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ABSTRACT

Lazy programs are beautiful, but they are slow because they
build many thunks. Simple measurements show that most
of these thunks are unnecessary: they are in fact always
evaluated, or are always cheap. In this paper we describe
Optimistic Evaluation — an evaluation strategy that ex-
ploits this observation. Optimistic Evaluation complements
compile-time analyses with run-time experiments: it evalu-
ates a thunk speculatively, but has an abortion mechanism
to back out if it makes a bad choice. A run-time adaption
mechanism records expressions found to be unsuitable for
speculative evaluation, and arranges for them to be evalu-
ated more lazily in the future.

We have implemented optimistic evaluation in the Glas-
gow Haskell Compiler. The results are encouraging: many
programs speed up significantly (5-25%), some improve dra-
matically, and none go more than 15% slower.
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1. INTRODUCTION

Lazy evaluation is great for programmers [16], but it car-
ries significant run-time overheads. Instead of evaluating a
function’s argument before the call, lazy evaluation heap-
allocates a thunk, or suspension, and passes that. If the
function ever needs the value of that argument, it forces the
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thunk. This argument-passing mechanism is called call-by-
need, in contrast to the more common call-by-value. The
extra memory traffic caused by thunk creation and forcing
makes lazy programs perform noticeably worse than their
strict counterparts, both in time and space.

Good compilers for lazy languages therefore use sophisti-
cated static analyses to turn call-by-need (slow, but sound)
into call-by-value (fast, but dangerous). Two basic analy-
ses are used: strictness analysis identifies expressions that
will always be evaluated [40]; while cheapness analysis lo-
cates expressions that are certain to be cheap (and safe) to
evaluate [7].

However, any static analysis must be conservative, forc-
ing it to keep thunks that are “probably unnecessary” but
not “provably unnecessary”. Figure 1 shows measurements
taken from the Glasgow Haskell Compiler, a mature op-
timising compiler for Haskell (GHC implements strictness
analysis but not cheapness analysis, for reasons discussed in
Section 7.1.). The Figure shows that most thunks are either
always used or are “cheap and usually used”. The exact
definition of “cheap and usually-used” is not important: we
use this data only as prima facie evidence that there is a
big opportunity here. If the language implementation could
somehow use call-by-value for most of these thunks, then
the overheads of laziness would be reduced significantly.

This paper presents a realistic approach to optimistic eval-
uation, which does just that. Optimistic evaluation decides
at run-time what should be evaluated eagerly, and provides
an abortion mechanism that backs out of eager computa-
tions that go on for too long. We make the following contri-
butions:

e The idea of optimistic evaluation per se is rather ob-
vious (see Section 7). What is not obvious is how to
(a) make it cheap enough that the benefits exceed the
costs; (b) avoid potholes: it is much easier to get big
speedups on some programs if you accept big slow-
downs on others; (¢) make it robust enough to run
full-scale application programs without modification;
and (d) do all this in a mature, optimising compiler
that has already exploited most of the easy wins.

In Section 2 we describe mechanisms that meet these
goals. We have demonstrated that they work in prac-
tice by implementing them in the Glasgow Haskell
Compiler (GHC) [29].



e Optimistic evaluation is a slippery topic. We give an
operational semantics for a lazy evaluator enhanced
with optimistic evaluation (Section 5). This abstract
machine allows us to refine our general design choices
into a precise form.

The performance numbers are encouraging: We have pro-
duced a stable extended version of GHC that is able to com-
pile arbitrary Haskell programs. When tested on a set of
reasonably large, realistic programs, it produced a geomet-
ric mean speedup of just over 15% with no program slow-
ing down by more than 15%. Perhaps more significantly,
naively written programs that suffer from space leaks can
speed up massively, with improvements of greater than 50%
being common.

These are good results for a compiler that is as mature as
GHC, where 10% is now big news. (For example, strictness
analysis buys 10-20% [31].) While the baseline is mature, we
have only begun to explore the design space for optimistic
evaluation, so we are confident that our initial results can
be further improved.

2. OPTIMISTIC EVALUATION

Our approach to compiling lazy programs involves mod-
ifying only the back end of the compiler and the run-time
system. All existing analyses and transformations are first
applied as usual, and the program is simplified into a form
in which all thunk allocation is done by a let expression
(Section 5.1). The back end is then modified as follows:

e Fach let expression is compiled such that it can either
build a thunk for its right hand side, or evaluate its
right hand side speculatively (Section 2.1). Which of
these it does depends on the state of a run-time ad-
justable switch, one for each let expression. The set of
all such switches is known as the speculation configu-
ration. The configuration is initialised so that all lets
are speculative.

o If the evaluator finds itself speculatively evaluating a
very expensive expression, then abortion is used to sus-
pend the speculative computation, building a special
continuation thunk in the heap. Execution continues
with the body of the speculative let whose right-hand
side has now been suspended (Section 2.2).

e Recursively-generated structures such as infinite lists
can be generated in chunks, thus reducing the costs
of laziness, while still avoiding doing lots of unneeded
work (Section 2.3).

e Online profiling is used to find out which lets are ex-
pensive to evaluate, or are rarely used (Section 3). The
profiler then modifies the speculation configuration, by
switching off speculative evaluation, so that the offend-
ing lets evaluate their right hand sides lazily rather
than strictly.

