
Improving supercompilation: tag-bags, rollback,
speculation, normalisation, and generalisation

Maximilian Bolingbroke
University of Cambridge

mb566@cam.ac.uk

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Abstract
Supercompilation is a powerful technique for program optimisation
and theorem proving. In this paper we describe and evaluate three
improvements to the Cambridge Haskell Supercompiler (CHSC).
We reduce supercompiled program size by the use of a weak nor-
maliser and aggressive rollback, and we improve the performance
of supercompiled programs by heap speculation and generalisation.
Our generalisation method is simpler than those in the literature,
and is better at generalising computations involving primitive oper-
ations such as those on machine integers. We also provide the first
comprehensive account of the tag-bag termination mechanism.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory – Semantics; D.3.2 [Pro-
gramming Languages]: Language Classifications – Applicative
(functional) languages; D.3.4 [Programming Languages]: Pro-
cessors – Optimization

General Terms Algorithms, Performance

1. Overview
Supercompilation is a powerful program transformation technique
due to Turchin [1] which can be used to both automatically prove
theorems about programs [2] and greatly improve the efficiency
with which they execute [3]. Supercompilation is capable of achiev-
ing transformations such as deforestation [4], function specialisa-
tion and constructor specialisation [5].

Despite its remarkable power, the transformation is simple,
principled and fully automatic. Supercompilation is closely related
to partial evaluation, but can achieve strictly more optimising trans-
formations [6].

The key contributions of this paper are as follows:

• We briefly describe the structure of our call-by-need supercom-
piler1. This improves on prior work [7] in two ways. Firstly, we
allow the supercompiler to tie back more often (reducing su-
percompiler run time and output size) by making use of a weak
term normalisation procedure (Section 2.4). Secondly, we give

1 Full source code is available online at https://github.com/
batterseapower/chsc/tree/chsc2

[Copyright notice will appear here once ’preprint’ option is removed.]

the first precise account of the tag-bag termination mechanism
(Section 2.1).
• We show (Section 3) how to reduce code duplication caused

by supercompilation by letting the supercompiler roll back to a
previous state at certain points.
• We describe a novel approach to term generalisation in a super-

compiler that uses tags, which we call the growing tag heuristic
(Section 4). This generalisation method is easier to implement
than standard generalisation techniques.
• Any serious supercompiler for a lazy language must take care

to preserve sharing; that is, it must use call-by-need rather than
call-by-name. This in turn can lead to a loss of information due
to work duplication concerns (Section 5). We describe a new
thunk-speculating semantics that can exploit thunks, such as
partial applications, for which no work is lost by duplication.
• Finally, we show a natural extension of the growing tag heuris-

tic that allows our supercompiler to better generalise when su-
percompiling programs that use literals and primitive opera-
tions over them (Section 6).

2. Basic supercompilation
The supercompiler is an optimiser that transforms a program to
a semantically-equivalent but more efficient form, by aggressive
specialisation. The language we supercompile is a conventional
untyped, non-strict, higher-order; its syntax is given in Figure 1.
We discuss the details in due course, but terms e include the lambda
calculus, plus let bindings, literals and their primitive operations
(primops), and data constructors and case expressions.

We begin by reviewing the high-level structure of our super-
compiler, which we call CHSC2 (for Cambridge Haskell Super-
compiler). CHSC2 builds directly our previous work, CHSC1 [7],
which the reader is urged to consult for further background. As
well as introducing our notation and framework, we also describe
several significant improvements in CHSC2 compared to CSHC1,
and give the first precise account of the tag-bag approach to termi-
nation. This section will form a core upon which we will build in
subsequent sections when we describe each of the improvements
we have made to the basic supercompiler.

The supercompilation algorithm is as follows:

sc, sc′ :: History → State → ScpM Term
sc hist = memo (sc′ hist)

sc′ hist state = case terminate hist state of
Stop → split (sc hist) state
Continue hist ′ → split (sc hist ′) (reduce state)

In the subsequent sections we will pick apart this definition and
explain all the auxiliary functions it makes use of. All the the main

— DRAFT submitted to ICFP 2011 — 1 2011/3/24

Variables x, y, z Primitives ⊗ ::= +,−, . . .

Data Constructors C ::= True, Just , (:), . . .

Literals ` ::= 1, 2, . . . , ’a’, ’b’, . . .

Values
v ::= λx. d Lambda abstraction

| ` Literal
| C x Saturated constructed data
| x Indirection to value

Terms
d ::= et Tagged expression
e ::= x Variable

| v Values
| d x Application
| d⊗ d Binary primops
| let x = d in d Recursive let-binding
| case d of α → d Case decomposition

Case Alternative
α ::= ` Literal alternative

| C x Constructor alternative

States S ::= 〈H
eK〉

Heaps H ::= x 7→ d Stacks K ::= κt

Stack Frames
κ ::= update x Update frame

| • x Apply to function value
| case • of α → d Scrutinise value
| • ⊗ d Apply first value to primop
| vt ⊗ • Apply second value to primop

Figure 1: Syntax of the Core language and evaluator

data types and function signatures are summarised in Figure 2. In
particular, the type of sc shows a unique feature of our approach
to supercompilation, namely that sc takes as input the machine
states that are the subject of the reduction rules, rather than terms
as is more conventional. We review the importance of this choice
in Section 2.4.

The main supercompiler sc is built from the following four,
mostly independent, subsystems:

1. The memoiser (Section 2.6). The call to memo checks whether
the input State is equal (modulo renaming) to a State we have
already supercompiled, or are in the process of supercompiling.
It is this memoisation that “ties the knot” so that a recursive
function is not specialised forever. The memoiser records its
state in the ScpM monad.

2. The termination criterion (Section 2.3). With luck the mem-
oiser will spot an opportunity to tie back, but for some func-
tions – for example, one with an accumulating parameter – each
recursive call looks different, so the memoiser will never en-
counter an identical state. So, if memo does not fire, sc′ uses
terminate to detect divergence (conservatively, of course). Its
History argument allows terminate to accumulate the States
it has seen before.

3. The splitter (Section 2.7). If the State fails the termination test
(the Stop branch), the supercompiler abandons the attempt to

type Tag = Int

type Heap = Map Var Term -- See H in Figure 1

type Stack = [StackFrame]
data UStackFrame = . . . -- See κ in Figure 1
type StackFrame = (Tag ,UStackFrame)

data UTerm = . . . -- See e in Figure 1
type Term = (Tag ,UTerm) -- See d in Figure 1
data Value = . . . -- See v in Figure 1

data QA = Question Var | Answer Value

type State = (Heap, (Tag ,QA),Stack) -- Normalised
type UState = (Heap,Term,Stack) -- Unnormalised

freeVars :: State → [Var]
rebuild :: State → Term

sc :: History → State → ScpM Term

-- The normaliser (Section 2.4)
normalise :: UState → State

-- The evaluator (Section 2.5)
step :: State → Maybe UState
reduce :: State → State

-- The splitter (Section 2.7)
split :: Monad m ⇒ (State → m Term)

→ State → m Term

-- Termination checking (Section 2.3)
type History = [State]
emptyHistory = [] :: History

data TermRes = Stop | Continue History
terminate :: History → State → TermRes

-- Memoisation and the ScpM monad (Section 2.6)
memo :: (State → ScpM Term)

→ State → ScpM Term

Figure 2: Types used in the basic supercompiler

optimise the entire term. Instead, it splits the term into a residual
“shell” and some (smaller) sub-terms. Then it supercompiles
the sub-terms and glues the results back into the shell.

4. The evaluator (Section 2.5). If the State passes the termination
test (the Continue branch), we call reduce to perform sym-
bolic evaluation of the State . This may take many steps, but
will eventually halt (it has its own internal termination test).
When it does so, we split and residualise just as before.

To get things rolling, the supercompiler is invoked as follows to
supercompile an initial input Term:

supercompile :: Term → Term
supercompile e = runScpM (sc emptyHistory init state)

where init state = normalise (emptyHeap, e, [])

The normalise function will be discussed in Section 2.4.

2.1 Tagged evaluation
A strength of our supercompiler is that it contains at its heart a
call-by-need evaluator that is modularly separate from the rest of
the supercompiler, and is an absolutely direct implementation of
the operational semantics of the language. (In GHC, by contrast,
evaluation and optimisation are intimately interwoven.)

