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Books:
Bengio, Yoshua (2009). "Learning Deep
Architectures for Al".

Dong Yu

L. Deng and D. Yu (2014) "Deep LiDeng e
Learning: Methods and Applications” Automatic
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SI1G-039.pdf

Speech
D. Yu and L. Deng (2014). "Automatic Recognition

Speech Recognition: A Deep Learning A Deep-Learning
Approach” (Publisher: Springer). Approach

@ Springer



http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
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Wikipedia:
https://en.wikipedia.org/wiki/Deep learning

Papers:
G. E. Hinton, R. Salakutdinov. "Reducing the Dimensionality of Data with Neural Networks". Science 313:
504-507, 2016.

G. E. Hinton, L. Deng, D. Yu, etc. "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
shared views of four research groups," IEEE Signal Processing Magazine, pp. 82-97, November 2012.

G. Dahl, D. Yu, L. Deng, A. Acero. "Context-Dependent Pre-Trained Deep Neural Networks for Large-
Vocabulary Speech Recognition". IEEE Trans. Audio, Speech, and Language Processing, Vol 20(1): 3042,
2012. (plus other papers in the same special issue)

Y. Bengio, A. Courville, and P. Vincent. "Representation Learning: A Review and New Perspectives," IEEE
Trans. PAMI, special issue Learning Deep Architectures, 2013.

J. Schmidhuber. “Deep learning in neural networks: An overview,” arXiv, October 2014.
Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning”, Nature, Vol. 521, May 2015.

J. Bellegarda and C. Monz. “State of the art in statistical methods for language and speech processing,”
Computer Speech and Language, 2015


https://en.wikipedia.org/wiki/Deep_learning
http://www.sciencemag.org/content/313/5786/504.short
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5740583
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Part I: Machine Learning (Deep/Shallow)
and Signal Processing



Current view of ML founding disciplines

Opimization
+
control

Computer science

Informatio
theory

Artificial Intelligepx

Statistics

Cognitive
science

Physics

Revised slide from: Pascal Vincent, 2015
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What Is Deep Learning?

o .1 Deep learning

- 24 - j

g From Wikipedia, the free encyclopedia
WIKIPEDIA

The Free Encyclopedia

Deep learning (deep machine learning, or deep structured
learning, or hierarchical learning, or sometimes DL) is a
branch of machine learning based on a set of algorithms that
attempt to model high-level abstractions in data by using
model architectures, with complex structures or otherwise,
composed of multiple non-linear transformations.l1l(r198)[21I3114]

11


https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BOOK2014-1
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BENGIODEEP-2
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BENGIO2012-3
https://en.wikipedia.org/wiki/Deep_learning#cite_note-SCHIDHUB-4
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Signal Processing = Information Processing

Coding/ Audio Speech Image Video Document
Compression Coding Coding Coding Coding Compression/
Summary
Communication Voice over IP, DAB,etc 4G/5G Networks, DVB, Home
Networking, etc
Security Multimedia watermarking, encryption, etc.
Enhancement/ De-noising/ Speech Image/video enhancement (Clear Grammar
Analysis Source separation Enhancement/ Type), Segmentation, feature checking, Text
Feature extraction extraction Parsing
Synthesis/ Computer Speech Computer Video Natural
Rendering Music Synthesis Graphics/ Synthesis Language
(text-to-speech) Generation
User-Interface Multi-Modal Human Computer Interaction (HCI --- Input Methods)
Recognition Auditory Automatic Image Document
Scene Analysis Speech/Speaker Recognition Recognition
(Computer Recognition
audition; e.g. Computer
Melody Detection Vision
_ & Singer ID) (e.g. 3-D object
Understanding Spoken Image recognition) Natural
(Semantic IE) Language Understanding Language
Understanding Understanding
Retrieval/Mining Music Spoken Document Image Video Text Search
Retrieval Retrieval & Retrieval Search (info retrieval)
Voice/Mobile Search
translation Spessthttearsdbditoon Machine translatior
Social Media Apps . : Photo Sharing Video Sharing Blogs, Wiki,

fan flickr) (e VYoritithe dal icio 11
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1060-1089 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 5, MAY 2013

Machine Learning Paradigms for Speech Recognition:
An Overview

L1 Deng, Fellow, IEEE, and Xiao Li, Member, IEEE

Abstract—Automatic Speech Recognition (ASR) has histori- community to make assumptions about a problem, develop pre-
cally been a driving force behind many machine learning (ML) cise mathematical theories and algorithms to tackle the problem
techniques, including the ubiquitously used hidden Markov  ojyen those assumptions, but then evaluate on data sets that are
model, discriminative learning, structured sequence learning, relatively small and sometimes synthetic. ASR research, on the

Ravesian learnine. and adanfive learnino. Mareaver MT. can and

AN
Labeled data

Supervised

Learning Same distribution Sparse features

Joint likelihood loss

Generative Single-Task Sparse

Learning Semi-Supervised Learning representation
Learning

Unsupervised : ¥ Adaptation

Leaming (Learn sequentially)
Discriminative be- T . X Deep learning
. >electively-labeled date . .
Learning — Multi-task Learning

Active Learning (learn simultaneously)
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Supervised Machine Learning

(classification)

Training phase (usually offline)

Training data set

Training

u L_(‘) u algorithm

measurements (features)
&
associated ‘class’ labels

(colors used to show class labels)

Learned model

Parameters/weights
(and sometimes structure)



Supervised Machine Learning
(classification)

Test phase (run time, online)

Input test data point Learned model Output
(o]
0O O o
o O o O o
O O o o o o
0O O 0O o O o o
0O 0O O O o o
=> 0O 0O 0o o o o o | >
o o o o o o O
0O 0O 0O o 0o o o
O 0O o o o o
O 0O 0O o o o
O O o o
O O ©°
predicted class label or
measurements (features) only structure + parameters

label sequence (e.g. sentence)



A key ML concept: Generalization

over-fitting

best
generalization test set error

training set
error

>
model capacity (e.g. size, depth)

* To avoid over-fitting,
* The need for regularization (or make model simpler, or to add more training)
* - move the training objective away from (empirical) error rate



Generalization — effects of more data

A\ under-fitting over-fitting

best
generalization

test set error

training set
error

model capacity




A variety of ML methods

Decision trees/forests/jungles, Boosting

Support Vector Machines (SVMs)

Model-Based (Graphical models, often generative models:
sparse connections w. interpretability)

— model tailored for each new application and incorporates prior
knowledge

— Bayesian statistics exploited to ‘invert the model” & infer variables of
interest

Neural Networks (DNN, RNN, dense connections)

These two types of methods can be made DEEP: Deep generative models and DNNs
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Learning with Big Data

6 Y

S .
Does itdo well [ . oes itdowell | ves
on the training | ——) on the test s Done!

data? ) . data? )

No No
(i.e., underfitting) (i.e., overfitting)
Deepe

Bigger network More data

t (Rocket engine) & (Rocket fuel)
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Contrast with Signal Processing Approaches

» Strong focus on sophisticated objective
functions for optimization (e.g. MCE, MWE,

MPE, MM, string-level, super-string-level, ...) Discriminative

z\\()RG/\N&CL/\YPOOL PUBLISHERS

e Can beregarded as “end2end” learning in ASR L . f
* Almost always non-convex optimization earnmg o1
(praised by deep-ML researchers) Speech Recognition
* Weaker focus on regularization & overfitting i T ——
e Why? )
* Our ASR community has been using shallow, Xisodong He
low-capacity models for too long (e.g., GMM- Li Deng
HMM) 2008

* Less need for overcoming overfitting
* Now, deep models add a new dimension for

CHAPTER 3

‘ ) _ Discriminative Learning:
increasing model capacity A Unified Objective Function
* Regularization becomes essential for DNN

 E.g. DBN pre-training, “dropout” method,

STDP spiking neurons, etc. y
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Deep Neural Net (DNN) Basics
--- why gradient vanishes & how to rescue it
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(Shallow) Neural Networks for ASR

(prior to the rise of deep learning)

Temporal & Time-Delay (1-D Convolutional) Neural Nets

Atlas, Homma, and Marks, “An Artificial Neural Network for Spatio-Temporal Bipolar Patterns,
Application to Phoneme Classification,” NIPS, 1988.

Waibel, Hanazawa, Hinton, Shikano, Lang. “Phoneme recognition using time-delay neural
networks.” IEEE Transactions on Acoustics, Speech and Signal Processing, 1989.

Hybrid Neural Nets-HMM

Morgan and Bourlard. “Continuous speech recognition using MLP with HMMs,” ICASSP, 1990.

Recurrent Neural Nets

Bengio. “Artificial Neural Networks and their Application to Speech/Sequence Recognition”, Ph.D.
thesis, 1991.

Robinson. “A real-time recurrent error propagation network word recognition system,” ICASSP
1992.

Neural-Net Nonlinear Prediction

Deng, Hassanein, Elmasry. “Analysis of correlation structure for a neural predictive model with
applications to speech recognition,” Neural Networks, vol. 7, No. 2, 1994.

Bidirectional Recurrent Neural Nets

Schuster, Paliwal. "Bidirectional recurrent neural networks," IEEE Trans. Signal Processing, 1997.

Neural-Net TANDEM

Hermansky, Ellis, Sharma. "Tandem connectionist feature extraction for conventional HMM
systems." ICASSP 2000.

Morgan, Zhu, Stolcke, Sonmez, Sivadas, Shinozaki, Ostendorf, Jain, Hermansky, Ellis, Doddington,
Chen, Cretin, Bourlard, Athineos, “Pushing the envelope - aside [speech recognition],” IEEE Signal
Processing Magazine, vol. 22, no. 5, 2005.