Just as a cache exploits the “principle” of locality, op-
timistic evaluation exploits the principle that most thunks
are either cheap or will ultimately be evaluated. In practice,
though, we have found that a realistic implementation re-
quires quite an array of mechanisms — abortion, adaption,
online profiling, support for chunkiness, and so on — to
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Figure 1: How thunks are commonly used

make optimistic evaluation really work, in addition to tak-
ing care of real-world details like errors, input/output, and
so on. The following sub-sections introduce these mech-
anisms one at at time. Identifying and addressing these
concerns is one of our main contributions. To avoid con-
tinual asides, we tackle related work in Section 7. We use
the term “speculative evaluation” to mean “an evaluation
whose result may not be needed”, while “optimistic eval-
uation” describes the entire evaluation strategy (abortion,
profiling, adaption, etc).

2.1 Switchable Let Expressions

In the intermediate language consumed by the code gen-
erator, the let expression is the only construct that allocates
thunks. In our design, each let chooses dynamically whether
to allocate a thunk, or to evaluate the right-hand side of the
let speculatively instead. Here is an example:

let x = <rhs> in <body>

The code generator translates it to code that behaves log-
ically like the following:

if (LET237 != 0) {

x = value of <rhs>
Yelsed{

x = lazy thunk to compute <rhs> when needed
}

evaluate <body>

Our current implementation associates one static switch
(in this case LET237) with each let. There are many other
possible choices. For example, for a function like map, which
is used in many different contexts, it might be desirable for
the switch to take the calling context into account. We have
not explored these context-dependent possibilities because
the complexity costs of dynamic switches seem to overwhelm
the uncertain benefits. In any case, GHC’s aggressive inlin-
ing tends to reduce this particular problem.

If <rhs> was large, then this compilation scheme could
result in code bloat. We avoid this by lifting the right hand
sides of such let expressions out into new functions.



2.2 Abortion

The whole point of optimistic evaluation is to use call-
by-value in the hope that evaluation will terminate quickly.
It is obviously essential to have a way to recover when this
optimism turns out to be unfounded. That is the role of
abortion.

If the evaluator detects that a speculation has been going
on for a long time, then it aborts all current speculations
(they can of course be nested), resuming after the let that
started the outermost speculation.

Detecting when a speculation has been running for too
long can be done in several ways; the choice is not impor-
tant, so long as it imposes minimal overheads on normal
execution. One way would be to have the running code be
aware of how long it has been running, and actively call into
the run-time system when it has run for more than a fixed
amount of time. Another approach, which we currently im-
plement, is to have periodic sample points which look at the
state of the running program. If execution remains within
the same speculation for two sample points, then we consider
the speculation to have gone on for too long.

Abortion itself can also be implemented in many different
ways. Our current scheme shares its implementation with
that already used for handling asynchronous exceptions [21].
A suspension is created in the heap containing the aborted
computation. If the result is found to be needed, then this
computation will resume from the point where it left off.
Abortion turns out to be a very rare event, with only a few
tens of abortions in each program run, so it does not need
to be particularly efficient.

Abortion alone is enough to guarantee correctness; i.e.
that the program will deliver the same results as its lazy
counterpart. However, we can optionally also turn off the
static switch for one or more of the aborted lets, so that they
run lazily in future (many strategies are possible). From this
we get a crude bound on the total time and space consumed
by aborted computations. Since there are finitely many lets
in a program, turning one off at each abortion bounds how
many abortions can take place during the life of a program;
in the limit, the entire program runs lazily. Further, the
wasted work done by each abortion is bounded by twice the
sample interval.

2.3 Chunky Evaluation

Consider the following program, which generates an infi-
nite stream of integers.

from :: Int -> [Int]

from n = let nl = n+l in
let rest = from nl in
(n : rest)

If we used speculative evaluation for the rest thunk, the
evaluation would be certain to abort. Why? Because evalu-
ating from n would speculatively evaluate from (n+1), wh-
ich would speculatively evaluate from (n+2), and so on. It
will not be long before we turns off speculative evaluation
of rest, making from completely lazy.

This is a big lost opportunity: when lazily evaluating the
lazily generated list, the tail of every cell returned by from
is sure to be evaluated, except the last one! (The n1 thunks
are easily caught by optimistic evaluation, if n is cheap.)

What we would really like instead is to create the list in
chunks of several elements. While creating a chunk, rest

is evaluated speculatively. However once the chunk is fin-
ished (for example, after 10 elements have been created)
rest switches over to lazy evaluation, causing the function
to terminate quickly. This approach largely removes the
overheads of laziness, because only a few thunks are lazy —
but it still allows one to work with infinite data structures.

This chunky behaviour can be useful even for finite lists
that are completely evaluated. Lazy programmers often use
a generate-and-filter paradigm, relying on laziness to avoid
creating a very large intermediate list. Even if the com-
piler knew that the intermediate list would be completely
evaluated, it would sometimes be a bad plan to evaluate it
strictly. Chunky evaluation is much better.

One way to implement chunky evaluation is to limit how
deeply speculation is nested. The code for a let then behaves
semantically like the following (note that this generalises the
code given in Section 2.1):

if (SPECDEPTH < LIMIT237){
SPECDEPTH = SPECDEPTH + 1
x = value of <rhs>
SPECDEPTH = SPECDEPTH - 1
}elsed{
x = lazy thunk for <rhs>
}
evaluate <body>

Here, SPECDEPTH is a count of the number of nested spec-
ulations that we are currently inside and LIMIT237 is a limit
on how deeply this particular let can be speculated. The
intuition is that the deeper the speculation stack, the less
likely a new speculation is to be useful. LIMIT237 can be
adjusted at run-time to control the extent to which this let
may be speculated.

