
Supporting Spectators in Online Multiplayer Games

Ashwin R. Bharambe∗ Venkata N. Padmanabhan Srinivasan Seshan
Carnegie Mellon University Microsoft Research Carnegie Mellon University

ABSTRACT
We examine network support for spectators in online multi-
player games. We consider how the associated challenges are
different from those in traditional audio/video streaming. Specif-
ically, we consider two problems: spectating (distributing the
gaming stream reliably to spectators, who may outnumber the
players by several orders of magnitude) and cheering (deliver-
ing the spectators’ audio cheers to the players as well as to other
spectators). We point out the many unique challenges and op-
portunities for optimization that arise in this context in terms of
resilience, bandwidth adaptation, and dynamically varying user
interest. We outline a solution based on overlay networking
and quantify some of our design arguments with a preliminary
evaluation of Quake III, a popular first-person shooting game.

1. INTRODUCTION
Spectator-mode gaming, or spectating, has emerged as a pop-

ular paradigm for online multiplayer gaming. Spectating allows
users to watch the proceedings of an online game akin to how
television allows people to watch real-world games and sports.
The number of spectators can be in the thousands or more, i.e.,
several orders of magnitude larger than the number of players.
Popular games that either support or have been extended to sup-
port spectators include Half-life and Quake.

In this paper, we consider network support needed for spectator-
mode gaming. The basic question is how to deliver the gaming
stream to a large, dynamic, and heterogeneous population of
spectators in a reliable and cost-effective manner. On the face
of it, this problem is akin to that of distributing other streaming
content (e.g., audio/video) to a large client population. How-
ever, spectating differs from audio/video (A/V) streaming in a
number of ways that presents unqiue challenges as well as op-
portunities for optimization.

First, the game view can be disaggregated into its constituent
entities, which can be treated differentially based on their im-
portance, to optimize the use of the available bandwidth. Such
differential treatment is far more fine-grained than differentia-
tion at the granularity of layers in the A/V context. Second,
the game state is persistent, which allows masking lost updates
but also requires reliable delivery of certain updates (e.g., entity
creation and deletion). Third, it is quite likely that there will be
multiple camera views of interest, given the natural fit with the
gaming context (e.g., each player’s view of the game) and the
∗The author was an intern at MSR during part of this work.

ease with which the views can be generated. Taken together,
these characteristics of spectating enable a rich and flexible set
of strategies for bandwidth optimization, ranging from adjust-
ing the frequency of updates to adjusting the field of view.

In addition, spectators need not be passive viewers like a TV
audience. They can actively “cheer” the players, just as in a
real game or sporting event. While such cheering can take dif-
ferent forms, audio is perhaps the most natural form, and is the
focus of our discussion here. At first glance, cheering might
appear to be no different from “conference” mode (as opposed
to “lecture” mode) in the A/V context. However, cheering dif-
fers in a few key ways. First, there is typically no floor control.
Multiple members of the audience are typically speaking at the
same time, and what the players hear is the superposition of
the individual cheers, just as in a sports stadium. Second, since
the camera views of each spectator may be different, it might
be natural to deliver their cheers only to the players that they
are viewing. Finally, while cheering introduces a delay con-
straint on the spectating-cheering feedback loop, this constraint
is typically much less stringent than that needed to support an
interactive conversation in an A/V conference.

In this paper, we focus on the client-server game model, which
is the basis for most online games. Although the server may
be able to support a dozen or so players, it is unlikely to have
the bandwidth to forward the spectating stream to or receive
the cheering streams from thousands of spectators. Overlay
networking is therefore an attractive solution. The spectating
stream flows down overlay multicast trees while the cheering
streams flow up the trees. We employ a combination of striping
across multiple trees and in-network filtering and aggregation to
accomplish multiple goals, including resilience, load balancing,
multiple camera views, bandwidth adaptation, and avoiding an
implosion of cheering input at the root.

In the remainder of this paper, we elaborate on the charac-
teristics and requirements of spectating and cheering. We then
discuss various strategies for delivering the spectating stream to
clients. We quantify some of our design arguments with a pre-
liminary evaluation of Quake III, a popular online game. We
also discuss the question of defining an appropriate metric to
quantify the quality of a spectating stream.

