optimization of tail
calls and other important optimizations. Various people have suggested ways around
these difficulties, but they involve exactly the same hacks that make C unattractive
(e.g., massive switch statements), and because of Java’s type security, additionally
require many unnecessary run-time type checks. The resulting implementations run
like a mangy, badly injured dog (Clausen and Danvy 1998; Wakeling 1998).

e Like Java, the Juice system (Franz 1997) supports machine-independent mobile code,
but it is not a virtual machine. Instead, it is based on slim binaries, which are
specially compressed abstract syntax trees from the Zurich Oberon compiler (Franz
and Kistler 1997). These abstract syntax trees would be difficult to target for another
front end, but it might be very effective to apply the compression technology to a
lower-level language like C--.

e There are a couple of virtual machines whose focus is mostly that of a portable
operating system envelope, such as Inferno/Limbo, and Elate. They are proprietry
and do not inter-operate natively with (say) Windows or Unix. Using them implies
much more than adopting an assembler. CAVEAT: We are far from confident that
these remarks are accurate.

7.2 Alternatives for high-level run-time services

Given that we are designing a portable assembly language, we considered several alternative
mechanisms to support high-level run-time services, such as garbage collection, exception
handling, and debugging.
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e One could build them into the C-- implementation, but such a solution would be
nearly useless. The range of possible implementations varies widely with the seman-
tics of the high-level language, and we know of no single implementation strategy that
would be suitable for languages as different as, e.g., Haskell and C++-. Building a de-
bugger into C-- is even more clearly a bad plan; the right way to build a source-level
debugger for a high-level language is not on top of a source-level debugger for C--. Be-
cause language implementers need freedom to use different implementations of garbage
collection, exceptions, and debugging, C-- should provide mechanisms, not solutions.

e Another possible mechanism is to provide a procedural interface between the front
end and the back end, and to arrange that the back end perform “upcalls” to the
front end to exchange information about the layout of run-time structures. This is
the approach taken by ML-RISC (George 1996). At present, however, every such
interface is highly specific to its particular back end; ML-RISC provides ML-RISC’s
interface (and requires that the front end be written in ML), gcc’s tree language is
very specific to gcc, and so on. It is far from clear how to make such an interface
independent of the back end. Furthermore, given such an interface, the intermediate
program can no longer be represented as an independent object, standing between the
front and back end, amenable to independent analysis and processing.

The alternative we have chosen is to combine a C-- language with a run-time procedural
interface. The language provides the means by which the front end records the information
known only to it. The run-time interface provides the means by which the run-time systems
gets both the information known only to the back end, and also the information recorded
by the front end using the language. The front-end run-time system and debuggers are
clients of this interface.

7.3 Alternatives for thread arguments and results

It would be a little easier to build thread packages if initial arguments could be passed to
InitTCB, and if yield could return a result on thread termination. (There are also other
cases in which it is useful for yield to pass a value as well as a code, e.g., when generated
code uses yield to ask the front-end runtime to make a system call on its behalf.) The
problem with passing such values in this way is that there are times when the values could
be hidden inside the C-- run-time system, inaccessible to the garbage collector. We saw
three possible solutions:

1. Extend the C-- run-time interface to make these hidden values accessible. The com-
plexity of this approach seems disproportionate to the benefits.

2. Restrict the use of the interface so the hidden values may not point to the garbage-
collected heap. This restriction destroys much of the appeal of the approach, since
one will often want to pass and return pointers.

3. Eliminate such arguments and results entirely, and force the generated code to com-
municate with the front-end runtime using global variables or registers (e.g., a pointer
to thread-local data). This is the solution we have chosen.

Under the scheme we have chosen, a threads package would probably use thread-local data
to pass arguments to a thread and to get results from it, as shown in Section 6.4.1.
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7.4 Alternatives for exception handling

We considered these alternatives for the implementation of exception handlers:

e They could be separate C-- functions. We dismissed this quickly, because a handler
in a source-language function f needs access to f’s local variables.

e They could be simple labels; we discuss this in Section 7.4.1.
e They could be a quasi-first-class continuation. We discuss this in Section 7.4.2.

e Perhaps they could be named safe points. We haven’t considered this alternative
carefully.