2.4 Exceptions and Errors

Consider the following function:

f x y = let bad = error "urk" in
if x then bad else y

In Haskell, the error function prints an error message and
halts the program. Optimistic evaluation may evaluate bad
without knowing whether bad is actually needed. It is ob-
viously unacceptable to print "urk" and halt the program,
because lazy evaluation would not do that if x is False.
The same issue applies to exceptions of all kinds, including
divide-by-zero and black-hole detection [26].

In GHC, error raises a catchable exception, rather than
halting the program [32]. The exception-dispatch mecha-
nism tears frames off the stack in the conventional way. The
only change needed is to modify this existing dispatch mech-
anism to recognise a speculative-evaluation let frame, and
bind its variable to a thunk that re-raises the exception. A
let thus behaves rather like a catch statement, preventing
exceptions raised by speculative execution from escaping.

2.5 Unsafe Input/Output

Optimistic evaluation is only safe because Haskell is a pure
language: evaluation has no side effects. Input/output is
safely partitioned using the I0 monad [33], so there is no
danger of speculative computations performing 1/O. How-
ever, Haskell programs sometimes make use of impure I/0,
using the “function” unsafePerformIO. Speculatively evalu-
ating calls to this function could cause observable behaviour



different to that of a lazy implementation. Moreover, it is
not safe for us to abort I0 computations because an 10 op-
eration may have locked a resource, or temporarily put some
global data structures into an invalid state.

For these reasons, we have opted to disallow speculation
of unsafePerformI0 and unsafeInterleaveI0. Any specu-
lation which attempts to apply one of these functions will
abort immediately.

3. ONLINE PROFILING

Abortion may guarantee correctness (Section 2.2), but it
does not guarantee efficiency. It turns out that with the
mechanisms described so far, some programs run faster, but
some run dramatically slower. For example the constraints
program from NoFib runs over 30 times slower. Why? De-
tailed investigation shows that these programs build many
moderately-expensive thunks that are seldom used. These
thunks are too cheap to trigger abortion, but nevertheless
aggregate to waste massive amounts of time and space.

One obvious solution is this: trigger abortion very quickly
after starting a speculative evaluation, thereby limiting wast-
ed work. However, this approach fails to exploit the thunks
that are not cheap, but are almost always used; nor would
it support chunky evaluation.

In order to know whether an expression should be specu-
lated or not, we need to know whether the amount of work
potentially wasted outweighs the amount of lazy evaluation
overhead potentially avoided. We obtain this information
by using a form of online profiling.

3.1 Idealised Profiling

We begin by describing an idealised profiling scheme, in
which every let is profiled all the time. For every let, we
maintain two static counters:

speccount is incremented whenever a speculative evalua-
tion of the right hand side is begun.

wastedwork records the amount of work wasted by as-yet-
unused speculations of the let.

The quotient (wastedwork/speccount) is the wastage quo-
tient - the average amount of work wasted work per spec-
ulation. If the wastage quotient is larger than the cost of
allocating and updating a thunk, then speculation of the let
is wasting work, and so we reduce the extent to which it is
speculated. (In fact, the critical threshold is tunable in our
implementation.)

By “work” we mean any reasonable measure of execution
cost, such as time or allocation. In the idealised model, we
just think of it as a global register which is incremented
regularly as execution proceeds; we discuss practical imple-
mentation in Section 3.4.

The wastedwork we record for a speculation includes the
work done to compute its value, but not the work of com-
puting any sub-speculations whose values were not needed.
Operationally, we may imagine that the global work regis-
ter is saved across the speculative evaluation of a let right-
hand side, and zeroed before beginning evaluation of the
right-hand side.

But what if a sub-speculation is needed? Then the profiler
should attribute the same costs as if lazy evaluation had
been used. For example, consider:

let
x = let y = <expensive> in y+1
in ...

The evaluation of x will speculatively evaluate <expensive>,
but it turns out that y is needed by =, so the costs of <expen-
sive> should be attributed to x, not y. Speculating y is
perfectly correct, because its value is always used.

How do we implement this idea? When the speculation of
y completes, we wrap the returned value in a special indi-
rection closure that contains not only the returned value v,
but also the amount of work w done to produce it, together
with a reference to the let for y. When the evaluation of x
needs the value of y (to perform the addition), it evaluates
the closure bound to y (just as it would if y were bound to a
thunk). When the indirection is evaluated, it adds the work
w to the global work counter, and subtracts it from y’s static
wastedwork counter, thereby transferring all the costs from
y to x.

There is one other small but important point: when spec-
ulating y we save and restore the work counter (for x), but
we also increment it by one thunk-allocation cost. The mo-
tivation is to ensure the cost attribution to x is the same,
regardless of whether y is speculated or not.

This scheme can attribute more cost to a speculative eval-
uation than is “fair”. For example:

f v = let x = v+l in v+2

The speculative evaluation of x will incur the cost of eval-
uating the thunk for v; but in fact v is needed anyway, so
the “real” cost of speculating x is tiny (just incrementing
a value). However, it is safe to over-estimate the cost of a
speculation, so we simply accept this approximation.

3.2 Safety

We would like to guarantee that if a program runs more
slowly than it would under lazy evaluation, the profiler will
spot this, and react by reducing the amount of speculation.

Our profiler assumes that all slowdown due to specula-
tion is due to wasted work'in speculations. If work is being
wasted then at least one let must have a wastage quotient
greater than one thunk allocation cost. When the profiler
sees a let with this property, it reduces the amount of spec-
ulation done for that let. Eventually, the speculation con-
figuration will either settle to one that is faster than lazy
evaluation, or in the worst case, all speculation will be dis-
abled, and execution reverts back to lazy evaluation.

This safety property also holds for any approximate profil-
ing scheme, provided that the approximate scheme is conser-
vative and overestimates the total amount of wasted work.