2. BACKGROUND
There are three main categories of online games: role-playing

games (RPG), real-time simulations (RTS), and first-person shoot-
ers (FPS). The genre of a particular game heavily influences the



design of spectating support for it. For example, critical factors
such as the number of unique views of the game world, the rate
of game updates, the size of the game world, the spatial distri-
bution of activity, the number of active players, and even typical
deployment patterns are largely dictated by a game’s genre. In
this section, we describe the relevant properties of each genre
and provide background about Quake III, the game that we use
in our preliminary tests.

While each genre has unique properties, there are some im-
portant common aspects to all games. In most games, the player
controls one or more entities (characters, units, etc.) within a 2-
or 3-D virtual world. The game is responsible for determin-
ing the actions of a collection of computer-controlled entities
as well as resolving the results of any game-play interactions.
While other architectures have been employed, most current
games rely on a client-server design, with servers run by the
game vendors (common for Role Playing Games (RPGs)) or by
one of the players (common for Real-Time Simulation (RTS)
and First-Person Shooter (FPS) games). Finally, each game has
a unique rendering engine that generates a display of the rele-
vant game state. Below, we describe how the genres differ in
other aspects.

In RPGs (e.g., Everquest), 10s to 1000s of players interact
in a relatively large virtual world. Individual players can join
the game world at any time. Both player characters and the
game world are persistent – i.e., changes persist across indi-
vidual game sessions. This forces any spectator system to ef-
ficiently download the current state to the spectator. Action in
these games is quite slow, with player movements and the game
world updates occurring at most a few times per second. While
servers are able to host a large number of players, spectators
may be more difficult to support. For example, players are typ-
ically given a view of their surroundings but spectators may be
given an overview of the entire game world as well as detailed
views of many smaller regions of the game world. One of the
key challenges is supporting the large number of different views
that the collection of spectators may demand.

Unlike RPGs, RTS games (e.g., Age of Empires) do not in-
volve persistent state. All players join before the game begins
and the game session lasts until there is a winner. Because of
this synchronous start requirement, only a small group of indi-
viduals (at most 30 players) play in a particular game session.
Usually, in many RTS designs, the game server simply acts as
a message relay and clients typically keep a copy of the entire
game state. This is possible due to low bandwidth requirements
of the game, resulting from the limited number of players, the
limited size of the game world needed for the low player counts,
and the low update rates typical of RTS games. Spectators can
be easily supported by providing them with a copy of this low
bandwidth stream, which would be sufficient to generate arbi-
trary views of the game world.

FPS games (e.g., Quake, CounterStrike) are much more arcade-
like than either RTS games or RPGs. Action in the game is
much faster and game state updates are much more frequent.
Most sports games fall into this category. FPS game players
can freely join and leave a particular game session. Most FPS
games limit play to a small number of players (about 30) either

to minimize overhead at the server or due to game play limi-
tations. In our initial studies of spectating, we use Quake III,
a popular FPS game. Like most modern FPS games, Quake
III uses a central server architecture. The server is responsi-
ble for maintaining the state of the virtual world and all entities
within it. Clients connect to a server and the server continu-
ously transmits the current state of entities within the current
view of the client. To reduce the bandwidth requirement, each
entity update transmission is delta-encoded against the previous
state that the client has already received. Like RPGs, specta-
tors may be given multiple views of the game. However, while
the size of the game limits the number of interesting views, the
high update rates make each view more difficult to support. Al-
though we use a FPS game in our preliminary design, our goal
is to support all genres of games. However, certain aspects of
our design may be most applicable to particular genres.

3. SPECTATING CHALLENGES
In this section, we discuss the challenges in delivering a gam-

ing stream to a large, dynamic, and heterogeneous population
of spectators in a reliable and cost-effective manner. We con-
sider the virtual game world divided into multiple areas or game
views. A game view consists of a set of game objects called en-
tities, each of which has various attributes (e.g., location) An
update of the game view sent to the spectator is called a frame.

3.1 Differences compared to A/V streaming
While spectating shares much in common with A/V stream-

ing, it differs in a number of ways:

Scene disaggregation: Each frame of the game view can be
disaggregated into its constituent entities. The entities, and pos-
sibly individual attributes of the entities, can be treated differen-
tially with regard to the reliability, granularity, and timeliness of
updates, which provides opportunties for reducing bandwidth
usage without compromising the user-perceived quality of the
spectating stream. For instance, the position of the cars in a rac-
ing game is likely to be far more important than changes in the
appearance of the cars say due to bumps and scratches. While
A/V streams can also support some differentiation (e.g., base-
layer versus enhancement-layer bits in a layered codec), it is
hard to perform the entity-level disaggregation that is possible
with game streams.