It is important to use an operational semantics, because the su-
percompiler must be fastidious about preserving sharing: an “op-

— DRAFT submitted to ICFP 2011 — 2 2011/3/24

〈H
eK〉 〈HeK〉 deref (H[x 7→ v], x) = deref (H, v)

deref (H, v) = v
VAR

〈
H,x 7→ d

xtK〉 〈
H
dupdate xt,K

〉
UPDATE

〈
H
vtv(update x)tx ,K

〉

〈
H,x 7→ vtv

xtv
K〉

APP
〈
H
(d x)t

K〉 〈
H
d• xt,K〉

BETA
〈
H
v• xtx ,K〉 〈HdK〉 (λx. d)tλ = deref (H, v)

BETA-N
〈
H
(λx. d)tλ

• xtx ,K〉 〈HdK〉
PRIM

〈
H
(d1 ⊗ d2)t

K〉 〈
H
d1(• ⊗ d2)

t ,K
〉

PRIM-L
〈
H
vtv1 (• ⊗ d2)

t⊗ ,K
〉

〈
H
d2(vtv1 ⊗ •)t⊗ ,K〉

PRIM-R
〈
H
v2(v1 ⊗ •)t⊗ ,K

〉

〈
H
(⊗(`1, `2))t⊗

K〉 `tii = deref (H, vi)

CASE
〈
H
(case dscrut of α → d

)tK〉 〈
H
dscrut

(case • of α → d)t,K
〉

DATA
〈
H
vcase • of {. . . ,Ci xi → di, . . .}t2 ,K

〉
 〈H

djK〉 (Cj xj)
t1 = deref (H, v)

LIT
〈
H
vcase • of {. . . , `i → di, . . .}t2 ,K

〉
 〈H

djK〉 `t1j = deref (H, v)

LETREC
〈
H
(let x = d in dbody

)tK〉 〈
H,x 7→ d

dbody
K〉

Figure 3: Operational semantics of tagged Core

timiser” that made programs go more slowly by losing sharing,
would not be popular. In particular, the operational semantics im-
plements call by need (or lazy evaluation) rather than call by name,
thereby respecting Haskell’s cost model.

Our Sestoft-style [8] operational semantics are given in Fig-
ure 3. The semantics describes transitions from one machine state
to another. A state 〈H

eK〉 has the following components:

• The heap, H , is a finite mapping from variable names to the
term to which that variable is bound.
• The focus term, e, is the focus of evaluation.
• The stack, K, describes the evaluation context of the focus

term.

Much of the operational semantics is conventional, but there are
three unusual features. The first is the inclusion of indirections,
to be discussed in Section 2.2. The second unusual feature is the
apparent redundancy in the inclusion of BETA-N when we already
have BETA. This is necessary to support normalisation, discussed
in Section 2.4.

Finally, the heap, focus term, and stack are all tagged. A tagged
term (d in Figure 1) is simply a term e with a tag t, written et.
Before supercompilation begins, the untagged input program is
tagged, once and for all, with a fresh tag at every node. We will
write Tag for the set of tags thus annotated on the original input
term.

Tags are used for two quite separate purposes in CHSC2. First,
they are used to drive the termination test (Section 2.3), and second
they are used to guide generalisation (Section 4). Neither is entirely
new [7, 9], but the contribution of this paper is for the first time to
make precise these earlier informal accounts, and to introduce some
useful refinements.

The operational semantics of Figure 3 makes explicit exactly
how tags are propagated during evaluation. The unbreakable rule is
that no new tags are generated — it is this invariant that guarantees
termination — but that leaves plenty of room for variations of
detail. For example, PRIM-R might sensibly use the tag from either
argument of the primop to tag the result, and UPDATE could tag
the indirection it creates with the update frame tag rather than that
of the value. The exact choice can in turn can influence both the
termination test, and the effectiveness of generalisation (Section 4).

2.2 Indirections
The only non-standard feature of the language is our inclusion
of indirections in the grammar of values (Figure 1). Indirections
are variables that are guaranteed to point to a value in the heap,
rather than a possibly-unevaluated term. They never occur in input
programs, and are only introduced by the UPDATE rule: when the
rule inserts the value vt of x back into the heap H , we continue
with an indirection x to that value in the focus of evaluation, rather
than copying the whole value from the heap into the focus.

Because values may be indirections as well as simple λs or
data, reduction rules such as those for β-reduction have to make
an auxiliary deref (H, v) call to “chase pointers” through the heap
to the definition of the value in the focus.

The reasons for this revised approach are twofold. Firstly, and
more importantly, we found by adding indirections to the rules we
could define a more useful normalising subset of the evaluation
rules: see Section 2.4 for details on this. Secondly, by creating
an indirection rather than copying a value outright, we can avoid
duplicating the allocation of that value when we later turn the
supercompiled version of the state back into a term. For example,
consider this term:

let x = Just a; y = x in case y of Just → f x y
Nothing → g x y

If the update rule were to copy the value rather than creating an
indirection, the supercompiled output would allocate a Just twice:

let x = Just a; y = Just a in f x y

whereas by creating an indirection when we execute the update
frame for y , we can get this result instead:

let x = Just a; y = x in f x y

2.3 The termination criterion
The core of the supercompiler’s termination guarantee is provided
by a single function, terminate:

terminate :: History → State → TermRes
data TermRes = Stop | Continue History

As the supercompiler proceeds, it builds up an ever-larger History
of previously-observed States. This history is both interrogated

— DRAFT submitted to ICFP 2011 — 3 2011/3/24

and extended by calling terminate . Termination is guaranteed
by making sure that History cannot grow indefinitely. More
precisely, terminate guarantees that, for any history h0 and
states s0, s1, s2, . . . there can be no infinite sequence of calls to
terminate of this form:

terminate h0 s0 = Continue h1

terminate h1 s1 = Continue h2

. . .

Instead, there will always exist some j such that:

terminate hj sj = Stop

In Section 2.5 we will see how reduce uses terminate to ensure
that it only performs a bounded number of reduction steps. The
same terminate function (with a different History) is also used
sc, to ensure that sc only recurses a finite number of times, thus
ensuring the supercompiler is total2.

One way to implement such a termination criterion is by defin-
ing a well-quasi-order [12]. The relation E∈ S × S is a well-
quasi-order (WQO) iff for all infinite sequences of elements of S
(s0, s1, . . .), it holds that: ∃ij. i < j ∧ si E sj . Given any WQO
E: State×State , we can implement a sound terminate function:

type History = [State]

terminate :: History → State → TermRes
terminate prevs here
| any (E here) prevs = Stop
| otherwise = Continue (here : prevs)

To implement a sound WQO on States we follow Mitchell [9]
by extracting a compact summary of the State , a bag of tags and
comparing those tag-bags3:

s1 E s2 = tagBag s1 Eb tagBag s2

The relation (E) is a WQO on States if Eb is a WQO on tag-bags.
Again following Mitchell we define Eb as:

b1 Eb b2 ⇐⇒ set (b1) = set (b2) ∧ |b1| ≤ |b2|
Theorem 2.1. Eb is a well-quasi-order.

We can extract a tag-bag from a State straightforwardly:

tagBag :: State → TagBag
tagBag

〈
H
etK〉 = {{2 ∗ t |x 7→ et ∈ H}}

∪ {{3 ∗ t}}
∪ {{5 ∗ t |κt ∈ K}}

We use {{. . .}} notation to introduce bag literals and comprehen-
sions with the standard meaning, and overload the set operators ∪
and ∅ to be applicable to bags. Notice carefully that we only col-
lect the root tag from each heap binding, the focus term, and stack
frame. We do not collect tags from internal nodes. Doing so would
make the bags bigger without making the termination test more
discriminating because, remembering that tags all derive from the
originally-tagged input program, a node tagged t will usually have
the same children tags.

We multiply tags by a different constant according to whether
they arose from the heap, stack or focus, in order to prevent the
termination test from failing immediately just because a reduction
step has shuffled syntax between these three locations.

2.4 Normalisation
Our decision to make the supercompiler optimise States rather
than Terms is a consequence of our use of a State-based oper-
ational semantics, but it pays off elsewhere in the supercompiler

2 We do not prove this fact here, but it is a standard technique [10, 11].
3 It is simple matter to memoise the repeated use of tagBag on prevs .

— particularly in the splitter (Section 2.7), which operates distinc-
tively on each of the three component of the State .

