
Under
onsideration for publi
ation in J. Fun
tional Programming 1

Constru
ted Produ
t Result Analysis for Haskell

CLEM BAKER-FINCH

The Australian National University

(e-mail:
lem�
s.anu.edu.au)

KEVIN GLYNN

The University of Melbourne

(e-mail: keving�
s.mu.oz.au)

SIMON PEYTON JONES

Mi
rosoft Resear
h, Cambridge

(e-mail: simonpj�mi
rosoft.
om)

Abstra
t

Compilers for ML and Haskell typi
ally go to a good deal of trouble to arrange that

multiple arguments
an be passed eÆ
iently to a pro
edure. For some reason, less e�ort

seems to be invested in ensuring that multiple results
an also be returned eÆ
iently.

In the
ontext of the lazy fun
tional language Haskell, we des
ribe an analysis, Con-

stru
ted Produ
t Result (CPR) analysis, that determines when a fun
tion
an pro�tably

return multiple results in registers. The analysis is based only on a fun
tion's de�nition,

and not on its uses (so separate
ompilation is easily supported) and the results of the

analysis
an be expressed by a transformation of the fun
tion de�nition alone. We dis
uss a

variety of design issues that were addressed in our implementation, and give measurements

of the e�e
tiveness of our approa
h a
ross a substantial ben
hmark set.

Overall, the pri
e/performan
e ratio is good: the bene�ts are modest in general (though

o

asionally dramati
), but the
osts in both
omplexity and
ompile time, are low.

1 Introdu
tion

A good
ompiler for ML or Haskell will ensure that multiple arguments are passed

to a fun
tion using an eÆ
ient
alling
onvention. For example,
onsider a fun
tion

of type

f :: (Int, Int) -> Int

This fun
tion takes a pair of Ints as its (single) argument. While the programmer

may apply f to an existing pair, it is mu
h more
ommon for the argument pair to

be
onstru
ted at the
all site; that is, a
all often looks like f (e1,e2). In this
ase,

a good
ompiler
an simply pass the two arguments in registers, rather than boxing

them into a pair �rst; this transformation is
alled argument
attening (App92), or

arity raising (HH98)

1

.

1

S
heme �nesses the problem by making multi-argument fun
tions part of the language.

2 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

It is also
ommon for fun
tions to return multiple results:

g :: Int -> (Int, Int)

There is no reason in prin
iple why returning multiple results should be any less

eÆ
ient than passing multiple arguments| after all, the same registers are available

| but in pra
ti
e it is less often optimised. In this paper we present an analysis

and a

ompanying program transformation for Haskell that optimises fun
tions

that return multiple results. Our
ontributions are as follows:

� We show how to use the so-
alled `worker/wrapper transformation' to opti-

mise the
alling
onvention of a fun
tion that returns a produ
t (Se
tion 2).

� We have implemented the analysis and transformation in the Glasgow Haskell

Compiler (GHC), a state-of-the-art
ompiler for Haskell. As is usually the

ase, a large set of issues were exposed as we s
aled up the original idea into

a real implementation, as we dis
uss in Se
tion 3.

� We present an analysis to determine when it would be helpful for a fun
tion

to return its result unboxed (Se
tion 4). This analysis is, by design, not type-

based: it is based on the a
tual form of the fun
tion de�nition.

� We give measurements to show the e�e
tiveness of the transformation in

pra
ti
e (Se
tion 6).

Our approa
h has the following desirable properties:

� It is simple to des
ribe and implement.

� It is
ompatible with separate
ompilation (Se
tion 5.2).

� It never in
reases the amount of heap allo
ation.

� It is safe for spa
e (Se
tion 3.11).

Other approa
hes either
annot o�er these performan
e guarantees, or else require a

rather sophisti
ated whole-program analysis. We dis
uss related work in Se
tion 7.

2 The idea

We begin by outlining the main idea of the paper. Consider the following fun
tion:

dm :: Int -> Int -> (Int, Int)

dm x y = (x `div` y, x `mod` y)

We would like to express the fa
t that dm
an return its result pair unboxed. We

do this by splitting dm into a wrapper and a worker, thus:

dm :: Int -> Int -> (Int, Int)

dm x y =
ase dmw x y of

(# r1, r2 #) -> (r1, r2)

dmw :: Int -> Int -> (# Int, Int #)

dmw x y = (# x `div` y, x `mod` y #)

Constru
ted Produ
t Results 3

The worker, dmw, returns an unboxed tuple; we write unboxed tuples using `(#' and

`#)' parentheses in both types and terms. The idea, of
ourse, is that the
alling

onvention for a fun
tion that returns an unboxed tuple arranges to return the

omponents in registers. Unboxed tuples are a built-in type in our
ompiler (PL91).

The wrapper, dm, serves as an impedan
e mat
her to interfa
e
allers expe
ting

to
all dm with the worker dmw. The wrapper is inlined at every
all site. So, given

the
all

ase dm x y of

(p,q) -> <e>

we inline dm, to obtain

ase (
ase dmw x y of

(# r1, r2 #) -> (r1,r2)) of

(p,q) -> <e>

whi
h
an readily be transformed to

ase dmw x y of

(# p,q #) -> <e>

In this
ase, the result of dm is immediately s
rutinised by a
ase expression, and

indeed this is quite
ommon. But if not, nothing is lost. We simply end up with a

all looking like this:

...(
ase dmw x y of (# r1,r2 #) -> (r1,r2))...

All that has happened is that the
ode required to allo
ate the result pair has moved

from the body of dm to the
all site.

2.1 The general worker/wrapper transform

The example fun
tion dm had a right-hand side that
onsisted solely of a
onstru
tor

appli
ation, so the worker/wrapper split was easy to perform. But if the body of the

fun
tion is not a simple
onstru
tor appli
ation, it is less obvious how to
onstru
t

the body of the worker.

However, the following transformation does the worker/wrapper split regardless

of the form of the original fun
tion. Suppose that the de�nition of f is:

f :: Int -> (Int, Int)

f x = <e>

for some arbitrary expression \<e>". Then the following transformation is always

valid:

f :: Int -> (Int, Int)

f x =
ase fw x of

(# r1,r2 #) -> (r1,r2)

4 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

fw :: Int -> (# Int, Int #)

fw x =
ase <e> of

(r1,r2) -> (# r1,r2 #)

Indeed, if this general transformation is applied to the fun
tion dm des
ribed earlier,

the body of dmw qui
kly simpli�es to the form given.

As we shall see later, pairs and general tuples are examples of produ
t types

(single-
onstru
tor algebrai
 data types) and our analysis extends smoothly to all

su
h types.

2.2 Returning single arguments unboxed

So far we have stressed the bene�ts of returning multiple arguments eÆ
iently. But

the same transformation
an be extremely bene�
ial even when returning a single

result, be
ause instead of returning the result wrapped in a heap-allo
ated box, we

an return the
ontents of the box. A parti
ularly important spe
ial
ase is the Int

type. In GHC, the Int type is de�ned like this:

data Int = MkInt Int#

Here, Int# is the type of 32-bit unboxed integers (PL91); a value of type Int is

represented by a heap-allo
ated MkInt
onstru
tor whose
ontents is of type Int#.

Fun
tions over Int are de�ned using pattern mat
hing, as with any other al-

gebrai
 data type. For example, a fun
tion that in
rements its argument
an be

expressed like this:

in
 :: Int -> Int

in
 (MkInt x) = MkInt (x +# 1)

where +# is the fun
tion (a
tually, ma
hine instru
tion) that adds two unboxed

integers. Unless we do something about it, this fun
tion returns a boxed Int in the

heap, just as dm returns a boxed pair. The worker-wrapper transformation gives:

in
 :: Int -> Int

in
 x =
ase (in
w x) of

y -> MkInt y

in
w :: Int -> Int#

in
w (MkInt x) = x +# 1

(The slightly strange-looking phrase \
ase (in
w x) of y -> ..." means \eval-

uate in
w x and bind the result to y"; using
ase rather than let expresses the

eagerness of the
all.) The worker fun
tion in
w returns its result, of type Int# in a

register, rather than heap-allo
ating a MkInt box as the original fun
tion in
 did.

In numeri
ally-intensive
ode avoiding these allo
ations
an be a very big win, as

we show in Se
tion 6.

Constru
ted Produ
t Results 5

2.3 When is worker/wrapper bene�
ial?

Although the worker/wrapper transformation we have des
ribed is
orre
t, it is not

ne
essarily bene�
ial. In parti
ular, the worker fw takes apart and dis
ards the pair

returned by <e>, only for the wrapper f to re
onstru
t it. This a
tually makes things

worse, unless the
ase expression in fw is
ertain to
an
el with the
onstru
tion

of the pair in <e>, as is
ertainly the situation for our example dm.

Consider the fun
tion hdPr:

hdPr :: [(Int,Int)℄ -> (Int,Int)

hdPr (x:xs) = x

Here, we do not want to return the pair unboxed, be
ause the
all site might need

the pair in boxed form. If we unbox uniformly, we risk repeatedly re-
onstru
ting a

pair that already exists as a member of the list. Furthermore, unboxing it in hdPr

gains nothing: the pair already exists, so no allo
ation is saved.

The bottom line is this: we should only perform the CPR worker/wrapper trans-

formation if the result of the fun
tion is an expli
itly-
onstru
ted produ
t; that

is, one allo
ated by the fun
tion itself. We say that su
h fun
tions have the CPR

property | CPR stands for `
onstru
ted produ
t result'. This
ontrasts with a

type-based analysis, simply driven by the type of the fun
tion

2

, and whi
h would

therefore treat dm and hdPr uniformly.

So we
annot just apply the worker/wrapper transformation to any fun
tion that

returns a produ
t type. Will a simple synta
ti
 inspe
tion of the fun
tion body do

instead? Alas no. What if f looks like this?

f x = let ... in

ase ... of

p1 -> (<e1>, <e2>)

p2 -> (<e3>, <e3>)

Clearly, f does indeed allo
ate its return pair: we need to `look inside' let and
ase

expressions. What if we have a fun
tion g whi
h tail-
alls another fun
tion?

g x = h x x

h a b = (b,a)

That is, g does not
onstru
t its result expli
itly, but h does. If we do a

worker/wrapper split on h, and inline the wrapper in g, we will get

g x =
ase hw x x of

(# r1,r2 #) -> (r1,r2)

So now g does expli
itly
onstru
t its result. That is, in the end, g has the CPR prop-

erty if h does. If we had anti
ipated this, we
ould have done the worker/wrapper

split on g as well as h.

2

More pre
isely we mean `driven by the existing program types'. The abstra
t interpretation we

des
ribe next
ould of
ourse be formulated as a type system!

