
1

Network Tomography Using Passive End-to-end Measurements

Venkata N. Padmanabhan (Microsoft Research) and Lili Qiu (Microsoft Research)

I. INTRODUCTION

Network tomography refers to the inference of characteristics of in-
ternal links in a network using end-to-end measurements. The link
characteristics of interest include packet loss rate, delay, and band-
width; here we focus on loss rate. Depending only on end-to-end mea-
surements is convenient in the context of the Internet because network
operators such as ISPs offer limited visibility into the internal function-
ing of their networks.

Besides being an interesting problem in its own right, network to-
mography can help identify bottlenecks and trouble spots (e.g., points
of congestion) within the network. This information can help diagnose
network problems and, in the long run, drive network provisioning de-
cisions for ISPs and network connectivity and server placement deci-
sions for their customers such as Web site operators.

Previous work on inferring link loss rate using end-to-end measure-
ments has largely been based on active probing techniques. MINC [1]
bases its inference on losses experienced by multicast probe packets in-
jected into the network while [2] does so using closely-spaced unicast
probe packets striped across multiple destinations.

In contrast, our goal is to infer link loss rates based on passively ob-
serving the end-to-end loss rate for existing traffic such as that between
a Web server and its clients. A passive approach has the advantage
that there is no wasteful traffic and the measurements do not perturb
the network. However, the disadvantage is that we have less control
over the measurement process. Unlike active techniques that are able
to identify and localize individual loss events, our passive approach has
to make do with aggregate statistics such as the loss rate. While accu-
racy may suffer, we believe a passive approach is still advantageous if
we can infer where the trouble spots (e.g., highly lossy links) are in the
network.

While being basically passive, our approach has a small active com-
ponent to discover the network topology using traceroute measure-
ments. However, these measurements only need to be made relatively
infrequently and can be done in the background.

II. IDENTIFYING LOSSY LINKS

We now discuss the problem of identifying lossy links based on pas-
sive measurements. The scenario we focus on is a large number of
clients downloading files from a server. The packet loss rate between
the server and each client is computed by passively observing the traf-
fic between the server and the clients. The network topology from
the viewpoint of the server is constructed by tracing the path to each
client. Barring transient route fluctuations, the resulting topology is a
tree rooted at the server, with clients at the leaves (Figure 1). Our goal
is to identify the lossy links in this topology.
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Fig. 1. Network topology from the Web server point of view, where S denotes a server,C
denotes a client, and R denotes a router.

Identifying lossy links is challenging for the following reasons. First,
network characteristics change over time. Without knowing the tempo-

ral variation of the network link performance, it is hard to correlate
different clients’ performance. Second, even when the loss rate of each
link is constant, there may not be a unique explanation for the observed
end-to-end loss rates. Given M clients and N links, we have M con-
straints in N variables (i.e., loss rates of the individual links). For each
clientC, there is a constraint of the form 1�

Q
i2P

(1�li) = lC where
P is the set of links on the path from the server to the client, li is the
loss rate of link i, and lC is the end-to-end loss rate between the server
and client C. (We can turn these into linear constraints by taking the
logarithm of both sides and defining the variable corresponding to link
i to be Li = log(1=(1� li)).) There is not a unique solution to this set
of constraints if M < N , as is often the case.

We now describe our initial approach to the problem. To make the
problem tractable, we make the simplifying assumption that the loss
rate of each link is constant. Although this is not a very realistic as-
sumption, it is a reasonable simplification in the sense that some links
consistently tend to have high loss rates whereas other links consis-
tently tend to have low loss rates. Zhang et al. [4] define a notion of op-
erational stationarity by categorizing loss rates into “no loss”,”minor
loss”,”tolerable loss” and “unacceptable loss”. They find that about
two-thirds of the time, the loss process remains operationally stationar-
ity for at least an hour’s duration.

