
Towards Real-Time Semantic Localization

Hyon Lim
Seoul National University, Korea

hyonlim@snu.ac.kr

Sudipta N. Sinha
Microsoft Research, Redmond, USA

sudipsin@microsoft.com

Abstract— We describe an efficient image-based localization
system which can be used for real-time, continuous semantic
localization within a known environment. Our system can pre-
cisely localize a camera in real-time from a video stream within
a fairly large scene that has been reconstructed offline using
structure from motion (SfM). This is achieved by interleaving
a fast keypoint tracker that uses BRIEF descriptors, with a
direct 2D-to-3D matching approach for recognizing 3D points
in the map. Our approach does not require the construction of
an explicit semantic map. Rather semantic information can be
associated with the 3D points in the SfM reconstruction and
can be retrieved via recognition during online localization.

I. INTRODUCTION

In robotics, semantic localization refers to the task where
the robot must report its location semantically with respect to
objects or regions in the scene rather than reporting 6-DOF
pose or position coordinates. In prior work on semantic local-
ization using contextual maps [1], coarse location estimates
could be recovered using only three states – nearby, near
and far with respect to semantic landmarks in the scene. In
contrast, our system aims for precise, semantic localization
based on real-time 6-DOF image-based localization [2].

We represent the map with a 3D point cloud reconstruction
computed using SfM, which also contains multiple DAISY
feature descriptors [3,4] associated with the 3D points. By
tracking keypoints in video and matching them to the 3D
points, our system continuously estimates a precise pose
estimate in real-time. The main idea involves interleaving
a fast keypoint tracker that uses BRIEF features [5] with
an efficient approach for direct 2D-to-3D matching. The
2D-to-3D matching avoids the need for online extraction
of scale-invariant features. Instead, offline we construct an
indexed database containing multiple DAISY descriptors per
3D point extracted at multiple scales. The key to efficiency
lies in invoking DAISY descriptor extraction and matching
sparingly during online localization, and in distributing this
computation over a window of successive frames. Fig. 1
shows the trajectory of a camera mounted on a quadrotor
micro-aerial vehicle (MAV), computed using our real-time
localization system, as the MAV is flown manually1.

Unlike our work, visual SLAM (VSLAM) systems have
the flexibility of being able to localize a camera within an
unknown scene [6,7]. However, semantic localization in an
unknown scene can be extremely challenging. Objects must
be recognized by their categories, which is very difficult
to achieve even without real-time constraints [8]. Although,

1See http://goo.gl/Vp6ps for a video of our real-time system.

Fig. 1. The trajectory of a quadrotor micro aerial vehicle (MAV) within a
8m × 5m room computed using our method. The SfM reconstruction has
76K points. A video with the recognized landmarks are shown in red. The
corresponding 3D points are shown on the map.

prebuilt maps are necessary in our method, this also provides
the underlying framework for storing detailed semantic in-
formation along with 3D points in the scene. During online
localization, semantic information can be retrieved via visual
recognition of 3D points in the map which are subsequently
tracked in video. Our system can handle maps with an order
of magnitude more 3D points than typically handled by
VSLAM systems. This makes our system robust and enables
both continuous localization over long durations within large
scenes as well as fast relocalization whenever needed.

II. OUR METHOD

We represent the scene with a 3D reconstruction in a
global coordinate frame, which is computed using SfM from
an image sequence. The calibrated images are used to build
a database of DAISY feature descriptors associated with the
3D points. A kd-tree index is constructed over the descriptors
to support efficient approximate nearest neighbor (ANN)
queries during online feature matching. Fig. 2 shows an
overview of the various steps.

A. Map Construction

The map is built offline using the following steps:
- The input images are processed using SfM [9].
- The cameras are grouped into overlapping clusters.



- Keypoints and DAISY descriptors are extracted at multi-
ple scales in the images and associated with the 3D points.

- A kd-tree is built for all the descriptors. Appropriate
lookup tables are built to support efficient queries to find
which image or 3D point a feature descriptor belongs to.

Semantic labels can be added to the 3D points by annotating
the images with object names and bounding boxes [9]. Using
the 2D-3D correspondences obtained from SfM, the labels
can be easily mapped from pixels to subsets of 3D points.

B. Object Labeling

The 3D points are labeled with tags in interactive 3D
viewer of point-cloud. User draws a bounding box in an
image around object. All 2D measurements in that image
within the bounding box are selected and the associated 3D
points are selected. An user provides a tag for the selected
3D points. The tag is associated to the 3D points. This tag
will be shown on image with position detected during real-
time localization.

C. Place Recognition

In large scenes, global matching can be difficult due to
greater ambiguity in feature descriptors. To address this,
we perform coarse place recognition to filter erroneous
2D-3D matches before 6-DOF pose estimation step. As a
result, fewer RANSAC hypotheses are required during robust
pose estimation, making that step more efficient. For place
recognition, we cluster nearby cameras based on SfM results
by solving an overlapping view clustering problem where
cameras with many SfM points in common are grouped into
the same cluster [10]. When localizing an image, the most
likely camera group is selected using a simple voting scheme
over the set of matching descriptors returned by the ANN
query on the descriptor group.