6 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

In short, we need to perform an analysis to identify those fun
tions for whi
h the

worker/wrapper split is desirable. A simple abstra
t interpretation will do the job

ni
ely, as we des
ribe in Se
tion 4.

2.4 Stri
tness analysis and argument
attening

For many years we have been using another sort of worker/wrapper transformation

to express unboxing of fun
tion arguments, based on stri
tness information (PL91;

PJS98). For example, if f :: (Int,Int) -> Int is stri
t, then we split f to

f x =
ase x of

(a,b) -> fw a b

fw a b = let x = (a,b) in <rhs>

where <rhs> is the original right-hand side of f. This is, of
ourse, simply the

traditional argument-
attening transformation, but in a lazy language argument-

attening is only valid for stri
t fun
tions.

We do not dis
uss the details here, but simply note that it is easy to make

a single worker/wrapper transformation that deals simultaneously with unboxing

both arguments and results, thus taking advantage of the information from both

stri
tness analysis and CPR analysis. For example, the in
 fun
tion from Se
tion 2.2

is
ertainly stri
t, so by
ombining stri
tness and CPR information GHC generates

the following worker/wrapper split:

in
 :: Int -> Int

in
 x =
ase x of

MkInt x' ->
ase (in
w x') of

y -> MkInt y

in
w :: Int# -> Int#

in
w x = x +# 1

Now
onsider the following
alls of in
:

in
 (in
 a)

Without optimisation, the inner
all to in
 allo
ates a MkInt box for its result,

whi
h is immediately taken apart by the outer in
. However, if we inline the wrap-

per for in
 twi
e, and simplify, the MkInt from the inner
all
an
els with the
ase

from the outer
all, so we end up with:

ase a of

MkInt a' -> MkInt (in
w (in
w a'))

The intermediate result is no longer allo
ated.

2.5 Summary

The unifying idea of our
ompiler is that of
ompilation by transformation (PJS98),

in whi
h the program is transformed by a su

ession of
orre
tness-preserving steps

Constru
ted Produ
t Results 7

into a more eÆ
ient form. Many of these transformations depend on the ability

to expose in the intermediate language some more
on
rete aspe
ts of the target

implementation. In parti
ular, our intermediate language in
ludes unboxed types

(su
h as unboxed integers and tuples).

Within this transformational framework, CPR analysis works as follows:

� First, we perform a large number of generi
 transformations (PJS98), in
lud-

ing inlining,
olle
tively implemented by the simpli�er.

� Next, we do stri
tness analysis and CPR analysis.

� Based on the information from both these analyses, we perform the

worker/wrapper transformation.

� Now we re-apply the simpli�er, whi
h will inline the wrappers at ea
h
all

site and use the extra detail at ea
h
all site to further simplify
alls to our

desired form.

The worker/wrapper transformation is entirely lo
al. The non-lo
al e�e
ts rely

on a fairly aggressive inliner whi
h, in e�e
t, propagates the lo
al e�e
ts of the

worker/wrapper transformation to the non-lo
al
all sites (PM99). As other trans-

formations take e�e
t new
all sites may show up, so the wrapper may be inlined

long after the worker/wrapper transformation is performed.

The whole idea of the worker/wrapper transformation is that it moves just a little

of the fun
tion's
omputation from the fun
tion de�nition to its
all sites. However,

if the body of the original fun
tion is very small, as is the
ase for dm above, then it

is probably better instead to inline the entire fun
tion. In our
ompiler we disable

the worker/wrapper split for fun
tions with small bodies, but our examples in this

paper will be small for the purposes of presentation. The worker/wrapper approa
h

to exposing a fun
tion's optimised
alling proto
ol was independently invented by

Goubault (Gou94), who
alled it partial inlining.

3 Working out the details

The basi
 idea of our analysis is simple but, as is often the
ase, the exer
ise of

implementing it in a produ
tion
ompiler showed up a number of unforeseen details.

In this se
tion we des
ribe these intera
tions. This material is a
ore
ontribution of

the paper: it bridges the gap between a promising idea and a real implementation.

3.1 User-de�ned produ
ts

So far we have fo
used on fun
tions that return tuples and Ints. What about

fun
tions that return values of other types?

A produ
t type is any algebrai
 data type that has exa
tly one
onstru
tor. The

built-in tuple types are
ertainly produ
ts, but the programmer may de�ne new

ones; for example:

data Point = MkP Int Int

diag :: Int -> Point

diag x = MkP x x

8 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

The same worker/wrapper transformation works for any fun
tion, su
h as diag,

that returns a produ
t. We do not need a new type of unboxed points for the

worker to return: an unboxed tuple of suitable arity will do �ne.

diag x =
ase diagw x of

(# a,b #) -> MkP a b

diagw x = (# x,x #)

In GHC, unboxed tuples are not �rst-
lass
itizens. The exist only to en
ode the

return-in-registers return
onvention, and are allowed only to the right of a fun
tion

arrow. Curiously enough, unboxed 1-tuples are sometimes required. Consider the

following produ
t type:

data Age = MkAge Int

age :: Age -> Age

age a =
ase a of

Age n -> Age (n+1)

The fun
tion is
ertainly stri
t, and
ertainly has the CPR property. Here is the

orre
t worker/wrapper split:

age :: Age -> Age

age a =
ase a of

Age n ->
ase agew n of

(# n1 #) -> Age n1

agew :: Int -> (# Int #)

agew n = (# n+1 #)

Noti
e that the worker returns a singleton unboxed tuple. It would be wrong to

write:

agew :: Int -> Int

agew n = n+1 -- WRONG

be
ause then agew would be stri
t in n, whereas the original fun
tion is not. Op-

erationally, a singleton unboxed tuple says \stop evaluating and return the result

now".

We have seen that GHC uses an ordinary algebrai
 data type, albeit with an

unboxed
omponent, to represent Int values (Se
tion 2.2). GHC uses similar al-

gebrai
 data types to represent
hara
ters and
oating-point numbers (both single

and double pre
ision). Su
h data types are usually built in, but they are not treated

spe
ially by GHC. Sin
e they are all single-
onstru
tor types, they are all produ
ts,

and
an be handled by the same analyses and transformations as user-de�ned data

types.

In the
ase of in
w (Se
tion 2.2), however, the worker
ould safely return the

single result without wrapping it in an unboxed 1-tuple, be
ause an unboxed Int#

is already fully evaluated. There is no di�eren
e in runtime representation between

Constru
ted Produ
t Results 9

returning x and returning (# x #), where x has type Int#, but the former seems a

little more e
onomi
al. So GHC's general rule is this: the worker of a CPR fun
tion

returns its result(s) in an unboxed tuple, unless there is exa
tly one result of unlifted

type (su
h as Int#, Float# et
).

3.2 Re
ursive types and sum types

So far we have spoken only about fun
tions that return a value of a produ
t type

(i.e. an algebrai
 data type with one
onstru
tor). What of re
ursive types, and

sum types? A re
ursive type is no problem, provided it is a produ
t: CPR analysis

simply unboxes the top level of the result value.

However, if the type has more than one
onstru
tor, it is less obvious how to

return it unboxed. In prin
iple one
ould imagine returning a tag, indi
ating the

onstru
tor that is being returned, and zero or more other �elds. To express this

idea as a sour
e-to-sour
e transformation we would have to introdu
e unboxed sum

types. This is entirely possible, and the payo� might be
onsiderable | lists are ex-

tremely
ommon | but it would require some extra ma
hinery in the intermediate

language for unboxed sums, and we leave that for future work.

Returning an enumerated value, e.g. a Bool, does not require any allo
ation

be
ause the returned value will be a pointer to a pre-existing
onstant in the heap.

But saving allo
ation is not everything, unboxing
an still produ
e bene�ts. If, as

is
ommonly the
ase, the
aller dispat
hes on the value returned by the
all, it

would be preferable to return an unboxed value: the dispat
h
ode would then save

a memory fet
h. However, in this paper we restri
t our attention solely to produ
t

types.

3.3 Re
ursive fun
tions

Consider the following fun
tion:

g :: Int -> (Int,Int)

g x = if x < 0 then (1,1) else g (x-1)

This fun
tion has the CPR property, be
ause when (and if) it returns, it will return

a
onstru
ted produ
t. The CPR analysis takes the form of an abstra
t interpreta-

tion that
al
ulates the abstra
t value of g in the standard way, using a sequen
e

of approximations, starting from ?. To make g have the CPR property, we should

therefore treat the abstra
t value ? as having the CPR property. In the extreme, a

fun
tion that always diverges has the CPR property va
uously | it never returns.

(Similarly, stri
tness analysis regards a fun
tion that always diverges as stri
t; if

g ? = ? we
an soundly use
all-by-value even if g diverges without evaluating its

argument.)

Having de
ided that g does have the CPR property, the worker/wrapper trans-

form gives:

g :: Int -> (Int,Int)

10 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

g x =
ase gw x of

(# p,q #) -> (p,q)

gw :: Int -> (# Int,Int #)

gw x =
ase (if x < 0 then (1,1) else g (x-1)) of

(p,q) -> (# p,q #)

The de�nition of gw rapidly simpli�es to

gw x = if x < 0 then (# 1,1 #)

else
ase g (x-1) of

(p,q) -> (# p,q #)

Re
all that the wrapper, g, should be inlined at all its
all sites, in
luding any
all

sites in the worker. If we inline g inside gw, and then simplify, the
ase expression

in the body of gw be
omes:

ase (
ase gw (x-1) of (# p,q #) -> (p,q)) of

(p,q) -> (# p,q #)

Inter
hanging the
ase expressions (a transformation GHC does a great deal) gives:

ase gw (x-1) of

(# p,q #) ->
ase (p,q) of

(p,q) -> (# p,q #)

Now the inner
ase
an
els out:

ase gw (x-1) of

(# p,q #) -> (# p,q #)

A �nal routine transformation gives:

gw (x-1)

So the simpli�ed de�nition of gw be
omes:

gw x = if x < 0 then (# 1,1 #) else gw (x-1)

This is just the result we hoped for: the worker is a simple, tight loop, while the

wrapper serves as an impedan
e-mat
her for external
allers.

3.4 Dealing with ex
eptions

Consider the following fun
tion:

hr :: Int -> Char

hr (MkInt i) = if (i>=0 && i<=255) then MkChar i

else error "Bad arg to
hr"

The fun
tion error prints a message and brings exe
ution to a halt

3

. Semanti
ally,

its value is just ?.

3

In a more re�ned semanti
s, error raises an ex
eption (PRH

+

99), but everything we say here

remains valid.

Constru
ted Produ
t Results 11

Does
hr have the CPR property? Clearly, yes! If it returns at all, it
ertainly

returns a
onstru
ted produ
t, and that is all that matters. So when performing

CPR analysis, we should treat a
all to error (whi
h is a built-in fun
tion) as having

the CPR property. This is entirely
ompatible with the treatment of re
ursion in the

previous se
tion, where we agreed that the abstra
t value ? has the CPR property.

