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Abstract

We propose a simple and efficient approach for pre-training
deep learning models with application to slot filling tasks in
spoken language understanding. The proposed approach lever-
ages unlabeled data to train the models and is generic enough to
work with any deep learning model. In this study, we consider
the CNN2CRF architecture that contains Convolutional Neu-
ral Network (CNN) with Conditional Random Fields (CRF) as
top layer, since it has shown great potential for learning use-
ful representations for supervised sequence learning tasks. The
proposed pre-training approach with this architecture learns the
feature representations from both labeled and unlabeled data at
the CNN layer, covering features that would not be observed
in limited labeled data. At the CRF layer, the unlabeled data
uses predicted classes of words as latent sequence labels to-
gether with labeled sequences. Latent labeled sequences, in
principle, has the regularization effect on the labeled sequences,
yielding a better generalized model. This allows the network to
learn representations that are useful for not only slot tagging
using labeled data but also learning dependencies both within
and between latent clusters of unseen words. The proposed
pre-training method with the CRF2CNN architecture achieves
significant gains with respect to the strongest semi-supervised
baseline.

Index Terms: Unsupervised pre-training, semi-supervised slot
filling, convolutional neural network, triangular CRF.

1. Introduction

There has been tremendous investment on personal digital assis-
tants (PDAs) and agents in recent years [1]. Spoken language
understanding (SLU) has emerged as the main interface to in-
teract with the PDAs. Robust SLU systems consider three main
tasks to extract meaning from user utterances: domain and in-
tent classification and slot filling [2]. Building highly accurate
models for each of these tasks is of critical importance for im-
proved user experience and fast task completion with PDAs.
Recently, deep learning based techniques have been heav-
ily applied to speech and language understanding problems in-
cluding language modeling [3], text processing [4], multi-modal
learning [5, 6], to name a few. The strength of neural net-
works (NN) is in learning the feature representations from large
amounts of unlabeled training data and using them for task spe-
cific models. Such models, in theory, should yield the same
performance with less amount of labeled training data. Recent
research on using the labeled and unlabeled data has reported
successful results using two step learning methods, where initial
representations are obtained from unlabeled data through pre-
training (e.g., auto-encoders, hidden unit CRFs) [7, 8], which
are later used as initial representations in task specific super-

vised models. In more recent work [9, 10], a simultaneous
learning of the network structure using supervised and unsu-
pervised training have been investigated. For instance, in [9] a
NN classifier model is presented where the network weights at
each layer are trained by minimizing the combined loss function
of an auto-encoder and a classifier. In [10], a joint pre-training
and NN classification is presented that learns the network from
both labeled and unlabeled data. They simultaneously predict
pseudo-labels for the unlabeled data, and update the weights
based on the loss function measured by the difference between
the actual and pseudo labels against the predicted labels.

In this work, we present a new pre-training method for deep
NNs in general, CNNs in particular, for slot tagging by way of
semi-supervision. Our goal is to jointly learn the network struc-
ture from large unlabeled data, while learning to predict the task
specific semantic (slot) tags from labeled sequences. Extend-
ing the supervised CNN with CRF architecture of [11], we use
CNN as the bottom layer to learn the feature representations
from labeled and unlabeled sequences. At the top layer, we use
two CRF structures. The first CRF model weights are updated
only with the labeled training data where the output sequences
are comprised of slot tag sequences. The second CRF model
weights are updated with the unlabeled utterances, where the
latent class labels are used as output sequences. This allows
the network to simultaneously learn the transition and emission
weights for slot tagging and class labeling of the words in ut-
terances in a single model. The key challenge is to find "rep-
resentative” output label sequences (i.e., latent class sequences)
for the unlabeled utterances, which in turn should be related to
the task of interest. Thus, we first cluster the words of the un-
labeled data and use the predicted cluster IDs of each word as
latent sequence tags. This enables us to build a structure, which
we denote as CNN2CREF. This structure consists of two super-
vised CRF models with different output sequences, i.e, slot tag
sequences for labeled data, and latent cluster id sequences for
unlabeled data. With our proposed method, we are able to show
that the proposed method with the CNN2CRF network archi-
tecture achieves gains over strong baselines.

In the next, we present the the CNN2CRF architecture
provinding details on the CNN and CREF layers as well as the
latent clustering. The experiments and results are presented in
section 3 followed by the conclusion.