A more radical alternative would be to introduce exceptions directly into C--. For example,
a try/handle construct might replace also returns. Our current design conflates proce-
dure calls with exception handling; if a front end wishes to “throw an exception” from an
activation A to a handler in the same activation, it must use a goto. A design with explicit
exceptions might keep procedure calls separate from exception handling. Still, any design
must provide some means of telling the optimizer where control can flow when an activation
is aborted by some exception, so it seems unlikely that procedure calls and exceptions can
be separated completely.

7.4.1 Labels are not values

Handlers cannot be referred to simply as labels, because labels are not values, and labels
have no representation at run time.

The major reason that labels are not values is that first-class labels cause difficulties for
optimization. If a label were a value, it could be stored somewhere, and such values could
later be targets of goto. That means that the destination of a goto might not be known at
compile time. That raises at least two difficulties:

e At the goto site, the code generator does not know where to put the local variables,
since it does not know the destination. It does not even know how to adjust the stack
pointer! (The stack pointer might in principle be at different positions relative to the
frame base for different labels in the procedure.)

e The code generator can’t do a proper liveness analysis if it doesn’t know the destina-
tions of all gotos, so it has to be very pessimistic and assume that everything live at
any label is live at any goto. Worse, it has to keep all the live variables in the same
locations at all these points.

C-- programmers who wish to use first-class labels within a procedure will be forced to
break the procedure up into many small procedures and to use jump to transfer control
between them. The price of this style is that live “local variables” must be passed as
parameters, but this style need not lead to bad code—C-- compilers can be expected to
generate very good code for calls to functions that don’t escape the local compilation unit.
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7.4.2 Continuations are values

Our design makes no provision for allowing generated code to unwind the stack or change
control to an alternate continuation—these things must be done in the run-time system.
This omission makes it impossible for C-- to implement an “ML-like” model of exception
handling. In the ML-like model, a small overhead is added to every TRY-EXCEPT-END, but in
exchange, exception dispatch is very efficient. The high-level languague maintains a stack
of handlers, perhaps pointed to by a register. Every exception goes to the handler on top
of the stack, and that handler contains code to identify the exception and pass it on to the
next handler if necessary. The rest of this section presents a partly-baked idea that might
support this model.

We add two new kinds of statement: one to declare continuations, and one to invoke them.
To declare a continuation inside a procedure, write

continuation name ( formal-parameters ) { statement-sequence }

The statement-sequence must end in an explicit control transfer, and the formal-parameters
must be variables of the procedure in which the continuation appears. Labels within
statement-sequence may be targets of gotos anywhere in the procedure containing the
continuation. Within the procedure containing the continuation, name is available as a
C-- value. This value encapsulates three things: a stack pointer, a program counter, and a
place to put parameters that won’t fit in registers. The type of a continuation value is the
native pointer type.

To invoke a continuation, write
invoke expression (args),

where the expression evaluates to a continuation. invoke k (args) cuts the stack and
changes the program counter to the values encapsulated by k, passing arguments as ex-
plained below.

A continuation k encapsulating an activation A may be invoked only while that activation
is suspended at a call site. In keeping with the principle that a C-- programmer specifies
explicitly all the locations to which a call could return, this call site must contain one or
more invokes clauses, one of which must name k. The invokes clause on a call takes a
similar form to “also returns”:

r = f(x,y) also invokes k;

and serves two purposes. First, it warns the back end that the call might return to the label
named in the clause. Second, it tells the back end that control flow along that path does
not restore callee-saves registers. This means the back end must insure that no variable live
on entry to the continuation is in a callee-saves register at the call site.

Because a continuation may be invoked only when its activation is suspended at a call site
that names the continuation explicitly, continuations-as-values do not cause the problems
for optimization that labels-as-values would. If a front end wishes to invoke a continuation
from within its own activation, it can use a goto with assignment (if it can identify the
continuation statically) or it can call a trivial procedure do to the invoke on its behalf (if
it cannot identify the continuation statically). C-- back ends should inline such procedures
with no loss of efficiency.
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Once an activation dies, its continuations die, too. Invoking a dead continuation is an
unchecked run-time error, which it is up to the programmer to avoid. This restriction
makes C-- continuations less powerful than Scheme continuations, but it means they
can be implemented very efficiently, without stack copying. One possible implementation
is for the C-- back end to allocate two words in the current activation record for each
continuation in the procedure. It can store a suitable program counter and stack pointer
in these words, then use a pointer to the words as the representation of the continuation.
(With proper design of the stack-frame layout, the stack pointer also serves to point to
a location for overflow parameters.) The store instructions can be placed anywhere they
dominate all uses of the continuation.