Persistence: The game state maintained by the spectating
client is persistent (i.e., entities continue to exist until they are
destroyed). A spectating client can mask lost updates for an en-
tity by re-using or extrapolating the entity’s state from a previ-
ous update. Such selective patching at the granularity of entities
would be hard to do for an A/V stream, where the entire frame
may have to be repeated instead. However, persistence forces
entity creation and deletion messages to be delivered reliably
to all spectators. For instance, a new car could enter a race or
the bumper could break off a car, creating a new entity. A/V
streams deal with this issue in a bandwidth-inefficient way —
by repeating the entire scene continuously.

Multiple camera views: Multiple camera views (e.g., the
views from each player’s perspective) of a gaming session are
easy to generate and are of great interest to spectators. Multi-



ple views are especially useful in a game world that is too large
to fit within a single view. Overlapping camera views could
save bandwidth by sharing substreams. Although there might
be multiple camera views even in an A/V context, this scenario
is faced with greater hurdles (e.g., the need for actual cameras).
Also, the difficulty in disaggregating the scene makes it hard to
save bandwidth across overlapping views.

Flexible strategies for bandwidth adaptation: Bandwidth
adaptation is important in both the spectating and A/V settings
to deal with bandwidth heterogeneity and dynamic congestion.
However, the spectating setting provides a richer set of adap-
tation possibilities given the scene disaggregation property and
the availability of multiple camera views. For instance, a user
could choose to receive less frequent updates for some or all
entities, or instead switch to a more narrow camera view.

There are other spectating-related issues that, while impor-
tant, are not our focus here. For instance, the ability of specta-
tors to switch between camera views opens up the possibility of
players impersonating as or colluding with spectators to cheat.
Delaying the spectating stream can alleviate this problem.

3.2 Metrics
The quality of the spectating experience depends on how faith-

fully the received stream reproduces the true scene. In the A/V
context, the peak signal-to-noise ratio (PSNR) is a commonly
used metric. PSNR is a function of the distortion, i.e., the differ-
ence between the bitmaps rendered at the source and receiver.

One end of the scale of possibilities is to use the PSNR of
the rendered bitmap itself as the metric of goodness for spec-
tating. The main advantage of this metric is that it is game-
independent and builds on the existing work on PSNR in the
context of video. However, a key limitation of this metric is
that it fails to account for the differential importance of various
entities in a gaming scene. For instance, in a car racing game,
getting the positions and speeds of the cars right may be far
more critical than getting details of the background right. Also,
the relative positions of entities (e.g., race cars) is perhaps more
important than their absolute positions.

Another way to address the above issues is to define a game-
specific metric that is cognizant of the relative importance of
entities and groups of entities. While such a metric could well
be very accurate, it suffers from the drawback that it is tied
to a specific game, hence making it difficult to compare the
spectating experience across games.

The compromise we advocate is a weighted PSNR metric,
which uses a PSNR-like calculation on the rendered bitmaps
but incorporates an importance value (weight) with each bit
that reflects its importance to gameplay. For example, in a rac-
ing game, the car bitmaps would have higher weights than the
background. While it is not as powerful as a game-specific met-
ric in capturing aspects such as the relative position of entities,
we believe that weighted PSNR strikes an acceptable balance
between accuracy and generality.

4. DESIGNING A SPECTATING SYSTEM
We now outline our design of a spectating system that ad-

dresses the issues discussed in Section 3.1. Our focus is on

discussing the unique and novel aspects of the solution rather
than describing the complete solution.

Our solution relies on end-host-based overlay multicast, an
approach pioneered by [4]. For our discussion here, we assume
that the set of players is represented by a single “source” node,
although our design can easily be adapted to the case where
there is no such single point of aggregation. We construct a
set of overlay multicast trees, each rooted at the source and
spanning the set of interested spectators. The spectating stream
is then distributed over these trees, with each spectator node
replicating the stream to its children. The reason for employing
multiple trees rather than a single one is not only the improved
resilience [9] and load distribution [3] that this provides but also
the flexible bandwidth adaptation that this enables.

We now discuss the alternatives for the client software ar-
chitecture, delta-encoding, bandwidth adaptation, and reliable
message delivery, in turn.