2. Pre-Training for CNNs

The slot filling task of SLU involves extracting relevant seman-
tic constituents from natural language utterances. It is often
formulated as a sequence labeling task, where a sequence of la-
bels are jointly assigned to the words of a sentence. Recent NN
models use a variety of structures for slot filling: a recurrent
neural network (RNN) [12, 13, 14], or a long short term memory
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Figure 1: CNN with two CRF layers (CNN2CRF) that use labeled and unlabeled data respectively.The network has one convolutional
layer. The width of the feature transformation layers are 3 with F number of filters (F'=7 is chosen for demonstration). Pooling of the
features (e.g., max-pooling) generate feature layer h which is fed to the CRF layers. Left CRF learns the weights 6T on labeled data to
generate slot tag sequences, whereas the CRF on the right learns the weights 0° on unlabeled data sequences to generate latent class
label (cluster-id) sequences. Each CRF shares the same features from CNN layer.

(LSTM) [15] or a CRF model stacked over a CNN bottom layer
[11], which show improved performances over baselines such
as CRF. CNNs have enjoyed wide success in the last few years
in several domains including images, video, audio and natural
language processing. In this paper, although we use CNN as
the feature representation learning layer- due to its speed and
efficiency for learning representations, it can be easily replaced
by a recurrent neural network (e.g., LSTM[16] or GRU[17]),
making our approach generic enough to work with other state
of the art deep learning methods. This will be investigated as
part of the future work. Figure-1 shows an overview of the pro-
posed CNN2CRF architecture, which comprises of three main
components: a CNN as encoder and two top layers of CRFs as
decoder. In the following, we explain our two layer-3 compo-
nent model in detail.

2.1. CNNs for Learning Features for Slot Tagging

In Figure-1 (bottom), 1-dimensional CNN layer uses labeled
and unlabeled word sequences to extract continuous-valued
features. It can handle input sequences (as sequence of
words) of varying lengths. They utilize layers with convolv-
ing filters that are applied to local features [18], which are
combination of words or representation of words obtained
from pre-training (e.g., vector representations of words, also
known as word embeddings). Every filter performs convo-
Iution on the sentence matrix and generates feature maps.
First, the words are embedded into low-dimensional vectors.
Next, convolutions over the embedded word vectors are per-
formed using multiple filter sizes, fj—1,..,r. For example,
sliding over ¢=3 words at a time, using the first filter f;
the feature vector for center word i ‘marked is: h;; =
>, a(eial' emails’, "marked’,” important’] x f;a), where d is
the d = cxembeddingdimension. Figure-1 is only showing
the calculation of the center words ‘marked’” from labeled and
‘read’ from unlabeled data. Next, max-pool or sum-pool is ap-
plied on the result of the convolutional layer into a long fea-
ture vector. Here, we use sum-pooling, which generated bet-
ter results in our experiments. Random dropout on the feature

vector dimensions is used for regularization. The automatically
learned feature vectors of each word through CNN is shared by
the top CRF layers to predict the best sequences.

2.2. The CNN2CREF with Pre-Training

The two top CRF models are essentially the same as 15¢ or-
der CRF models- the only difference is that the features from
the word sequences are automatically extracted from the bot-
tom CNN layers, instead of user defined features and n-grams.
The conditional distribution of the first CRF with slot tag labels
(Figure-1 top-left) is given by:
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where S” is the words sequence from labeled data, t(Y;—_1, Y;)
is the tag transition score from Y;_1 to Y;. h;;(S;, E, F) de-
notes the j** element in the feature vector extracted out of the
c-gram window centered at S; using the word-embedding E
and feature transformations filters F' of the center word and its
¢ window. HJ-L (Y;) is the corresponding feature weight associ-
ated with the tag Y;. The second CRF is similar to the first, but
it only uses latent class labels:

P(Y|SH) =
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where HJU (C5) is the corresponding feature weight associated
with the class C;. One of the CRFs is performing sequence tag-
ging on labeled training data using slot tags as labels, the other
one is also performing sequence tagging on unlabeled data us-
ing class IDs as tags. Hence, the multi-task CNN2CRF archi-
tecture has two separate loss terms both of which tries to min-
imize the negative conditional log-likelihood of the true parse
according to the model, {6%,0V}. The labeled loss term (LL)
uses the true slot tags y® given a sentence word sequence

P(C|sY) =
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wheres the unlabeled loss term (UL) uses the predicted
(latent) class labels C'*) given unlabeled word sequence
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Because the total number of labeled data and unlabeled data is
quite different and the training balance between them affect the
prediction of slot tags for a given utterance, we weight in the
unlabeled loss using the following criterion:

loss=LL+ «a(t)«xUL 5)

where «(t) is a balancing coefficient. The proper selection of
a(t) is important in the network’s performance. Rather than
iterating over a range of values and setting the optimum value
based on the performance of the network on a development set
(which is a common approach), we follow the deterministic an-
nealing process of [19] in which the network starts with small
a(t) ~ 0.0001 and is slowly increased following the criterion:

0 t<T
alt)=q s Ti>t<T ()
agf To >t

with ay = 3, T1=100, T5=600. This is expected to avoid
the poor local minima, should the unlabeled data labels are too
noisy or the size of the unlabeled data is too large.