On
e this is done, any \dressed up" versions of error will automati
ally also have

abstra
t value ?, and hen
e have the CPR property, as well. For example:

pani
 :: String -> a

pani
 msg = error ("Pani
: " ++ msg)

Taking advantage of error values in this way turns out to be important in pra
ti
e.

A signi�
ant minority of fun
tions have an error
ase that is expe
ted never to

o

ur, and it is very galling if these error
ases unne
essarily prevent the CPR

transformation from happening.

3.5 Conditionals and
onstants

What should happen if one arm of a
onditional
onstru
ts a produ
t, but the other

arm does not? In prin
iple, the Right Thing depends on the relative frequen
y with

whi
h the arms are taken, but our
urrent strategy is to be pessimisti
: if either

arm fails to return a
onstru
ted produ
t we deem that the
onditional does not

either.

An important spe
ial
ase
on
erns
onstants. Consider the fa
torial fun
tion:

one = MkInt 1

fa
t :: Int -> Int

fa
t n = if n==0 then one else n * fa
t (n-1)

Does fa
t have the CPR property? Well, `*' does, so the else bran
h does. But

what about the
onstant one? Sin
e one is bound dire
tly to a manifest
onstru
tor,

we may imagine inlining one at this usage site (without dupli
ating any work), and

hen
e we deem that it does have the CPR property despite our
omments in the

previous se
tion. Sin
e many re
ursive fun
tions have
onstant base
ases, this is

a good pragmati

hoi
e. The inlining of one happens automati
ally, elsewhere in

the
ompiler.

While this
hoi
e usually works well, we have found one or two programs for

whi
h it a
tually in
reases allo
ation. Consider:

signum :: Int -> Int

signum n = if n>0 then one

else if n==0 then zero

else minus_one

where zero and minus_one are de�ned similarly to one. signum returns only
on-

stants, so if a
aller happens to only want the result boxed, the wrapper for signum

will box the result at ea
h
all rather than sharing the boxed values one, zero, et
.

12 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

Here is a pla
e where it might be helpful to have two versions of the fun
tion: one

that returned its results boxed, and one that returned them unboxed. We do not

support multiple versions at present. Instead we a

ept that the CPR transforma-

tion
an o

asionally in
rease allo
ation, and experiments
on�rm that the e�e
t

is indeed rare (Se
tion 6).

3.6 Nested and higher-order fun
tions

Many fun
tions are de�ned lo
ally within some other fun
tion de�nition | not at

the top level of the program | and some may have the CPR property. Our analysis

has no diÆ
ulty with su
h de�nitions. We present measurements of how often su
h

de�nitions a
tually o

ur in pra
ti
e in Se
tion 6.

Our system works in the
ontext of a higher-order language, but if a fun
tion is

passed as an argument to another it must use the standard, boxed, return
onven-

tion. So the more that higher-order fun
tions are inlined, the more opportunities

we are likely to �nd for returning unboxed results.

3.7 Preserving laziness

The worker/wrapper transformation must be
areful to preserve laziness. Consider:

f :: Int -> (Int,Int)

f = let x = <expensive> in \y -> (x,y)

Does f have the CPR property? It
ertainly evaluates to a fun
tion that returns a

onstru
ted produ
t. But it would be a Bad Idea to perform the worker/wrapper

transform to:

f y =
ase fw y of

(# p,q #) -> (p,q)

fw y = let x = <expensive> in (# x,y #)

The new version of f gives the same result but the trouble now is that under
all-

by-need the expression <expensive> is evaluated afresh for ea
h appli
ation of f,

whereas in the original formulation it would be shared among all
alls to f. It

follows that we should analyse a fun
tion for the CPR property only if its lambdas

are `manifest'; that is, if the de�nition is of the form

f = \y -> <body>

More pre
isely, we insist that there must be enough lambdas to satisfy all the arrows

in f's type.

For a similar reason we also insist that there must be at least one lambda. For

example,
onsider:

t = if <e> then (y,z) else (z,y)

It looks as though t has the CPR property, but it would be wrong to blindly apply

the worker/wrapper transformation to t, be
ause that would give:

Constru
ted Produ
t Results 13

t :: (Int, Int)

t =
ase tw of (# p,q #) -> (p,q)

tw :: (# Int,Int #)

tw = if <e> then (# y,z #) else (# z,y #)

In the original de�nition, t might never be evaluated, and hen
e <e> might not

either. But in the new program tw is an unboxed value, so its evaluation
annot

be delayed | delaying implies boxing (PL91). So tw would have to be evaluated

stri
tly, whi
h might
hange the meaning of the program.

To summarise: we
an be sure to preserve laziness if we only perform CPR analysis

on de�nitions (a) that are of fun
tional type and (b) all of whose lambdas are

synta
ti
ally manifest. Under these
onditions, the worker/wrapper transformation

is un
onditionally sound ; the purpose of the analysis is only to (
onservatively)

approximate whether the transformation will be bene�
ial.

We still analyse the body of any fun
tion disquali�ed by these
onditions, in
ase

it
ontains lo
al fun
tion de�nitions that have the CPR property.

3.8 Join points

When performing the so-
alled `
ase-of-
ase' transformation, GHC often introdu
es

`join points' (PJS98). For example, if the Haskell programmer writes

f x y = if (x && y) then <e1> else <e2>

GHC will (after inlining && and doing a few transformations) derive:

f x y = let j = <e2>

in
ase x of

False -> j

True ->
ase y of

False -> j

True -> <e1>

Here, j is a `join point' where exe
ution joins if either x or y is False. Now suppose

that both <e1> and <e2> have type (Int,Int), and both return a
onstru
ted pair;

that is, both have the CPR property. Then we would like the whole expression to

have the CPR property. But we appear to be stymied, be
ause j is a thunk, and

hen
e won't be CPR'd be
ause of the
onsiderations of Se
tion 3.7.

Join points are very spe
ial, though: a join point is entered at most on
e. (On
e for

ea
h instantiation of the let that binds the join point, that is.) It would be possible

to re
ord this information somehow, and make use of it in the CPR analyser, but a

simpler alternative is to turn ea
h join point into a fun
tion by giving it a dummy

argument, thus:

f x y = let j = \v -> <e2>

in
ase x of

False -> j void

14 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

True ->
ase y of

False -> j void

True -> <e1>

j is now a fun
tion of one dummy argument, of type Void

4

; sin
e it is used at most

on
e, no sharing is lost by this transformation. Be
ause it is now a fun
tion, the

CPR analyser
an analyse it, �nd that it has the CPR property, and so f in turn

will have the CPR property. For example, if <e1> is (x,y) and <e2> was (y,x),

the resulting
ode will be

f x y =
ase fw x y of

(# p,q #) -> (p,q)

fw x y = let jw = \v -> (# y,x #)

in
ase x of

True -> jw void

False ->
ase y of

False -> jw void

True -> (# x,y #)

Sin
e GHC introdu
es join points at a single point during its optimisation passes,

it is easy to introdu
e the dummy argument where ne
essary (PJS98).

3.9 Exploiting stri
tness

Preserving laziness is important, but we run CPR analysis just after stri
tness

analysis. Can we exploit that stri
tness information to improve CPR results? It did

not even o

ur to us to ask this question until we started to look the results of CPR

analysis on real programs, but it turns out that there are two distin
t settings in

whi
h stri
tness analysis
an be a real help.

The �rst relates to non-re
ursive let bindings. Consider the binding for t from

the previous se
tion, but this time in a
ontext that is stri
t in t:

let

t = if <e> then (y,z) else (z,y)

in

<body>

where <body> is guaranteed (by stri
tness analysis) to evaluate t. Here, t's right

hand side
ertainly has the CPR property, so we
an transform the let into a
ase

with a pair pattern:

ase (if <e> then (y,z) else (z,y)) of

(p,q) -> let t = (p,q)

in <body>

4

A ML programmer would use the empty tuple, (), here; but in Haskell the type () has two

members, namely () and ?. Void is a built-in type in GHC that has only one value, ?, written

void. Having only one value, we do not generate any
ode to pass a value of type Void. So there

is no
ost for the dummy argument.

Constru
ted Produ
t Results 15

This is only going to be bene�
ial if we
an make the new
ase
an
el with the

onstru
ted produ
ts (y,z) and (z,y). Sin
e <body> might be large, GHC builds

a join point (abstra
ted over p and q) before doing the
ase-of-
ase transformation

(the details of abstra
ted join points are dis
ussed in (PJS98)):

let j p q = let t = (p,q) in <body>

in

if <e> then

ase (y,z) of (p,q) -> j p q

else

ase (z,y) of (p,q) -> j p q

Now the
ases
an
el to give:

let j p q = let t = (p,q) in <body>

in

if <e> then j y z

else j z y

Noti
e that t is bound to a plain pair, whi
h has the CPR property without any

danger of lost sharing, and that in turn might improve the results for the en
losing

fun
tion. To summarise, we may safely treat a non-re
ursive let binder as having

the CPR property if (a) its right hand side does, and (b) the binder is guaranteed

to be evaluated by the body of the let.

There is a se
ond way in whi
h we
an exploit stri
tness information. Consider

the tail-re
ursive fa
torial fun
tion:

fa
 n m = if n==0 then m

else fa
 (n-1) (m*n)

Does it have the CPR property? Apparently not, be
ause it returns the a

umu-

lating parameter, m. But the stri
tness analyser will dis
over that fa
 is stri
t in

m, so it will be passed unboxed to the worker for fa
. More
on
retely, here is the

worker/wrapper split that will result from stri
tness analysis alone:

fa
 n m =
ase n of MkInt n' ->

ase m of MkInt m' ->

fa
w n' m'

fa
w n' m' = if n' ==# 0# then MkInt m'

else fa
w (n' -# 1#) (m' *# n')

Looking at this, it is
lear that fa
w does have the CPR property. One way to

spot this would be to do stri
tness analysis and its worker/wrapper transform �rst,

and then do CPR analysis; but in fa
t, it is easy to anti
ipate the worker/wrapper

split arising from stri
tness. We perform CPR analysis after stri
tness analysis but

before the worker/wrapper transform. When we en
ounter a lambda binding whose

stri
tness annotation indi
ates that it will
ertainly be evaluated, and whose type

is a produ
t, we attribute the bound variable with the CPR property. For example,

16 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

when analysing fa
, both n and m will have the CPR property, as indeed they do

in the transformed program.

3.10 Update in pla
e

Consider the following lazy de�nition:

f x = let y = x+1 in <e>

As it stands, a thunk will be allo
ated for y; if and when y is evaluated by <e>, the

thunk will be entered and it will in turn
all the fun
tion +; the latter will
ompute

its Int result in
luding allo
ating it on the heap, and return to the thunk; the thunk

will �nally overwrite itself with an indire
tion to the newly-allo
ated Int.