3.3 Random Sampling

It would be inefficient to profile every let all the time, so
instead we profile a random selection of speculations. At
regular intervals, called sample points, we profile each ac-
tive speculation, from the sample point until it finishes. We
double the work measured to approximate the complete ex-
ecution cost of the speculation.

There are two sources of error. First, since we sample
randomly through time, we are likely to see expensive spec-
ulations more frequently than inexpensive ones. However,

n fact, as we see in section 6.2, space usage is often a major
factor.
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we believe that in practice, this should not be a problem,
particularly as it is the expensive speculations that are likely
to be the ones that are wasting the most work.

Second, we can reasonably assume that the sample point
is uniformly distributed between the moment a speculation
begins and the moment it ends; however, the work ticks at-
tributed to that speculation may not be uniformly distributed
over that period. For example:

let x = if <expensivel> then
let y = <expensive2> in (y,y)
else ...

Most of the work attributed to x is the cost of evaluating
<expensivel>; the work of evaluating <expensive2> will be
attributed to y. Furthermore, evaluation of <expensivel>
precedes the evaluation of <expensive2>. Hence, if we were
to place our sample point in the middle of the speculation for
%, then we would get an under-estimate of the work done.
This is illustrated by Figure 2, in which work counted is
shaded and work ignored is unshaded. Alas, under-estimates
are not safe!

However, it turns out that this is not a problem, for a
rather subtle reason. In our example, the speculation of x
does no work after the speculation of y has finished. Let us
assume that <expensivel> does exactly the same amount
of work W as <expensive2>. Hence, the sample point will
have a 50% chance of falling before the start of the spec-
ulation of y, and a 50% chance of falling after it. If the
sample point falls after the speculation of y starts, then we
will attribute no work to x, thus underestimating the work
by W units (Figure 2). However, if the sample point falls
before the speculation of y starts, then we will not profile the
speculation of y and so will attribute all of the work done
by <expensive2> to x; thus overestimating the work by an
average of 2W units (Figure 3) — the factor of 2 comes from
doubling the measured cost, as mentioned above. The net
effect is that we still over-estimate x’s cost.

This example, in which all x’s work is front-loaded, is an
extreme case. The informal argument we have given can be
generalised to show that our sampling approach can only
over-estimate costs.

3.4 Implementing Profiling

We implement profiling by overwriting return frames on
the stack. At a sample point, we walk down the stack and
find the return frames for all active speculations. Each of
these return frames is overwritten with the address of a pro-
filing system routine, while the real return address is squir-
reled away for safe-keeping.

When the speculation finishes, it will jump back into the
profiling system through this hijacked return point. The
profiler now calculates an estimate of the work done during
the speculation. Available timers are not accurate enough
to allow for an accurate measure of the time elapsed during
a speculation, so we use the amount of heap allocated by
the speculation instead. This seems to be a fairly reasonable
estimate, provided that we ensure that all recursions allocate
heap.

4. IS THIS TOO COMPLEX?

By this time, the reader may be thinking “isn’t this all
rather complicated?”. Does one really need abortion, switch-
able let expressions, chunky evaluation, special handling for
10, and online profiling? Our answer is two-fold.

First, just as a compiler needs a lot of “bullets in its gun,”
to tackle widely varying programs, we believe that the same
is true of optimistic evaluation. To make this idea work,
in practice, on real programs, in a mature compiler, there
just are a lot of cases to cover. Omne of the contributions
of this paper is precisely that we have explored the idea
deeply enough to expose these cases. Section 6.4 quantifies
the effect of removing individual “bullets”.

Second, the actual implementation in GHC is not overly
complex. The changes to the compiler itself are minor (ar-
ound 1,300 lines in a program of 130,000 or so). The changes
to the run-time system are more significant: In a run-time
system of around 47,000 lines of C, we have added around
1000 lines and altered around 1,600 lines — certainly not
trivial, but a 3% increase seems reasonable for a major in-
novation.

S. AN OPERATIONAL SEMANTICS

As we have remarked, optimistic evaluation is subtle. We
found it extremely helpful to write a formal operational se-
mantics to explain exactly what happens during specula-
tive evaluation, abortion, and adaption. In this section, we
briefly present this semantics.

5.1 A Simple Language

The language we work with is Haskell. While the exter-
nally visible Haskell language is very complex, our compiler
reduces it to the following simple language:

E = = variable

|  C{zi}o constructor app

| case Fof {P;}¢ case analysis

| letx=FEinFE’ thunk creation

|  Az.E abstraction

| Ezx application

| exn exception or error
P = C{ai}g —F pattern match
V = C{zi}g | \z.E | exn  values
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Figure 4: Operational Semantics: Evaluation

The binder z is unique for each let. This allows us to
uniquely refer to a let by its binder.

Functions and constructors are always applied to vari-
ables, rather than to expressions. It follows that let is the
only point at which a thunk might be created. (A case ex-
pression scrutinises an arbitrary expression F, but it does
not first build a thunk.).

We restrict ourselves to non-recursive let expressions.
This does not restrict the expressiveness of the language,
as the user can use a fixed point combinator. It does how-
ever simplify the semantics, as recursive let expressions are
problematic when speculated. We omit literals and primi-
tive operators for the sake of brevity. Adding them intro-
duces no extra complications.

Exceptions and errors (Section 2.4) are handed exactly as
described in [32], namely by treating an exception as a value
(and not as a control operator).