The training of the topmost layer is same as training a

standard CRF model. The bottom layers are trained using the
well-known back propagation algorithm which is essentially the
chain rule of derivatives. We take the derivative of the loss
function with respect to each hi; (S, E, F) at the top layer
((u|l),:1abeled or unlabeled) with respect to E and F by apply-
ing the chain rule to the CNN layer.
Latent Class Labels: The class labels of the unlabeled utter-
ances are initially captured in the following way: We convert
each word in the unlabeled data into vector representations such
that the relationship between two vectors mirrors the linguis-
tic relationship between the two words. Hence, we learn the
mapping V—RP W using a popular unsupervised embed-
ding method, namely GloVe [20], which captures the relevant
information about the relation of words from the original co-
occurrence matrix'. We later cluster the word embeddings into
K classes based on the nearest neighbor approach and assign
each word a cluster id, w=k€K. We use the class labels as
latent sequence tags for the unlabeled training data.

2.3. CNNCREF with Pseudo Labels

As a benchmark, we experiment our joint architecture with un-
labeled data without class labels, similar to [10]. At network
contruction time, we learn the CNN bottom network on both
unlabeled and labeled data, similar to our proposed approach.
Unlike our proposed CNN2CREF, for the unlabeled data, we do
not build a second CRF. Instead, we generate pseudo-slot tags

ICBOW [21] or CCA [22] can be used for embedding learning.

for the unlabeled data as if they were true slot sequences and we
refer this network as CNNCRF-P using the following loss:

Np, Ny
loss' = — Z logPy (Y(l) ‘S(l); 0)—a(t) Z logPy (Y(u) |S(u); )
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Q)
where the first term is same as in L L, the second term contains
the V() indicating the predicted tag sequences of the unlabeled
utterances from the single CRF layer and the 6 is learnt from all
the training data (dropping L and U superscripts since we have
only one CRF top model). We choose «.(¢)=0 until ¢ <77 so the
network learns the weights from labeled data initially. At ¢t=T7,
we start decoding the unlabeled data and use the predicted tags
V) as pseudo labels decoded from the last weight update.

3. Experiments

Datasets: The internal corpora used for training and testing
consists mostly of logs of spoken utterances or typed input col-
lected from real users of Cortana Microsofts PDA. We focus
here on 9 domains, as shown in Table 1. The scenarios involve
the users interacting with the devices (e.g., phone, tablet, desk-
top, console, etc.) by voice with a system that can perform a va-
riety of tasks in relation to each domain, including (among oth-
ers) browsing, searching, playing, purchasing, setting up alarm,
setting device configuration parameters, etc. We use the tran-
scribed text utterances obtained from ASR engine. Per domain,
we used 100K and 20K utterances for train and test dataset re-
spectively. The unlabeled training data is 10 times as large as
the labeled training data.

Models: For benchmark purposes we use (i) the linear chain
CREF, (ii) supervised CNNCRF [11], (iii) supervised RNNCRF?
[23] with n-gram features (up to 3-grams) and (iv) supervised
CNNCREF with pre-training (CNNCRF-Pre), where we used the
same GloVe embeddings as initial word embeddings. We com-
pare the benchmark models, which do not use unlabeled data,
against the proposed CNN2CREF that uses class labels for unla-
beled data and CNNCRF-P that uses pseudo labels.

We use stochastic gradient descent to learn the model pa-
rameters. We use development set to track the training process.
We started the learning rate from 0.005 which halves every time
the result on the dev set ceases to improve for 5 consecutive it-
erations. For stopping criteria we used the learning rate which
stopped the training process if the rate falls below 0.0001. We
initialized all the network parameters randomly. We chose to
use rectifier activation function at input feature layer h along
with dropout for regularization (with dropout probability 0.5).

We minimally swept the parameters for the hidden layers,
convolutional n-gram windows and feature filter sizes. Un-
less stated otherwise, we used 100 dimensional embedding vec-
tors, 100 for hidden feature layers and 3-gram window centered
around the current position. We only used lexical features.

3.1. Experiment-1: Overall Slot Performance

In this experiment, we compare the proposed CNNCREF to the
benchmark models on the slot filling performance. Table-1
shows the benchmark results in F-score on 9 different domains.
The average scores of the domains per model is shown in the last
row. Although on average, CNN2CRF outperforms all the other
models in almost all domains as well as the average F-score,
the improvement may not be considered statistically significant

2code:https://rnnsharp.codeplex.com/



Table 1: Comparison of F-Scores of NN models on different
domains. The last line indicates the average F-Score on test
data averaged over 9 domains. The winning model F-Score is
shown in bold.