On
e the de�nition of + has been inlined, we get:

f x = let y =
ase x of

MkInt i -> MkInt (i +# 1)

in <e>

A thunk for y will still be allo
ated, but, if and when y is evaluated, the allo
ation of

the Int result is performed by the thunk's own
ode. So now we have the opportunity

to allo
ate the Int result in the thunk itself, instead of allo
ating it separately and

indire
ting the thunk to the Int; that is, we
an perform update in pla
e on the

thunk. To make update-in-pla
e possible, we merely need to make sure that the

thunk is big enough to hold the result, whi
h
an be done on a
ase-by-
ase basis.

Why is all this relevant to CPR analysis? Be
ause inlining the wrapper of a

CPR fun
tion will expose the allo
ation of the result at the original
all site, where

it
an sometimes now be performed by update-in-pla
e. So CPR analysis makes

update-in-pla
e appli
able more often.

3.11 Allo
ation and spa
e safety

A good optimisation should have the following properties:

� It should not in
rease, and often de
rease, the amount of heap allo
ation.

Haskell programs allo
ate like
razy, and memory a

ess is in
reasingly ex-

pensive, so heap allo
ation is a very important metri
.

� It should preserve spa
e safety ; that is, it should not in
rease the program's

instantaneous memory requirements (App92). In parti
ular, a tail re
ursive

fun
tion should not be transformed into a non-tail-re
ursive one, otherwise a

loop that previously exe
uted in
onstant sta
k spa
e may take sta
k spa
e

proportional to the number of iterations.

The purpose of CPR analysis is to guarantee these properties. More
on
retely,

onsider again the general form of the CPR worker/wrapper transform from Se
-

tion 2.1. The original fun
tion:

f :: Int -> (Int, Int)

f x = <e>

Constru
ted Produ
t Results 17

is transformed to:

f :: Int -> (Int, Int)

f x =
ase fw x of

(# r1,r2 #) -> (r1,r2)

fw :: Int -> (# Int, Int #)

fw x =
ase <e> of

(r1,r2) -> (# r1,r2 #)

The idea is that if <e> has the CPR property, then the
ase expression is guaranteed

to
an
el with a
onstru
tion in <e>, using standard simpli�
ation rules. We have

seen many examples of this
an
ellation in earlier se
tions, and it is key to our

laims.

If <e> has the CPR property then overall heap allo
ation is guaranteed not to

in
rease be
ause, at worst, the result allo
ations are eliminated (by
an
ellation

with the
ase) and are repla
ed by the result allo
ation in the wrapper. This

guarantee is weakened slightly by the
ompromise des
ribed in Se
tion 3.5, where

we e�e
tively move the allo
ation of a
onstant inside a loop. If we want an absolute

guarantee, we
an disable the
ompromise, and a

ept fewer fun
tions having the

CPR property; in pra
ti
e we �nd the pra
ti
al results are better if we use the

ompromise.

Spa
e safety and tail re
ursion are another matter. At �rst sight it might seem

that the worker/wrapper transform destroys the tail-re
ursive property. It looks as

if the transformed f is no longer tail re
ursive, even if the original de�nition was: the

all to fw is wrapped in a
ase, and <e> is wrapped in a se
ond
ase. Nevertheless,

the fun
tion g in Se
tion 3.3 started with a tail-re
ursive g and ended up with a

worker, gw that was also tail re
ursive. Can we guarantee this in general?

Yes, we
an. The se
ond
ase, in the body of fw, moves inside <e> until it

s
rutinises the tail
all(s) in the body of f | you
an see that happening as we

transformed gw in the previous se
tion. Now, any su
h tail
all must be to a fun
tion

with the CPR property, perhaps f itself or perhaps some other fun
tion with the

CPR property. How do we know that? Be
ause that is the whole purpose of the

analysis we des
ribe in Se
tion 4. If the
ase does s
rutinise a
all of a fun
tion

with the CPR property, we
an inline that fun
tion's wrapper, and the two
ases

(one from the
all site, the other from the inlined wrapper) are then guaranteed to

an
el out, exa
tly as we saw in the
ase of gw.

So while the �rst
all to fmay indeed be wrapped in a
ase, from f's wrapper, any

subsequent tail
alls from the original program are guaranteed to be tail
alls in the

transformed program. Admittedly we do not have a formal proof of this property,

but we are
on�dent of its truth. Noti
e that the spa
e-safety property depends

ru
ially on the
onservative nature of the analysis; a type-driven transformation

would not be spa
e-safe.

This
on
ludes our dis
ussion of the issues we
ame a
ross when s
aling up our

initial idea to a full-blown
ompiler. We now turn to a more formal a

ount of the

analysis itself.

18 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

4 CPR Analysis

The language we use to des
ribe the analysis is based on Core, the intermediate

language of GHC. Core is an expli
itly-typed, polymorphi
 lambda
al
ulus, based

losely on System F (Gir90). As su
h, it in
ludes expli
it type abstra
tions and

appli
ations. However, the form of the analysis is su
h that the type annotations

play no part, and we omit them to simplify the presentation. In parti
ular, the

abstra
t interpretation yields
onstant fun
tions, so issues of analysing polymorphi

fun
tions do not arise.

Core expressions are de�ned as follows:

e ::= x j nx -> e j e

1

e

2

j C e

1

: : : e

n

j

ase e as x of fC

i

x

1

i

: : : x

n

i

-> e

i

g

m

i=1

j

let fx

i

= e

i

g

n

i=1

in e

Literal values of base types, su
h as unboxed integers Int#, are written as nullary

onstru
tors C. All
onstru
tors are saturated; that is, they are applied to all their

arguments.

The let expression binds a mutually-re
ursive set of variables.

The form of the
ase expression is a little unusual. Default alternatives use the

nullary pseudo-
onstru
tor Default and the binding e as x makes the sele
tor

value available in ea
h alternative. For example, instead of the more
onventional

ase e of : : : x -> e

d

we write
ase e as x of : : : Default -> e

d

. This binding for x,

whi
h
overs all the alternatives, not only the Default one,
orresponds to the fa
t

that e returns a value that is available in ea
h alternative.

4.1 Abstra
t domains

Our abstra
t interpretation [[℄℄ maps an expression e of type t in an environment �

to an abstra
t value [[e℄℄�, drawn from the abstra
t domain A

t

. All abstra
t domains

onsist of either one or two points.

Type expressions are de�ned as follows:

t ::= B j a j t

1

! t

2

j T t

1

: : : t

k

where T is a type
onstru
tor, k � 0, and a is a representative type variable. Base

types, B, are su
h things as unboxed integers Int#.

We also assume a
olle
tion of type
onstru
tor de�nitions, ea
h of the form:

T a

1

: : : a

k

= C

1

t

1

1

: : : t

n

1

j : : : j C

m

t

1

m

: : : t

n

m

Altogether the de�nitions are potentially mutually re
ursive.

Suppose for example that e has type (Int,Int). The abstra
t domain A

(Int;Int)

is a two-point latti
e
ontaining the values (�; �) and �. If [[e℄℄� = (�; �), then e is

ertain to return a
onstru
ted pair. On the other hand, if [[e℄℄� = �, then e may or

may not return a
onstru
ted pair. We order this two-point domain with (�; �) v �,

as in the following Hasse diagram:

Constru
ted Produ
t Results 19

�

(�; �)

Noti
e that the most uninformative value, �, is the top of the domain, not the

bottom. This is the same
hoi
e as is made by abstra
t interpretation for stri
tness

analysis, whi
h uses ? to indi
ate de�nite divergen
e and > to indi
ate la
k of

knowledge, and for the same reason: the least �xed point of a re
ursive de�nition

is the one we want (Se
tions 3.3 and 3.4).

In general the abstra
t domain A

t

for a type t is de�ned as follows. If t is a
at

base type then its values
annot be produ
ts. The only possible abstra
t value is �:

A

B

= f�g

An unusual feature of CPR analysis is that the abstra
t value of a fun
tion is a

onstant fun
tion, whi
h ignores the value of its argument:

A

t

1

!t

2

= f�g ! A

t

2

More will be said on this in Se
tion 4.4. Observe that A

t

1

!t

2

�

=

A

t

2

so the abstra
t

domains of fun
tions also
onsist of only one or two points.

If T
onstru
ts a produ
t type | that is, its de�nition is of a form with no

alternates and one or more
omponents:

T a

1

: : : a

k

= C t

1

: : : t

n

where n � 1, then for any types t

0

1

: : : t

0

k

:

A

Tt

0

1

:::t

0

k

= f�; �

n

g

We write �

n

as shorthand for the n-tuple (�; : : : ; �). Values of a produ
t type may

or may not be newly
onstru
ted so the
orresponding abstra
t domain has only

two values, � and �

n

. For reasons explained in Se
tion 4.3, we do not analyse within

nested produ
ts, so the types t

1

: : : t

n

in the de�nition above are irrelevant.

Note that �

1

= (�) 6= �. This
ase arises for unary produ
ts with a single �eld,

su
h as the Int type (Se
tion 2.2):

data Int = MkInt Int#

If an expression e of type Int has abstra
t value (�), then e does
onstru
t the

MkInt box.

If T
onstru
ts a sum type | that is, its de�nition is of a form with two or more

alternates:

T a

1

: : : a

k

= C

1

t

1

1

: : : t

n

1

j : : : j C

m

t

1

m

: : : t

n

m

where m � 2, then for any types t

0

1

: : : t

0

k

:

A

Tt

0

1

:::t

0

k

= f�g

immediately be
ause it is not a produ
t type. Re
all from Se
tion 3.2 that we do

not attempt to treat sum types.

Sin
e we do not analyse nested produ
ts and we abstra
t fun
tions to
onstant

20 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

fun
tions, polymorphi
 and re
ursive data types
an be dealt with simply, be
ause

our only interest is whether the top-level type
onstru
tor is
ertain to be a produ
t.

Thus we
an
omplete the de�nition of the abstra
t domains with:

A

a

= f�g

For example, the produ
t type:

Pair a b = MkPair a b

has
orresponding abstra
t domain f�; (�; �)g irrespe
tive of the types that may be

substituted for a and b. Furthermore, the re
ursive de�nition:

Stream a = MkStream a (Stream a)

also
orresponds to the abstra
t domain f�; (�; �)g. The re
ursive part is not an

issue be
ause the analysis does not look inside produ
t
omponents. Re
ursive

types usually have a sum as the top-level
onstru
tor so the
orresponding abstra
t

domain is most often just the singleton f�g.