Using these new constructs, the procedure TryAMove from Figure 4 could be compiled into
the C-- code shown in Figure 7. (This example assumes that the native pointer size of the
machine is word32.) The code to raise an exception:

RAISE exn (val);

would be compiled into this C--:

k = word32[exn_top]; /* fetch current handler from stack */
exn_top -= sizeof(k); /* pop stack */
invoke k(exn, val); /* invoke the handler */

It is somewhat unsatisfying to have two different mechanisms (also returns and invokes)
for abnormal continuation from a procedure call, especially because the mechanisms are
quite similar. Both take a list of variables that are bound at the time of the control
transfer—although the syntax of the also returns variables suggests return values and the
syntax of the continuation variables suggests parameters, they are semantically identical.
Both are associated with statement sequences that end in explicit control transfers. Both
have access to all of the procedure’s local variables. The important differences have to do
with invocation and register-save behavior:

e The continuation can be invoked only from generated code, and therefore it must
be representable as a C-- value. The also returns can be invoked only from
the run-time system, and therefore it is identified by index number (as passed to
SetContinuation), so it need not have a C-- value.

e Flow to also returns works like an ordinary return in that it restores the values of
nonvolatile (callee-saves) registers. This behavior must be implemented by “unwinding
the stack,” which is expensive. It is suited only to heavyweight exception mechanisms.
Flow to a continuation does not restore callee-saves registers; instead, it treats all
registers as volatile. This behavior may be implemented by “cutting the stack” (i.e.,
changing the stack pointer), which can be made as efficient as an indirect call. Tt is
suited to lightweight exception mechanisms that are implemented entirely in generated
code, without the intervention of the run-time system.

CAVEAT: One particularly troubling restriction is that a continuation cannot be invoke’d
in its own activation. Such invocation is not necessary, because it would be more or less
equivalent to a goto into the body of the continuation — our current proposal permits
such gotos, although they make us nervous. Even if the continuation invoked is dynamic,
one could always call a procedure to do the invocation. The call site provides a place to

So is this an ugly
wart or a thing
of beauty?
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register word32 exn_top; /* top of exn stack */

void TryAMove() {
word32 s, t, code, val, k;
exn_top += sizeof (H); /* put H on the dynamic exception stack */
word32[exn_top] = H
t = getMove(player) also invokes H;

makeMove (t) also invokes H;

t = word32[players]; /* load size of array from its descriptor */
next = (next + 1) mod t;

exn_top -= sizeof (H) /* leave TRY-EXCEPT-END */
finish:

movesTried = movesTried + 1;

return;

continuation H (code, val) {
if (code == IllegalMove) {
t = word32[word32[player]+12]; /* load address of illegalmove method */
t (val);
goto finish;
} else if (code == NoMoreTiles) {
t = word32[word32[player]+12]; /* load address of illegalmove method */

t (1litl);
goto finish;
} else {
k = word32[exn_top];
exn_top -= sizeof (k);
invoke k(code, val);
}
¥
data {
1litl : word8[22] '"not enough tiles left\0";
}

Figure 7: C-- implementation of Modula-3 TryAMove in ML style.
attach suitable also invokes clauses, which we would otherwise need to add to the invoke
construct.

Partly, it boils down to a point of view: is a continuation a value, is it just a node in the
control-flow graph of its parent procedure, or is it both? We are still arguing about this!
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7.5 Value-passing conventions

C functions may pass multiple parameters to one another and may return single values.
C-- offers many more opportunities for functions to exchange values, as indicated in the
following table:

From To Frame Overflow Convention
call function keep callee’s frame “call”

jump function free callee’s frame “call”
return call free caller’s frame “return”
invoke continuation cut continuation frame “invoke”
run-time also returns unwind N/A none needed

The From and To columns indicate where the control transfer originates and where it ends.