Compared to our earlier work in CHSC1, we go further by
insisting that all States are normalised by exhaustively appling all
the reduction rules of Figure 3 except for the BETA rule. We still
apply BETA-N during normalisation — BETA-N differs from BETA
in that it is not allowed to inline the definition of a function from
the heap — and it is precisely this inlining that risks divergence.

Theorem 2.2. The system of reduction rules excluding BETA is
strongly normalising.

Proof. By constructing a suitable measure on states that can be
shown to be strictly decreased by every rule.

Normalisation has several benefits:

• Because only normalised states are matched, trivial differences
between States such as the ones described above cannot pre-
vent tieback from occurring (Section 2.6). For example, CHSC1
suffered from increased output program size because not deter-
mine that the following States all meant the same thing:

〈foldr 7→ . . .
foldr

• c, • n〉
〈foldr 7→ . . .

foldr c
• n〉

〈foldr 7→ . . .
foldr c n

ε〉
• It reduces the number of times that we have to test the termina-

tion criteria in reduce , since we only risk non-termination when
we perform a non-normalising reduction (see Section 2.5).
• Programs output by our supercompiler will never contain “ob-

vious” undone case discrimination nor manifest β-redexes.

As foreshadowed in Section 2.2, the use of indirections lets us
define a more natural normal form. A natural normalising seman-
tics for an indirectionless language is that which has an unrestricted
BETA rule but a restricted UPDATE rule that cannot duplicate lamb-
das. As a result, normalised states will often have syntactic λ-values
in their focus, to the detriment of readability. In the indirection-
based semantics, normalising evaluation can proceed further and
continue past the update, stopping only at the point at which the
function is actually applied (if any).

Normalised states are always in one of the following three
forms:

〈H
vε〉 〈H

xK〉 (x /∈ H)
〈
H
f
• xt,K〉

We therefore define the State type to be the type of normalised
states, and represent the fact that the focus will only ever be a vari-
able or a value by introducing a new sum type QA (see Figure 2).
The normalise function allows a non-normalised state (UState)
to be injected into the State data type in the obvious way:

normalise :: UState → State

2.5 Reduction
Normalisation performs lots of reduction, but the supercompiler
still needs to perform some potentially non-normalising reduction
steps in order to make good progress. We do such reductions with a
function step that it implements the BETA reduction rule (Figure 3).

step :: State → Maybe UState

If BETA fires, step returns an un-normalised state, UState; other-
wise it returns Nothing . Typically, normalisation is then applied to
the reduced result.

We can use step and normalise together to build a terminating
multi-step evaluator, which in turn is called by the main supercom-
piler sc′:

— DRAFT submitted to ICFP 2011 — 4 2011/3/24

reduce :: State → State
reduce = go emptyHistory

where
go hist state = case terminate hist state of

Stop → state
Continue hist ′ → case step state of

Nothing → state
Just us → go hist ′ (normalise us)

The totality of reduce is achieved using the terminate function
from Section 2.3. If terminate reports that evaluation appears to be
diverging, reduce immediately returns. As a result, the State triple
(h, qa, k) returned by reduce might not be fully reduced (though
it will of course be normalised in the sense of Section 2.4) — in
particular, it might be the case that qa = f where f is bound by h .

2.6 Memoisation
The purpose of the memoisation function, memo, is to ensure
that we reuse the results of supercompiling a State if we come
to supercompile an equivalent State later on.

We achieve this by using the ScpM state monad: whenever we
supercompile a new State we give it a fresh name of the form
hn for some n and record the State and name in the monad as
a promise. The supercompiled version of that State will be λ-
abstracted over its free variables and bound to that name at the top
level of the output program. Now if we are ever asked to supercom-
pile a later State equivalent to that earlier one (up to renaming) we
tie back by just looking in the promises and producing a call to the
name of the earlier state, applied to appropriate arguments. More
detail is given in our earlier paper [7].

2.7 The splitter
The job of the splitter is to complete the process of supercompiling
a State whose reduction is stuck, either because of a lack of
information (e.g. if the State is blocked on a free variable), or
because the termination criterion is preventing us from reducing
that State further. The splitter has the following type signature:

split :: Monad m ⇒ (State → m Term)
→ State → m Term

In general, (split opt s) identifies some sub-components of the
state s , uses opt to optimise them, and combines the results into
a term whose meaning is the same as s (assuming, of course, that
opt preserves meaning).

A sound, but feeble, implementation of split opt s would be
one which never recursively invokes opt :

split s = return (rebuild s)

(rebuild turns a State back into a Term; Figure 2.) Such an im-
plementation is wildly conservative, because not even trivially re-
ducible subexpressions will benefit from supercompilation. A good
split function will residualise as little of the input as possible, using
opt to optimise as much as possible. It turns out that, starting from
this sound-but-feeble baseline, there is a rich variety of choices one
can make for split . Space limitations preclude us from discussing
split in great detail, but further details can be found in our previous
paper [7] or the published source code.

To explain a little about how split works, we first introduce
a notational device similar to that of Mitchell [9] for describing
the operation of split on particular examples. Suppose that the
following State is given to split :

〈x 7→ 1, xs 7→ map (const 1) ys
x : xs

ε〉
In our notation the output of split would be this “term”, which has
sub-components that are States:

let x = 〈ε
1
ε〉 ; xs = 〈ε

map (const 1) ys
ε〉

in x : xs

You should read this in the following way:

• The part of the term outside the 〈state brackets〉 is the residual
code that will form part of the output program.
• In contrast, the brackets enclose sub-States that are fed to opt

for further supercompilation.

Before split returns, the result of supercompiling each sub-State
is pasted into the correct position in the residual code. So the actual
end result of such a supercompilation run might be something like:

let x = h2 ; xs = h3 ys in x : xs

where h2 and h3 will have optimised bindings in the output pro-
gram, as usual.

So far, we have only seen examples where split opt invokes
opt on subterms of the original input. While this is a good approx-
imation to what split does, in general, we will also want to include
some of the context in which that subterm lives. Consider the fol-
lowing input:

〈x 7→ 1, y 7→ x + x
Just y

ε〉
A good way to split is as follows:

let y = 〈x 7→ 1
x + x

ε〉 in Just y

Note that split opt decided to recursively optimise the term x + x ,
along with a heap binding for x taken from the context which the
subterm lived in. This extra context will allow the supercompiler to
reduce x + x to 2 at compile time.

Another way that a subterm can get some context added to it
by split is when evaluation of a case expression gets stuck. As an
example, consider the following (stuck) input to split :

〈ε
x
case • of (True → 1;False → 2) , • + 3〉

One possibility is that split could break the expression up for
further supercompilation as follows:

case x of True → 〈ε
1
ε〉

False → 〈ε
2
ε〉) + 〈ε3

ε〉
However, split can achieve rather more potential for reduction if
it duplicates the stack frame performing addition into both case
branches: in particular, that will mean that we are able to evaluate
the addition at compile time:

case x of True → 〈ε
1
(• + 3)〉

False → 〈ε
2
(• + 3)〉

In fact, in general we always push all of the stack frames following
a case • of α → e frame to meet with the expressions e in the
case branches.

This is one of the places where the decision to have the super-
compiler work with States rather than Terms pays off: the fact
that we have an explicit evaluation context makes the process of
splitting at a residual case very systematic and easy to implement.