4.1 Client Software Architecture
The client software architecture we advocate is a game-specific

spectating client with a generic communication library. The
spectating client would typically be derived from the players’
version of the game and, hence, would include all of the game-
specific optimizations such as fast physics and rendering en-
gines. The generic communication library, on the other hand,
would provide support for aspects that are common across all
games — delta-encoding, reliable message delivery, and band-
width adaptation. While the alternative of having a generic
game-independent spectating client (such as Windows Media
Player for A/V streams) has its advantages, it would typically
be less bandwidth-efficient and be unable to leverage game-
specific optimizations.

4.2 Distributed Delta Encoding
Delta encoding is motivated by the observation that typically

only a small number of entities change from one game update
(i.e., frame) to the next. A similar observation is leveraged
in the A/V streaming context by encoding frames as differ-
ences with respect to other frames (e.g., the P and B frames
in MPEG). However, the scene disaggregation and persistence
properties of game spectating make delta-encoding far more
efficient — only entities that have been updated with respect
to the reference frame need be transmitted, and furthermore it
may be possible to condense these updates further with game-
specific knowledge. Note that current games do incorporate
delta encoding protocols for game play updates. However, our
goal in this section is to demonstrate the importance of this
mechanism and to illustrate the difficulties involved in effec-
tively supporting it in a spectating context.

The precise scheme for delta-encoding a frame is as follows:
first, the sender maintains a fixed-size history buffer of frames
the receiver has received. When transmitting a new frame, the
sender first identifies the subset of entities that have changed
since the last frame. Each changed entity is encoded with re-
spect to the frame (termed the base frame) that provides the
minimum delta-encoded size. Figure 1 shows the impact of his-
tory size on the the mean bandwidth (over a 5-minute session)
of a Quake III game data stream for various number of com-



 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60  70  80  90  100

M
ea

n 
ba

nd
w

id
th

 (
kb

ps
)

History (#frames)

#Bots =  5
#Bots = 10
#Bots = 15
#Bots = 20

Figure 1: Impact of history on delta-encoding performance.

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10  15  20  25  30  35  40

M
e
a
n
 b

a
n
d
w

id
th

 (
kb

p
s)

Reference point distance (#frames)

Figure 2: Impact of reference frame selection on delta-
encoding performance.

puter AI-based players (bots). If updates are not delta-encoded,
the bandwidth requirement for even a 5-bot game is well over
3Mbps (not shown), implying that delta-encoding, with even
just the most recent frame, provides huge bandwidth savings.
The graph also shows that the required bandwidth decreases as
the history size increases (i.e., more base frames are available
for encoding with respect to). There is a significant increase in
savings at around 20 frames. This is because in the game mis-
siles are shot approximately every 20 frames and new missles
can be encoded efficiently if frame number f − 20 is available
as a base frame for encoding frame f . Similarly, Figure 2 plots
the mean bandwidth when encoding a frame f with respect to
a single previous frame, one that is a distance d in the past (i.e.,
frame f − d). It is clear that encoding with respect to a more
recent frame is better. Taken together, Figures 1 and 2 indi-
cate that it is important to have the most recent frames available
for efficient delta encoding, but sometimes also having an older
reference frame available (in addition to the recent frames) can
yield significant additional compression.

A simple delta-encoding scheme would be for the source (game
server) to compute the deltas and transmit them to all the specta-
tors via overlay multicast. However, this approach suffers from
a few drawbacks. Due to packet loss and node failures, the
“state” of each spectator (i.e., the set of frames it has received)
could be different. So if the delta is computed with respect to
the previous frame for maximum bandwidth savings, the spec-
tator nodes may be unable to decode the delta frame (and sub-
sequent delta frames) if they missed the previous frame. On
the other hand, if we computed the deltas with respect to a full
“key” frame (which is transmitted periodically), it would allevi-
ate this problem but will make the deltas less efficient (as shown
in Figure 2).

Instead, we propose a distributed delta-encoding scheme where

the deltas are computed on a hop-by-hop basis, i.e., a parent
node computes the delta with respect to the most recent frame
that it shares in common with a child node. The fact that the
spectating frame can be disaggregated into its constituent enti-
ties makes such a hop-by-hop delta-encoding scheme less ex-
pensive than hop-by-hop transcoding in the A/V context.