< DARPA EARS Program 2001-2004: Novel Approach | (Novel Approach Il: Deep Generative Model)

Bottle-neck Features Extracted from Neural-Nets

Grezl, Karafiat, Kontar & Cernocky. “Probabilistic and bottle-neck features for LVCSR of meetings,”
ICASSP, 2007.

1988
1989

1990

1991

1992

1994
1997

2000

2005

2007

28



One-hidden-layer neural networks

M

Starting from (nonlinear) regression  y(x, w) = f (Z W, (X))
=1

Replace each ¢ with a variable z;, :

where inputs hidden units outputs

D
R . _ 1) .
zj = hlaj) a; = E Wi T +
i=1

and h() is a fixed activation function |"

The outputs obtained from

M
_ _ E (2)
=1

where o) is another fixed function

In all, we have (simplifying biases):

M D
yr(x, W) =0 (Z w,i?h (Z UJJS?:I@))
=0 i=0



Multi-layer neural networks

<9
Denote all activation
functions by h
xro Y2
inputs 21 outputs
X1 U1
2 = h E Wi Zj
J Z3

« The sum is over those values of | with
instantiated weights w,;



Unchallenged learning algorithm: Back propagation (BP)

« For regression, we consider a squared error cost
function:

E(W) =12 Zn 2k ( tnk_ yk(xn!W) )2
which corresponds to a Gaussian density p(t|x)

 \We can substitute

M D
2 1
Yr(X, W) =0 E w;(fj)h E U)ﬁri)ilf*i
§=0 i=0

and use a general purpose optimizer to estimate W,

but it is much more efficient to exploit derivatives of E,
the essence of BP



Learning neural networks

E(W) =12 Zn Zk( tnk_ yk(xn’W) )2
* Recall that for linear regression:.
OE(w)/ow,, =-2_ (t. - X
(w) Wi, = =2y (t, Y ) Jom,

Weight in-between error  Error signal  Input signal
signal and input signal

« We'll use the chain rule of differentiation to derive a
similar-looking expression, where

— Local input signals are forward-propagated from the input
— Local error signals are back-propagated from the output



Local sighals needed for learning

* For clarity, consider the error for one training case:

1

En — § Z(t”nh — ynk‘)g
k

* To compute JoE /owy, note that w; appears in only one
term of the overaII expression, namely

§ :w e if Wji is in the 1st layer,
— ]~ . :
Z; is actually input X;

« Using the chain rule of dlfferentlatlon we have

where 0, =

JE, OE, da; 5
— = 0,2

ow;;  Jdaj Owj
-
Weight

Local Local
error input
OFn signal signal

aaj



Forward-propagating local input signals

<2
L2 Y2
Inputs 21 outputs
X1 = Y1
<3

Forward propagation gives all the a’'s and Z's



Back-propagating local error signals

Y2 t2

outputs

Y1 &1,

« Back-propagation gives all the o’s



Back-propagating error signals

To compute JE/0a; (1.€., §), @; (also called “logit’) APPEArS IN
all those expressions a, = 2, WkI h(a) that depend on a,

Using the chain rule, we have

G’Eﬂ aEn aak
da; Z day, Oa;

The sum is over k s.t. unit j is connected to unit k and
for each such term, da,/da; = w,; h'(a)

Noting that ok /oa, = 9., we get the back-propagation
rule:

0; = h'(a;) Z W} Ok

k

For output units: 6; = -2'(a;) (¢, — Ynk)



Putting the propagations together

For each training case N, apply forward propagation
and back-propagation to compute

b,
= (SjZ?
ow j;
for each weight W;; 9B
Sum these over training cases to compute 5
Wy

Use these derivatives for steepest descent learning
(too slow for large set of training data)

Minibatch learning: After a small set of input samples,
use the above gradient to update the weights (so
update more often)
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Resea rch

Why gradients tend to vanish for DNN

* Recall BP for adjacent Iayer pair° 6; = N'(aj) ) wi;jo

,f,'
* For sigmoid units: #'(a;)= hla;)(1-hla;

* |f there is one hidden Iayer,

gradients are not likely to vanish
* Problem becomes serious when nets
get deep
@



Why gradients tend to vanish for DNN

y ’ )2 = O-(Zm/lj3hj2 +bi3)
J

W3,b3
0@ H = WH b)
T

= G(ZW X; +b')

Upward pass

d error,

y Sy =Yul=¥y)

f

W3,b3

do in

h2 o J‘Zn = hﬁ] - hji )Upst%;]m in35f2

l
e
W2,b2
=R T Wi
f

upstream j
W1,bl
X

downward pass




Why gradients tend to vanish for DNN

* To illustrate to problem, let’'s use matrix form of error BP:

6! = (('w”l) ® o' ()
. <

So even if forward pass is nonlinear, error backprop is a linear process

It suffers from all problems associated with linear processes

Many terms of o(1- o) for sigmoid units

In addition, many terms in the product of W’s

If any sigmoid unit saturates in either direction, the error gradient becomes zero
If [[W]|<1, the product will shrink fast for high depths

If [[W]|>1, the product may grow fast for high depths
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How to rescue It

* Pre-train the DNN by generative DBN (solution by 2010)

— Complicated process
e Discriminative pre-training (much easier to do)
 Still random initialization but with carefully set variance values; e.g.

— Layer-dependent variance values
— For lower layers (with more terms in the product),

make the variance closer to 0 (e.g. < 0.1)
* Use bigger training data to reduce the chance
of vanishing gradients for each epoch
* Use RelLU units: only one side of zero gradient Yo T
instead of two as for sigmoid units e e D
fofion

The power of understanding root causes!!!
(mid 2010 at MSR Redmond)
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An alternative way of training NN

z
8”{1)3'7;

* Backprop takes partial derivatives: = 0,2

* If the output layer is linear, total (instead of partial)
derivative can be computed

(I )0 | af out
dW  OW  JU* W

* This is basic learning method for Deep Convex/Stacking Net
(DSN), designed to be easily parallelizable by batch training

* Using the total derivative is equivalent to coordinate
descent algorithm with an “infinite” step size to achieve the
global optimum along the “coordinate” of updating U while
fixing W.



Deep Stacking Nets

7
)

J

* Learn weight matrices U
and W in individual - -
modules separately. e we

* Given W and linear output W
layer, U can be expressed - - . - -
as explicit nonlinear /EE, . =

. /

function of W. ‘ |

* This nonlinear function is \ '\ @U@ 0@
used as the constraint in \\ \ il wi
solving nonlinear least \ (o
square for learning W. -0 " -

eg e .« . . /7 U

* Initializing W with RBM / . ' T B
(bottom layer) ‘\ Ol BoE 0 " E0 K3

*  For higher layers, part of W \ > w. | “
is initialized with the ool . . / =)
optimized W from the /
immediately lower layer &R EBD
and part of it with random i [ we
numbers

Fig. 1. An example T-DSN architecture with three stack-
ing blocks, where each block consists of three layers, and

mrsmmmavimd tm trmmdd b fmdiandta blaa klaal mismalaas e

44
(Deng, Yu, Platt, ICASSP-2012; Hutchinson, Deng, Yu, IEEE T-PAMI, 2013)
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A neat way of learning DSN weights

1 2 T T T
=N lya—tall?,  where y, = UTh, = UTa(WTx,) = Gu(U, W)

—U = 2H(WTH-T)" > U= (HHT) HTT = F(W), where h,, = c(WTx,,)
E'= 15, 116, (U, W) — t,]12, subject to U= F(W),

Y
Use of Lagrange multiplier method:
. U
1
E = 520 11Ga (U, W) — |2 + A ||U ~F(W)]| | " |
to learn W (& then U) - full derivation % in closed form W
(i.e. no longer recursion on partial derivation as in backpropagation

e Advantages found:
--- less noise in gradient than using chain rule which ignores explicit constraint U= F(W)
--- batch learning is effective, aiding parallel training 45
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How the Brain May Do BackProp

e (Canadian Psychology, Vol 44, pp 10-13, 2003.

The Ups and Downs of Hebb Synapses

GROFFREVHINTON This approach led to effective “error-driven” leaming
University of Toronto rules such as the Widrow-Hoff rule (Widrow & Hoff,

1960} and the perceptron convergence procedure

(Rosenblatr, 1961) and il was later generalized to mul-
Abstract tilayer networks by using backpropagation of the
Modelers have come up with many different learning rules errors to get training signals for intermediate “hid-
for neural networks, When a teacher specifics the correct den” layers (Rumeclhart, Hinton, & Williams, 1986).

* Feedback system in biological neural nets
* Key roles of STDP (Spike-Time-Dependent Plasticity) --- temporal derivative

* To provide a way to encode error derivatives

46
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How the Brain May Do BackProp

Backprop algorithm requires that feedforward and feedback weights are the same

This is clearly not true for biological neural nets

How to reconcile this discrepancy?