5.2 The Operational Framework

We describe program execution using a small step opera-
tional semantics, describing how the program state changes
as execution proceeds. The main transition relation, —,
takes the form:

IE;s —s T';E; s
meaning that the state I'; E; s evolves to I''; E’; s’ in one step
using Y. The components of the state are as follows.

e [ represents the heap. It is a function mapping names
to expressions.

e [ is the expression currently being evaluated.

e s is a stack of continuations containing work to be
done, each taking one of the following forms (c.f. [11]):

x JE Speculation return to E, binding x
{P;}y Case choose a pattern P;
o Application use arg x

#x Update of thunk bound to x

We write D(s) to denote the number of speculation
frames on the stack s. We refer to this as the specula-
tion depth.

e 3 is the speculation configuration. ¥ maps a let binder
x to a natural number n. This number says how deeply
we can be speculating and still be allowed to create a
new speculation for that let. If the let is lazy, then n
will be 0. Online profiling may change the mapping
while the program is running.

The transition rules for — are given in Figure 4. The first
nine are absolutely conventional [35], while the last three are
the interesting ones for optimistic evaluation. Rule (LAZY)
is used if the depth limit X[z] is less than the current specula-
tion depth D(s). The rule simply builds a thunk in the heap
T, with address z’, and binds x to z’. Rule (SPEC1) is used
if ¥[a] is greater than the current speculation depth D(s);
it pushes a return frame and begins evaluation of the right-
hand side. On return, (SPEC2) decrements d and binds x
to (the address of) the computed value.

At a series of sample points, the online profiler runs. It
can do two things: first, it can change the speculation con-
figuration ¥; and second, it can abort one or more running
speculations. The process of abortion is described by the ~»
transitions given in Figure 5. Each abortion rule removes
one continuation from the stack, undoing the rule that put
it there. It would be sound to keep applying these rules until
the stack is empty, but there is no point in continuing when
the last speculative-let continuation (let z = e in E) has
been removed from the stack, and indeed our implementa-
tion stops at that point.

One merit of having an operational semantics is that it
allows us to formalise the profiling semantics described in
Section 3. We have elaborated the semantics of Figure 4 to
describe profiling and cost attribution, but space prevents
us showing it here.

6. PERFORMANCE

We measured the effect of optimistic evaluation on several
programs. Most of the programs are taken from the real
subset of the NoFib [28] suite, with a few taken from the
spectral subset. These programs are all reasonably sized,
realistic programs. GHC is 132,000 lines, and the mean of
the other benchmarks is 1,326 lines. Programs were selected
before any performance results had been obtained for them.
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Figure 5: Operational Semantics : Abortion

We ran each program with our modified compiler, and

with the GHC compiler that our implementation forked from.

The results for normal GHC were done with all optimisa-
tions enabled. Tests were performed on a 750MHz Pentium
IIT with 256Mbytes of memory. The implementation bench-
marked here does not remember speculation configurations
between runs. To reduce the effect of this cold start, we
arranged for each benchmark to run for around 20 seconds.
We will now summarise the results of our tests. For full
results, please refer to Appendix A.
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Figure 6: Benchmark Run-Time relative to Normal
GHC

6.1 Execution Time

Figure 6 shows the effect that optimistic evaluation has on
run time. These results are very encouraging. The average
speedup is just over 15%, some programs speed up dramati-
cally and no program slows down by more than 15%. As one
would expect, the results depend on the nature of the pro-
gram. If a program has a strict inner loop that the strictness
analyser solves, then we have little room for improvement.
Similarly, if the inner loop is inherently lazy, then then there
is nothing we can do to improve things, and indeed the extra
overhead of having a branch on every let will slow things
down. In the case of rsa speculation had virtually no effect
as rsa spends almost all of its time inside a library written
in C.

These results reflect a single fixed set of tuning parame-
ters, such as the thunk-cost threshold (Section 3.1), which
we chose based on manual experimentation. Changing these
parameters can improve the run-time of a particular pro-
gram significantly (up to 25% or so), but only at the cost
of worsening another. Whether a more sophisticated profil-
ing strategy could achieve the minimal run-time for every
program remains to be seen.

6.2 Heap Residency

Some programs are extremely inefficient when executed
lazily, because they contain a space leak. People often post
such programs on the haskell mailing list, asking why they
are going slowly. One recent example was a simple word
counting program [24]. The inner loop (slightly simplified)
was the following:

count :: [Char] -> Int -> Int -> Int -> (Int,Int)

count [] _ nw nc = (nw, nc)
count (c:cs) new nw nc
case charKind c of
Normal -> count cs O (nw+new) (nc+1)
White -> count cs 1 nw (nc+1)

Every time this loop sees a character, it increments its accu-
mulating parameter nc. Under lazy evaluation, a long chain
of addition thunks builds up, with length proportional to
the size of the input file. By contrast, the optimistic version
evaluates the addition speculatively, so the program runs in
constant space. Optimistic evaluation speeds this program
up so much that we were unable to produce an input file
that was both small enough to allow the lazy implementa-
tion to terminate in reasonable time, and large enough to
allow the optimistic implementation to run long enough to
be accurately timed!

The “residency” column of Appendix A shows the effect
on maximum heap size on our benchmark set, with a mean
of 85% of the normal-GHC figure. Not surprisingly, the im-
provement is much smaller than that of count — perhaps
because these real programs have already had their space
leaks cured — and some programs use more space than be-
fore. Nevertheless, optimistic evaluation seems to reduce
the prevalence of unexpectedly-bad space behaviour, a very
common problem for Haskell programmers, and that is a
welcome step forward.

6.3 Code Size

Code size increases significantly (34% on average). This is
due to the need to generate both lazy and strict versions of
expressions. We have not yet paid much attention to code
bloat, and are confident that it can be reduced substantially,
but we have yet to demonstrate this.