In general, it would be expensive in terms of both messaging
cost and time for a parent node to determine which frames its
child node has before computing and transmitting each delta en-
coded frame. An alternative would be to employ an optimistic
delta-encoding scheme, where the parent transmits a delta with
respect to the previous (delta) frame, assuming optimistically
that the child has received and has been able to decode the pre-
vious frame. This is motivated by the observation in Figure 2
that deltas with respect to the previous frame are much more
compact. In the unlikely event that it has not received the pre-
vious frame, the child can send its parent a list of recent frames
that it has received and ask for a delta with respect to one of
those frames.

4.3 Reliable Message Delivery
The persistence of the game state maintained by the spectat-

ing clients means that any missing state information is likely to
have a lingering effect. For instance, missing the creation mes-
sage for a new entity might make it difficult or impossible for
a spectator to interpret future updates for that entity. Likewise,
an entity whose deletion was missed by a spectator would linger
on forever. Thus, we need a mechanism for the reliable deliv-
ery of certain critical messages, such as those corresponding to
entity creation and deletion.

In the A/V context, reliability is attained by frequently re-
peating an entire “key” frame (e.g., the I frame in an MPEG
sequence). However, this bandwidth inefficient strategy is in-
appropriate and unnecessary in the spectating context.

The distributed delta-encoding scheme discussed above can
easily accommodate reliable message delivery. Reliable mes-
sages are marked as such, and unlike normal (unreliable) up-
dates, they are not subsumed by later updates. Thus, so long
as a child has not received a specific reliable message (e.g.,
entity creation message), its parent would include the reliable
message (in addition to the most recent update, if any, for that
entity) in the next delta-encoded frame that it transmits to the
child. This procedure guarantees that the child will eventually
receive the reliable message.

In some cases, one reliable message could “cancel” another
(e.g., the creation of an entity followed by the deletion of the
same entity). When a new spectator joins, there may be a large
accumulation of such “cancelled” messages. Rather than de-
liver all such messages and have the new spectator process them,
we modify the delta-encoding computation to ignore such can-
celled messages.

4.4 Strategies for Bandwidth Adaptation
As noted in Section 3.1, there are two basic strategies for

adaptating to limited bandwidth availability due to link con-
straints or congestion — temporal subsampling and spatial sub-
sampling.



Temporal Subsampling: The idea in this technique is to re-
duce the frequency of updates received (e.g., receive every kth

update). This is akin to reducing the frame rate in the A/V
context with the added flexibility that the client can choose to
receive more frequent updates for certain entities and less fre-
quent updates for the rest.

It may be possible to mask some of the jerkiness that would
normally be associated with infrequent updates using interpo-
lation techniques typically employed by a game rendering en-
gine. The effectiveness of such a technique would depend on
the movement pattern of the entities and the subsampling fre-
quency. Furthermore, not all attributes might be amenable to
interpolation.

Temporal subsampling can also reduce the effectiveness of
delta-encoding, since the delta will have to be with respect to
an older frame. For example, if only 1 in 10 frames is received,
the bandwidth consumption is about 5 times larger than that be-
tween successive frames, according to Figure 2. Furthermore,
the optimistic delta-encoding protocol outlined in Section 4.2
would have to be modified to let the parent know that the child
is only receiving a fraction of the frames. (The parent does not
have this information automatically, since the child could be
receiving additional temporal slices from other parents, if mul-
tiple trees are used for dissemination.) With this information in
hand, the parent can avoid sending deltas with respect to frames
that the child would not have received.

Spatial Subsampling: The idea here is to deliver updates to
the client for just a subset of the entities, thereby saving band-
width. In fact, this capability is of interest for supporting mul-
tiple camera views, even when bandwidth adaptation is not the
primary consideration.

The main advantage of spatial subsampling over temporal
subsampling is that the quality of the spectating stream is undi-
minished for the subset of entities included in the stream. Also,
the efficiency of delta-encoding is not affected by the subsam-
pling.

Striping vs. Filtering: In general, we would like to support
both temporal and spatial subsampling to give the spectating
clients maximum flexibility. This requires a mechanism for
“demultiplexing” the full stream of updates. We consider two
possibilities: striping and filtering.

Striping - The basic idea is to construct multiple distribution
trees and to transmit a different substream down each tree. Only
the nodes that are members of a tree receive the corresponding
substream. The substreams could either be temporal slices or
spatial slices.

Filtering - In this case, we have a single logical tree, where
each node transmits a filtered version of the received stream to
each child. Again, filtering could be along temporal as well as
spatial dimensions. The filter applied is based on the interest
expressed by a child and is, in general, different for each child.