2.8 A complete example
Here is an example of the supercompiler in action. Consider the
function map, whose tagged definition is as follows:

map f xs = (case xs t1 of
[]→ []
(y : ys)→ ((f y)t2 : ((mapt3 f)t4 ys)t5)t6)t7

Now, suppose we supercompile the call ((mapta not)tb xs)tc ,
which inverts every element in a list of booleans, xs . Remember
(Section 2) that supercompile normalises the expression before

— DRAFT submitted to ICFP 2011 — 5 2011/3/24

giving it to sc. Normalisation will evaluate the term until it gets
stuck, which is nearly immediate, because it needs to inline map.
So the initial State given to sc is this:

S1 =
〈
map 7→ (. . .)t9 ,not 7→ (. . .)t8

mapt9
• nottb , • xstc

〉
As this is the first invocation of sc, there is no way we can tie
back, so sc′ is called. The history is empty, so the termination
check passes — after extending the history with the tag-bag {{3 ∗
t9, 5 ∗ tb, 5 ∗ tc, 2 ∗ t9, 2 ∗ t8}} — and so sc′ calls reduce which
evaluates the state (including inlining; see Section 2.5) until it gets
stuck because it has no binding for xs:〈

map 7→ (. . .)t9 ,not 7→ (. . .)t8
xst1κt7

〉
where κ is the stack frame for the case expression:

κ = case•of
{

[]→ []
(y : ys)→ ((not y)t2 : ((mapt3 not)t4 ys)t5)t6)

}
Now split residualises part of the reduced State and recursively

supercompiles the two branches of the case. We concentrate on
the (:) branch. Once again the State constructed for this branch
is normalised before being passed to the recursive invocation of sc.
The normalised state looks like this:〈

map 7→ (. . .)t9 ,not 7→ (. . .)t8 ,
z 7→ (not y)t2 , zs 7→ ((mapt3 not)t4 ys)t5

(z : zs)t6
ε
〉

We cannot tie back at this point, and the tag-bag for this state,
{{2 ∗ t2, 2 ∗ t5, 3 ∗ t6, 2 ∗ t9, 2 ∗ t8}}, is distinct (as a set) from the
previous State , and so supercompilation proceeds in the Continue
branch of sc′ by splitting the State (reduce is the identity function
on this State as it is already a value). Both the head z and tail zs of
the output list are recursively supercompiled, but we focus on the
tail. Normalising gives:

S3 =
〈
map 7→ (. . .)t9 ,not 7→ (. . .)t8

mapt9
• nott4 , • xst5

〉
When sc is invoked on S3, it notices that it has already supercom-
piled the α-equivalent state S1, and so it returns immediately with
a Term that just invokes the corresponding h-function, h1 .

The final output program (including the h4 and h5 functions
generated by invocations of sc that we have elided) is thus:

h1 xs = case xs of [] → h4
(y : ys)→ h2 y ys

h2 y ys = h5 y : h1 ys
h4 = []
h5 y = not y

After inlining functions that are called exactly once we recognise
h1 as a version of map specialised for not as its first argument.

3. Rollback
Suppose that we apply reduce to the following term:

let f x = x + f x in f 2

Evaluation yields a sequence of terms f 2, 2+f 2 , 2+2+f 2, and
so does not terminate. Therefore, terminate will eventually say
Stop, and reduce (as defined in Section 2.5) will return whatever
term it has reached, say 2 + 2 + f 2. But since we have detected
probable divergence it might be better to discard the fruitless work
and roll back to an earlier term that has not grown so much.

Because the termination criteria is used in two ways in the
supercompiler, there are two opportunities to introduce rollback —
we not only add it to reduce , but to sc as well.

3.1 Rolling back reduction
The most straightforward change is to the reduce function (Sec-
tion 2.5). It would be possible for reduce to revert all the way to its

original input term in the event of divergence, but that risks discard-
ing useful computation along with the bloat. For example, suppose
the body of the let in the example above was id (f 2) where id is
the identity function. Then it would be a pity to discard the work of
reducing the call to id .

A more sophisticated approach is to modify the termination
test API, so that when reporting Stop it also yields information
recorded along with the earlier State that was E the new one:

type History a = [(State, a)]
emptyHistory :: History a

data TermRes a = Stop a | Continue (History a)

terminate :: History a → State → a → TermRes a
terminate hist here here extra
| prev extra: ← [prev extra

| (prev , prev extra)← hist
, prev E here]

= Stop prev extra
| otherwise
= Continue ((here, here extra) : hist)

To allow reduce to rollback, we can now use the extra data field
in the History to store the current State whenever the termina-
tion criteria was tested4. Should we be forced to Stop reduction,
that stored State is returned instead of the latest (more-reduced)
version. The new code may be compared with that in Section 2.5:

reduce :: State → State
reduce = go emptyHistory

where
go hist state = case terminate hist state state of

Stop old state → old state
Continue hist ′ → case step state of

Nothing → state
Just us → go hist ′ (normalise us)

A simple example of where this makes a difference is when using
reduce on a term such as this:

let loop xs = loop (1 : xs); id x = x
in id (loop [])

CHSC1 would produce a State such as this one:

let loop xs = loop (1 : xs)
xs0 = []; xs1 = (:) 1 xs0
xs2 = (:) 1 xs1 ; xs3 = (:) 1 xs2

in loop xs3

CHSC2 instead rolls back to an earlier State where we have dupli-
cated less code:5

let loop xs = loop (1 : xs); xs0 = []
xs1 = (:) 1 xs0 ; xs2 = (:) 1 xs1

in loop xs2

The reduce function with rollback is, pleasingly, idempotent.

3.2 Rolling back driving
The other use of terminate occurs in the sc function itself, where it
controls how deeply nested recursive invocations of sc can become.
We would also like to roll back here, but doing so is complicated

4 It may seem redundant to store the State twice in each History entry, but
this design is chosen for uniformity with Section 3.2
5 CHSC2 still unrolls the call to loop twice, whereas one unrolling might
seem more reasonable. This happens because the call to loop in the body of
the let is assigned a different tag to the occurrence of loop in the body of
loop itself.

— DRAFT submitted to ICFP 2011 — 6 2011/3/24

by the monadic structure of sc – we would like to roll back the
monad-carried information as well.

The easiest way to implement this is by making ScpM an ex-
ception monad, in which rollback is triggered by throwing an ex-
ception. However, rollback should not revert to the immediately-
enclosing invocation of sc but rather to the invocation that pro-
cessed the State that is E the current state. So we need to throw an
exception that will only be caught by the “right” handler. An ele-
gant way to express this idea is with a single new primitive in the
ScpM monad:

type Throw c = ∀ b.c → ScpM b
catchScpM :: (Throw c → ScpM a) -- Action to try

→ (c → ScpM a) -- Handler
→ ScpM a

The second argument is the easy one: it is the exception handler,
invoked if the first argument throws an exception. The first argu-
ment is the action to run in the scope of the exception handler, but
it needs to know how to throw an exception to this particular invo-
cation of catchScpM . So catchScpM applies its first argument to
a freshly-minted “how to throw” function. This latter function takes
a value of the type expected by the handler, c in this signature, and
throws the exception. This signature allows the code that raises the
exception to pass a value of type c to the handler, to communicate
some information about the failure.

Given catchScpM , we can implement a version of sc with
rollback. We make use of the same enhanced terminate function,
but this time the “extra information” passed to terminate and
returned by Stop is the “how to throw function”.

type ThrowTerm = ()→ ScpM Term

sc′ :: History ThrowTerm → State → ScpM Term
sc′ hist state

= (λthrow → check hist throw) ‘catchScpM ‘
(λ()→ split (sc hist) state)

where
check hist throw = case terminate hist state throw of

Stop old throw → old throw ()
Continue hist ′ → split (sc hist ′) (reduce state)

If we are forced to terminate (the Stop branch), then instead of
continuing from the current State (which triggered the termination
condition), we raise an exception using the exception raiser stored
with the State which “blew the whistle”. When resuming execu-
tion from an exception handler, we know that supercompiling the
state associated with that handler eventually caused the termination
criteria to fire. Therefore, we act as if the state had failed the ter-
mination test and do not reduce it before splitting. It is remarkable
how little the structure of the supercompiler is disturbed by this
change.

For now, the “exception type” c in the type of catchScpM is ().
However, we will need to instantiate it with a more interesting type
when we come to consider the generalisation feature of CHSC2 in
Section 4.

Note that the History at the point we raise an exception (with
old throw) may be longer than the History at the point we roll
back to. In fact, it is not necessary to preserve this longer history
when we rollback – we can make do with the shorter history at the
point the exception handler was installed. We claim that this does
not affect termination of the supercompiler.

One interesting question is what should happen to the ScpM -
carried information when we rollback. In particular, in between the
time the exception handler was installed and when an exception
is raised we may have completed supercompilation of some new h-
functions – what happens to those when we roll back?. One strategy

Test SCa Cmp.b Runc Mem.d Sizee

digitsofe2 -6% +1% +0% +0% -8%
rfib -1% +0% +0% -1% +0%
tak -3% +1% +64% +38% +39%
treeflip +1% +0% -4% -1% +0%
Average -1% +0% +4% +3% +2%
Maximum +1% +1% +64% +38% +39%
Minimum -7% -1% -4% -1% -8%
a Supercompilation time change when feature enabled
b GHC compile time change when feature enabled
c Program runtime change when feature enabled
d Runtime allocation change when feature enabled
e Code size change (in AST nodes) when feature enabled

Figure 4: The effect of enabling reduce-rollback

would be to discard them, on the basis that since we have rolled
back they will not necessarily be used. However, we found that
in practice these specialisations were often useful even after rolling
back – retaining generated h-functions caused the supercompilation
time of the digitsofe2 benchmark to decrease by 85%.