Recent studies showed that use of random feedback weights in BP performs close to rigorous BP
Implications for regularizing BP learning (like dropout, which may not make sense at 1%t glance)

Random feedback weights support learning

in deep neural networks
a Input h Output
X

y y*

Timothy P. Lillicrap'*, Daniel Cownden?, Douglas B. Tweed®*, Colin J. Akerman'

'Department of Pharmacology, University of Oxford, Oxford, United Kingdom
2Centre for the Study of Cultural Evolution, Stockholm University, Stockholm, Sweden
3Departments of Physiology and Medicine, University of Toronto, Toronto, Canada
*Centre for Vision Research, York University, Toronto, Canada

*To whom correspondence should be addressed:
timothy.lillicrap@pharm.ox.ac.uk
colin.akerman@pharm.ox.ac.uk

Abstract

00O

The brain processes information through many layers of neurons. This deep
architecture is representationally powerful 34, but it complicates learning by
making it hard to identify the responsible neurons when a mistake is made . 47

I wmnblics laassios Husm haslaenmanatian alaadttbhe] asalana hlama s & e
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Recurrent Neural Net (RNN) Basics

--- why memory decays fast or explode (1990’s)
--- how to rescue it (2010’s, in the new deep learning era)



Basic architecture of an RNN

h: is the hidden layer that carries the information from time 0~t
where x;: the input word , y;: the output tag
y: = SoftMax(U - h;),where hy = (W - hy_1 +V - x;)

Used for slot fillinag in SLU [Mesnil, He, Deng, Bengio, 2013; Yao, Zweig, Hwang, Shi, Yu, 2013] IEEE TASLP




Back-propagation through time (BPTT)

label, attimet =3

1. Forward propagation

Y1 Y2 Vs 2. Generate output
7 Y Y 3. Calculate error
4. Back propagation

U U lU
«— 5. Back prop. through time

S
D

>




A Good Read to appreciate the “Magic” of
modern RNNs

‘ AndI'Ej Karpathy b|0g About  Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

There's something magical about Recurrent Neural Networks (RNNs). | still remember when | trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on the
edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get out
of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I've in fact reached the opposite conclusion). Fast forward about a year: I'm training RNNs all the time and ['ve
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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difficulties in learning RNNs

Yoshua Bengio’s Ph.D. thesis at McGill University (1991)

Based on attractor properties of nonlinear dynamic systems

His recent, more intuitive explanation --- in extreme of

nonlinearity, discrete functions and gradients vanish or
explode:

* An alternative analysis: based on perturbation analysis of
nonlinear differential equations (next several slides)



Neural Networks

Volume 7, Issue 2, 1994, Pages 331-339

Contributed article

Analysis of the correlation structure for a neural predictive model with
application to speech recognition *

L. Deng & KK Hassanein, M. Elmasry
University of Waterioo Canada

* NN for nonlinear sequence prediction (like NN language model used today)
 Memory (temporal correlation) proved to be stronger than linear prediction
* No GPUs to use; very slow to train with BP; did not make NN big and deep, etc.

* Conceptually easy to make it deep using (state-space) signal processing & graphical models..
by moving away from NN...

53



The method we use to derive the correlation function for (2) resem-
bles the perturbation analysis for the study of nonlinear differential
equations [13]. To proceed, we construct a family of models which is
parameterized by a:

Once the model is parameterized, the autoregression on the data Y,
can be removed by performing power-series expansion of the nonlinear

Yeri(a) = af(Yi(a)) + €41,

function f(-):

Y1({I) =
Yo(a) =

Ya(ﬂ.) =

€ + uf(Yn({l)},
€2 + af(Y1(a))

&2+ af(e) + 2 f(Yo)f (1) + ﬂafz(Yo)f (€1) + -

e3 + af(Y(a))

&3 + af(ex) + & fle)f (e2) + & F(Yo)f (&) f (€2) + - - -,

and in general,

(3)

54



(@) = ataf(a)etf@af (@) et o (@ (@)t
4
(In the above, f (-) denotes the derivative of f(-) with respect to its
argument. )
From (4) the covariance function for model (3) is calculated to give

CovlYi(a), Yiyr(a)
~ Cov(e,€rr) + aCov[f(e), €e4+] + aCovle, f€t4r-1)]
+0?Cov[f(er-2)f (€-1), €ers) + ?Covler, fetrr—2)f (€t4r—1)]
+ﬂacw[f(ft-2)f’(ft—1), fletsr-1)]
+a®Cov[f(€-1), fersr—2)f (€t4r-1)]
+atCov[f(er—2)f (€1-1), fetsr—2)f (€rqr-1)). (5)

Among the eight terms in (5), the first, second, fourth, and sixth terms
are zero for 7 > 0. This is due to the IID assumption for ¢ and
to the fact that f(-) is a static function containing no memory. The
fifth term, Covles, f(€t4+—2)F (€t4+-1)], is non-zero only for r = 1 and
T = 2. The seventh and the eighth terms are non-zero only for 7 = 1.
Likewise, any higher order terms of a in the covariance function which
are omitted due to cutoff in the power-series expansion of Y;(a) would
contain non-zero values only for small time lags

We conclude from the above analysis that prediction of a time series
ith a single nonlinear term alone does not produce long-term temporal
orrelations in the model’s output.
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II1.3. Joint prediction with nonlinear and linear terms
In this section we mvestlgate correlatmn properties of the data gen-
erated from the p_series :

Y-H-l = ¢’Yt+f(yi)+ft+1a — ;21“'1T: (6)

We now—decempoese—t ; raRraors 868 a—to its
stationary component processes by representmg it as a power-series
expansion on o

1 1
5% 2Yir1,2 + 31 Y413 + - (8)

In order to identify the component processes Y;;,i = 0,1,2,..., we
substitute (8) into (7) and approximate the nonlinear function f(-) by
truncating its power-series expansion. This gives

Yivi(a) = Y10+ aYepra +

Yita(a) = ‘?"’(Yco'l'aytl'l'—a Yf.2+§ﬂ-’ Y:3)

+alf(Yeo) + £ (Yeo)a¥en + 507V + 3:6%%is)] + ri
= ($Veo + 1) + ald¥in + F(Yeo)) + [38Yez + f (Yi0)¥i]
+6(Z8Yes + 5 f (Yio)aal + -+ - ©)

By equating the coefficients of a' in (8) and in (9), we obtain the
following recursive relations among the component processes Y, z,k =
0,1,2,...:

K.H_,o = 45}1,0 + €¢41,

Yiv11 = ¢Yea + f(Yao),

Yit12 = oYi2 + 2f (Ye0)Ye1, (10)
Yit1,3 = @Yes + 3f (Y:0)Y:,2,

According to (10), we can proceed to derive the autocovariance
function for

v = Cov[Yi(a),Yiirr(a)].



Using (8) and truncating the expansion up to the first order, we
have

v = Cov[Yio+ aYyy,Yirro + aYeyral. (11)
Use of the stationarity property of Y; o and Y;; leads to

v = ¢*v+a*Cov[f(Yio10), f(Yesr-10)]
+¢aCov[Yi_10 + aYi-11, f(Yi4r—10)]
+¢aCov(Yiir_10+ a¥ipr_11, f(Ye-1,0)]-

Re-arranging terms and using the stationarity property of Y;o and
Y;1 again give v which is equal to

(1 -quﬁ) {a?Cov[f(Yi-1,0), f(Yesr—10)]+2¢aCov[Y; o+aYr1, f(Yiiro)l}-

(12)

Y: 0, the zero-th order expansion of Y;(a), is a linear process and its

T j¢2){ﬂ200v[f(yt—1,u)s f(Yerr-1,0)] + 2¢aCov[Ye, f(Yitro))

t-1
+2¢a’ E ¢iCov[f(}Q~i—1,o), f(Yerro)]}

1=0

The first two terms:in the above expression are exponentially de-
clining as a function of time lag 7 because the component processes
involved are just static functions of linear processes. The remaining
summation, however, would in general decay more slowly because of

S —— e ———
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Why gradients vanish/explode for RNN

* The easiest account is to follow the analysis for
DNN

e except that “depth” of RNN is much larger: the
length of input sequence

e Especially serious for speech sequence (not as
bad for text input)

* Tony Robinson group was the only one that made
RNN work for TIMIT phone recognition (1994)
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How to rescue It

* Echo state nets (“lazy” approach)
— avoiding problems by not training input & recurrent weights
— H. Jaeger. “Short term memory in echo state networks”, 2001

* But if you figure out smart ways to train them, you get much better results

Learning Input and Recurrent Weight Matrices in

Echo State Networks
Hamid Palangi Li Deng Rahab K Ward
University of British Columbia Microsoft Rescarch University of British Columbiz
Vancouver, BC, Canada Fedmond, WA, USA Vancouver, BC, Canada
hamidpfece.ubo. ca dengimicrosoft. com rababwiece.,ubc. ca
Abstract

The traditional echo state network (ESN) is a special type of a temporally deep

maxdel, the recurrent network (RNMN), which carefully designs the recurrent ma-

trix and fixes both the recorrent and input matrices in the RNN. The ESN also

adopts the linear output (or readout) units to simplify the leanring of the only out-

put matrix in the RNN. In this paper, we devise a special technigue that takes _

advantage of the lincarity in the outputl units in the ESN to learn the input and (N I PS WS’ 2013)
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— Hessian-free method

How to rescue it
By Better optimization

— Primal-dual method

A Primal-Dual Method for Training Recurrent
Neural Networks Constrained by the Echo-State

Deep learning via Hessian-free optimization

James Martens
University of Toronto, Ontario, M58 1A1, Canada

Abstract

We develop a 2™-order optimization method
based on the “Hessian-free” approach, and apply
it to training deep auto-encoders. Without using
pre-training, we obtain results superior to those
reported by Hinton & Salakhutdinov (2006) on
the same tasks they considered. Our method is
pr“dLlILJ.I easy (o use, scales nicely 1o very IargL

IS P ST LS I DU AU S | L T —_—

IMARTENS@CS, TORONTO.EDU

nately, there has yet to be a demonstration that any of these
methods are effective on deep leaming problems that are
known to be difficult for gradient descent.

Much of the recent work on applying 2™-order methods
lo learning has focused on making them practical for large
datasets. This is usually attempted by adopting an “on-line”
approach akin to the one used in stochastic gradient descent
{S‘GD} The nnly demonstrated advamage.s of these math-

asrns OTY dn that thar aan nnsmatlosnn anavinan s da Prvvras

Property
Jianshu Chen Li Deng
Department of Electrical Engineering Machine Learning Group
University of California Microsoft Research
Los Angeles, CA 90034, USA Redmond, WA 98052, USA
cjs09%ucla.edu deng@microscft.com
Abstract

We present an architecture of a recurrent neural network (RNN) with a fully-
connected deep neural network (DNN) as its feature extractor.  The RNN is
equipped with both causal temporal prediction and non-causal look-ahead, via
auto-regression (AR) and moving-average (MA), respectively. The focus of this
paper is a primal-dual training method that formulates the learning of the RNN as
a formal optimization problem with an inequality constraint that provides a suf-
ficient condition for the stability of the network dynamics. Experimental results
demonstrate the effectiveness of this new method, which achieves 18.86% phone
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How to rescue It

e Use of LSTM (long short-term memory) cells

— Sepp Hochreiter & Jurgen Schmidhuber (1997). "Long short-
term memory" Neural Computation 9 (8): 1735-1780.