D. Real-time Localization

Our algorithm aims for real-time localization over long
periods and at avoiding fluctuations in the frame-rate. At its
core lies a fast keypoint tracker. Keypoints (Harris corners)
from one frame are tracked in the following frame by match-
ing to candidate keypoints within a local search window
in the next frame [11]. Binary feature descriptors (BRIEF)
[5] are used to find the best frame-to-frame matches. This
fast tracker is interleaved with an efficient approach to find
which 3D points in the map correspond to the tracked
keypoints. The camera pose for each frame is robustly
estimated from these 2D-3D matches. For determining these
matches, DAISY descriptors [3,4] must be extracted. This
can be computationally expensive depending on the number
of descriptors extracted and queried in the kd-tree. Our
system amortizes this cost by requiring that the feature
matching be performed on demand and by spreading the
computation over a window of successive frames.

For each 3D point currently being tracked by localizer,
we lookup its corresponding tags and each 3D point gives
1 vote for each of its tags. To determine which tag is good
for a 3D point, we check which tag has more than 2 votes.

Proposed Method

Structure from Motion

Camera clustering

Multi‐scale feature extraction

Database (kd‐tree)

Offline pipeline

Interest point detection

Extract
BRIEF

Pose Estimation

Kalman Filter Update

Online pipeline

Extract
DAISY

2D‐2D
Tracking

2D‐3D
Matching

Fig. 2. Overview of the offline and online processing steps in our
system. As mentioned in Section I, extraction of DAISY features and 2D-3D
matching queries are not executed at every frame.

Fig. 3. Annotated descriptions are shown on objects.

The image location of each tag is computed on the fly as
follows. By considering all the 2D tracked features in the
current frame, which have been matched to the 3D points
having that tag. The mean x and y positions of these 2D
features is computed.

III. RESULTS

A single-threaded C++ implementation of our system runs
at an average frame-rate exceeding 30Hz on multiple datasets
on a laptop with an Intel Core 2 Duo 2.66GHz processor
running Windows 7. It is about fives times faster than the
single-threaded implementation of [12], which runs at 6Hz
(and at 20Hz using four cores). To test the feasibility of our
method for onboard processing on a small MAV, we designed
our own quadrotor vehicle mounted with the PointGrey Fire-
flyMV camera and a FitPC2i2 computer running Windows
7. Our algorithm runs at about 12Hz on the FitPC.

As described in Section II-B, labels are assigned to fea-
tures by a user to associated physical objects. During the real-
time localization, objects are simultaneously tracked. Object

2The FitPC, which has an Intel Atom Z550 2GHz CPU, 2GB RAM and
a 64GB SSD drive, weighs less than 500gms. (incl. battery) and consumes
only 10W at full load.



labels are displayed in position of objects in an image which
is obtained by localizer. Fig. 3 shows that annotated texts are
shown on the position of object in an image.

IV. CONCLUSIONS

Our real-time localization system [2] is extended for
semantic localization, by augmenting the 3D points in the
map with semantic labels. This is done by manually inserting
annotation in the 2D images used for map construction
(offline SfM) and automatically transferring the labels to the
3D points in the map.

During online localization, our system recognizes subsets
of 3D points in the map using an efficient 2D-to-3D matching
approach and then tracks the 3D points in video. Whatever
semantic labels are stored with the tracked 3D points can
be used to recognize objects or locations in the video.
Additional semantic information can be inferred from the
camera pose estimate and from the accurate 3D map where
objects and semantic locations are precisely localized. For
instance, the relative location or distances to nearby objects
that are not yet visible in the camera can be predicted using
this information.

REFERENCES

[1] C. Yi, I. H. Suh, G. H. Lim, and B.-U. Choi, “Active-semantic
localization with a single consumer-grade camera,” in SMC, 2009.

[2] H. Lim, S. N. Sinha, M. Cohen, and M. Uyttendaele, “Real-time
image-based 6-dof localization in large-scale environments,” in CVPR
(to appear), June. 2012.

[3] E. Tola, V. Lepetit, and P. Fua, “A fast local descriptor for dense
matching,” in CVPR, 2008.

[4] S. A. J. Winder, G. Hua, and M. Brown, “Picking the best DAISY,”
in CVPR, 2009, pp. 178–185.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
Robust Independent Elementary Features,” in ECCV, 2010.

[6] B. Williams, G. Klein, and I. Reid, “Real-time SLAM relocalisation,”
in ICCV, 2007.

[7] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” in ISMAR, November 2007.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,” IJCV,
vol. 88, no. 2, pp. 303–338, June 2010.

[9] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the World from
Internet Photo Collections,” in IJCV, 2008.

[10] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards
internet-scale multi-view stereo,” in CVPR, 2010.

[11] D. Ta, W.-C. Chen, N. Gelfand, and K. Pulli, “SURFTrac: Efficient
Tracking and Continuous Object Recognition using Local Feature
Descriptors,” in CVPR, 2009.

[12] Z. Dong, G. F. Zhang, J. Y. Jia, and H. J. Bao, “Keyframe-based
Real-time Camera Tracking,” in ICCV, 2009.