For this reason, our supercompiler retains as many h-functions
as possible when rolling back. One subtlety is that in between the
point at which the exception handler is installed and that at which
the exception is raised we may have made some new promises that
have not yet been fulfilled. By rolling back, we make it such that
these promises will never be fulfilled – so we do have to discard
any h-functions (and their dependents) that have tied back on the
basis of those promises. All of this jiggery-pokery is neatly hidden
away inside the implementation of catchScpM .

3.3 Evaluating rollback
We tested the effects of modifying the supercompiler with both
forms of rollback by observing the impact of enabling them when
supercompiling the benchmark suite we will use for all perfor-
mance tests in this paper:

• Seven examples from the nofib “imaginary” benchmark suite
[13] (bernouilli, digitsofe2, exp3 8, primes, rfib, tak and x2n1)
• Five standard example programs used in previous work on su-

percompilation and deforestation [3, 4, 9, 14] (append, factorial,
raytracer, sumtree, treeflip)
• One benchmark (sumsquare) from work on stream fusion [15].

Our supercompiler (CHSC) is implemented as a preprocessor.
All benchmarks are performed compiling the supercompiled pro-
gram with GHC at the highest −O2 optimisation level.

To evaluate the rollback feature, we investigate how the perfor-
mance of supercompiled programs changes if we disable rollback
in the final version of our supercompiler (described in Section 7).

The effects of enabling reduce-rollback are shown in Figure 4.
We only show those few programs for which enabling the feature
made a difference. This small effect an expected result, because
reduce is stopped by the termination criteria only rarely – it is much
more common that it stops because of a lack of information. Overall
the effect is minimal.

As expected, we do see a reduction in the size of the digitsofe2
output program. Perhaps more surprising is the fact that for the tak
benchmark the size of the output program was actually increased
by enabling reduce-rollback. This change is exaggerated by the
small size of tak, and occurs because enabling rollback changes the
order in which bindings are generalised (Section 4). The change
in heap usage occurs because this new generalisation choice just
happens to produce an output program less amenable for analysis
by GHC’s strictness analyser, not because the supercompiler is
deforesting less.

— DRAFT submitted to ICFP 2011 — 7 2011/3/24

Test SC Cmp. Run Mem. Size
append -1% +0% +0% +0% +0%
bernouilli +5% -1% -1% +0% -3%
digitsofe2 +165% +8% -4% +0% +83%
exp3 8 +2% -4% +4% +0% -59%
factorial -1% -1% -3% +0% +0%
primes -7% +1% +1% +0% -19%
raytracer +0% -1% +0% +0% +0%
rfib -1% -1% -1% +0% +0%
sumsquare -34% -4% -82% -100% -64%
sumtree -7% -1% +11% -1% -37%
tak -28% -6% +22% -100% -50%
treeflip -8% -1% +25% -1% -37%
x2n1 -4% +0% -1% +0% -22%
Average +6% -1% -2% -16% -16%
Maximum +165% +8% +25% +0% +83%
Minimum -34% -6% -82% -100% -64%

Figure 5: The effect of enabling sc-rollback

Figure 5 shows the results of enabling sc-rollback in the su-
percompiler. The effect here is much more pronounced, failing to
make an impact on results only for the append, factorial, raytracer
and rfib benchmarks – which are precisely the three benchmarks
that supercompiled cleanly without the sc termination test failing.
Overall results are very encouraging: we reduce the size of the out-
put programs by 16% on average without adverse effect on memory
usage or runtime of output programs.

Indeed, we find that sc-rollback tends to have a positive effect
on optimisation, despite it “undoing” some of the work of the super-
compiler. One reason this happens is because the History is rolled
back as well – giving us more opportunity for useful specialisation
(e.g. in sumsquare and treeflip) than if we had continued with the
(larger) history at the point we rolled back from. We also see ev-
idence that this allows us to generate lots of new specialisations
that are themselves eventually rolled back, increasing supercom-
pilation time without corresponding increases in output size (e.g.
digitsofe2).

One effect of sc-rollback is that loops are peeled and unrolled
less. However, we would anyway prefer to avoid this sort of opti-
misation in the supercompiler because it is better done by a lower-
level optimisation pass that has access to information about charac-
teristics of the execution hardware.

4. Generalisation by growing tags
A shortcoming of CHSC1 was that it did not make use of the stan-
dard technique of generalisation to guess good induction hypothe-
ses. Generalisation is an important heuristic for optimising pro-
grams whose supercompilation generates sequences of States to
supercompile that do not tie back – such as those programs that
make use of accumulating parameters.

4.1 The problem
An example where generalisation helps optimisation is foldl :

foldl c n xs = (case xs t1 of
[]→ n
(y : ys)→ (((foldl t2 c)t3 (c n y)t4)t5 ys)t6)t7

Now, suppose we supercompile the call ((foldl ta (+)tb n)tc xs)td ,
which computes the sum of the elements of xs . Remember (Sec-
tion 2) that supercompile normalises the expression before giving
it to sc. Normalisation will evaluate the term until it gets stuck,
which in this case happens nearly immediately because it needs to
inline foldl . So the initial State given to sc is this:

S1 =
〈
H
foldl t8

(• (+))tb , (• n)tc , (• xs)td
〉

(In each term in this section we elide the shared heapH = foldl 7→
(. . .)t8 , (+) 7→ (. . .)t9 .) Now, sc′ calls reduce which inlines foldl
and then gets stuck because it has no binding for xs:〈

H
xst1κt7 : ε

〉
where κ is the stack frame for the case expression:

κ = case•of
{

[]→ n
(y : ys)→ (((foldl t2 (+))t3 (n + y)t4)t5 ys)t6

}
Now split residualises the State and recursively supercompiles

the call to foldl in the case branch. Once again this State is
normalised before being passed to the recursive invocation of sc:

S2 =
〈
H,n1 7→ (n + y)t4

foldl t8
(• (+))t3 , (• n1)t5 , (• ys)t6

〉
The tag-bag for S1 is {{5 ∗ tb, 5 ∗ tc, 5 ∗ td, 3 ∗ t8, 2 ∗ t8, 2 ∗ t9}}
and for S2 is {{5 ∗ t3, 2 ∗ t4, 5 ∗ t5, 5 ∗ t6, 3 ∗ t8, 2 ∗ t8, 2 ∗ t9}},
so the termination criterion does not fire. We again reduce , and re-
cursively supercompile the call to foldl thus revealed. Normalising
once more gives,

S3 =
〈
H3

foldl t8
(• (+))t3 , (• n2)t5 , (• ys1)t6

〉
H3 = H,n1 7→ (n + y)t4 ,n2 7→ (n1 + y1)t4

(We must of course freshen the variables bound by the case, so
have renamed the variables y and ys bound by the most recent case
stack frame to y1 and ys1 respectively.)

The tag-bag for S3 is {{5 ∗ t3, 2 ∗ t4, 2 ∗ t4, 5 ∗ t5, 5 ∗ t6, 3 ∗
t8, 2 ∗ t8, 2 ∗ t9}}. Considered as a set, this has the same tags as the
tag-bag for S2, but a greater multiplicity for t4 – the “growing tag”
– so the termination test fires.

At this point, our standard supercompiler (without rollback)
would finish up by splitting as follows:

let (+) = 〈(+) 7→ . . .
(+)

ε〉
n2 = 〈(+) 7→ . . . ,n1 7→ n + y

n1 + y1
ε〉

in 〈foldl 7→ . . .
foldl

ε〉 (+) n2

This is hopeless: we end up merely creating an exact copy of foldl ,
called after one peel of the loop. What we want is to specialise wrt
the argument that is not changing, namely (+), but parameterise
over the argument that is changing, the accumulator n .

4.2 Our solution
The problem of how to continue when the supercompiler termina-
tion criteria fails is well known and is solved by the choice of some
generalisation method [10, 16]. The goal of generalisation is to use
the specialisations generated thus far to infer a “more general” spe-
cialisation that subsumes both of them.