Filtering assumes that the interests of the clients at higher
levels of the tree (i.e., close to the root) are a superset of those
further away. Thus, it is inefficient to support both temporal
and spatial subsampling with just a filtering-based approach.
An alternative would be to use striping along both dimensions,
i.e., construct a separate distribution stree for each combination

of temporal and spatial slices. This would require as many trees
as the product of the number of temporal slices (T ) and spatial
slices (S), with the associated overhead of maintaining each
tree and its constituent links.

The alternative we propose is temporal striping coupled with
spatial filtering. In other words, we use a separate distribution
tree for each temporal slice and use filtering along the spatial
dimension within each tree.1 The spatial dimension could refer
to different attributes (e.g., the physical space or perhaps the
set of entities) depending on the game. Regardless, the space
can be successively divided into “quadrants” that are organized
into a hierarchy. The position of a node in the tree reflects the
position of its spatial slice of interest in the hierarchy. Thus
nodes that are interested in the entire space would be at the
upper levels of the tree whereas nodes with narrower interests
would be lower down. If a node’s slice of interest straddles
multiple “quadrants”, the node simply attaches itself at multiple
points in the tree.

We believe that this combination of temporal striping and
spatial filtering offers several advantages over alternative ap-
proaches. Compared to a purely striping-based solution, our
hybrid approach offers almost the same flexibility in demulti-
plexing with much less overhead in terms of the number of peer-
to-peer relationships that need to be maintained. For instance,
in our hybrid scheme, a node interested in a single temporal
slice of the bottom-right quadrant of the game space only needs
to attach itself at the appropriate location in the corresponding
tree and install a filter. It needs to establish just one peer-to-
peer relationship, i.e., that with its parent in the one tree that
it joins. On the other hand, a purely striping-based approach
would have a separate tree for each combination of temporal
slice and “atomic” spatial slices, so subscribing to one temporal
slice of the bottom-right quadrant would require joining each of
the trees corresponding to the atomic spatial slices that consti-
tute the bottom-right quadrant for the temporal slice of interest.

It is important to note that we have deliberately not consid-
ered the choice of spatial striping and temporal filtering. The
advantage of temporal striping over spatial striping is that it
achieves better load balancing across the trees, since it is not
affected by the spread in the size or frequency of updates across
different entities. Also, since the number of spatial slices is typ-
ically much larger than the number of temporal slices, handling
the demultiplexing along the spatial dimension using filtering is
likely to incur less overhead.

5. CHEERING
A simple form of cheering could be enabled by allowing

spectators to simply vote for different pre-defined actions such
as yell, stay quiet, and jump. The game could collect a sampling
of all spectators and simply produce a roughly representative
audience as part of the game. Such designs could be built using
polling techniques that have been developed for conferencing
systems [1]. In this paper, we focus on a more sophisticated
form of cheering in which spectators can provide arbitrary au-
1We could employ multiple trees for each temporal slice for reasons
of resilience and load-balancing, as in [9, 3]. However, we restrict
ourselves to a single tree per temporal slice for our discussion here.



dio feeds, and the game then mixes the audio for each player to
accurately represent the input of the spectators that are “closest”
to the player. Given the diversity in phrases chanted, languages
and accents, it would be impossible to mimic such cheers using
a voting-based scheme.

In some ways this design is much like a general conferencing
application where all participants can speak. However, there
are some critical differences. First, floor control mechanisms
are not needed since everyone is allowed to cheer simultane-
ously. Second, cheering presents a different view to each player
receiving cheers since each player hears a possibly unique com-
bination of all cheering inputs. Finally, the delay requirements
for cheering are less stringent than conferencing since the play-
ers and spectators interact relatively slowly. However, cheering
does require some synchronization to enable chanting (e.g., the
entire audience yelling “go team”).

A naive approach to supporting cheering is to deliver each
spectator’s cheers individually to all players within range of the
spectator. However, this has some obvious bandwidth scaling
problems. Performing in-network aggregation of cheers is a
possibility; however, it is challenging since each player may
compute a different aggregate of inputs. To address this prob-
lem, we could group players by vicinity and reduce the number
of unique cheering views supported. In other words, the system
could force players to share inputs for reducing overhead. In
the worst case, there would only be a single view and all play-
ers would receive the same combination of cheering inputs.