Domain| CRF |CNNCRF [RNNCRF [CNNCRF-Pre |[CNN2CRF (CNNCRF-P
alarm | 96.21 | 96.17 96.18 96.08 96.74 96.09
calendary 91.33 | 91.41 91.21 91.23 91.62 90.23
notes | 88.32 | 88.89 87.82 88.80 89.00 88.29
media | 93.67 | 94.30 93.74 93.34 94.96 93.84
devices| 92.64 | 94.51 94.25 94.33 94.43 94.25
flights | 93.30 | 94.69 92.86 94.65 93.76 93.24
hotels | 93.47 | 93.25 92.01 93.11 94.00 93.38
sports | 82.90 | 83.68 82.36 83.26 83.93 83.11
travel | 87.18 | 89.20 87.60 89.20 89.44 88.94
average| 91.11 91.90 90.89 91.46 91.93 91.55

(based on t-test) for some domains (e.g. sports, travel) Never-
theless, in some domains the proposed CNN2CRF improves the
F-Score to more than 0.5 F-score points, e.g., alarm and media,
which is statistically significant given the results (t-test, p<0.1).

It is worth to note that, we used strong baselines in this
experiment attributing to comparable results in Table-1. To
further justify the performance improvement of the proposed
CNN2CRF model on statistically significant domains against
the strongest baseline, CNNCRF, we investigated the predic-
tion errors of both models. We observe that the CNN2CREF is
able to tag the out-of-vocabulary words in testing data, which
doesn’t appear in labeled training data, correctly while CN-
NCRF missed them half of the times. Also, the CNN2CRF
makes less mistakes on tagging the words that appear less fre-
quently (less than 3 times) given a window of words. Some
examples are shown in Table 2. For instance, although ’dvd’ is
one of the frequent words in devices domain, the training data
did not include “to start dvd” as frequently as "to play dvd”
or “files on dvd” causing the baseline models fail, which the
CNN2CRF models tags correctly.

Table 2: Samples of slot tag results. Underline words are tagged
differently by CNN2CRF and CNNCRF models, shown in the
last two columns. Bolded are correctly predicted slot tags.

utterance CN2CRF CNNCRF
who is mount everest place-name | actor-name
how to start dvd device-name storeage
open blank word document doc-type (0]

These results can be easily attributed to the fact that the
CNN2CREF learns features for words from a richer context be-
cause the CNN layer uses large number of unlabeled data. In
addition, the CRF layer learns the context conditioned not only
on the slot tags but also on the latent class tags, which have
the regularization affect on learning representative word con-
text features.

3.2. Experiment-2: Scalability

In this experiment, given that we can build the CNN2CRF net-
work with labeled and unlabeled data, we wanted to test how
much labeled data would be sufficient to obtain the same per-
formance. For this, we start with 10% labeled training data to
build the network and use all the unlabeled traning data and
measure the networks performance. We then incrementally add
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Figure 2: Scalability Analysis: how much labeled data we
should use together with unlabeled data to reach the perfor-
mance of a model when all labeled data is used for training.

more labeled training data - doubling the size of the training
data at each experiment and report results on test data. We
compare CNN2CRF and CNNCRF-P as well as an additional
model which we call Ghost CNNCRF. The Ghost CNNCRF
uses unlabeled and labeled training data similar to CNN2CRF
and CNNCRF-P, but does not use the unlabeled data for learn-
ing the CRF layer as the other two. The unlabeled data is only
used to learn the parameters of the CNN layer.

Figure-2 shows the results in a graph. The striking thing
to note is that, when unlabeled data is used to train the CRF
structures as in CNNCRF-P and CNN2CRE, with only 10-20%
labeled training data one can achieve almost 90% F-score. The
CNN2CRF does actually show a better performance than the
CNNCREF-P as it uses the pre-trained class labels as labels to
learn a secondary CRF model, which demonstrates the impact
of the pre-training technique presented in this paper.

4. Conclusions

We have described a new pre-training approach for convolu-
tional neural network with conditional random fields approach
that uses the latent class labels as sequence tags for the unla-
beled utterances. This is, in effect, a regularization on the word-
slot tag relations regulated by the word-class relations. Our
network achieves comparable performance on slot filling tasks
for real conversational agent data without extensive amount of
manually labeled training data.

Our recent experiment (after the paper has submitted) has
shown that using NN structures other then CNN’s such as RNNs
provide additional information in learing the latent features
for the multiple tasks. We were able to show improvements
on ATIS dataset.We will inveistigate this further on the other
datasets presented in this paper. In addition, one interesting di-
rection is to build an end-to-end framework where the learning
of the latent class labels from unlabeled data are also handled
by the same network. We leave these as future work.
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