Almost all supercompilers implement generalisation by com-
puting the so-called most specific generalisation (MSG) between a
term and that earlier term into which it embeds. However:

• The MSG is computed using terms that do not contain let
bindings, which is a problem for a call-by-need supercompiler
that needs to preserve let bindings in order to prevent loss of
sharing. It is not totally clear how to extend the MSG to terms
containing let.
• The MSG is usually only guaranteed to be non-trivial between

terms that are homomorphically embedded. However, we use
tag-bags instead of the homeomorphic embedding — so trying
to use the MSG is unlikely to give good results.

Instead, we adopt a new approach, which we call the growing-
tags heuristic. This heuristic is particularly simple, but is as effec-
tive as any other that we have tried. The idea is that when the termi-
nation test fails there is usually at least one tag that can be “blamed”
for this, in the sense that the number of occurrences of that tag has

— DRAFT submitted to ICFP 2011 — 8 2011/3/24

grown since we supercompiled the prior state. In our foldl exam-
ple, there is indeed such a tag — t4. We can use the set of growing
tags to generalise the State being supercompiled by residualising
any syntax tagged with the growing tag(s) and then continuing. In
our example, when the termination test fails on S3, we would resid-
ualise the heap bindings for n1 and n2 because they are tagged (at
the root) with t4, and recursively supercompile the sub-terms as
follows:

let n1 = 〈(+) 7→ . . .
n + y

ε〉
n2 = 〈(+) 7→ . . .

n1 + y1
ε〉

in 〈(+) 7→ . . . , foldl 7→ . . .
foldl

• (+), • n2 〉
Now, since the accumulator n2 has been residualised, the recur-
sively supercompiled State in the body of the let can immediately
tie back to the h function for S1, and we get a loop that implements
foldl . The resulting loop has been peeled once (because the tags of
the initial call are different from the tags of subsequent ones), and
unrolled twice (because it took two foldl inlinings before we could
spot the pattern of growth).

This technique combines very nicely with rollback — with
rollback enabled, we can simply force residualisation of any syntax
in the older State that is tagged with a growing tag. So for our foldl
example, failure of the termination test would cause us to roll-back
to S2, at which point we would notice that the n+y thunk is tagged
with the growing tag t4 and thus residualise it. The resulting loop
will still have been peeled once, but will not have been unrolled.

In general, it might be the case that no tag is growing with
respect to the previous tag bag, which happens if and only if the
latest tag-bag is exactly equal to the older one. In this case we
are forced to split using the standard splitting mechanism used by
CHSC1. This is analogous to the situation that occurs with a MSG-
based generalisation heuristic where two terms have a trivial MSG.

The plumbing needed to implement this generalisation method
can be added to the basic supercompiler in a very straightforward
manner. We can replace the definition of sc′ from Section 3.2 with
the following:

type Growing = Set Tag
type ThrowTerm = State → ScpM Term

sc′ hist state
= (λthrow → check hist throw) ‘catchScpM ‘

(λstate ′ → case findGrowing state state ′ of
Nothing → split (sc hist) state
Just growing → generalise growing (sc hist) state)

where
check hist throw = case terminate hist state throw of

Stop old throw → old throw state
Continue hist ′ → split (sc hist ′) (reduce state)

Note that we instantiated the “exception type” parameter c of
catchScpM with ThrowTerm (c.f. Section 3.2).

To make use of the growing-tags information, we introduce
generalise , a function similar to split , but which only residualises
those parts of the input State that are marked with a growing tag
(and anything that those residualised portions transitively depend
on). In our implementation, generalise shares almost all of its code
with split .

generalise :: Growing
→ (State → ScpM Term)
→ State → ScpM Term

Finally we can compute the growing tags themselves:

findGrowing :: State → State → Maybe Growing
findGrowing s1 s2
| setNull g = Nothing

Test SC Cmp. Run Mem. Size
append -1% -8% +0% +0% +0%
bernouilli -2% -1% -2% -1% -9%
digitsofe2 +110% +11% -41% -33% +119%
exp3 8 -64% -4% +0% +0% -49%
factorial -1% +0% +0% +0% +0%
primes +6% -2% -27% -2% -47%
raytracer +0% +0% +0% +0% +0%
rfib -2% +0% -1% -1% +0%
sumsquare +2% -1% -82% -100% -7%
sumtree -49% -2% -88% -100% -55%
tak +0% +2% -47% -100% +74%
treeflip -66% -2% -91% -100% -62%
x2n1 -38% -2% +5% -84% -45%
Average -8% -1% -29% -40% -6%
Maximum +110% +11% +5% +0% +119%
Minimum -66% -8% -91% -100% -62%

Figure 6: The effect of enabling generalisation

| otherwise = Just g
where g = bagToSet $ tagBag s2 ‘bagMinus‘ tagBag s1

In practice, there will sometimes be several growing tags, in which
case supercompilation can continue if we residualise syntax tagged
with any non-empty subset of the growing tags. The choice of
exactly which subset to use — a process we call pruning — leaves
some scope for tuning of the generalisation: we have found that a
good heuristic is to residualise those tags that originate from stack
frames in preference to those on any other piece of syntax.

4.3 Evaluating generalisation
The effects of enabling generalisation are recorded in Figure 6. The
results are very good: supercompilation time, memory usage and
output size almost always fall — indeed, no benchmark allocates
more after this change. The size of digitsofe2 increases signifi-
cantly due to extra specialisation, but it pays off in performance
terms. These results underscore the importance of the choice of
generalisation heuristic in supercompilation.

5. Speculative evaluation
A call-by-need supercompiler such as CHSC will unavoidably
sometimes find itself discarding information from the Heap in
split . This is because some heap bindings will both be shared and
expensive to compute, and so we cannot risk duplicating the work
they do. A concrete example of this would be a program such as:

let b = odd unk
in (if b then x else y , if b then y else x)

If we were free to duplicate the b binding into each component of
the pair, we could fuse the consumption of the Bool result by the if
expressions into odd , hence deforesting the intermediate boolean
values. However, doing this would cause the unk number to be
traversed by odd twice. To prevent such problems, split forces
residualisation of any heap bindings that are not syntactic values.

However, the check for something being a syntactic value is too
strict – many things are in fact safe to duplicate even though they
are not values. A simple example is a partial application:

let f = λx y . x + y ; g = f 1
in (g 2, g 3)

CHSC1 would produce the following output for this program:

let g = λy . 1 + y in (g 2, g 3)

The f call has been inlined, but the two calls to g have not been.
This is because the g binding appears to be expensive (because

— DRAFT submitted to ICFP 2011 — 9 2011/3/24

f 1 is an application, not a value) and hence is not duplicated into
the components of the pair. Of course, after supercompiling g we
discover that it actually evaluates to a value – but we discover that
fact too late to make use of it.

5.1 Our solution
In contrast, CHSC2 uses let-speculation to preemptively discover
that g is a value. After sc calls reduce , an auxiliary function
speculate attempts to reduce any non-values in the resulting Heap
to values by invoking reduce on them. If reduce reaches a value
then the original binding is replaced with the new form, but if
reduce fails to reach a value the original binding is retained.

Cheap expressions that are “close to” values (like f 1 in our
example) will be replaced with syntactic values by the speculator,
which allows split to residualise less and propagate more infor-
mation downwards. The use of this technique means that unlike
Mitchell [9], we do not require a separate arity analysis stage to
supercompile partial applications well. Furthermore, this technique
automatically achieves useful let-floating, and also allows fully-
applied function calls and primop applications to be duplicated if
those calls quickly reach values6.

Using reduce on some Heap binding may itself give rise to
further heap bindings requiring speculation. For example, if we
speculate the expression let x = 1 + 1 in Just x , after reduction
the outgoing heap will contain a binding for the term 1 + 1.

Naturally, we wish to speculate such bindings recursively, but
implemented naı̈vely this creates a new source of non-termination
— for example, consider speculating the expression enumFrom 1.
The reduce call will reach a value 1 : ys with new heap bindings
y 7→ 1 + 1 and ys 7→ enumFrom y . If we speculate the ys
binding in turn we generate the new bindings z 7→ y + 1 and
zs 7→ enumFrom z . We are in a loop.

To head off the resultant non-termination, we use the tag-bag
termination test to check each heap binding before speculating it. If
the test fails, we do not reduce, and instead roll the speculator back
to point at which it was considering speculating the heap binding
which blew the whistle, and retrospectively prevent reduction of
that binding. This rollback is implemented by an exception-raising
mechanism much the same way as described in Section 3.