The Frame column explains what happens to the originating stack frame (activation record).
For example, at a call, the caller keeps its frame, because control will return to it. At a
jump, the caller deallocates the frame before transferring control, because control never
returns from a jump. “Cut” indicates that invoke frees the stack frame as a side effect; the
frame disappears without an explicit deallocation. “Unwind” indicates that the run-time
system deallocates the frame by calling SetActivation.

The last two columns show what happens to values that are passed (parameters or results).
The Convention specifies rules for placing values in locations (i.e., in registers or memory).
Finite automata may be useful for this purpose (Bailey and Davidson 1995). Typical con-
ventions pass some values in registers, but each machine has only finitely many registers.
The Overflow column shows where values go when they won’t fit in registers. For example, a
frame containing continuation must reserve enough space to hold any overflow parameters
used by invoke.

Because a single function may be reached by both jumps and calls, jumps and calls must
share a value-passing convention. Other conventions, viz., return and invoke, are inde-
pendent of the call convention and of each other. Finally, no convention is needed for
also returns. Control is only transferred to also returns from the run-time system,
and the run-time system knows to what activation control returns, so it can look up the
locations using FindReturnLocation. It therefore need not rely on a convention.

“No convention” might be misinterpreted as meaning that every also returns can stati-
cally see all the places it can be invoked, and vice versa, so they can agree on an ad hoc
convention. But this is not what we are claiming. The claim is that the back end can choose
an ad hoc convention at the time it generates code, and that the front-end run-time system
automatically accomodates itself to the back end’s convention because it has access to the
locations only by means of FindReturnLocation.

Callee-saves registers are not very useful in programs that use the continuation/invoke
implementation of exceptions. Callee-saves registers are also perform badly when there are
lots of tail calls, because a tail call must restore the callee-saves registers, only (perhaps)
for the destination to save them again. Implementors of C-- are therefore encouraged to
provide a choice of calling conventions, and in particular, to provide a calling convention
that uses no (or few) callee-saves registers.
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7.5.1 Implementing unrestricted tail calls

It may seem strange to say that overflow parameters must be passed in the callee’s frame.
Here is a more exact account of how implementations can support tail calls without restrict-
ing the number of parameters.

We assume here that every activation record has a fixed size determined at compile time,
that the activation record is pointed to (in a sense made precise below) by a single register,
which we call the stack pointer sp®, and that the stack grows downward, toward lower
addresses. We further assume that the compiler can compute the following quantities for
each procedure:

¢t  The number of bytes needed to hold incoming parameters that will not
fit in registers.

o  The number of bytes needed to hold outgoing parameters, in calls, that
will not fit in registers.

0 The number of bytes needed to hold outgoing parameters, in jumps, that
will not fit in registers.

t  The number of bytes needed to hold temporaries, stack-allocated data,
spill slots, etc.

Figure 8 shows the layout of an activation record under these assumptions. The figure
shows the difficult case o’ > i, i.e., there are more parameters to a tail call than there are
incoming parameters.

On entry, each procedure performs a limit check:
if sp - max(o’, i +t+0) <= limit then stack overflow.

It then allocates its frame by sp = sp — (¢ +t), and after that allocation it finds its incoming
parameters either in registers or in the interval [sp + ¢, fp + ¢t + 7). To implement a call
for which & bytes of outgoing parameters do not fit in registers, it puts those parameters
in the interval [sp — k,sp). Finally, to implement a tail call, it first frees its frame by
sp = sp + (i +t), then again puts overflow outgoing parameters in [sp — k, sp). It is perhaps
a matter of point of view whether the incoming parameters are deemed to be in the caller’s
frame and the outgoing in the procedure’s own frame, or whether the incoming parameters
are deemed to be in the procedure’s own frame, and the outgoing in the callee’s frame. We
have a minor preference for the latter view.

It might seem tidier to have sp point to the bottom of the outgoing-parameter area, rather
than to the top. Such a scheme has minor disadvantages. If the frame size remains fixed,
this scheme wastes stack space, reserving space for the most expensive outgoing call even
when it is not needed. If the frame size varies, no stack space need be wasted, but the back
end’s bookkeeping job becomes more tedious, and it may have to record more information
in order to support FindVar. If C-- procedures executed on the system stack, however,
instead of on a separate C-- stack, such a scheme might be necessary, lest an interrupt
destroy the values of outgoing parameters.