Furthermore, since there is not, in general, a unique assignment of
loss rates to network links, our goal here is to identify links that are
likely to have a high loss rate rather than compute a specific loss rate
for each link. Below we describe two approaches: (i) random sampling,
and (ii) linear optimization. We discuss these in turn.

A. Random Sampling

The basic idea here is to repeatedly sample the solution space at ran-
dom and make inferences based on the statistics of the sampled solu-
tions. The solution space is sampled as follows. Figure 1. We first
assign a loss rate of zero to each link of the tree (Figure 1). The loss
rate of link AB is bounded by the minimum of the observed loss rate
(say lmin) among clients downstream of the link. We assign a random
number between 0 and lmin to be the loss rate lAB of the link AB. We
define the residual loss rates of a client to be the loss rate that is not
accounted for by the links whose loss rates have already been assigned.
We update the residual loss rate of a client C to 1� 1�lCQ

i2P 0
(1�li)

where

P 0 is the subset of links along the path from the server to the client C
for which a loss rate has been assigned. Then we iterate the procedure
to compute the loss rate at the next level of the tree by considering the
residual loss rate of each client in place of its original loss rate.

There are a number of details to the algorithm. First, if there are no
branches along (a section of) a path, it is impossible to estimate the loss
rates of the individual links on (that section of) the path solely using
end-to-end measurements. Therefore, we coalesce such a path into a
single “link”, before running the algorithm. Secondly, we need a large
sample of packets to get an accurate estimate of the loss rate at clients.
So we filter out the leaves (clients) to which sender sends fewer than
a threshold number of packets during the measurement period. We set
the threshold to be 1000 packets in our analysis.

The random sampling approach has its shortcomings. First, it tends
to spread the blame for the observed loss rates. For example, it may
assign a significant loss rate both to the transcontinental link from the
U.S. to Japan and to multiple ISP links inside Japan whereas concen-
trating the blame on the transcontinental link may yield a more parsi-
monious explanation for the observed loss rates. Second, the algorithm
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Date Duration # packets # clients
20 Dec 2000 2.12 hours 100.0 million 134,475
24 Jan 2001 1.23 hours 20.38 million 53,811

TABLE I

Summary of the two traces analyzed in this paper.

is vulnerable to estimation errors (say due to statistical variations) in the
client loss rates. For instance, the underestimation of loss rate for a sin-
gle client in Japan could shift the blame away from the transcontinental
link to links lower down in the tree (i.e., links within Japan).

B. Linear Optimization

Our goal is to address the shortcomings of random sampling by (i)
allowing the loss rate constraints to be violated to tolerate estimation
errors, and (ii) seeking a parsimonious explanation for the observed
end-to-end loss rates. We formulate this as a linear optimization prob-
lem as follows. The basic idea is to introduce a slack variable, Sj ,
in each loss constraint j, that helps accommodate measurement errors.
Our goal is to minimize the summation of loss rates over all links and
the slack variables,

P
i
Li +

P
j
jSj j, where Li is transformed link

loss rate variable introduced above. Intuitively, this problem formula-
tion seeks a solution that satisfies the original loss rate constraints as
closely as possible (i.e., with minimal slack) while concentrating the
loss rate on a relatively small number of links.

III. EXPERIMENTAL EVALUATION

We evaluate both approaches using real packet traces and simula-
tions. The packet traces were gathered at the microsoft.com site by plac-
ing a packet sniffing box on the spanning of a Cisco Catalyst switch.
We only captured (the headers of) TCP packets since we are able to
estimate packet loss rate by observing TCP data packets and the corre-
sponding ACKs.

We detect packet losses by looking for packet retransmissions by the
sender. The underlying assumption is that (a) the TCP sender only re-
transmits a packet if the original transmission was lost, and (b) no pack-
ets are lost on the network path between the server node and the packet
sniffer. The former assumption is reasonable since TCP is conservative
about retransmissions. The latter assumption is likely true because the
local network is over-engineered so that it is rarely, if ever, a point of
congestion. We compute the loss rate for client node as the ratio of the
number of retransmitted packets to the total number of packets sent to
it. Table I summarizes the two traces we analyze in this paper.