An alternative to doing rollback would be to simply cease spec-
ulation at the point the termination test fails. However, doing so
leads to undesirable unrolling as speculating our enumFrom 1 ex-
ample from earlier will cause it to be unrolled twice. With rollback
we detect the divergence and undo the peeling of enumFrom .

Rollback is also important because it ensures that speculate
is idempotent – this is an important property, as bindings that
speculation has failed to reduce to a value may be speculated again
in a recursive invocation of sc – and we certainly don’t want to
do things like unroll an enumFrom call once for every time sc
recurses7.

5.2 Evaluating speculation
Figure 7 shows the results of enabling speculation for those bench-
marks where it made a difference. The results are modest because
our benchmark suite contains few programs that make non-linear
use of partial applications and other expressions that are “almost
values” — but the added information propagation does cause a big
improvement when it happens.

6 Speculation of saturated applications is a particularly important feature if
(like CHSC) your supercompiler introduces data constructor wrappers to
deal with partial application of constructors in the input language
7 To improve efficiency, our real implementation keeps track of the names
of previously-speculated bindings to avoid speculating them again

Test SC Cmp. Run Mem. Size
bernouilli +77% +1% +0% +0% +27%
digitsofe2 +208% +16% +1% +0% +146%
exp3 8 +17% +1% +0% +0% -2%
primes +3% -1% -9% +10% +1%
rfib -29% -2% +0% -1% +0%
sumsquare -11% -1% -94% -100% -20%
sumtree -28% +0% -1% +0% +5%
tak -3% -1% -1% -1% +0%
treeflip -28% +0% -3% +0% +6%
x2n1 -31% -3% +19% -84% -45%
Average +14% +1% -7% -14% +9%
Maximum +208% +16% +19% +10% +146%
Minimum -31% -3% -94% -100% -45%

Figure 7: The effect of enabling speculation

The regression in the memory usage of primes is once again
caused by an adverse interaction with GHC’s strictness analyser.
The growth of digitsofe2 happens because speculation of a heap
binding prevents the memoiser from seeing that tieback is possible,
which in turn necessitates the generation of a large number of
duplicate specialisations.

6. Generalisation and primops
Primops shrink syntax trees, discarding tags as they do so. It turns
out that discarding these tags makes it harder for the growing-tag
generaliser to do a good job. A simple example of the problem
occurs when supercompiling a version of length defined with the
non-strict foldl defined in Section 4. Consider this term:

let next n = n + 1; z = 0te in ((foldl ta next tb z)tc xs)td

Supercompiling, we see the following sequence of normalised
States:

S1 =
〈
H, z 7→ 0te

foldl t8
(• next)tb , (• z)tc , (• xs)td

〉
S2 =

〈
H, z 7→ 0te ,n1 7→ (next y z)t4

foldl t8


(• next)t3 , (• n1)t5 , (• ys)t6
〉

S3 =

〈
H,n1 7→ 1t4 ,n2 7→ (next y1 n1)t4

foldl t8


(• next)t3 , (• n2)t5 , (• ys1)t6
〉

S4 =

〈
H,n2 7→ 2t4 ,n3 7→ (next y2 n2)t4

foldl t8


(• next)t3 , (• n3)t5 , (• ys2)t6
〉

Up until S4, supercompilation has proceeded untroubled by termi-
nation test failure. This changes when we reach S4, as the latest
tag bag is identical to that for S3 and so to ensure termination the
supercompiler tries to generalise or split without reduction. Un-
fortunately, because we have two equal tag-bags, the supercompiler
will be unable to identify a growing tag suitable for generalisation,
and so will have to fall back on standard split rather than general-
ising away the n heap bindings as we would hope.

If we had not speculated, we would also not have the problem as
n1 and n2 would remain unreduced. This would have turn caused
the heap of S3 to contain z — thus triggering the termination test
at the point we supercompiled S3, and fingering t4 as the growing
tag. Furthermore, the problem would not occur if we had Peano
numbers in place of literals and primops, because the growing
nature of the accumulator would have shown up as an increasingly
deeply nested application of S that is readily detectable by the
growing-tags heuristic. Interestingly, as a side effect of the work-
duplication check in the splitter, we also get good code “by chance”
if we supercompile a strict foldl .

6.1 Our solution
Our solution to this problem is straightforward and non-invasive.
The idea is that a binding such as n2 should “weigh” more heavily

— DRAFT submitted to ICFP 2011 — 10 2011/3/24

Test SC Cmp. Run Mem. Size
bernouilli +3% +0% -2% -1% -2%
digitsofe2 +136% +15% -41% -33% +133%
exp3 8 +0% +1% +0% +0% -2%
primes +2% -2% -1% +0% -30%
rfib -2% -2% +0% -1% +0%
sumsquare -16% +0% +10% -80% -28%
sumtree +1% +0% +0% -1% +0%
x2n1 -32% -2% +4% -84% -45%
Average +7% +1% -3% -15% +2%
Maximum +136% +15% +10% +0% +133%
Minimum -32% -2% -41% -84% -45%

Figure 8: The effect of enabling multiplicity tagging

in the mind of the growing-tags generaliser than a binding like n1
because its literal value embodies more computational history. To
this end, we add a multiplicity to the type of tags, modeling a tag-
bag with several reptitions of a single tag, vaguely approximating
the effect of Peano arithmetic:

type Multiplicity = Int
type Tag = (Int ,Multiplicity)

Tags are initialised with an Multiplicity of 1. All the tagged re-
duction rules of Figure 3 remain the same with the exception of
PRIM-R, which is replaced with the following rule:〈

H
v2

(v1 ⊗ •)(x0,c0) ,K
〉

〈
H
(⊗(`1, `2))(x0,

∑
j cj)

K
〉

where `
(xi,ci)
i = deref (H, vi)

This rule differs from the standard one in that it produces an output
tag with an Multiplicity that has grown to be strictly greater than
the tags of each of the inputs.

The final, crucial step is to make use of the Multiplicity infor-
mation when constructing the TagBag :

tagBag
〈
H
e(x,c)K〉 = {{2 ∗ x |x 7→ e(x,c) ∈ H, 0 6 i < c}}

∪ {{3 ∗ x |0 6 i < c}}
∪ {{5 ∗ x |κ(x,c) ∈ K, 0 6 i < c}}

No further changes are required — because we construct
TagBags with several “copies” of a tag with an Multiplicity
greater than one, the growing tags heuristic identifies them as grow-
ing in just the situations where we need it to. Consider our length
function example above. In S3, the tag t4 on n1 will have an mul-
tiplicity of 3, and that on n2 will be 1. By the time we reach S4 the
tag t4 on n2 will have a count of 5 while the tag on n3 will be 1.
Looking at the resulting tag bags, it is clear that t4 is the growing
tag and hence should serve as the basis of residualisation by the
growing-tags heuristic.

6.2 Evaluating multiplicity tagging
In Figure 8 we show the effects of enabling our multiplicity tagging
system for those programs that were affected by the change –
as you might expect, only programs making use of primops and
literals saw a change. One of the most dramatic results is for
sumsquare, where the newly-discovered generalisation causes all
of the lists allocated by the benchmark to be fused away, greatly
improving memory usage and runtime. However, there are solid
gains in runtime, memory usage and output size for all primop-
using benchmarks — all originating from better generalisation.

7. Overall results
Our latest version of the Cambridge Haskell Supercompiler, CHSC2,
incorporates all of the refinements described above: generalisation,
rollback, speculation, and multiplicity tagging. We compare our

results to Supero 2010 [9] in Figure 9. The main difference is
that CHSC2 discovers a better generalisation than Supero 2010
for treeflip, accounting for its ability to vastly reduce allocations
there. It is not clear why CHSC’s versions of digitsofe2 and primes
fail to reduce memory allocation by as much as Supero. Stripping
out the effect of tak, where Supero is unfairly penalised by the
areforementioned strictness-analyser interaction, we obtain slighly
better average memory consumption reduction (-41% vs -38%) and
runtime reduction (-36% vs -30%).

Encouragingly, only tak and exp3 8 got worse after supercom-
pilation. Unfortunately, even after inspection of the supercompiled
program it is unclear why the memory usage (and hence runtime)
of exp3 8 is made worse by supercompilation.

8. Related work
The tag-bag termination test was introduced by Mitchell [9]. The
other major approach is to use a homeomorphic embedding on
syntax trees [12] but supercompilers that use that method tend to
spend most of their time evaluating the test [17].