SCalling it the frame pointer would work equally well.
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Incoming parameters

~.

o' (outgoing parameters for jumps)

t Temporaries, etc.

fp
: Outgoing parameters :

I for calls I

Figure 8: A C-- activation record

7.6 Formalizing the behavior of calls

With also returns, also invokes, also aborts, and invariant, C-- procedure calls
are considerably more complicated than calls in C. This section attempts to specify the
dataflow behavior of C-- calls. The basic idea is that for each call, the code generator
creates one or more “phantom” basic blocks representing the effect of that call. These
blocks contain dataflow directives (e.g., use and def) that the optimizer is not permitted
to touch. The optimizer must take these directives into account when optimizing the rest
of the procedure.

We narrow our focus to a single call. For any C-- variable or hardware register, there are
two potential uses and two potential definitions of interest:

D, A definition in the caller, before the call.
D, A definition in the callee.

U, A use in the caller, after the call.

U, A use in the callee.

There are four potential dataflow edges D7 — U+, so there are sixteen possible combinations.
We dismiss combinations in which D, — U, A D, — U, since a use after the call can’t be
from both the caller and the callee at once. We also suspect that it is irrelevant whether a
definition in the callee reaches a use in the callee; D, — U, is a private matter for the callee.
This pruning leaves the 6 combinations shown in Table 2, in which the relevant edges have
been given suggestive names.

We can specify the effect of a calling convention by assigning three bits to each register.
The value of a bit corresponds to the presence or absence of a check mark in a column
of Table 2. The calling convention determines the contents of a phantom basic block as
follows:

For each hardware register or stack location r do
If r holds a parameter
insert use(r), creating an edge D, — U,
If r is not callee-saves (i.e., r is volatile)
insert kill(r), “destroying” an edge D, — U,
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D, — U, D, — U, D, — U, || Description

parameter | callee-saves result
Scratch register
Vv Result
Vv Standard callee-saves
Vv Volatile parameter
v Vv Parameter-result
vV vV Nonvolatile parameter

Table 2: Register definitions and uses at a call site

If  holds a result
insert def(r), creating an edge D, — U,

The word “destroying” is slightly misleading; it means that if an edge D, — U, exists,
the code generator has to insert a spill and reload—it can’t just delete the edge. This
algorithm applies to a call that returns to a normal or an alternate continuation. Note that
an alternate continuation in particular might return results to a stack location. If the call
invokes a continuation, instead of returning, the algorithm is the same, except that along
that path there is no such thing as a callee-saves register.”

Finally, we can deal with non-invariance as follows. If a non-invariant variable x is live
across the call, then by definition there is an edge D, — U, corresponding to z. The call
may contain use(z), but it may not contain kill(z) or def(z). For each such variable, we
insert mutate(z) into the phantom block for the call. mutate(x) is equivalent to z < pu(x),
where p is an unspecified function. It has the effect of replacing the edge D, — U, with a
pair of edges D, — Ug; De — U,.

To translate a call, the back end performs these steps:

1. Create a “prolog block” moving the arguments into the correct locations in registers
and on the stack, according to the parameter-passing convention. This block cor-
responds to code that is executed before the call, and it can be optimized (e.g., by
allocating variables to parameter registers).

2. For the call itself, create a non-deterministic fork node in the flow graph, with an out-
going edge for the normal return, plus outgoing edges for each alternate continuation,
for each invoked continuation, and for also aborts (if present). This node will be
translated into the call instruction itself. This node might also include a def, e.g., if
the call instruction puts the return address in a register.

3. For each outgoing edge from the fork, construct a phantom basic block representing
the effect of the call. This phantom block will contain the def, use, kill, and mutate
directives given above. Each phantom block will have its own “epilog block.”