— Many earlier-to-read materials, especially after 2013

* The best way so far to train RNNs well

— Increasingly popular in speech/language processing

— Attracted big attention from ASR community at ICASSP-2013’s
DNN special session (Graves et al.)

— Huge progress since then


https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
https://en.wikipedia.org/wiki/Neural_Computation
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- Many ways to show an LSTM cell

N/ Nty
nu'ae utps “

8 Output

Output gate
Forgetting I I
gate Recurrent loop

‘_( F)Input gate
it =0 (Waeizy + Whihi—1 + Weici—1 + b;)

Jo =0 (Wapmy + Wisphe 1 4+ Wepep 1 4 by) lnput] I
Ct = fictfl + iy tanh ("V.'rr:mf, + Whr:hf,fl + br:)
0 =0 (Wmoxt + I'{’!fx,oht—l + Wr.'o(-’t + er)

hy = o, tanh(e;)
» Long Short-Term Memory (LSTM)>%2,%3
» Provides vanishing gradient problem solution

» Input, Output and Forget® gates flow information through

» Linear memory cell (called Constant Error Carousel — CEC)

oo

52 Hochreiter:95fki207r. A typical implementation of an LSTM =
53 . biock.

Hochreiter:971stm.
5 Gers:99a.

(Slide revised from: Koutnik & Schmidhuber, 2015)
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Many ways to show an LSTM cell

y(t-1) () ——— x(t) ——— yt-1)
W,, 1 1 w'l
I(t) c—— () —"—
w wrefl
rec3 W /b, b} w,
y(it-1) Input Gate (o (.) c(t—1)  OutputGate (a(.)
wrec4 l(l.) wp3 Wpl
Yo(®) o)
Wy W, \ j
(X Cell i X —'ﬂ
: o MO y(®)
It) 0
a(
x(t W
() b, P2 ™ c(t—1)
1 g f(E)
d(.)) Forget Gate
w
b, 2 Wrecz
 —— I(t)
W
1 a y(t-1)

C————x(t)

Fig. 2. The basic LSTM architecture used for sentence embedding

Jul 2015

Deep Sentence Embedding Using Long
Short-Term Memory Networks

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song,
Rabab Ward

Abstract—This paper develops a model that addresses
sentence embedding, a hot topic in current natural lan-
guage processing research, using recurrent neural networks
(RNN) with Long Short-Term Memory (LSTM) cells. The
proposed LSTM-RNN model sequentially takes each word
in a sentence, extracts its information, and embeds it into
a semantic vector. Due to its ability to capture long term
memory, the LESTM-RNN accumulates increasingly richer
information as it goes through the sentence, and when it
reaches the last word, the hidden layer of the network

embedding is learned using sentence pairs. As a result,
sentence embedding can better discover salient words
and topics in a sentence, and thus is more suitable
for tasks that require computing semantic similarities
between text strings. By mapping texts into a unified
semantic representation, the embedding vector can be
further used for different language processing applica-
tions, such as machine translation [1], sentiment analysis

71 and information retrieval 131 Tn machine tranclation

yﬂ'“} = Q{W‘ll{fj + Wrtc-‘l}r{t - J-} -+ h4]
i(t) = o(W3l(t) + Wieesy(t — 1) + Wpace(t — 1) + bs)

f(t) = o(Wal(t) + Weeay(t — 1) + Wpae(t — 1) + ba)
c(t)=Ff(t)oc(t —1)+1i(t) oyq(t)

o(t) = o(Wil(t) + Wieary(t = 1) + We(t) + by)
y(t) = o(t) o h(c(t))

(2) 63
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Many ways to sh

5

01

c~l
ch
o ry =y, —A%3,
gl s Kok ¢ Be

- -

20 Au

Estimation of Leth
sparse vector

2 2,

P(sy|ry)  P(sz|ry,rz) P(sylry.ry, ... 1)

:+@ ¢

Updating support of s
>4

T3 L6tM cells and gates

Residual vector for Leth
sparse vector

TT3 Vector of LSTM cells’ state

ow an LSTM cell

Distributed Compressive Sensing: A Deep
Learning Approach

Hamid Palangi, Rabab Ward, Li Deng

Abstract—We address the problem of compressed sensing
with Multiple Measurement Vectors (MMVs) when the
structure of sparse vectors in different channels depend
on each other. The sparse vecfors are not necessarily joint
sparse. We capture this dependency by computing the
conditional probability of each entry of each sparse vector
to be non-zero given “residuals™ of all previous sparse
vectors. To compute these probabilities, we propose to use
Long Short-Term Memory (LSTM) [1], a bottom up data
driven model for sequence modelling. To compute model
parameters we minimize a cross entropy cost function. We
propose a greedy solver that uses above probabilities at

where y € RM*! i3 the known measured vector and & €
RM*N i5 4 random measurement matrix. An important
assumption needed by the decoder to uniquely recover
x given y and @, is that x is sparse in a given basis ¥,
This means that

x=Ps (2)

where s is K —sparse, i.e., s has at most K non-zero el-
ements. The basis ¥ can be complete; i.e., ¥ € RY*Y,
or over-complete; ie., ¥ € RY*V where N < N,
(eomnressed sensine for overscomnlete dictionaries is

1 1
! R T —— e L
1
' W W% by - E
n
: nput Gate [o{.) cft=1)  DeperGate (o) E
it}
yrit—1) a W !
' Weeet |y oz} '
[ ]
L ¥ F H
: " el f :
1 M) vit) .
' rit) “ i
: b, al '
Po1 re efe=1) i
: 1
' e '
H 1) Fargat Gats !
1 1
: / Wy W '
1
N 1 ) eft-1) :

Fig. 2. Block diagram of the Long Short-Term Memory (LSTM).
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LSTM Cells in an RNN
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LSTM cell unfolding over time

Cia }@ »(5) » C,
i = tanh(Wximt + Whihi—1 + bl)
o = sigm(Wyx, + Whihi—1 + by)
fi = sigm(Wyexy + Wiehyi—1 + br)
o = tanh(Wyox, + Wiohy—1 + bs)
Hiq ¢t = 1O fi+ir© g
hy = tanh(¢) © oy
Xt

Figure 1. The LSTM architecture. The value of the cell is in-

creaser.i. by at_@ jt, Where ) is element-wu_ae product. The LSTM’s (Jozefowics, Zarembe, Sutskever,
output 1s typically taken to be h;, and c; is not exposed. The for- ICML 2015)

get gate f; allows the LSTM to easily reset the value of the cell. 63
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(simpler than LSTM; no output gates)

Ht_l/y‘« > H, re = sigm (Wyexe + Wiehe1 + by)

o zy = sigm(Wexy + Wizhe 1+ b,)
A he = tanh(Wyz + Win(re @ hi—1) + by)
he = z20ha+0—2)0h
Zy 't Hy

Xt

Figure 2. The Gated Recurrent Unit. Like the LLSTM, it is hard to
tell, at a glance, which part of the GRU is essential for its func-

tioning. (Jozefowics, Zarembe, Sutskever, ICML 2015; Google
Kumar et al., arXiv, July, 2015; Metamind)
69
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Connectionist Temporal Classification

_J Waveform

i Framewise

—_—
—

—

label probability

—_—
—

/\; A 1% /\ AN 1 A eTc

dh ax s aw n =d Ix v

“the” “sound” "of "

» Connectionist Temporal Classification (CTC)%

» Automatically transforms frame labels to classification
segments

» Provides labels for all time steps
» Allows to back-propagate the error from sparse labels

80 Graves:06icml.
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Alex Graves

Supervised Sequence
Labelling with Recurrent
Neural Networks

@ Springer

71
(2006, 2012)
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Deep/Dynamic Structure in Human
Speech Production and Perception

(part of my tutorial at 2009 NIPS WS)
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Production & Perception: Closed-Loop Chain

SPEAKER e L ISTENER




Encoder: Two-Stage Production Mechanisms

Phonology (higher level):
eSymbolic encoding of linguistic message
eDiscrete representation by phonological features
SPEAKER eLoosely-coupled multiple feature tiers
| eOvercome beads-on-a-string phone model
eTheories of distinctive features, feature geometry
& articulatory phonology

e Account for partial/full sound deletion/modification
in casual speech

Phonetics (lower level):
eConvert discrete linguistic features to
continuous acoustics
eMediated by motor control & articulatory
MM/MAMVV dynamics
f eMapping from articulatory variables to
VT area function to acoustics
e Account for co-articulation and reduction
(target undershoot), etc.