Supero 2010 [9] used a generalisation mechanism for call-by-
need supercompilers that use the tag-bag termination mechanism.
The idea is that when computing a child term for recursive super-
compilation, the splitting process avoids pushing down any bind-
ings that would cause the new child state to immediately fail the
termination check. We found that Supero’s generalisation method
gives very similar results to our method in most situations. How-
ever, our method has two clear merits:

• It is easier to implement, because the splitter does not need to
try inlining bindings in any particular order – the growing tags
tell you exactly those bindings which may be inlined.
• It is faster: Supero’s method requires one termination test to be

carried out for every binding you may wish to inline, whereas
our method simply requires a set membership test per inlining.

The effect of rollback on the sc is present in standard supercom-
pilers constructed around the idea of a “graph of configurations”,
such as HOSC [18]. In such systems, when an earlier graph node a
is embedded into a later node b, the a node (rather than the b node)
is generalised. This has the effect of cutting off the part of the graph
reachable via a, achieving rollback. We have described how this
idea can be applied to a direct-style supercompiler, as well as how
to apply the concept to “loopy” reduction and heap speculation.

Our decision to use speculative evaluation in the supercompiler
was initially inspired by Ennals [19], though runtime speculation
faces very different tradeoffs and design issues.

9. Conclusions and further work
We have described a highly-modular supercompiler whose perfor-
mance is comparable to or better than prior work, with an average
speedup and reduction in memory usage of 35%. We have shown
how supercompilation can be improved by a number of local im-
provements to our earlier modular algorithm. By adding rollback
to undo wasted supercompilation, we reduced both output program
memory consumption and size by 16%. By adding a speculator for
heap bindings, we improved information propagation and hence
got more deforestation, reducing memory usage by another 14%
on average. We also showed how the growing-tags heuristic could
be used in a tag-bag based supercompiler to implement generalisa-
tion, reducing heap usage by 40%. Furthermore, we described how
a supercompiler can make use of ubiquitously-normalised terms to
help ensure that the output program never contains “obvious” re-
ductions, and gave the first precise treatment of a tagged reduction
semantics of the sort that is necessary for a tag-bag based super-
compiler.

— DRAFT submitted to ICFP 2011 — 11 2011/3/24

Test Mitchell [9] CHSC2
SCa Cmp.b Runc Mem.d Sizee SCa Cmp.b Runc Mem.d Sizee

a Supercompilation time
b GHC compile time vs. GHC −O2
c Program runtime vs. GHC −O2
d Runtime allocation vs. GHC −O2
e Size increase (in AST nodes) due to

supercompilation

append 0.0s +2% -15% -15% +29% 0.0s +0% -11% -12% +170%
bernouilli 4.2s +80% -1% -3% +276% 0.1s +5% -5% -6% +162%
digitsofe2 3.1s +14% -56% -53% +15% 1.8s +30% -43% -37% +952%
exp3 8 0.6s +18% +1% +0% +559% 0.0s +2% +6% +11% +119%
factorial 0.0s -3% +1% +0% -23% 0.0s -1% -1% +0% +19%
primes 0.0s +2% -38% -23% -21% 0.0s -1% -40% -9% +9%
raytracer 0.0s +1% -42% -56% +54% 0.0s -2% -45% -55% +64%
rfib 0.0s +1% -11% +0% -13% 0.0s +0% -28% -1% +125%
sumsquare 13.8s +28% -62% -100% +638% 0.0s +0% -98% -100% +71%
sumtree 0.0s +0% -83% -100% +50% 0.0s +0% -90% -100% +60%
tak 0.0s +3% -38% +23018% -41% 0.0s +2% -15% +37% +229%
treeflip 0.0s +1% -44% -45% +99% 0.0s +0% -90% -100% +52%
x2n1 0.0s +4% -13% -66% +39% 0.0s +0% +5% -84% +35%
Average +12% -31% +1735% +128% +3% -35% -35% +159%
Maximum +80% +1% +23018% +638% +30% +6% +37% +952%
Minimum -3% -83% -100% -41% -2% -98% -100% +9%

Figure 9: Overall benchmark results

We have not yet proven that our modified supercompiler ter-
minates, though we have taken care to avoid sources of non-
termination in every component of our design. The supercompiler
does terminate on all examples we have tried. Unfortunately, it does
not seem possible to directly reuse our previous termination from
[7] because of our use of term normalisation, so an updated (and
elaborated) termination proof is an obvious line of further work.

An interesting direction would be to compare our generalisation
heuristic with the MSG, and do a more complete comparison with
Supero 2010’s generalisation.

We hope to incorporate a supercompiler into GHC itself so we
can experiment with supercompiling larger, real world programs.
To supercompile arbitrary programs, we are exploring means to
control the explosive growth in the number of distinct specialisa-
tions that occurs for many common examples.

Acknowledgments
This work was partly supported by a PhD studentship generously
provided by Microsoft Research.

References
[1] Valentin F. Turchin. The concept of a supercompiler. ACM Trans.

Program. Lang. Syst., 8(3):292–325, 1986.
[2] Alexei P. Lisitsa and Andrei P. Nemytykh. Verification as specializa-

tion of interpreters with respect to data. In Procedings of First Inter-
national Workshop on Metacomputation, pages 94–112, 2008.

[3] Peter A. Jonsson and Johan Nordlander. Positive supercompilation for
a higher order call-by-value language. In POPL ’09: Proceedings of
the 36th ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages, 2009.

[4] Philip Wadler. Deforestation: Transforming programs to eliminate
trees. In ESOP ’88, volume 300 of Lecture Notes in Computer Science,
pages 344–358. Springer Berlin / Heidelberg, 1988.

[5] Simon Peyton Jones. Constructor specialisation for Haskell programs.
Proceedings of the ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2007, pages 327–337, 2007.

[6] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. Towards
unifying partial evaluation, deforestation, supercompilation, and gpc.
In ESOP ’94: Proceedings of the 5th European Symposium on Pro-
gramming, pages 485–500, London, UK, 1994. Springer-Verlag.

[7] Max Bolingbroke and Simon Peyton Jones. Supercompilation by eval-
uation. In Proceedings of the 2010 ACM SIGPLAN Haskell Sympo-
sium, September 2010.

[8] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional
Programming, 7(03):231–264, 1997.

[9] Neil Mitchell. Rethinking supercompilation. In Proceedings of the
ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2010. ACM, 2010.

[10] Valentin F. Turchin. The algorithm of generalization in the supercom-
piler. Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors,
Partial Evaluation and Mixed Computation, pages 531–549, 1988.

[11] Ilya Klyuchnikov. Supercompiler HOSC 1.1: proof of termina-
tion. Preprint 21, Keldysh Institute of Applied Mathematics, Moscow,
2010.

[12] Michael Leuschel. On the power of homeomorphic embedding for
online termination. In Static Analysis, volume 1503 of Lecture Notes
in Computer Science, pages 230–245. Springer Berlin / Heidelberg,
1998.

[13] Will Partain. The nofib benchmark suite of Haskell programs. In Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming,
pages 195–202, London, UK, 1993. Springer-Verlag.

[14] Jan Kort. Deforestation of a raytracer. Master’s thesis, Department of
Computer Science, University of Amsterdam, The Netherlands, 1996.

[15] Duncan Coutts, Roman Leshchinskiy, and Donald Stewart. Stream
fusion: From lists to streams to nothing at all. In Proceedings of
the ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2007, April 2007.

[16] Morten Heine Sørensen and Robert Glück. An algorithm of general-
ization in positive supercompilation. In Proceedings of ILPS’95, the
International Logic Programming Symposium, pages 465–479. MIT
Press, 1995.

[17] Neil Mitchell and Colin Runciman. A supercompiler for core Haskell.
In Implementation and Application of Functional Languages, volume
5083 of Lecture Notes in Computer Science, pages 147–164. Springer
Berlin / Heidelberg, 2008.

[18] Ilya Klyuchnikov. Supercompiler HOSC 1.0: under the hood.
Preprint 63, Keldysh Institute of Applied Mathematics, Moscow,
2009.

[19] Robert Ennals and Simon Peyton Jones. Optimistic evaluation: an
adaptive evaluation strategy for non-strict programs. In ICFP ’03:
Proceedings of the eighth ACM SIGPLAN International Conference
on Functional Programming, pages 287–298, New York, NY, USA,
2003. ACM.

— DRAFT submitted to ICFP 2011 — 12 2011/3/24