4. The epilog block for the normal return should contain a copy instruction for each re-
sult, which should move the result from its conventionally determined location into the

"Except for things like the stack pointer or kernel registers that the compiler must not touch.
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a = $P1’
b a;
c = a;
|
f( word32 a ) { $p1 = ¢; | prolog
word32 b, c; l
b = a; @
c = a;
b, c=f(c)
also returns d to {  use $p1 use $pl
kill vol. regs. .
return( b + d ); kill vol. regs.
’ def $r1 def d
; def $r2
c=b+ c+ a; T
return( ¢ );
} normal b = $r1; alternate
epilog c = $r2; epilog
|
c = b+ct+a; _ .
$r1 = c; $r1 =D+ dq;

Figure 9: Example control-flow graph for translation of procedure with call

C-- variable named in the C-- call. (For most calling conventions, this block should
also be annotated to show that it must follow the call instruction in the generated
code.)

5. The epilog blocks for also returns continuations can be empty—the def operation
in the phantom block represents the action of the run-time system in storing the
return values in the proper locations.

6. The epilog blocks for invokes continuations should contain more copy instructions,
again to move the returned values from their conventional locations into the variables
named in the continuation statement. (Alternatively, one could move these copies
to a prolog for the continuation.) These blocks then lead to the corresponding
continuations. If SSA is used, ¢ functions may have to be inserted.

Assuming parameters are passed in registers $p1, $p2, ..., and results are returned in
registers $rl, $r2, ..., Figure 9 shows an initial translation from an example C-- function
to a flow graph. Figure 10 shows the same flow graph, but with the proper mutations
inserted into the phantom blocks. It uses static single-assignment numbering (Alpern,
Wegman, and Zadeck 1988; Rosen, Wegman, and Zadeck 1988; Appel 1998) to make it
easier to identify flow edges. It also shows the assumptions made about parameters, results,
and callee-saves registers (c.s.r.) at entry and exit nodes.



46 7 DISCUSSION AND RELATED WORK

Enter
def c.s.r
def $P].1

$pls = cy; prolog

use $pl,
kill vol. regs. kiﬁsjofprljgs_
2 b b5 = u(by)
def $r1; 3def 4 !
def $12; !
)
normal by = $rly; alternate
epilog cy = $r2y; epilog
!
Cc3 = ba + c2 + ag; _ .
$rly = c3; Srls =bs +dy;

$I‘14 = ¢($I‘12, $I‘13)
use $rly
use C.s.I.

Exit

Figure 10: Flow graph with SSA numbering

7.7 Other related work

Chase (1994a) and (1994b) provide helpful, clear explanations of the techniques required
to implement both synchronous and asynchronous exceptions. Liskov and Snyder (1979)
discuss both the programming methodology in which exceptions should be used and the
efficiency of their implementation. Hennessy (1981) discussses the interaction of exceptions
and optimizations, especially global and interprocedural optimizations.

Other researchers have used the terms “stopping point” and “GC point” instead of “safe
point” (Reppy 1990). Liskov et al. (1987) describes an implementation of pre-emption in
which the only safe points are in procedure prologs; overhead is reduced by making pre-
emption appear as stack overflow.

Linton (1990) describes a widely ported debugger. Hanson and Raghavachari (1996) de-

scribes a debugger in which the front end generates code to check for breakpoints dynam-
ically and to maintain “shadow” versions of back-end data structures like the stack. This
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technique makes the debugger machine-independent at a cost of a factor of 3—4 in both
space and time. Ramsey (1992) describes the design of a retargetable debugger, including
a discussion of the supporting information recorded by the front end. The approach costs
about a factor of 2 in space overhead, but no time overhead. Ramsey (1992) also describes
a retargetable stack walker, which could be used to implement NextActivation in the C--
run-time interface.

It would be nice to say something about the CAML runtime, which has been used to support
several languages, but we don’t know of any published work.

Hauser (1996) discusses language support for floating-point exceptions.

Reppy (1990) discusses the use of safe points in the conversion of asynchronous signals to
high-level exceptions.

Hieb, Dybvig, and Bruggeman (1991) presents a technique for using non-contiguous chunks
of memory to implement a thread stack, and explains how to deal with stack overflow and
underflow.