To enable chanting, we could employ a combination of “cheer-
leading” and synchronized clocks (e.g. using GPS or NTP). An
in-game cheerleader could initiate the chant much like they do
at real-world sporting events. Using synchronized clocks, the
playback of the cheerleader could be synchronized on all spec-
tator machines. Similarly, the cheers of the spectators could be
timestamped to indicate their relationship to each other. Players
could merge the cheering inputs using these timestamps.

Note that it is the relaxed maximum delay constraint on the
spectating-cheering feedback loop that permits the use of an
overlay to deliver the cheering streams. However, many games
may also place a high minimum delay constraint on this feed-
back to prevent spectators from providing illicit feedback to any
player. This would limit the effectiveness or value of any cheer-
ing system.

6. RELATED WORK
Spectator-support is a relatively recent feature added to com-

mercial games and hence, only a few such systems have been
implemented in popular games. Currently, the only well-known
game that supports spectators is Half-Life [6], which calls its
spectator support Half-Life Television (HLTV). There is unof-
ficial support for spectators in both Unreal Tournament [11] and
Quake III as well. In all these systems, spectator-support is en-
abled by running a special server which streams game data to
spectators either using IP Unicast or IP Multicast. These spec-
tator systems typically allow spectators to choose from a few
viewing modes. For example, HLTV supports the following
modes: Overview, Free-Look, First-Person and Third-Person.

The most important disadvantage of these systems is that the

spectator server bandwidth scales linearly with the number of
clients (assuming low availability of IP Multicast). In order to
remove this bottleneck and provide a robust, resilient spectator
system, we leverage a significant amount of research work done
for scalable application-level multicast ([4], [9], [3]).

Support for receiver heterogeneity (bandwidth adaptation) has
been widely studied in the A/V multicast context ([8], [2], [7],
[10]). Our system incorporates solutions that build on the core
control-theoretic ideas presented in these papers. However, as
discussed in Section 3.1, spectating provides a richer set of spe-
cific scenarios and mechanisms for adaptation.

Finally, the early work on scalable realiable multicast (SRM) [5]
for applications such as distributed whiteboard also worked with
a disaggregated view of the scene, which permitted the retrans-
mission of individual updates such as ink strokes. However,
SRM was based on a network-layer multicast substrate and de-
pended on broadcast-based recovery mechanisms, which are
not suitable for a high-bandwidth spectating stream.

7. CONCLUSION
In this paper, we presented the networking challenges aris-

ing from spectating and cheering in the context of online mul-
tiplayer games. We have pointed out how spectating and cheer-
ing differ from traditional A/V streaming and conferencing, and
have discussed the challenges that arise in providing resilient
and bandwidth-efficient support for them. We have outlined
a design that incorporates a number of elements, including dis-
tributed delta encoding, reliable message support, a hybrid band-
width adaptation strategy based on temporal and spatial sub-
sampling, and in-network aggregation. We are currently in the
process of building and evaluating our solution in the context of
the Quake III game.

Acknowledgements
We thank Aaron Ogus and Phil Chou of Microsoft for early
discussions on spectating.

8. REFERENCES
[1] E. Amir, S. McCanne, and R. H. Katz. Receiver-Driven Bandwidth

Adaptation for Light-Weight Sessions. In ACM Multimedia, 1997.
[2] J. Byers, M. Mitzenmacher, and M. Luby. Fine-Grained Layered

Multicast. In IEEE INFOCOM, April 2001.
[3] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and

Singh A. Splitstream: High-bandwidth multicast in a cooperative
environment. In ACM SOSP, October 2003.

[4] Y. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast. In
ACM SIGMETRICS, June 2000.

[5] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang. A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing. In ACM SIGCOMM, September 1995.

[6] Half-Life TV. "http:
//planethalflife.com/features/articles/hltv/".

[7] G. Kwon and J. W. Byers. Smooth Multirate Multicast Congestion
Control. In IEEE INFOCOM, 2003.

[8] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered
Multicast. In ACM SIGCOMM, August 1996.

[9] V. N. Padmanabhan, H. Wang, and P. A. Chou. Resilient Peer-to-Peer
Streaming. In IEEE ICNP, November 2003.

[10] V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Supporting
Heterogeneity and Congestion Control in Peer-to-Peer Multicast
Streaming. In IPTPS, February 2004.

[11] Unreal Tournament TV.
"http://utv.clan-sy.com/help.html".