6.4 Where the Performance comes from

Where does the performance improvement come from?
Could we get the same performance results from a simpler
system?

Figure 7 shows the performance of several simplified vari-
ants of our system relative to our full optimistic implemen-
tation. Figure 8 shows the performance of several altered
versions of normal GHC relative to normal GHC.

Chunky evaluation. The “No Chunky” bars in Figure 7
show the effect on switching off chunky evaluation. When
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Figure 8: Effect of Changes to Normal GHC

chunky evaluation is turned off, a let expression can only be
on or off, with no reduction in depth allowed for in-between
cases. Some programs are largely unaffected by this, but
others suffer significantly. constraints actually speeds up.

Semi-tagging. Our implementation of optimistic eval-
uation uses an optimisation called semi-tagging, which we
briefly explain. When evaluating a case expression, GHC
normally jumps to the entry point of the scrutinee, passing
it a vector of return addresses, one for each possible con-
structor. If the scrutinee is a value, then the entry point
will simply return to the relevant return address. An alter-
native plan is called semi-tagging [30]: before jumping to the
scrutinee’s entry point, test whether the scrutinee is already
evaluated. In that case, we can avoid the (slow) indirect call
and return.

The “Semitagging” bars in Figure 8 show the effect of
enabling semi-tagging only relative to baseline GHC (i.e. no
optimistic evaluation). Under normal lazy evaluation, the
scrutinee is often unevaluated, so while semi-tagging is a
win on average, the average speedup is only 2%.

However, under optimistic evaluation most scrutinees are
evaluated, and semi-tagging gives a consistent improvement.
The “No Semi” bars in Figure 7 are given relative to the
full optimistic evaluator, and show that switching off semi-
tagging almost always makes an optimistically-evaluated pro-

gram run slower. In short, optimistic evaluation turns semi-
tagging from a mixed blessing into a consistent, and some-
times substantial, win. This is a real bonus, and one we did
not originally anticipate.

Strictness Analysis. The “No Strictness” bars show
the effect of turning off GHC’s strictness analysis. Fig-
ure 8 shows that strictness analysis is usually a very big
win for normal GHC, while in Figure 7 we see that the ef-
fect of switching off strictness analysis in an optimistically-
evaluated implementation is far smaller. Hence, in the ab-
sence of strictness analysis, the win from optimistic evalua-
tion would be far greater than the ones we report in Figure 6.

Profiling. The “No Profile” bars in Figure 7 show the ef-
fect of disabling online profiling. Most programs are largely
unaffected, but a few programs such as constraints and
fulsom slow down massively. Programs like these justify
our work on profiling (Section 3); our goal is to give accept-
able performance in all cases, without occasional massive
and unpredictable slow-downs.

Overheads. The “All lazy” bars in Figure 8 show what
happens when we pay all the costs of optimistic evaluation,
but get none of the benefits. In this experiment, we set
3 to map every let to 0, so that all lets are done lazily.
Comparing this to Normal GHC, the baseline for this graph,
shows the overheads that the profiler and the switchable-let
mechanism impose on normal evaluation; they are always
less than 25%.

7. RELATED WORK
7.1 Static Analyses

Where static analysis is possible, it is much to be pre-
ferred, because the results of the analysis can often enable
a cascade of further transformations and optimisations, and
static choices can be compiled into straight line code, with
better register allocation.

GHC has a fairly sophisticated strictness analyser, and
all our results are relative to a baseline in which strictness
analysis is on. (When we switch it off, the speedups from
optimistic evaluation are much greater.) The other promis-
ing static analysis is Faxén’s cheap eagerness analysis [7],
which attempts to figure out which thunks are guaranteed
to be cheap to evaluate, so that call-by-value is sound, and
will not waste much work even if the result is not used. A
further development, dynamic cheap eagerness [8], uses a
more complicated analysis to add an extra depth parameter
to selected recursive functions, plus an explicit cut-off test,
to achieve an effect similar to chunky evaluation.

Cheap eagerness is built on a very sophisticated whole-
program flow analysis. Is a thunk for x+1 cheap? It depends
on whether x is evaluated; and if x is an argument to a
function, we need to examine all calls to the function —
and that is not straightforward in a higher-order program.
Worse, a whole-program analysis causes problems for sepa-
rate compilation, and that is a big problem when shipping
pre-compiled libraries. These problems may be soluble —
for example by compiling multiple clones of each function,
each suitable for a different evaluation pattern — but the
additional implementation complexity would be significant.
That is why we did not implement cheap eagerness in GHC
for comparison purposes.

A sufficiently-clever whole-program static analysis might
well discover many of the cheap thunks that we find with



our online profiler. The critical difference is that we can
find all the cheap thunks without being particularly clever,
without requiring a particularly complex implementation,
and without getting in the way of separate compilation.

Faxén reports some promising speedups, generally in the
range 0-25% relative to his baseline compiler, but it is not
appropriate to compare these figures directly with ours. As
Faxén is careful to point out, (a) his baseline compiler is
a prototype, (b) his strictness analyser is “very simple”,
and (c) all his benchmarks are small. The improvements
from cheapness analysis may turn out to be less persuasive
if a more sophisticated strictness analyser and program op-
timiser were used, which is our baseline. (Strictness analysis
does not require a whole-program flow analysis, and readily
adapts to separate compilation.)

There exist many other static analyses that can improve
the performance of lazy programs. In particular, the GRIN
project [3] takes a different spin on static analysis. A whole
program analysis is used to discover for each case expression
the set of all thunk expressions that might be being evalu-
ated at that point. The bodies of these expressions are then
inlined at the usage sites, avoiding much of the cost of lazy
evaluation. Such transformations do not however prevent
lazy space leaks.