In summary, the abstra
t domain de�nitions are as follows:

A

B

= f�g

A

a

= f�g

A

t

1

!t

2

= f�g ! A

t

2

A

Tt

0

1

:::t

0

k

= f�; �

n

g where T
onstru
ts an n-ary produ
t type

A

Tt

0

1

:::t

0

k

= f�g where T
onstru
ts a sum type

As we have seen, ea
h A

t

is a simple domain with either one or two points,

regardless of t; so we
ould denote the elements of ea
h two-point A

t

simply as

f>;?g. When it is more
onvenient we do use the generi
 ? symbol, but we �nd

the more expli
it denotations helpful to our understanding.

4.2 Abstra
t interpretation

The analysis is a standard, straightforward abstra
t interpretation (HA86). First,

we assume the existen
e of a table, built during an earlier
ompiler pass and indi-

ating whether
onstru
tors are of a produ
t type. This is
onveniently represented

as a partial fun
tion mapping
onstru
tor fun
tion names to boolean values. C is a

produ
t
onstru
tor if and only if �C is true:

� :: ConstrName! Bool

The abstra
t interpretation is de�ned in the usual way as a non-standard semanti
s

over the abstra
t domains. First we de�ne an environment to be a type-respe
ting

partial fun
tion from identi�ers to abstra
t values:

A =

[

t2Type

A

t

� : Env = Ide! A

Constru
ted Produ
t Results 21

The abstra
t semanti
 fun
tion [[℄℄ : Expr! Env! A is de�ned as follows:

[[x℄℄� = � x

[[nx -> e℄℄� = � � :[[e℄℄�[x 7! �℄

[[e

1

e

2

℄℄� = [[e

1

℄℄� �

[[C e

1

: : : e

n

℄℄� = if �C then �

n

else �

[[let fx

i

= e

i

g

n

i=1

in e℄℄� = [[e℄℄(�x��

0

:�[x

i

7! [[e

i

℄℄�

0

℄

n

i=1

)

[[
ase e as x of fC

i

x

1

i

: : : x

n

i

-> e

i

g

m

i=1

℄℄� =

G

m

i=1

[[e

i

℄℄�[x

j

7! �℄

n

i

j=1

[x 7! [[e℄℄�℄

As a simple example, [[MkInt 3℄℄� = (�), indi
ating a newly
onstru
ted 1-produ
t.

On the other hand, [[True℄℄� = � sin
e Bool is a sum type.

We
an guarantee that the abstra
t value of the s
rutinee in a
ase expression

must be either � or �

n

. Either way, the appropriate value for the newly bound

variables x

1

i

; : : : x

m

i

in the alternatives is always �.

The abstra
t interpretation is largely standard, but there are two parti
ular fea-

tures that are worthy of further
omment. First, the analysis does not look at the

omponents of produ
ts, stopping at the top-level
onstru
tor. Se
ond, fun
tions

are abstra
ted to
onstant fun
tions. There are sound justi�
ations for these
hoi
es

that go beyond our desire for a simple implementation. We dis
uss them in turn in

Se
tions 4.3 and 4.4.

4.3 Not unboxing produ
t
omponents

It is a straightforward matter to de�ne an abstra
t interpretation that also anal-

yses the
omponents of a produ
t for the CPR property but it is far from
lear

how to make use of su
h nested information in a general way. In fa
t, if we try to

take advantage of the knowledge that a
omponent of a
onstru
ted produ
t is also

a
onstru
ted produ
t, the worker/wrapper transformation is no longer semanti-

ally
orre
t. Consider applying a nested CPR analysis to the following example

fun
tions:

g :: Bool -> Int

g x = if x then MkInt 0 else MkInt 1

f :: Bool -> (Bool, Int)

f x = (x, g x)

Now g returns a newly
onstru
ted integer so, if we were analysing for nested

produ
ts, the abstra
t value of f's result would be (�; (�)) indi
ating that the se
ond

omponent of the result is the integer newly
onstru
ted by g.

The obvious way to make use of nested information is to `
atten' the result of

the worker fun
tion. That is, f's worker would return an unboxed tuple and the

se
ond
omponent would be an unboxed integer:

22 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

fw :: Bool -> (# Bool, Int# #)

fw x =
ase g x of MkInt z -> (# x, z #)

Unfortunately this transformation is invalid be
ause it now for
es the evaluation of

g x. Before the worker/wrapper transformation, f ? = (?, g ?) but afterwards

f ? = ?, so in general it is not safe to use nested produ
t information in this way

be
ause we risk losing laziness.

On the other hand, if we
an be
ertain that the nested
omponents returning

onstru
ted produ
ts do not diverge then the `
attening' transformation is both

safe and advantageous. The prin
ipal spe
ial
ase is where the nested
omponents

have expli
it
onstru
tors. A fun
tion like:

f :: (Int, Int) -> (Int, Int)

f (MkInt x, y) = (MkInt (x +# 1), y)

will split to give a worker like:

f :: (Int, Int) -> (Int, Int)

f (MkInt x, y) =
ase fw x y of

(# x', y #) -> (MkInt x', y)

fw :: Int# -> Int -> (# Int#, Int #)

fw x y = (# (x +# 1), y #)

While this looks like a promising avenue to explore, our
urrent CPR analysis does

not
onsider any nested
omponents.

In a stri
t language there would be no su
h problem, and there is no te
hni
al

diÆ
ulty with enri
hing the abstra
t domains appropriately; indeed, that is partly

why we
hose our `�' notation rather than using simply > and ?.

4.4 Constant fun
tions

The abstra
t interpretation ignores the CPR property of the arguments to fun
tions,

thus yielding
onstant fun
tions in the analysis. While it is not diÆ
ult, and perhaps

more natural, to a

ount for the arguments, it is not
lear whether su
h information

gives us any advantage. Suppose our analysis was of this form. Then a fun
tion like:

f x = if e then x else (3,5)

would abstra
t to

f

0

� = � t (�; �) = �

so the result of f would
ertainly be a newly
onstru
ted pair only if its argument

was too. Nevertheless, if f were applied only to newly-
onstru
ted pairs | so a

typi
al
all site is f (p,q) | then we
ould pass the
omponents of the pair to f's

worker, and
onstru
t a pair from the result.

In general, though, we
annot see all of a fun
tion's
all sites, so we would have

to
ompile two versions of f | one whi
h expe
ts a boxed argument and another

whi
h expe
ts an unboxed argument. We would then need to inspe
t ea
h of f's
all

Constru
ted Produ
t Results 23

sites to de
ide whi
h version to
all. We have not, so far, tried su
h multi-version

approa
hes, and our gut feel is that the law of diminishing returns will apply to

su
h approa
hes.

As an aside, it is interesting to observe that if we did pursue this approa
h, even

fun
tions with multiple arguments still only require at most two versions. Take for

example a fun
tion with three arguments:

f :: Bool -> Int -> Int -> Int

f True y z = y

f False y z = z

Now,
learly we
an only be
ertain that f returns a newly
onstru
ted produ
t if

both y and z are themselves newly
onstru
ted produ
ts. If either is not, we must

use the vanilla version of f.

In Se
tion 3.9 we dis
ussed the situation where the analysis assumes the CPR

property for produ
t arguments with stri
t demand. This spe
ial
ase requires a

variant on the se
ond
lause de�ning the abstra
t interpretation fun
tion above.

Supposing nx->e is stri
t and expe
ts an n-tuple produ
t argument, the alternative

lause would be:

[[nx -> e℄℄� = � � :[[e℄℄�[x 7! �

n

℄

Note that the analysis will still deliver a
onstant fun
tion in su
h
ases.

A dire
t
onsequen
e of abstra
ting to
onstant fun
tions is that any issues re-

lating to the analysis of polymorphi
 fun
tions disappear. Sin
e A

a

is just f�g, it

is irrelevant whether a polymorphi
 fun
tion might be
alled at a produ
t type,

be
ause the abstra
t fun
tions ignore their arguments.

4.5 Re
ursive de�nitions

One of the serendipitous aspe
ts of abstra
ting to
onstant fun
tions is that the

al
ulation of �xed points in let expressions is greatly simpli�ed. In parti
ular,

for dire
tly re
ursive fun
tion de�nitions a single iteration of the Kleene pro
ess is

suÆ
ient. That is, in the
al
ulation of:

�x��

0

:�[x 7! [[e℄℄�

0

℄

we need only de�ne �

1

= �[x 7! ?℄ and we immediately have the least �xed point,

�[x 7! [[e℄℄�

1

℄.

More generally, in the
ase of mutually re
ursive de�nitions, the number of iter-

ations is bounded above by the length of the
y
le of re
ursive
alls. That is, for

the expression let fx

i

= e

i

g

n

i=1

in e:

G

n+1

i=0

(��

0

:�[x

1

7! [[e

1

℄℄�

0

; : : : x

n

7! [[e

n

℄℄�

0

℄)

i

(?)

It is
lear that the �xed points of a
olle
tion of nmutual re
ursive
onstant fun
tion

de�nitions
an be found in at most n iterations of the Kleene limit
onstru
tion. In

let fx

i

= e

i

g

n

i=1

in e observe that:

� The longest possible stati

hain of re
ursive
alls is n, that is, a simple
y
le.

24 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

� At least one of the de�nitions, say x

k

= e

k

will have an es
ape from the

re
ursive loop. If not, all fun
tions will be ? and we are done. Sin
e the

abstra
t domains are at most two points, the �rst Kleene iteration will �x

any of the fun
tions whose es
ape from the re
ursive
y
le does not have the

CPR property. Suppose x

k

= e

k

is su
h a
ase. The �xed point
al
ulation

will pro
eed:

�

1

= �[x

1

7! ?; : : : x

n

7! ?℄

�

2

= �[x

1

7! [[e

1

℄℄�

1

; : : : x

k

7! >; : : : x

n

7! [[e

n

℄℄�

1

℄

If there is no su
h e

k

then the abstra
t value of all the x

i

will remain ?.

� Having thus broken the
y
le, at most (n � 1) further iterations will be re-

quired to propagate the abstra
t value of x

k

through the remaining re
ursive

de�nitions.

In many
ases fewer iterations may be required, but it is unlikely that using a more

omplex test of
ompletion would be worthwhile. Furthermore, assuming strongly-

onne
ted
omponents are extra
ted in an earlier
ompiler phase, let expressions

will
ontain minimal
olle
tions of mutually re
ursive de�nitions. Su
h
olle
tions

will usually be small and hen
e so will be the number of iterations.

4.6 Corre
tness

For our analysis to be safe we must ensure that it never in
orre
tly infers that

a fun
tion has the CPR property. Otherwise the worker/wrapper transformation

ould be detrimental, as dis
ussed in Se
tion 2.3. Of
ourse, the analysis may be

(and is)
onservative in that not every CPR property is dis
overed | there is a

natural trade-o� between the simpli
ity and e�e
tiveness of stati
 analyses.