We used the traceroute tool to determine the network path from the
microsoft.com site to each of the clients seen in the traces.

We ran 500 independent iterations of the randomized algorithm, each
time constructing a (likely different) feasible solution to the link loss
rate estimation problem. We compute the mean loss rate for each link
by averaging over the 500 iterations.

For both the random sampling and the linear optimization ap-
proaches, we identify the 50 most lossy links. (Note that because of
the coalescing procedure described in Section II, a lossy “link” may ac-
tually correspond to a sequence of network links.) For each link iden-
tified as lossy, we compute the round-trip time (RTT) of the link by
subtracting the RTT reported by traceroute for the near end of the link
from that reported for the far end. While this is not a very accurate cal-
culation, it suffices for our purposes since we are only trying to classify
links as having a large RTT or not. We also determine the autonomous
system (AS) corresponding to either end of the link by querying the
whois database. If the two ends are in different ASes, we classify the
link as an inter-AS link (e.g., one that crosses the boundary between
two ISPs). Otherwise, the link is classified as an intra-AS link.

Anecdotal evidence suggests that network links with a long delay
(e.g., transcontinental links) or ones at the peering point between ISPs
are often points of congestion. We check to see how often the iden-
tification of lossy links by our algorithms is consistent with this intu-

ition. As shown in Figure 2, of the 50 links identified as most lossy,
42–45 cross an inter-AS boundary and/or have round-trip delay > 100
ms. Examples of lossy links identified include a link from AT&T in
San Francisco to Indo.net in Indonesia (long delay and inter-AS cross-
ing), one from Sprint to PacBell in California (inter-AS crossing), and
the path within Sovam Teleport (a Russian ISP) between Moscow and
Tyumen, Siberia (long delay). While these findings are not conclusive,
they are consistent with our intuition regarding where in the network
packet loss is likely to occur.
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Fig. 2. Characteristics of identified lossy links.

We also evaluate the accuracy of our approaches using simulations.
Simulations offer the advantage that there is no uncertainty about the
actual link loss rate, so we can compute the estimation error exactly.
Our simulations use two types of topologies: randomly generated tree
topologies, and the real topology obtained by tracing the Internet paths
from the microsoft.com site to its clients. We generate 1000-node ran-
dom tree topologies by varying the maximum node degree from 5 to 50.
For each setting of the maximum node degree, we generate 5 different
random topologies. We also randomly generate packet loss events in
accordance with a Bernoulli process where the loss rate is set to 0–1%
for 95% of the links and 5–10% for the remaining 5% of links. Our per-
formance metric is the percentage of links that are classified correctly as
either low loss rate (< 5%), or high loss rate (� 5%). Our simulation
results show that the percentage of correct classification is 90 - 94%
for randomly generated topologies, and 85 - 90% for real topologies.
Moreover, 70 - 80% lossy links are correctly identified. Along these
correctly identified lossy links, there are some non-lossy links that are
identified as lossy. This false positive rate is 10–85%. This rate is quite
high and we are working to improve our estimation techniques to re-
duce this false positive rate. However, we believe that the techniques
in their current form are still useful, since we can employ these passive
techniques to quickly narrow down the set of candidate lossy links and
then use more expensive techniques such as active probing to prune out
the links that are incorrectly classified as lossy. The relatively small
percentage of highly lossy links in the Internet means that expensive
active probing only needs to be applied to a small number of links even
if the false positive rate is high.

IV. CONCLUSION AND FUTURE WORK

In this paper, we describe two techniques to infer link loss rates based
on passive, end-to-end measurements. We evaluate the accuracy of our
approaches using real packet traces and simulations. Since then, we
have investigated Bayesian inference using Gibbs sampling, and eval-
uated these techniques using extensive simulations and also Internet
packet traces; refer to [3] for further details.
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