Encoder: Phonological Modeling

Computational phonology:

* Represent pronunciation variations as
constrained factorial Markov chain

e Constraint: from articulatory phonology

e Language-universal representation

ten themes
/ t £ n e i:tm z/
LIPS: Labial-
closure
" Tongue Alveolar Alveolar | dental Alveolar
Tip closure closure| | constr. constr.
) |

Tongue ) High / Front
Body Mid / Front
VEL: Nasality Nasality
GLO: Aspiration | Voicing Voicing




Encoder: Phonetic Modeling

Computational phonetics:

e Segmental factorial HMM for sequential target
in articulatory or vocal tract resonance domain

e Switching trajectory model for target-directed
articulatory dynamics

e Switching nonlinear state-space model for
dynamics in speech acoustics

e |llustration:

neutral
neutral
LIPs

CONSTRICTION
DEGREE target

neutral

TONGUE-BLADE
CONSTRICTION
DEGREE e

W

A

TONGUE-BODY
CONSTRICTION Targer
DECREE target

WVELUM
CONSTRICTION neutrsl
DEGREE

GLOTAL
CONSTRICTION
DEGREE

neutrsl




Model
¥ P(W)

Language w

Lexicon
(feature organizer)

’ P({f lv )
Cross-Word
Feature-Overlaps

i P{FIW)
Interface
P©(Z)IF)
smooth linear
task dynamics
dynamic
P{Z(t)IF)
model
stai:ic
ML distortion
P{O{t)IF, W)

|

Recognition Search
{Probabilistic Match)

¥ W=wwl w2, L W

W=wl,w2,._.wp

- Y < A R
¥ e
]
T T T
——— — - —-— -
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Decoder I: Auditory Reception

e Convert speech acoustic waves into
efficient & robust auditory representation LI STEN ER
e This processing is largely independent
of phonological units
e |[nvolves processing stages in cochlea
(ear), cochlear nucleus, SOC, IC,..., all
the way to Al cortex
e Principal roles:
1) combat environmental acoustic
distortion;
2) detect relevant speech features
3) provide temporal landmarks to aid
decoding
e Key properties:
1) Critical-band freq scale, logarithmic compression,
2) adapt freq selectivity, cross-channel correlation,
3) sharp response to transient sounds
4) modulation in-independent frequency bands,
5) binaural noise suppression, etc.

Internal




Decoder II: Cognitive Perception

e Cognitive process: recovery of linguistic _
Cognit LISTENER

e Relies on

1) “Internal” model: structural knowledge of
the encoder (production system)

2) Robust auditory representation of features
3) Temporal landmarks

e Child speech acquisition process is one that
gradually establishes the “internal” model

e Strategy: analysis by synthesis

e i.e., Probabilistic inference on (deeply)
hidden linguistic units using the internal
model

* No motor theory: the above strategy
requires no articulatory recovery from e‘b‘
speech acoustics

|II

Internal




Human Speech Perception (decoder)

» Convert speech acoustic waves into
efficient & robust auditory representation LISTENER

* This processing is largely independent
of phonological units

* Involves processing stages in cochlea
(ear), cochlear nucleus, SOC, IC,..., all
the way to Al cortex

» Two principal roles:
1) combat environmental acoustic

distortion;

2) provide temporal landmarks to aid
decoding

» Key properties:
1) Critical-band freq scale, logarithmic compression, 'b‘\
2) adapt freq selectivity, cross-channel correlation,
3) sharp response to transient sounds (CN),
4) modulation in independent frequency bands,
5) binaural noise suppression, etc.




Types of Speech Perception
Theories

o Active vs. Passive
» Bottom up vs./and Top Down
 Autonomous vs. Interactive



Active vs. Passive

« Active theories suggests that speech
perception and production are closely related

— Listener knowledge of how sounds are produced
facilitates recognition of sounds

« Passive theories emphasizes the sensory
aspects of speech perception

— Listeners utilize internal filtering mechanisms

— Knowledge of vocal tract characteristics plays a minor
role, for example when listening in noise conditions



Bottom up vs—-& Top Down

« Top-down processing works with
knowledge a listener has about a
I now /
Iatnguage, context, experience, i
etc.

— Listeners use stored information
about language and the world to A
make sense of the §peech | i Speech
« Bottom-up processing works in
the absence of a knowledge base

providing top-down information Bottom-up

— listeners receive auditory information, Acoustic signal
convert it into a neural signal and T
process the phonetic feature
Information

Top-down




Specific Speech Perception

Theories

Motor Theory

Acoustic Invariance Theory

Direct Realism

Trace Model (based on neural nets)
Cohort Theory

Fuzzy Logic Model of Perception
Native Language Magnet Theory



Motor Theory

« Postulates speech is perceived by
reference to how it is produced

— when perceiving speech, listeners access
their own knowledge of how phonemes
are articulated

— Articulatory gestures (such as rounding or . ;
pressing the lips together) are units of |
perception that directly provide the
listener with phonetic information

Liberman, Cooper, Shankweiler, & Studdert-
Kennedy, 1967



Acoustic Invariance Theory

Listeners inspect the incoming signal for the so-
called acoustic landmarks which are particular
events in the spectrum carrying information
about gestures which produced them.

Gestures are limited by the capacities of
humans’ articulators and listeners are sensitive
to their auditory correlates, the lack of
Invariance simply does not exist in this model.

The acoustic properties of the landmarks
constitute the basis for establishing the
distinctive features.

Bundles of the distinctive features uniquely
specify phonetic segments (phonemes,
syllables, words).

Stevens, K.N. (2002). "Toward a model of lexical access based on
acoustic landmarks and distinctive features" (PDF). Journal of the
Acoustical Society of America 111 (4): 1872-1891.



http://linguistics.berkeley.edu/~kjohnson/ling210/stevens2002.pdf
http://en.wikipedia.org/wiki/PDF

TRACE Model

« For example, a listener hears the N e
beginning of bald, and the words bald, wl A \
ball, bad, bill become active in memory.
Then, soon after, only bald and ball
remain in competition (bad, bill have (e @y
been eliminated because the vowel e
sound doesn't match the input). e

— Soon after, bald is recognized. = =

« TRACE simulates this process by
representing the temporal dimension of
speech, allowing words in the lexicon to
vary in activation strength, and by having
words compete during processing.

Spectrogram



http://en.wikipedia.org/wiki/Image:Bald.png
http://en.wikipedia.org/wiki/Image:Bald.png

A Deep/Generative Model of Speech Production/Perception
--- Perception as “variational inference”

SPEAKER ...
targets ap
- articulation *

distortion-free acoustics

S
Iy

distorted acoustics

“A

distortion factors &
feedback to articulation “L




Deep Generative Models,
Variational Interference/Learning, &
Applications to Speech



Deep Learning

o
~

Neural Networks, Deep
in space & time (recurrent LSTM), & deep RNN

+
Generative Models, Deep

in space & time (dynamic), & deep/hidden dynamic models



_ Deep Neural Nets Deep Generative Models

Structure

Incorp constraints &
domain knowledge

Semi/unsupervised
Interpretation
Representation

Inference/decode

Scalability/compute

Incorp. uncertainty

Empirical goal

Terminology

Learning algorithm

Evaluation

Implementation
Experiments

Parameterization

Graphical; info flow: bottom-up

Hard

Harder or impossible

Harder

Distributed

Easy

Easier (regular computes/GPU)
Hard

Classification, feature learning, ...

Neurons, activation/gate functions,
weights ...

A single, unchallenged, algorithm --
BackProp

On a black-box score — end performance

Hard (but increasingly easier)
Massive, real data

Dense matrices

Graphical; info flow: top-down

Easy

Easier, at least possible

Easy (generative “story” on data and hidden variables)
Localist (mostly); can be distributed also
Harder (but note recent progress)

Harder (but note recent progress)

Easy

Classification (via Bayes rule), latent
variable inference...

Random vars, stochastic “neurons”,
potential function, parameters ...

A major focus of open research, many
algorithms, & more to come

On almost every intermediate quantity

Standardized but insights needed
Modest, often simulated data

Sparse (often PDFs); can be dense



Example: (Shallow) Generative Model

“TOPICS”
as hidden layer

v, .|
- e T —
. ]

lraqi

24 A -
e =

- ;:g.'i;;_ S
C animals )

the

Matlab

slide revised from: Max Welling



Another example: Medical Diagnhosis

diseases Inference problem:

What is the most
probable disease
given the
symptoms?

O
symptoms

94



Example: (Deep) Generative Model

targets ~g \ \ \
articulation o...

distortion-free acoustics

S
Iy

distorted acoustics

S

N

Yy
¥ ) (w(n

distortion factors &
feedback to articulation A




Deep Generative/Graphical Model Inference

Key issues:

— Representation: syntax and semantics (directed/undirected,variables/factors,..)
— Inference: computing probabilities and most likely assignments/explanations
— Learning: of model parameters based on observed data. Relies on inference!

Inference is NP-hard (incl. approximation hardness)

Exact inference: works for very limited subset of models/structures
— E.g., chains or low-treewidth trees

Approximate inference: highly computationally intensive

— Deterministic: Variational, loopy belief propagation, expectation propagation
— Numerical sampling (Monte Carlo): Gibbs sampling

Variational learning:

— EM algorithm
— E-step uses variational inference (recent new advances in ML)



Variational inference/learning Is not
trivial: Example

Difficulty:
Explaining away:
observation introduces
correlation of nodes in
the parent hidden layer

diseases

O
symptoms

97



Variational EM

Step 1: Maximize the bound with respect to Q
(Estep) : Q¥ =argmax,, L(Q,0")

Step 2: Fix Q, maximize with respect to

(Mstep) : 8% =argmax, L(Q“*",0)

Note in traditional EM, Q is precise; e.g. posteriors computed by forward/backward
algorithm for HMMs

98



Deterministic
HDM

input

Segmentation and
Labelling

Y
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Bridle, Deng, Picone, Richards, Ma, Kamm, Schuster, Pike, Reagan. Final Report for Workshop on Language Engineering,

Johns Hopkins University, 1998. (experiments on Switchboard tasks)



ICASSP-2004 A MULTIMODAL VARIATIONAL APPROACH TO LEARNING AND INFERENCE IN

SWITCHING STATE SPACE MODELS

Leo J. Lee™?, Hagai Attias®, Li Deng? and Paul Fieguth®

University of Waterloo *Microsoft Corporation
'Electrical & Computer Engineering Microsoft Research
3Systems Design Engineering One Microsoft Way
Waterloo, ON, N2L 3Gl Redmond. WA 98052-6339
Canada USA