8 Open problems

There are number of aspects of our design that are incomplete.

e There is a significant piece missing from C--, one which is not related to run-time
support, but which must be added if we are to meet our goal of competing with
compiler-specific code generators. There is no way for the front end to tell the C--
code generator what it knows about aliasing. This knowledge is particularly im-
portant for compiling statically typed functional languages, like Standard ML and
Haskell. Programs written in these languages do lots of allocation, and therefore
do lots of storing into newly allocated records. However, most previously allocated
records are immutable, and the front end can easily guarantee, without sophisticated
analysis, that loads from these records have no dependencies with stores into newly
allocated records. Compiling without this information may cause an unacceptable
loss of performance.®

e We haven'’t specified the exact semantics of foreign calls, or how they interact with
the scheduling mechanism. For example, if a front-end procedure wants to raise a
synchronous exception, it is not clear whether it should make a foreign call into the
exception dispatcher or whether it should execute a special kind of yield. This
omission makes the example in Section 6.2.1 a bit fuzzy.

e They were introduced to support debugging by providing a map from soure-code
locations to object-code locations, but named safe points seem to subsume many
other mechanisms, especially if one is willing to assume that programs are suspended
only at safe points. (This assumption need not hold for faulty code—exactly the case
where one wants a debugger.) Given named safe points, is it desirable also to have
spans? Is it necessary to have a separate mechanism for alternate continuations?

8Private communication from Lal George.
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8 OPEN PROBLEMS

If we were only interested in garbage collection, exception handling, and concurrency,
we could eliminate spans and have the front end attach its information to safe points.®
Because we want to support debugging, however, we need to be able to get information
about a faulty procedure no matter where its execution is suspended.

The C-- run-time interface provides no way for a debugger to call a procedure in
the target program. It might suffice to be able to push new activations on a C--
stack. (In single-threaded programs, calls have to share a single stack with the target
program and with interrupt frames.) Pushing new activations might also be needed
to implement a resumption model of exception handling.

We need an interface for the C-- run-time system to get memory from the front-end
run-time system in case of stack overflow.

The two-stack model has been used in other systems, including Standard ML of New
Jersey (Appel 1990). Although this model typically requires some assembly language
to manage the transfer of control, it can attractive because it offers complete freedom
to the implementor of the C-- stack.'® It would still be desirable, however, to be able
to run generated C-- code and the run-time system on the same stack, avoiding both
assembly language and issues of stack overflow. Regrettably, such an implementation
would require changes to the C-- run-time interface. C-- would no longer transfer
control by a C-- yield, which returns from Resume, but would instead call directly
into the front-end runtime. Such an interaction may be possible, but it requires further
investigation.

We suspect that compiler writers might want access to alternate continuations from
generated C-- code, not just from the run-time system. It might be desirable to emit a
direct return to an alternate continuation, for example. On some machines, including
the SPARC, this could be done efficiently by representing alternate continuations as
branch instructions in the instruction stream itself. The cost might be as low as one
extra word per call site. On the other hand, invoke is almost as cheap. This is a
matter for experimentation.

It is not clear under what circumstances a “call site” should be considered the location
of the call instruction and under what circumstances it should be considered the
instruction at the return address. The former is where we want to set breakpoints,
but the latter is the locus to which a suspended activation returns.

The continuation and invokes constructs could in principle be used to implement
coroutines without assistance from the run-time system, but such an attempt might
be ill-advised. For example, how would one communicate to the C-- run-time system
that one had switched to a different stack, and therefore that a different test should
be used for stack overflow? The details remain to be investigated.

It is not clear how to indicate the type of a literal constant. This information is
especially needed when one of the arguments to a C-- procedure is a literal constant.

9There may, however, be significant performance advantages (reduction in size of initialized data) to

having the back end implement the mappings, enabling it to exploit its knowledge of the ordering of program
counters.
10To hell with register windows!
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e We have not decided whether C-- should support foreign jump, that is, a tail call
to a procedure with a non-standard calling sequence. NR believes that different front
ends may want to use a single C-- implementation with different calling sequences.
He conjectures that some people may even want to experiment with multiple calling
sequences for calls between C-- procedures, even in a single front end. For example, in
a hybrid OO language, he can imagine using one calling sequence for method calls and
another for procedure calls, perhaps using different numbers of callee-saves registers.
SLPJ is concerned about imposing an unknown implementation burden in exchange
for unclear gains.

e We have not precisely defined the idea of statically evaluatable expressions (“constant
expressions” ). These should include, e.g., integer literals, names declared with const,
differences of two addresses in the same data section (or stack frame), etc.
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