7.2 Eager Haskell

Eager Haskell [20, 19] was developed simultaneously, but
independently, from our work. Its basic premise is identical:
use eager evaluation by default, together with an abortion
mechanism to back out when eagerness turns out to be over-
optimistic. The implementation is rather different, however.
Eager Haskell evaluates absolutely everything eagerly, and
periodically aborts the running computation right back to
the root. Abortion must not be too frequent (lest its costs
dominate) nor too infrequent (lest work be wasted). The
abortion mechanism is also different: it allows the compu-
tation to proceed, except each function call builds a thunk
instead of making the call. The net effect is somewhat sim-
ilar to our chunky evaluation, but appears to require an
“entirely new” code generator, which ours does not.

The main advantage of our work over Eager Haskell is that
we adaptively decide which let expressions are appropriate
to evaluate eagerly while Eager Haskell always evaluates ev-
erything eagerly. On some programs eager evaluation is a
good plan, and Eager Haskell gets similar speedups to Op-
timistic Evaluation. On other programs, though, laziness
plays an important role, and Eager Haskell can slow down
(relative to normal GHC) by a factor of 2 or more. In an ex-
treme case (the constraints program) Eager Haskell goes
over 100 times slower than normal GHC, while with Opti-
mistic Evaluation it slows by only 15%. Eager Haskell users
are encouraged to deal with such problems by annotating
their programs with laziness annotations, which Optimistic
Evaluation does not require. It is much easier to get good
speedups in some cases by accepting big slow-downs in oth-
ers. It is hard to tell how much Eager Haskell’s wins will be
reduced if it were to solve the big-slow-down problem in an
automated way.

7.3 Speculative Parallelism

The parallel programming community has been making
use of speculation to exploit parallel processors for a long
time [5]. There, the aim is to make use of spare processors
by arranging for them to evaluate expressions that are not
(vet) known to be needed. There is a large amount of work
in this field, of which we can only cite a small subset.

Several variants of MultiLisp allow a programmer to sug-
gest that an expression be evaluated speculatively [12, 27].
Mattson [22, 23] speculatively evaluates lazy expressions in
parallel. Local Speculation [23, 6] does some speculations
on the local processor when it would otherwise be waiting,
reducing the minimum size for a useful speculation. Hunt-
back [17] speculatively evaluates logic programming expres-
sions in parallel, with the user able to annotate speculations
with a priority. A major preoccupation for speculative par-
allelism is achieving large enough granularity; otherwise the
potential gain from parallelism is cancelled out by the cost
of spawning and synchronisation. In our setting, the exact
reverse holds. A large thunk might as well be done lazily,
because the cost of allocating and updating it are swamped
by its evaluation costs; it is the cheap thunks that we want
to speculate!

Haynes and Friedman describe an explicit “engines” pro-
cess abstraction that can be used by the programmer to
spawn a resource-limited thread [14]. An engine has a cer-
tain amount of fuel; if the fuel runs out, the engine returns
a continuation engine that can be given more fuel, and so
on. Engines are rather coarse-grain, and under explicit user
control, both big differences from our work.

Another strand of work takes eager parallelism as the
baseline, and strives to aggregate, or partition, tiny threads
into larger compound threads [38, 34]. In some ways this
is closer to our work: -call-by-need is a bit like parallel
evaluation (scheduled on a uniprocessor), while using call-
by-value instead aggregates the lazy thread into the par-
ent. However, the issues are quite different; as Schauser
puts it “the difficulty is not what can be put in the same
thread, but what should be ... given communication and
load-balancing constraints”. Furthermore, thread partition-
ing is static, whereas our approach is dynamic.

Yet another strand is that of lazy thread creation, where
one strives to make thread creation almost free in the case
where it is not, in the end, required [25]. A very success-
ful variant of this idea is Cilk [10], in which the parent
thread saves a continuation before optimistically executing
the spawned child; if the child blocks, the processor can re-
sume at the saved continuation. Other processors can also
steal the saved continuation. The big difference from our
work is that in Cilk all threads are assumed to be required,
whereas the possibility that a lazy thunk is not needed is
the crux of the matter for us.

In summary, despite the common theme of speculative
evaluation in a declarative setting, we have found little over-
lap between the concerns of speculation-for-parallelism and
optimistic evaluation.

7.4 Other Work

Stingy FEvaluation [39] is an evaluation strategy designed
to reduce space leaks such as the one described in Section
6.2. When evaluating a let expression, or during garbage
collection, the evaluator does a little bit of work on the ex-
pression, with the hope of evaluating it, and avoiding having



to build a thunk. As with Eager Haskell, all expressions are
eagerly evaluated, however the amount of evaluation done
before abortion is significantly smaller, with only very simple
evaluations allowed. Often this small amount of work will
not be useful, causing some programs to run slower. Stingy
evaluation was implemented in the LML [1] compiler.

Branch Prediction [36] is present in most modern proces-
sors. The processor will speculatively execute whichever side
of a branch that is thought most likely to be used. As with
optimistic evaluation, observation of the running program
is used to guide speculation. Static analysis can be used to
guide branch prediction [2].

Online Profiling is used in many existing language imple-
mentations, including several implementations for the Ja-
va [18] language, such as HotSpot [37] and Jalapeno [4]. One
of the first implementations to use such techniques was for
Self [15]. These systems use similar techniques to optimistic
evaluation, but do not apply them to laziness.