Auxiliary function:

Flq] = Z /dKI:N q(s1.n,X1:n )"

El:ﬁ
logp(yy. v X1.v, 818 ) — log g(s1.v, X1:nv )]

In the variational approach we approximate the exact posterior
ME1N XN Yl:.f‘-.’] by a distribution with a tractable structure,
denoted by g. Here we choose the following partially factorized
structure shown graphically in Fig. 1:

p(so:n, Xon | ¥y.n) = g(s0.8. XoN | ¥in)

N .
()
— H q(Xn | 8n)q(8n | Sn—1) - q(zo | s0)q(s0) .

n=1
E-step: sufficient statistics. As usual. the variational equa-
tions above are CDL‘PIEEL with the fqllﬂtiUﬂS for L Fe 7L df]_:'fnd Fig. 1. The model (a) and the variational posterior (b) represented
Ol 7.5 - Ven and vice versa. These equations are solved iter- as Bayesian networks.
atively starting from a random or more suitable initialization if
available. The solution is the set of sufficient statistics

(b)

W= {F'E.n-.rs.n-.?]se“,n-.“.r'#.ﬂ} {16)

which are moments of the variational posterior.
M-step: parameter estimation. Given the sufficient statistics
(. the derivation of the M-step is achieved by taking derivatives of
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Surprisingly Good Inference Results for
Continuous Hidden States

- v —

D000

A 000

* By-product: accurately
tracking dynamics of
resonances (formants) in
vocal tract (TIMIT & SWBD). ol — NN Ny

* Best formant tracker by
then in speech analysis; s §
used as basis to form a iy
formant database as
“ground truth”

* We thought we solved the
ASR problem, except

* “Intractable” for decoding  _...I
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Deng & Huang, Challenges in Adopting Speech Recognition, Communications of the ACM, vol. 47, pp. 69-75, 2004.
Deng, Cui, Pruvenok, Huang, Momen, Chen, Alwan, A Database of Vocal Tract Resonance Trajectories for Research in Speech , ICASSP, 2006. 103



http://research.microsoft.com/apps/pubs/default.aspx?id=75861
http://research.microsoft.com/apps/pubs/default.aspx?id=77520

Deep Generative Models in Speech Recognition

(prior to the rising of deep learning)

Segment & Nonstationary-State Models

Digalakis, Rohlicek, Ostendorf. “ML estimation of a stochastic linear system with the EM alg &
application to speech recognition,” IEEE T-SAP, 1993

Deng, Aksmanovic, Sun, Wu, Speech recognition using HMM with polynomial regression functions
as nonstationary states,” IEEE T-SAP, 1994,

Hidden Dynamic Models (HDM)

Deng, Ramsay, Sun. “Production models as a structural basis for automatic speech recognition,”
Speech Communication, vol. 33, pp. 93-111, 1997.

Bridle et al. “An investigation of segmental hidden dynamic models of speech coarticulation for
speech recognition,” Final Report Workshop on Language Engineering, Johns Hopkins U, 1998.

Picone et al. “Initial evaluation of hidden dynamic models on conversational speech,” ICASSP, 1999.

Deng and Ma. “Spontaneous speech recognition using a statistical co-articulatory model for the
vocal tract resonance dynamics,” JASA, 2000.

Structured Hidden Trajectory Models (HTM)

Zhou, et al. “Coarticulation modeling by embedding a target-directed hidden trajectory model into
HMM,” ICASSP, 2003. < DARPA EARS Program 2001-2004: Novel Approach Il

Deng, Yu, Acero. “Structured speech modeling,” IEEE Trans. on Audio, Speech and Language
Processing, vol. 14, no. 5, 2006.

Switching Nonlinear State-Space Models

Deng. “Switching Dynamic System Models for Speech Articulation and Acoustics,” in Mathematical Foundations of
Speech and Language Processing, vol. 138, pp. 115 - 134, Springer, 2003.

Lee et al. “A Multimodal Variational Approach to Learning and Inference in Switching State Space
Models,” ICASSP, 2004.

1993

1994

1997

1998

1999

2000

2003
2006
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Other Deep Generative Models
(developed outside speech)

* Sigmoid belief nets & wake/sleep alg. (1992)

* Deep belief nets (DBN, 2006);

—> Start of deep learning

e Totally non-obvious result:
Stacking many RBMs (undirected)

- not Deep Boltzmann Machine (DBM, undirected)

— but a DBN (directed, generative model)

* Excellent in generating images & speech synthesis

e Similar type of deep generative models to HDM

e But simpler: no temporal dynamics
* With very different parameterization

* Most intriguing of DBN: inference is easy
(i.e. no need for approximate variational Bayes)

< ”Restriction” of connections in RBM

Pros/cons analysis=> Hinton coming to MSR 2009

LETTER

Communicated by Yann Le Cun

A Fast Learning Algorithm for Deep Belief Nets

Geoffrey E. Hinton

hinton@cs.toronto.edu

Simon Osindero

osindero@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Canada M5S 3G4

Yee-Whye Teh

tehyw@comp.nus.edii.sg

Department of Computer Science, National University of Singapore,
Singapore 117543

We show how to use “complementary priors” to eliminate the explaining-
away effects that make inference difficultin densely connected belief nets
that have many hidden layers. Using complementary priors, we derive a
fast, greedy algorithm that can learn deep, directed belief networks one
layer at a time, provided the top two layers form an undirected associa-
tive memory. The fast, greedy algorithm is used to initialize a slower
learning procedure that fine-tunes the weights using a contrastive ver-
sion of the wake-sleep algorithm. After fine-tuning, a network with three
hidden layers forms a very good generative model of the joint distribu-
tion of handwritten digit images and their labels. This generative model
gives better digit classification than the best discriminative learning al-
gorithms. The low-dimensional manifolds on which the digits lie are
modeled by long ravines in the free-energy landscape of the top-level
associative memory, and it is easy to explore these ravines by using the
directed connections to display what the associative memory has in mind.
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This is a very different kind of deep generative model

"00000  COCOCOCC
nuxxxxxxxJ w DO 00C
huxxxxxxxj 10000

w,
v[t—n-ﬂ} TE v[t+n-‘2} .|I|.-j1-n.'2:| yt 1,||,.|:t+n.'2:|
(a)A 2-layer BP-DEN (b)A 3-layer AM-DBN
Table 4: Reported results on TIMIT core test set
| Method | PER |
Stochastic Segmental Models [28] 36%
Conditional Random Field [29] 34.8%
Large-Margin GMM [30] 33%
CD-HMM [4] 27.3%
Augmented conditional Random Fields [4] | 26.6%
Recurrent Neural Nets [31] 26.1%
Bayesian Triphone HMM [32] 25.6%
Mun@phr:-ne HTMs [33] 24 8%
Heterogeneous Classifiers [34] o
Deep Belief Networks(DBNs) 23.0% |
(Mohamed, Dahl, Hinton, 2009, 2012) T (Deng et al., 2006; Deng & Yu, 2007)

(after adding Backprop to the generative DBN)



Error Analysis

I[EEE TRANSACTIONS ON AUDIO, SPEECH. AND LANGUAGE PROCESSING, VOL. 14, NO. 5. SEPFTEMBER 21

Structured Speech Modeling

Li Deng, Fellow, IEEE, Dong Yu, Member, IEEE and Alex Acero, Fellow, IEEE

/\

gl
g: () e S
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Fig. 1. Illustrations of the various VTR quantities in model Stage-I in :

"uii'“"‘””? B | )
b H]| i T,; L ‘_ [*‘

'1 “

N ' ’M“

TABLE 1I

utterance with four phone segments. (a) and (b) are for the same four VI ComMpPARISONS OF HMM AND HTM PERFORMANCES (PERCENT CORRE(

targets and their filtered results, but the durations of the| four segments a

shorter in (b) than in (a).

* Elegant model formulation & knowledge

incorporation

e Strong empirical results: 96% TIMIT accuracy
with Nbest=1001; 75.2% lattice decoding w.
monophones; fast approx. training

» Still very expensive for decoding; could not

ship (very frustrating!)

WITHIN EACH OF FOUR BROAD PHONE CLASSES

Sonorants | Stops | Fricatives | Closures
Occurrences 3814 889 1252 1578
HMM 64.05 72.10 75.64 BR.T2
HTM 72.42 T6.27 75.74 90.94

X /

-- DBN/DNN made many new errors
on short, undershoot vowels

-- 11 frames contain too much “noise”
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Early Successes of Deep Learning
in Speech Recognition



Academic-Industrial Collaboration (2009,2010)

* |invited Geoff Hinton to work with me at MSR, Redmond

e Well-timed academic-industrial collaboration:

— ASR industry searching for new solutions when “principled”
deep generative approaches could not deliver

— Academia developed deep learning tools (e.g. DBN 2006)
looking for applications

— Add Backprop to deep generative models (DBN) = DNN
(hybrid generative/discriminative)

— Advent of GPU computing (Nvidia CUDA library released
2007/08)

— Big training data in speech recognition were already available
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™
N I | Neural Information
Processing Systems
Foundation

NIPS : Conferences : 2009 : Program

MIFS Home
Cwverview
Conference Videos
Workshop Videos
Program Highlights
Tutonals
Conference Sessions
Workshops
Publication Models
Demonstrations
Mini Symposia
Accepted Papers
Dates

Committees
Sponsors

Awards

Board

Li Deng, Dong Yu, Geoffrey Hinton

Microsoft Research; Microsoft Research; University of Toronto

Deep Learning for Speech Recognition and Related Applications
7:30am - 6:30pm Saturday, December 12, 2009
Location: Hilton: Cheakamus

Abstract: Over the past 25 years or so, speech recognition technology has been
dominated by a “shallow” architecture — hidden Markov models (HMMs). Significant
technological success has been achieved using complex and carefully engineered variants

Invitee 1: give me one week
to decide ...,...