What
onditions do we expe
t to hold for our analysis to be
onsidered safe?

First and most obviously, that if [[e℄℄� = �

n

then e evaluates to a produ
t with

arity n. From the dis
ussion in Se
tion 4.3 we also need to guarantee that CPR

information does not
ome from within nested produ
ts. Furthermore, as explained

in Se
tion 4.4 we also wish to guarantee that the analysis does not make use of

CPR information about the arguments to fun
tions.

Re
all that the whole purpose of the exer
ise is to dedu
e an intensional property

of a fun
tion, not an extensional property. So we should not expe
t to be able to

prove the analysis sound with respe
t to a standard denotational semanti
s. (Stri
t-

ness analysis is interesting be
ause a standard denotational semanti
s is enough to

dedu
e, at least informally, an intensional property | namely that the fun
tion

will evaluate its argument | but we are not so lu
ky here.)

We therefore extend a standard denotational semanti
s for our language to in-

lude tags to indi
ate whether a value is a produ
t that has been
onstru
ted in

the
urrent s
ope. Taking the standard semanti
 domain of ea
h type t to be D

t

,

we de�ne a non-standard extension:

D

0

t

= D

t

�Bool

Constru
ted Produ
t Results 25

The idea is that h"; T ruei indi
ates that " is a produ
t value that has been
on-

stru
ted in the
urrent s
ope and h"; Falsei indi
ates that it is not. The other

semanti
 domains are de�ned in the usual way. Note that there may be tags on the

omponents of values of
onstru
ted types.

As a more lightweight notation we will write " for h"; T ruei and (slightly am-

biguously) " for h"; Falsei. When we leave a s
ope we may need to delete some of

the tags, for whi
h we will use the operator h"; bi = h"; Falsei.

The tagged semanti
s is easy to de�ne. All the
lauses ex
ept those for
onstru
-

tors and lambda abstra
tions are quite standard (PL91).

� : Ide!

[

t2Type

D

t

E [[nx -> e℄℄� = �":E [[e℄℄�[x 7! "℄

E [[C℄℄� = if �C then �"

1

: : : "

n

:hC; "

1

; : : : ; "

n

i else �"

1

: : : "

n

:hC; "

1

; : : : ; "

n

i

The tagging is simple | when a produ
t
onstru
tor C is applied, the resulting

value is marked a

ordingly. Everything else is left unmarked, that is, it
arries a

False tag. Furthermore, any tags on the produ
t's
omponents are deleted. This

re
e
ts our intention that no nested produ
ts will be
onsidered. The
lause for

nx->e deletes tags from in
oming values, thus ensuring that only lo
ally
onstru
ted

produ
t values will be tagged.

The main result we seek is an agreement between the value of an expression under

the tagged semanti
s and its abstra
t value a

ording to the CPR analysis. To that

end, we indu
tively de�ne a type-indexed set of relations sat

t

as follows. We simplify

the notation by leaving out the type
onstraints, on the general understanding that

variables are universally quanti�ed and that the de�nitions respe
t types.

De�nition 4.1

� " sat �

� hC; "

1

; : : : ; "

n

i sat �

n

� If " "

0

sat � for all "

0

then " sat � � :�

The relation
an be naturally extended to environments: � sat � if for all (x 7! �)

in �, there is a
orresponding binding (x 7! ") in � su
h that " sat �.

Finally, we are in a position to demonstrate the soundness of CPR analysis with

respe
t to the tagged semanti
s:

Proposition 4.2

For all expressions e, environments � and abstra
t environments �, if � sat � then

E [[e℄℄� sat [[e℄℄�.

Proof

A straightforward stru
tural indu
tion on e.

As with stri
tness analysis, there remains only an informal
onne
tion between our

extended denotational semanti
s and the a
tual operational e�e
ts we seek, but we

still �nd the denotational model quite
onvin
ing, and it has the merit of simpli
ity

and tra
tability.

26 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

5 Implementation

The CPR analysis has been available in the GHC Haskell
ompiler sin
e version

4.04, released in July 1999. The analysis (and asso
iated transformation) pass is

performed whenever programs are
ompiled with the optimisation
ag (-O). In

this se
tion we brie
y des
ribe the implementation. The following se
tion des
ribes

experimental evaluations of its e�e
tiveness.

GHC is organised as a front end whi
h, after parsing and type
he
king, translates

a Haskell program to a simple internal fun
tional language
alled Core, for details

see (PJS98). A number of optimisation passes follow; ea
h
onverts a Core program

to a more optimised Core program. Finally, the GHC ba
k end generates
ode

for the optimised Core program. Almost all optimisations performed by GHC are

arried out as Core-to-Core transformations.

This framework is readily extended with CPR analysis, simply by adding the CPR

analysis pass in between stri
tness analysis and the worker/wrapper transformation.

5.1 The analysis

The CPR analysis is performed in a single pass over the
ode (ex
ept for mutually

re
ursive bindings, where we iterate to a �xed point, see Se
tion 4.5). Sin
e all Core

expressions
arry their type, as inferred by the type
he
king in the front end, it is

trivial to dis
over if a
onstru
tor appli
ation produ
es a produ
t type.

We abstra
t Core expressions to members of the following abstra
t domain:

data AbsVal = Top | Tuple Int | Fun AbsVal | Bot

Top
orresponds to �, Tuple n
orresponds to �

n

, Fun AbsVal
orresponds to

� � :AbsVal and Bot is the least element of the latti
e. Having an expli
it Bot

element is not stri
tly ne
essary, sin
e it is always expressible in terms of the other

elements of the latti
e (depending on the expression's type), but it is
onvenient

for our implementation.

5.2 Separate
ompilation

An important property of our approa
h is that it is fully
ompatible with separate

ompilation: ea
h fun
tion is analysed and transformed, independently of its
all

sites.

Whenever it
ompiles a module, M, GHC writes a interfa
e �le, M.hi, that
ontains

GHC-spe
i�
 information | su
h as arity, stri
tness, spe
ialisations, and possibly

even the
omplete de�nition | about ea
h of M's exports. When
ompiling any

module that imports M, GHC
onsults M.hi to �nd out about M's implementation.

Given this framework, all we need to do is to write the CPR annotations on

exported fun
tions into the interfa
e �le. The CPR information is now available

to any importing module just like the other GHC-spe
i�
 information about the

fun
tion.

Constru
ted Produ
t Results 27

6 Results

To evaluate the e�e
tiveness of the CPR analysis and Core transformation we per-

formed a number of experiments, whi
h we des
ribe below. We
ompare the exe-

ution of programs
ompiled without the CPR transformation to those
ompiled

with it (in all other respe
ts the
ompiler is identi
al). In both
ases the programs

are linked against libraries whi
h have been
ompiled in the
orresponding manner.

For the tests we used the
urrent stable version of GHC, 5.04.

The test programs used are from the nofib suite maintained by the GHC de-

velopers (Par92). All the tests were run on a lightly loaded, 600 Mhz Pentium III

omputer running GNU/Linux, with 256Mb of memory. All run time options were

kept at the nofib defaults.

6.1 Stati

ounts

Table 1 shows some statisti
s we gathered for all programs in the nofib suite. Of

around 36,000 let or letre
 bindings (both top level and otherwise), some 8,750 are

fun
tion de�nitions; of these some 15% return a produ
t type and have suÆ
ient

lambdas at the head of their de�nition. These are the fun
tions whi
h are eligible

for the CPR transformation. Of these eligible fun
tions our CPR pass dis
overs

that about 70% have the
onstru
ted result property.

We also show the distribution of sizes of the returned unboxed tuple for all

fun
tions with the CPR property. As one might expe
t, small sizes dominate. In

our implementation, if a fun
tion returns more results than there are registers, the

extra results are returned on the sta
k. If the
aller then boxes the result after all,

this may result in extra memory traÆ
: the
allee pushes the results onto the sta
k,

and the
aller
opies them to the heap. The obvious thing to do is to experiment

with a
ut-o� size for fun
tions to have the CPR property. We have not done so

yet.

Finally, we note that the average number of bindings in a mutually re
ursive

group is only 1.58. As dis
ussed in Se
tion 4.5, we take advantage of this to simplify

dete
tion of �xed points.

6.2 Dynami

ounts

Many of the programs in the nofib suite have run-times whi
h are too short to

measure reliably. Ea
h total run-time is the sum of three numbers (initialise time,

program time, garbage
olle
tion time) whi
h have ea
h been rounded to 2 de
imal

pla
es. We have, therefore, run ea
h program 20 times with and without CPR

optimisation and
ompared the best run times

5

.We report programs whi
h run for

longer than one se
ond without the CPR optimisation. Note that allo
ations are

the same for every run, so allo
ation numbers are a

urate.

5

The best run time
annot overstate performan
e; longer times for the same program represent

mainly system load.

28 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

Table 1. NoFib Statisti
s

Bindings Top Level Non Top Level All

All 19,025 17,121 36,146

Fun
tion 6,514 2,236 8,750

Manifest fun
tion with produ
t result 1,089 198 1,287

CPR fun
tion 807 100 907

Length of CPR fun
tion result type

1 217 31 248

2 406 47 453

3 111 9 120

� 4 73 13 86

Non re
ursive 18,024 16,599 34,263

Re
ursive 1,001 522 1,523

Average bindings in a re
ursive group 1.78 1.19 1.58

To give us more
on�den
e in our run-time results we used
a
hegrind, part

of the valgrind (Sew02) toolset. Ca
hegrind inter
epts every instru
tion from a

running exe
utable and simulates the behaviour of the pro
essor's
a
he. Amongst

a detailed report we
an see the number of exe
uted instru
tions, the number of

data reads/writes and the number of
a
he miss reads/writes.

Table 2
ompares the run times, heap allo
ations, total instru
tions and (level

2)
a
he read/write misses measured for the programs in our test suite. In all,

the nofib suite
urrently
onsists of 75 programs. As explained above, we limit

ourselves to programs running for more than a se
ond. This gives us a test suite

of 34 programs; of whi
h 4 are from the `imaginary' se
tion (exp3_8, integrate,

paraffins, rfib), 6 are from the `real' se
tion (
a
heprof,
ompress,
ompress2,

fulsom, hidden, symalg), while the remaining 24 are from the `spe
tral' se
tion of

the suite. The table shows the number of lines of Haskell
ode in ea
h test. The

�gures in the last four
olumns represent the per
entage
hange from the no-CPR

run.

Ignoring the arti�
ially in
ated rfib (see dis
ussion below), the run-time im-

provement due to CPR for the remaining programs has a geometri
 mean of 2.8%,

with best improvement 30.8%, and worst slow-down 5.4%.

For heap allo
ations, the improvement had a geometri
 mean of 5.4%, with best

improvement 61.9%, and in the worst
ase heap allo
ation in
reased by 17.2%.