Feedback Directed Optimisation [9] is a widely used tech-
nique in static compilers. A program is run in a special
profiling mode, recording statistics about the behaviour of
the program. These statistics are then used by the compiler
to make good optimisation choices when compiling a final
version of the program. Many commercial compilers use this
technique. In principle we could do the same, compiling the
configuration Y into the program, rather than making it
adapt at run-time, but we have not done so.

8. CONCLUSIONS AND FUTURE WORK

Our goal is to allow a programmer to write programs in a
lazy language without having to use strictness annotations
in order to obtain good performance. Our measurements
show that optimistic evaluation can improve overall perfor-
mance by 14%, or more, relative to a very tough baseline.

Our implementation represents just one point in a large
design space that we are only just beginning to explore. It
is very encouraging that we get good results so early; things
can only get better! In particular, we are looking at the
following;:

Heap Usage Profiling. As shown in Section 6.2, optimis-
tic evaluation often speeds programs up by preventing
them from filling the heap up with thunks. However
our current system does not take heap behaviour into
account when deciding which let expressions should
be evaluated optimistically, and so could be missing
opportunities to speed programs up. We plan to ex-
plore ways of making better decisions, by taking into
account the behaviour of the heap.

Proving Worst Case Performance. We have stressed
the importance of avoiding bad performance for par-
ticular programs. But experiments can never show
that no program will run much slower under our sys-
tem than with normal GHC. Instead we would like
to prove this property. Based on the operational se-
mantics in Section 5, preliminary work suggests that
we can indeed prove that the online profiler will even-
tually find all let expressions that waste work, and
hence that optimistic evaluation is at most a constant
factor worse than ordinary call-by-need (because of its
fixed overheads), once the speculation configuration
has converged [Paper in preparation].

There are hundreds of papers about cunning compilation
techniques for call-by-value, and hundreds more for call-by-
need. So far as we know, this paper and Maessen’s recent
independent work [19] are the first to explore the rich terri-
tory of choosing dynamically between these two extremes.

The implementation described in this paper is freely avail-
able in the GHC CVS, and readers are encouraged to down-
load it and have a look at it themselves. We plan to include
Optimistic Evaluation in a release version of GHC soon.
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A Table of Test Statistics
Normal GHC | Optimistic vs Normal GHC Vs Normal GHC Vs Optimistic
test name code run code run | code | heap resi- semi- all no | no semi- no no no
lines | time size | time size | allocs dency | tagging lazy | stranal | tagging | chunky | profile | stranal
ghc | 132,042 | 18.27 | 18,201k | 105% | 158% 89% 105% 101% | 106% 107% 98% 98% 112% 107%
boyer 1,018 | 17.39 754k | 99% | 124% 94% 91% 100% | 109% 105% 95% 106% 108% 105%
anna 9,561 | 15.22 2,150k | 90% | 158% 90% 90% 90% | 104% 104% 111% 100% 100% 98%
bspt 2,153 | 13.32 878k | 74% | 131% 82% 58% 101% | 103% 116% 140% 127% 112% 104%
constraints 271 | 29.39 706k | 114% | 126% 95% 152% 104% | 108% 106% 82% 86% | 3484% 98%
compress 764 | 15.70 554k | 91% | 117% 98% 99% 93% | 103% 138% 110% 100% 102% 101%
circsim 668 | 18.86 763k | 83% | 135% 78% 81% 101% | 109% 112% 104% 103% 108% 91%
clausify 182 | 20.78 701k | 86% | 129% 58% 81% 97% | 102% 122% 104% 100% 101% 98%
fluid 2,401 | 12.95 1,337k | 99% | 146% 79% 46% 100% | 109% 124% 100% 100% 97% 102%
fulsom 1,444 | 14.17 1,172k | 84% | 157% 69% 23% 102% | 115% 100% 101% 111% 176% 90%
gamteb 701 | 15.15 922k | 93% | 134% 88% 83% 99% | 108% 126% 101% 100% 113% 118%
cryptarithm1 164 8.3 455k | 58% | 113% 70% 122% 87% | 109% 103% 136% 154% 102% 103%
mandel 498 18.2 848k | 71% | 131% 59% 99% 90% | 100% 102% 122% 100% 118% 113%
infer 591 | 14.55 864k | 66% | 134% | 104% 143% 89% | 104% 101% 121% 128% 161% 93%
sphere 472 | 11.98 899k | 90% | 137% 8% 187% 99% | 109% 117% 107% 101% 98% 111%
parser 1,379 14.5 817k | 107% | 134% 84% 74% 104% | 122% 150% 101% 101% 111% 115%
atom 187 | 22.39 828k | 28% | 131% 46% 40% 102% | 105% 111% 135% 102% 100% 103%
prolog 641 | 20.61 646k | 82% | 124% 88% 113% 97% | 106% 111% 103% 102% 82% 104%
reptile 1,522 | 17.98 966k | 104% | 133% 97% 78% 100% | 101% 157% 90% 98% 105% 154%
rsa 74 | 17.79 718k | 98% | 126% 99% 106% 100% | 100% 115% 101% 100% 100% 130%
symalg 1,146 | 17.85 1,037k | 100% | 135% | 100% 100% 100% | 101% 100% 100% 99% 99% 100%
minimum 74 8.3 455k | 28% | 113% 46% 23% 87% | 100% 100% 2% 86% 82% 90%
maximum | 132,042 | 29.39 | 18,201k | 114% | 158% | 104% 187% 104% | 122% 157% 140% 154% | 3484% 154%
geometric mean 84% | 134% | 82% 85% 98% | 106% 115% 107% 105% | 128% 106%
arithmetic mean 7,518 | 16.88 1,725k