Not worth my time to fly to
Vancouver for this...

LIIgIe Tids BeEMN VINLUENY 1o enellve CUTTINUNICAUUn Delween mdrime 84y resedieners
and speech recognition researchers who are both advocating the use of deep architecture

and learning. One goal of the proposed workshop is to bring together these twao groups of

researchers to review the progress in both fields and to identify promising and synergistic

research directions for potential future cross-fertilization and collaboration.

Mohamed, Dahl, Hinton, Deep belief networks for phone recognition, NIPS 2009 Workshop on Deep Learning, 2009
Yu, Deng, Wang, Learning in the Deep-Structured Conditional Random Fields, NIPS 2009 Workshop on Deep Learning, 2009



Expanding DNN at Industry Scale

 Scale DNN’s success to large speech tasks (2010-2011)

— Grew output neurons from context-independent phone states (100-200) to context-dependent
ones (1k-30k) = CD-DNN-HMM for Bing Voice Search and then to SWBD tasks

— Motivated initially by saving huge MSFT investment in the speech decoder software
infrastructure

— CD-DNN-HMM also gave much higher accuracy than CI-DNN-HMM
— Earlier NNs made use of context only as appended inputs, not coded directly as outputs

— Discovered that with large training data Backprop works well without DBN pre-training by
understanding why gradients often vanish (patent filed for “discriminative pre-training” 2011)

* Engineering for large speech systems:
— Combined expertise in DNN (esp. with GPU implementation) and speech recognition
— Collaborations among MSRR, MSRA, academic researchers

. Yu, Deng, Dahl, Roles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMM s for Real-World Speech Recognition, in NIPS Workshop on Deep Learning, 2010.

. Dahl, Yu, Deng, Acero, Large Vocabulary Continuous Speech Recognition With Context-Dependent DBN-HMMS, in Proc. ICASSP, 2011.

. Dahl, Yu, Deng, Acero, Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, in IEEE Transactions on Audio, Speech, and Language
Processing (2013 IEEE SPS Best Paper Award) , vol. 20, no. 1, pp. 30-42, January 2012.

. Seide, Li, Yu, "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks", Interspeech 2011, pp. 437-440.

. Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury, Deep Neural Networks for Acoustic Modeling in SpeechRecognition, in IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82-97, November 2012

. Sainath, T., Kingsbury, B., Ramabhadran, B., Novak, P., and Mohamed, A. “Making deep belief networks effective for large vocabulary continuous speech recognition,” Proc.
ASRU, 2011.

. Sainath, T., Kingsbury, B., Soltau, H., and Ramabhadran, B. “Optimization Techniques to Improve Training Speed of Deep Neural Networks for Large Speech Tasks,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.21, no.11, pp.2267-2276, Nov. 2013.

. Jaitly, N., Nguyen, P., Senior, A., and Vanhoucke, V. “Application of Pretrained Deep Neural Networks to Large Vocabulary Speech Recognition,” Proc. Interspeech, 2012.
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Microsoft: 1
Research

DNN-HMM

(replacing GMM only; longer MFCC/filter-back windows w. no transformation)

—

—
édel tied triphone states directly

O E——

Observation
Many layers of Probabilities
nonlinear hD) |
feature e Fotar
transformation hD '
+ SoftMax

bservation



DNN vs. Pre-DNN Prior-Art

= Table: TIMIT Phone recognition (3 hours of training)

Pre-DNN Deep Generative Model 24.8%
DNN 5 layers x 2048 23.4%
* Table: Voice Search SER (24-48 hours of trainin

Pre-DNN GMM-HMM with MPE 36.2%
DNN 5 layers x 2048 30.1%

e Table: SwitchBoard WER (309 hours training)

~10% relative
improvement

~20% relative
improvement

~30% relative

Pre-DNN GMM-HMM with BMMI 23.6% Improvement

DNN 7 layers x 2048 15.8%

For DNN, the more data, the better!
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Ehe New Nork Cimes

Scientists See Promise in Deep-Learning Programs

John Markoff
November 23, 2012

Rick Rashid in Tianjin, China, October, 25, 2012

Deep learning
technology enabled
speech-to-speech
translation

A voice recognition program translated a speech given by

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese.



Microsoft

Research

PR CD-DNN-HMM

t o Fr-1

” Fier o /—|S°°°"“
D (D @ D} (& ! Dahl, Yu, Deng, and Acero, “Context-Dependent Pre-
@

: : trained Deep Neural Networks for Large Vocabulary
Speech Recognition,” IEEE Trans. ASLP, Jan. 2012 (also
ICASSP 2011)

Seide et al, Interspeech, 2011.

Progress of spontaneous speech recognition

100%

90%

3 80%
]
E 70%
o
— t 60%
- (AN}
= 'E 50%
é 40%
. little progress for 10+ yrs
After no improvement for 10+ years v MSR\.\R Hid
. " ashi
by the research community... - Demo
...MSR reduced error from ~23% to e e e h e e e mm e mm e e m o
<13% (and under 7% for Rick Coor o rEm e

Rashid’s S2S demo in 2012)!
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Impact of deep learning in speech technology

2
Google now ’j Q

Skype to get real-time’ translator

@

Siri
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XBOX! BRING BadEx
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10 BREAKTHROUGH

= TECHNOLOGIES 2013

Introduction The 1C

ologies Past Years

DeepLearning

With massive
amounts of
comﬁutational power,
machines can now
recognize objects and
translate speech in
real time. Artificial
intelligence is finally
getting smart.

Temporary Social
Media_

Messages that quickly
self-destruct could
enhance the privacy
of online
communications and
make people freer to
be spontaneocus.

Prenatal DNA
Sequencing

Reading the DMNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the
genetic problems or
musical aptitude of
your unborn child?

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make
jet parts.

Baxter: The Blue-
Collar Robot

Rodney Brooks's
newest creation is

easy to interact with,
but the complex
innovations behind the
robot show just how
hard it is to get along
with people. N

Memeoryimplants

A maverick
neuroscientist
believes he has
deciphered the code
by which the brain
forms long-term
memories. Next:
testing a prosthetic
|mPIan_t for people
suffering from long-
term memory loss.

X

Smart Watches

The designers of the
Pebble watch realized
that a mobile phone is
more useful if you
don't have to take it
out of your pocket.

X

Ulira-Efficient Solar
Power

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
MNanotechnology just
might make it
possible.

BigData from Cheap
Phones

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave -
and even help us
understand the
spread of diseases.

Supergrids

A new high-power
circuit breaker could
finally make highly
efficient DC power
grids practical. N



Enabling Cross-Lingual Conversations in Real Time

Microsoft Research
vy BT 14 C-Co T

View milestones

on the paih o [I0W SKYPE USED AL'TO BUILD
Skype Transiator 11g AMAZING NEW LANGUAGE
TRANSLATOR :

Taking a cue from science fiction,
I\/||crosoft demos 'universal translator’

k- 1
B Microsoft Research
@ Updated 12:35 PI‘VI ET, Thu October 16, 2014 o ‘
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Facebook, Google in 'Deep Learning'
Arms Race

Deep Learnin

vnd A AMalra AT a Danliéxy B

n LTs

NEWS BULLETIN

Google Beat Facebook for DeepM‘md

Google Acqmres Artificial Intelllgen'cemsfartup DeepMind
For More Than $500M
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(Slide from Bengio, 2015)



2192015 @ 1:06PM | 6,556 views

Microsoft's Deep Learning Project
Outperforms Humans In Image Recognition

+ Comment Now  + Follow Comments

12729/2014 @ 11:37AM | 75,350 views

7 Tech 2015: Deep Learning And Machine
- Intelligence Will Eat The World

+ Comment Now  + Follow Comments

o

Anthony Wing Kosner _ ) ; e -
Contributor Despite what Stephen Hawking or Elon Musk say, hostile Artificial

FOLLOW Intelligence is not going to destroy the world anytime soon. What is '
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LOUD AND CLEAR

Deep learning FUNDAMENTAL TECHNOLOGIES
IN MODERN SPEECH RECOGNITION

ssin

MAGAZINE

SignalProce

Yann LeCun, Yoshua Bengio & Geoffrey Hinton

Affiliations | Corresponding author

Nafure 521, 436—444 (28 May 20135) | doi10.1038/nature14539
Received 25 February 2015 | Accepted 01 May 2015 | Published onli

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury

“This joint paper from the major Deep Neural Networks

speech recognition laboratories

was the first major industrial for Acoustic Modeling
application of deep learning.” in Speech Recognition

The shared views of four research groups

HOTO.COMB UCHOA LE ATADIPAT



Microsoft

Research

DNN: (Fully-Connected) Deep Neural Networks
“DNN for acoustic modeling in speech recognition,” in IEEE SPM, Nov. 2012

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury

REM

GREM W

Copy

Copy

First train a stack of N models each of

which has one hidden layer. Each model in
the stack treats the hidden variables of the

previous model as data.

BN

Then compose them into
a single Deep Belief
Network (DBN).

DEMN-DMNM

Then add outputs
and train the DNN
with backprop.



Practical guide to address some common
deep learning ASR issues

ASR Issues Solutions

How to reduce the runtime without SVD

accuracy loss?

How to do speaker adaptation with SVD-based adaptation

low footprints?

How to be robust to noise? Variable component CNN

How to reduce accuracy gap Teacher-student learning using
between large and small DNN? output posterior

How to deal with large variety of DNN factorization, mixed band
data? training

How to enable languages with Multi-lingual DNN

limited training data?