In our experiments we have found the number of instru
tions and
a
he misses

to be a good indi
ator of program performan
e. The results in Table 2 bear out (as

expe
ted) that avoiding boxing signi�
antly improves
a
he behaviour.

At �rst sight it is disappointing that the CPR analysis seems to make little di�er-

en
e to many programs (half of the programs tested have run time and allo
ation

hanges of less than 3%). Sin
e all programs make some use of integers and the CPR

Constru
ted Produ
t Results 29

Table 2. The E�e
t of CPR

Program Lines Run time Run time Allo
ations Instr. Ca
he Miss

No CPR CPR CPR CPR read/write

atom 43 2.8s 0.4% 0.0% -0.1% 0.1%/-0.1%

a
heprof 1723 4.0s -3.5% 0.0% -2.4% -60.4%/-4.7%

ir
sim 392 8.3s -1.9% -0.6% 1.2% -1.8%/-0.6%

omp lab 934 1.9s -1.0% -0.1% 0.6% -0.8%/-0.1%

ompress 192 2.0s -30.8% -43.7% -6.0% -55.4%/-43.4%

ompress2 148 1.7s -17.0% -17.2% -15.8% -16.4%/-17.6%

onstraints 160 30.2s 1.6% 0.7% 1.1% 0.7%/1.4%

ryptarithm1 14 9.6s 0.0% 0.0% 0.0% -1.1%/0.0%

event 501 1.3s 5.4% 17.2% 1.3% 1.4%/13.3%

exp3 8 17 1.3s 0.0% 0.0% -0.2% 0.4%/0.0%

fulsom 834 3.6s -7.8% -3.5% -8.8% -18.9%/-5.7%

hidden 362 6.2s -0.8% -2.3% -0.1% -1.1%/-2.2%

integer 53 20.9s 0.1% -3.0% -1.0% -0.6%/-3.0%

integrate 31 4.9s 0.0% 0.0% 0.4% -0.1%/0.0%

life 31 2.4s 0.0% 0.0% 0.0% 0.0%/0.0%

list
ompr 572 1.0s 1.0% 0.0% 0.0% 1.2%/0.0%

list
opy 577 1.2s -0.9% 0.0% 0.0% -0.3%/0.0%

mandel 85 2.2s -7.3% -9.7% -0.6% -14.3%/-9.7%

multiplier 335 1.0s 4.1% 9.3% 2.8% 8.5%/9.2%

para 274 5.1s -0.8% -3.8% 1.2% -4.1%/-3.7%

paraÆns 73 1.0s -6.3% 0.1% 0.0% 0.0%/0.0%

power 85 8.4s -1.8% -0.1% 0.5% 0.7%/0.3%

primetest 100 2.4s 0.0% -3.2% -0.1% 0.6%/-5.9%

puzzle 137 1.5s -0.7% 0.0% -0.5% 0.5%/0.0%

r�b 7 2.9s -24.1% -99.9% -15.1% -93.3%/-99.9%

simple 859 5.1s -1.0% -2.3% -2.1% -0.2%/-2.2%

solid 1294 1.3s -7.8% -0.7% -5.3% -47.9%/-2.0%

sphere 289 1.2s -2.5% -3.2% -0.5% 0.5%/-3.0%

symalg 831 1.1s 2.8% -0.3% 0.0% -1.0%/-1.0%

transform 1192 4.1s 1.2% 1.7% 1.3% 3.1%/1.8%

treejoin 50 1.2s -2.6% -3.5% -4.0% 1.0%/-3.4%

type
he
k 708 2.3s 0.4% 0.0% 0.0% -1.5%/0.0%

wang 407 1.3s -2.2% 0.0% 0.0% 0.0%/0.0%

wave4main 649 3.7s -8.7% -61.9% -3.4% -19.3%/-48.5%

Summary of results (not in
luding r�b)

Geometri
 mean improvement 2.8% 5.4% 1.3% 8.9%/ 4.9%

Best improvement 30.8% 61.9% 15.8% 60.4%/ 48.5%

Worst degradation 5.4% 17.2% 2.8% 8.5% / 13.3%

transformation applies to fun
tions whi
h return a
onstru
ted Int we would expe
t

at least a modest improvement. However,
loser inspe
tion of the Core programs

produ
ed show that there are three main reasons for this:

� Unboxed tuples and primitive values have been supported by GHC for a long

30 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

time. Many library fun
tions have already been hand tuned to make use of

these, e�e
tively doing the CPR transformation manually.

� In Haskell 98 the arbitrary-pre
ision Integer type is used for integer
al
u-

lations unless the �nite-pre
ision Int is expli
itly spe
i�ed. The Integer type

is a disjoint sum of either an eÆ
ient representation for values that �t in a

word or a general version for arbitrary values. It turns out that many of the

nofib ben
hmarks therefore do mu
h of their work in Integer arithmeti
;

but Integer is not a produ
t type and our CPR transformation does not

apply.

� Many of the nofib programs manipulate lists, our transformation doesn't ap-

ply to types with more than one
onstru
tor (Se
tion 3.2). Further, it doesn't

apply to the
ontents of lists sin
e the
ontent is polymorphi
 and must always

be boxed.

Also, in general the CPR transformation only a�e
ts a subset of the fun
tions in a

program. To have a noti
eable e�e
t on the program's run time and heap allo
ation

the CPR fun
tions must be
ontributing a signi�
ant
omponent of the program's

exe
ution.

An extreme
ase is the famous Fibona

i fun
tion, rfib, whi
h we in
lude only to

on�rm that the
ombination of stri
tness and CPR analysis is working as expe
ted

(we bumped up its argument so that it would run for over a se
ond):

rfib :: Double -> Double

rfib n = if n <= 1 then 1

else rfib (n-1) + rfib (n-2)

Without the CPR transformation ea
h rfib result is built in the heap, and imme-

diately taken apart by its
aller. The CPR transformation returns the result in a

register and no allo
ation is required for results at all. After the CPR and stri
tness

transformations rfib is a fun
tion whi
h operates entirely on the sta
k. As
an be

seen this has a dramati
 e�e
t on its memory and
a
he behaviour.

Any program whi
h has some integer or
oating-point
al
ulation in its inner

loop will reap similar bene�ts for the inner loop. In the nofib suite,
ompress and

wave4main turn out to have this property, and CPR analysis gives a substantial

speedup.

In two of our test programs, event and multiplier, the number of heap allo
a-

tions a
tually in
reases signi�
antly, for the reasons we dis
ussed in Se
tion 3.5.

multiplier is a hardware simulator and mu
h of its
omputation
onsists of

applying hardware fun
tions to streams of bits. The following fun
tion applies the

nand2 operation to two lists of bits, produ
ing a result list of bits:

nand2 :: [Bit℄ -> [Bit℄ -> [Bit℄

nand2 x y = zipWith f x y

where f :: Bit -> Bit -> Bit

f 1 1 = 0

f _ _ = 1

Constru
ted Produ
t Results 31

If we do not apply the CPR transformation to f, GHC will spot that it either

returns a
onstant 0 or a
onstant 1 and will always return a pointer to a boxed

onstant whi
h it builds just on
e. The
aller will simply pla
e the pointer to the

result in the output list.

However, f has the CPR property! The CPR transformation will
onvert f to a

worker fun
tion whi
h returns an unboxed 0 or 1 in a register. But, the
aller wants

to pla
e this result in a list, and list
ontents must be boxed. So the
aller will box

the result. So now, ea
h
all to f
auses a heap allo
ation, the exa
t opposite of

what we are trying to a
hieve.

In event the in
reased heap allo
ations are due to a poor de
ision by GHC's full-

laziness pass. The full-laziness pass lifts let-bound thunks out of sub-expressions in

the hope that this will redu
e re
omputation. Unfortunately, in this
ase a good

CPR transformation has given full-laziness an opportunity to apply, but its trans-

formation has made the
ode worse.

In pra
ti
e this does not seem to a�e
t many programs. And in our experien
e

the CPR transformation is usually a bene�t, even if the advantage is often slight.

In another experiment, we tested the impa
t of the CPR transformation on GHC

itself. We
ompiled two versions of GHC, one with the CPR transformation and

one without. For ea
h
ompiler we (rather
onfusingly!)
ompiled all the modules

of the GHC
ompiler. In both
ases the
ompile options were exa
tly the same.

As before, we
ompiled ea
h module 20 times for ea
h
ompiler and
ompared

their best run-times and heap allo
ations. For the 128 modules that took the non-

CPR
ompiler over 5 se
onds to
ompile the
ompile-time improvement had a ge-

ometri
 mean of 0.9%, with best improvement 10.4%, and worst slow down 4.7%.

For heap allo
ations, the improvement had a geometri
 mean of 1.8%, with best

improvement 3.0%, and in the worst
ase heap allo
ation in
reased by just 0.4%.

It is gratifying that CPR
an improve the GHC
ompiler, even though it hardly

does any numeri
al
omputation and most of its internal data stru
tures have sum

types.

6.3 Obje
t sizes and
ompilation times

Sin
e the CPR transformation moves
ode from a fun
tion de�nition to every
all

site, it may lead to larger obje
t �les. In pra
ti
e, the ensuing transformations make

this e�e
t hard to determine. For ea
h program in the nofib suite we
ompared

the obje
t sizes produ
ed with and without CPR. We found the geometri
 mean of

the size in
reases by only 0.8%, with minimum value -0.1%, and maximum value

3.7%.

In this paper we have emphasised that the CPR analysis is both simple and

an be implemented eÆ
iently. To show that adding the CPR pass has little ef-

fe
t on GHC's
ompilation times we
ompare
ompilation times with and without

the CPR pass. Note, this also in
ludes the
ost of the CPR transformation sin
e

in the latter
ase there will be no CPR annotations and hen
e no CPR driven

worker/wrappering.

Again we use the programs in the nofib suite. We
ompiled every module 20

32 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

times, with and without the CPR pass, and took ea
h module's best
ompile time.

For the 114 modules that took over 2 se
onds to
ompile without CPR we found

that the geometri
 mean of the in
reased
ompile time was only 2.3%. (Minimum

in
rease was -9.8% and maximum in
rease was 19.2%).

We
on
lude that the CPR pass has negligible impa
t on the size of the resulting

exe
utable and only adds around 3% to
ompilation times. Considering the bene�ts

dis
ussed above, it is indeed a worthwhile addition to GHC.

7 Related work

Most modern languages allow a pro
edure to return multiple values simply by

wrapping then in a data stru
ture | C's support for returning a stru
t is a

typi
al example. But the underlying
alling
onvention almost invariably takes the

form of
all-by-referen
e: the stru
t is allo
ated on the sta
k, and a referen
e to it

is (expli
itly or impli
itly) passed to the
allee. The net e�e
t is not as eÆ
ient as

a
tually returning the results themselves in registers, whi
h is the way that fun
tion

parameters are passed.

A quite di�erent approa
h to ours starts from the other end. Suppose that by

default all produ
t types are represented unboxed. In a
all-by-value language the

main problem this raises is that one
annot pass an unboxed value to a polymorphi

fun
tion, ex
ept by using type analysis in the fun
tion to deal with the di�erent

representations that the
aller might have passed. So the idea is to use a type-

driven translation s
heme to ensure that arguments to polymorphi
 fun
tions are

suitably boxed into a uniform representation. Leroy's beautiful paper des
ribes this

approa
h (Ler92); later, Shao elegantly re�ned it so that the
ompiler
an exploit

a spe
trum of di�erent representation
hoi
es (Sha97).

An advantage of the type-based approa
h is that it is e�e
tive even for higher-

order fun
tions | that is, even if a fun
tion is passed as an argument to a higher-

order fun
tion, its arguments and results
an still use unboxed representations. This

e�e
t is a
hieved by wrapping a fun
tional argument in an impedan
e-mat
hing

wrapper. There is a
orresponding disadvantage too: it is possible to
onstru
t

programs in whi
h dynami
ally-
omposed impedan
e mat
hers repeatedly wrap

and unwrap the same value before �nally using it. Leroy des
ribes this and other

e�e
ts, before
on
luding that simpler, non-type-based approa
hes may be just as

e�e
tive, or even slightly better than, type-based unboxing (Ler97).

A more fundamental problem with applying the Leroy/Shao approa
h to Haskell

is that the basi
 assumption, namely representing produ
t types unboxed by default,

fails for a lazy language. Adopting an unboxed representation is not just a repre-

sentation matter: it a�e
ts the semanti
s of the program be
ause unboxed values

must ne
essarily be evaluated. So we
annot simply adopt an unboxed representa-

tion by default. A further di�eren
e is that the Leroy/Shao translation is driven by

types, whereas we take a

ount of the form of the fun
tion's de�nition. However,

their approa
h works uniformly for fun
tion arguments and results, whereas ours

is
on
erned only with fun
tion results.

A popular approa
h to
ompilation of fun
tional programs is to use
ontinuation-

Constru
ted Produ
t Results 33

passing style (App92). In CPS, one never returns a result | instead, the
ontinua-

tion is
alled, passing the result(s) as parameter(s). At �rst sight, one might think

that the whole question of returning multiple results eÆ
iently is already dealt with

by argument
attening. But su
h is not the
ase: simple argument
attening is only

e�e
tive when the
ompiler
an see both the de�nition and all the
all sites of a

fun
tion, so it
an
onsistently
hange the
alling
onvention, and that is not the

ase for return
ontinuations. Some more sophisti
ated analysis would be required.

An example of su
h an analysis is that of Hannan and Hi
ks (HH98). They de-

s
ribe an analysis, expressed as a type system, that takes a

ount of the form of a

fun
tion's de�nition, and thereby guarantees (like us) never to in
rease allo
ation.

They do this by distinguishing between `
ompile-time types' and `run-time types';

the former
orresponds roughly to what we
all a `
onstru
ted value'. Furthermore,

it is a fully higher-order analysis, so it stands some
han
e of doing arity raising on

the result
ontinuations of a CPS-transformed program. However, it is a somewhat-

sophisti
ated whole-program analysis, whi
h is a big disadvantage be
ause it pre-

ludes separate
ompilation. We do not know of any pra
ti
al implementation of

this te
hnique.

The S
heme language takes a di�erent approa
h again: there is an expli
it way

at the language level to return multiple values (KCR98). S
heme's run-time typ-

ing makes it impossible to get eÆ
ient return
onventions without this expli
it

programmer support, but even with that support multiple return values lead to

non-trivial
ompilation issues (AD94). We
ould do the same, and expose unboxed

types to the programmer, but we prefer to keep our language simple { Haskell is

already
ompli
ated enough! In fa
t, though, our
ompiler does support a swit
h to

give dire
t programmer a

ess to unboxed types, and we use this fa
ility in writing

some internal library fun
tions.

The Spineless Tagless G-ma
hine, the abstra
t ma
hine at the heart of our
om-

piler, originally returned all data values unboxed, in
luding results of re
ursive

or sum types (Pey92). It
ould use this `return-in-registers'
onvention uniformly

without losing laziness be
ause fun
tions return values not unevaluated thunks.

However, as we noted in Se
tion 2.3, su
h an approa
h
an in
rease allo
ation in

the
ase where the fun
tion returns an existing value. Furthermore, the return-

in-registers
onvention turned out to greatly in
rease the
omplexity of updating

thunks, swit
hing between
ompiled and interpreted
ode, and dealing with sta
k

under
ow. We therefore moved to a default
onvention of returning a boxed value in

the heap, re
overing the advantages of returning multiple values in registers using

the te
hniques des
ribed in this paper.

8 Con
lusion

In a fun
tional program, fun
tions often return multiple results. We have des
ribed

a simple analysis and a

ompanying transformation that optimises su
h fun
tions,

and that delivers useful performan
e improvements in pra
ti
e.

The results are en
ouraging. While the performan
e of many programs hardly

hanges, a few improve dramati
ally. The baseline against whi
h we
ompare is not

34 Clem Baker-Fin
h, Kevin Glynn and Simon Peyton Jones

a soft one, however. It is pretty easy to get good results for an optimisation applied

to an otherwise-unoptimised program. It is mu
h harder to improve programs that

have already been worked over by a raft of other optimisations, as is the
ase

here. Compiler optimisations are like bullets. Ea
h bullet is ine�e
tive for many

programs; but ea
h gives a big payo� for a few programs whose inner loop it strikes.

Good
ompilers simply deploy a hail of bullets, so that few programs will survive

unoptimised. We believe the CPR analysis is a useful addition to the
ompiler's

magazine.

There are several ways in whi
h we hope to make CPR analysis more e�e
tive.

We want to investigate the programs whose runtime in
reases even though their

allo
ation de
reases. We plan to experiment with a produ
t-size
ut-o�. Another

useful extension would be unboxed sums. Yet another would be a nested CPR anal-

ysis: for example, a fun
tion might be guaranteed to return a
onstru
ted produ
t

whose �rst
omponent was also a
onstru
ted produ
t.

Although our fo
us has been on Haskell, we believe that the ideas are appli
a-

ble to
all-by-value languages too, at least for dire
t-style
ompilers. (We dis
ussed

CPS-style
ompiling in Se
tion 7.) Even assuming that the intermediate language

supports returning multiple values, the
ompiler must de
ide whether a fun
tion

that returns a pair should return it heap-allo
ated or in registers. Our CPR anal-

ysis
ould guide this de
ision, in return o�ering better performan
e guarantees

(Se
tion 3.11) than a simple type-driven approa
h. However the bene�ts may well

be smaller: mu
h of our gain
omes from better handling of arithmeti
, and a
all-

by-value language
an be mu
h more aggressive about handling integers unboxed

by default. It remains to be seen whether the bene�ts would justify the
osts.

We would like warmly to thank the following people, who helped us by
om-

menting on a draft of this paper: Tony Hoare, Andrew Kennedy, Manuel Serrano,

Zhong Shao, and Harald S�ndergaard. We are parti
ularly grateful to the three

JFP referees for their detailed suggestions whi
h led to signi�
ant improvements in

the paper.

Referen
es

JM Ashley and RK Dybvig. An eÆ
ient implementation of multiple return values in

S
heme. In ACM Symposium on Lisp and Fun
tional Programming, pages 140{149,

Orlando, Florida, June 1994. ACM.

AW Appel. Compiling with Continuations. Cambridge University Press, Cambridge, 1992.

J-Y Girard. The system F of variable types: �fteen years later. In G Huet, editor, Logi
al

Foundations of Fun
tional Programming. Addison-Wesley, 1990.

J Goubault. Generalized boxing,
ongruen
es and partial inlining. In 1st Stati
 Analysis

Symposium (SAS'94), number 864 in Le
ture Notes in Computer S
ien
e, pages 147{

161, Namur, Belgium, September 1994. Springer Verlag.

C Hankin and S Abramsky, editors. Abstra
t Interpretation of De
larative Languages.

Ellis Horwood, Chi
hester, 1986.

J Hannan and P Hi
ks. Higher-order arity raising. In ACM SIGPLAN International

Conferen
e on Fun
tional Programming (ICFP'98), pages 27{38, Baltimore, September

1998. ACM.

Constru
ted Produ
t Results 35

R. Kelsey, W. Clinger, and J. (eds) Rees. The Revised

5

Report on the Algorithmi

Language S
heme. Higher-Order and Symboli
 Computation, 11(1), September 1998.

X Leroy. Unboxed obje
ts and polymorphi
 typing. In 20th ACM Symposium on Prin
iples

of Programming Languages (POPL'92), pages 177{188. ACM, Albuquerque, January

1992.

X Leroy. The e�e
tiveness of type-based unboxing. InWorkshop on Types in Compilation

'97. Te
hni
al report BCCS-97-03, Boston College, Computer S
ien
e Department, June

1997.

WD Partain. The nofib ben
hmark suite of Haskell programs. In J Laun
hbury and

PM Sansom, editors, Fun
tional Programming, Glasgow 1992, Workshops in Comput-

ing, pages 195{202. Springer Verlag, 1992.

SL Peyton Jones. Implementing lazy fun
tional languages on sto
k hardware: The spineless

tagless G-ma
hine. Journal of Fun
tional Programming, 2(2):127{202, April 1992.

SL Peyton Jones and A Santos. A transformation-based optimiser for Haskell. S
ien
e of

Computer Programming, 32(1-3):3{47, September 1998.

SL Peyton Jones and J Laun
hbury. Unboxed values as �rst
lass
itizens. In ACM

Conferen
e on Fun
tional Programming and Computer Ar
hite
ture (FPCA'91), pages

636{666, Boston, 1991. ACM.

SL Peyton Jones and S Marlow. Se
rets of the Glasgow Haskell Compiler inliner. In

Workshop on Implementing De
larative Languages, Paris, Fran
e, September 1999.

SL Peyton Jones, A Reid, CAR Hoare, S Marlow, and F Henderson. A semanti
s for

impre
ise ex
eptions. In ACM Conferen
e on Programming Languages Design and Im-

plementation (PLDI'99), pages 25{36, Atlanta, May 1999. ACM.

J Seward. Valgrind, an open-sour
e memory debugger for x86-GNU/Linux.

http://developer.kde.org/�sewardj/, 2002.

Z Shao. Flexible representation analysis. In ACM SIGPLAN International Conferen
e on

Fun
tional Programming (ICFP'97), pages 85{98. ACM, Amsterdam, August 1997.