Slide from: Jinyu Li




More Recent Development of
Deep Learning for Speech



Foundations and Trends® in
Signal Processing
7:3-4

Signals and Communication Technology

Dong Yu
Li Deng

Automatic
Speech
Recognition

A Deep-Learning
Approach

&) Springer

Chapter 7

Selected Applications in Speech
and Audio Processing

7.1 Acoustic modeling for speech recognition

Ag discussed in Section [Z] speech recognition is the very first success-
ful application of deep learning methods at an industry scale. This
success is a result of close academic-industrial collaboration, initiated
at Microsoft Research, with the involved researchers identifying and
acutely attending to the industrial need for large-scale deployment
, , 109, M, 1323, \M] It is also a result of carefully exploiting
the strengths of the deep learning and the then-state-of-the-art speech

recognition technology, including notably the highly efficient decoding
techniques.
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Innovation: Better Optimization

000 * Sequence discriminative training for DNN:

- Mohamed, Yu, Deng: “Investigation of full-sequence training of deep

belief networks for speech recognition,” Interspeech, 2010.
- Kingsbury, Sainath, Soltau. “Scalable minimum Bayes risk training of

DNN acoustic models using distributed hessian-free optimization,”

oo 0 Interspeech, 2012.

- Su, Li, Yu, Seide. “Error back propagation for sequence training of CD

® 000 - Vesely, Ghoshal, Burget, Povey. “Sequence-discriminative training of

deep neural networks, Interspeech, 2013.

e Distributed asynchronous SGD

@
@
@
W deep networks for conversational speech transcription,” ICASSP, 2013.
@
@

- Dean, Corrado,...Senior, Ng. “Large Scale Distributed Deep Networks,”
NIPS, 2012.

Input data X

- Sak, Vinyals, Heigold, Senior, McDermott, Monga, Mao. “Sequence

Discriminative Distributed Training of Long Short-Term Memory
Recurrent Neural Networks,” Interspeech,2014.
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Innovation: Towards Raw Inputs

Qe[| eR|e|R|e|R]e

Input data X

* Bye-Bye MFCCs (no more cosine transform, Mel-scaling?)

- Deng, Seltzer, Yu, Acero, Mohamed, Hinton. “Binary coding of speech spectrograms using a deep
auto-encoder,” Interspeech, 2010.

- Mohamed, Hinton, Penn. “Understanding how deep belief networks perform acoustic modeling,”
ICASSP, 2012.

- Li, Yu, Huang, Gong, “Improving wideband speech recognition using mixed-bandwidth training data
in CD-DNN-HMM” SLT, 2012

- Deng, J. Li, Huang, Yao, Yu, Seide, Seltzer, Zweig, He, Williams, Gong, Acero. “Recent advances in
deep learning for speech research at Microsoft,” ICASSP, 2013.

- Sainath, Kingsbury, Mohamed, Ramabhadran. “Learning filter banks within a deep neural network
framework,” ASRU, 2013.

* Bye-Bye Fourier transforms?

- Jaitly and Hinton. “Learning a better representation of speech sound waves using RBMs,” ICASSP,
2011.

- Tuske, Golik, Schluter, Ney. “Acoustic modeling with deep neural networks using raw time signal for
LVCSR,” Interspeech, 2014.

- Golik et al, “Convolutional NNs for acoustic modeling of raw time signals in LVCSR,” Interspeech,
2015.

- Sainath et al. “Learning the Speech Front-End with Raw Waveform CLDNNs,” Interspeech, 2015

* DNN as hierarchical nonlinear feature extractors:

- Seide, Li, Chen, Yu. “Feature engineering in context-dependent deep neural networks for
conversational speech transcription, ASRU, 2011.

- Yu, Seltzer, Li, Huang, Seide. “Feature learning in deep neural networks - Studies on speech
recognition tasks,” ICLR, 2013.

- Yan, Huo, Xu. “A scalable approach to using DNN-derived in GMM-HMM based acoustic modeling in
LVCSR,” Interspeech, 2013.

- Deng, Chen. “Sequence classification using high-level features extracted from deep neural
networks,” ICASSP, 2014. 128



Innovation: Transfer/Multitask Learning
& Adaptation

Multi-lingual acoustic
modeling

I|e

°
°
°

Lo lRe|R|e R

® ® o o| Adaptation to speakers &
environments (i-vectors)

- ° 2 21 Mixed-bandwidth
acoustic modeling

* Too many references to list & organize
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Innovation: Better regularization & nonlinearity

o X ®

°% o o

« o oo

x| _|R

o o x|

x| e[R|e|ReR

Input data X

Sparsity in hidden
representations
logistic — Rel U , MaxOut

/

Dropout

130



Innovation: Better architectures

00000 O0O0
wW

0000000
W

00060000
wl

0000000
wW

0000000
R

* Recurrent Nets (bi-directional RNN/LSTM)
and Conv Nets (CNN) are superior to fully-
connected DNNs

* Sak, Senior, Beaufays. “LSTM Recurrent Neural
Network architectures for large scale acoustic
modeling,” Interspeech,2014.

e Soltau, Saon, Sainath. “Joint Training of

Convolutional and Non-Convolutional Neural
Networks,” ICASSP, 2014.
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Innovation: Ensemble Deep Learning

°”tp“}t“g‘-‘t5 * Ensembles of RNN/LSTM, DNN, & Conv Nets (CNN) give
J—— huge gains:
D * T Sainath, O. Vinyals, A. Senior, H. Sak. “Convolutional, Long Short-Term Memory, Fully
wnneiﬁ!ﬁ T Connected Deep Neural Networks,” ICASSP 2015.
layers : T ’ * L. Deng and John Platt, Ensemble Deep Learning for Speech Recognition, Interspeech,
: D | 2014.
N 4 ________ * @G.Saon, H. Kuo, S. Rennie, M. Picheny. “The IBM 2015 English conversational telephone
R — speech recognition system,” arXiv, May 2015. (8% WER on SWB-309h)
. e Q R, |
2) ILSTM —E Decoded word/phone sequences i 52 |
ayers ! : | |
Q (2048512 ) (2048512 ) !
L HMM : f204s f2048 '
b T. ot XU Cecoce i (2048 x 2048) (2048 x 2048)
linear dim T UX+VY+WZ+b | *2043 %2048
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\ fzoars $2048
i *2048 *2048

Z=logP._ (C|D) 5(2048);2048) (540 x 2048 )

CNN

1
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convolutional | ; |
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http://research.microsoft.com/apps/pubs/default.aspx?id=219987

Innovation: Better learning objectives/methods

W@ @ Y * Use of CTC as a new objective in RNN/LSTM with
b @@ - I end2end learning drastically simplifies ASR
’(”(”\7'—'\/ o _’\/ systems

:() ; , e * Predict graphemes or words directly; no pron.

NUP Q- § 2 dictionaries; no CD; no decision trees

JASZAN _ * Use of “Blank” symbols may be equivalent to a
ﬂl/ / / / o/ : / special HMM state tying scheme

Bpwed S i i =» CTC/RNN has NOT replaced HMM (left-to-right)

* Relative 8% gain by CTC has been shown by a very
limited number of labs

bi = ttttt:hwf ; httkaE = “F:mjgtr; —e+ A.Graves and N. Jaitly. “Towards End-to-End Speech Recognition

with Recurrent Neural Networks,” ICML, 2014.

A. Hannun, A. Ng et al. “DeepSpeech: Scaling up End-to-End
Speech Recognition,” arXiv Nov. 2014.

* A. Maas et al. “Lexicon-Free Conversational ASR with NN,” NAACL,

(oo

ONBROOR
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£ I
P ]
T c——
Hm—e!
er—
e
e —
e r—
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——

[

(b) 90k vocabulary 2015
Figure 5: ‘To become a dietary nutritionist what classes should *  H. Sak et al. “Learning Acoustic Frame Labeling for ASR with RNN,”
I take for a two year program in a community college’ ICASSP, 2015

* H.Sak, A. Senior, K. Rao, F. Beaufays. “Fast and Accurate Recurrent
Neural Network Acoustic Models for Speech Recognition,” 133
Interspeech, 2015



Innovation: A new paradigm for speech recognition

* Seg2seq learning with attention
o o o G Grapherme characters e mechanism (borrowed from NLP-MT)

Character Distribution

* W.Chan, N. Jaitly, Q. Le, O. Vinyals. “Listen, attend, and spell,”
arXiv, 2015.

AttentionContext creates * J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio.
and s, “Attention-Based Models for Speech Recognition,” arXiv, 2015.

Long input sequence X is encoded with the pyramidal
h(h,....hy) BLSTM Listen into shorter sequence h

Listener

Ty T g 7 £

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input

sequence X into high level features h, the speller is an attention-based decoder generating the y characters
from h.
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A Perspective on Recent Innovations of ASR

* All above deep learning innovations are based on

supervised, discriminative learning of DNN and recurrent
variants

* Capitalizing on big, labeled data

* |ncorporating monotonic-sequential structure of speech
(non-monotonic for language, later)

* Hard to incorporate many other aspects of speech
knowledge with (e.g. speech distortion model)

* Hard to do semi- and unsupervised learning
=» Deep generative modeling may overcome such difficulties

Li Deng and Roberto Togneri, Chapter 6: Deep Dynamic Models for Learning Hidden Representations of Speech Features, pp. 153-196,
Springer, December 2014.

Li Deng and Navdeep Jaitly, Chapter 2: Deep discriminative and generative models for pattern recognition, ~30 pages, in Handbook of
Pattern Recognition and Computer Vision: 5th Edition, World Scientific Publishing, Jan 2016.



http://research.microsoft.com/apps/pubs/default.aspx?id=210535
http://research.microsoft.com/apps/pubs/default.aspx?id=251677

_ Deep Neural Nets Deep Generative Models

Unsupervised Harder or impossible Easier, at least possible

Interpretation Harder Easier (generative “story” on data and hidden variables)



Example 1: Interpretable deep learning
using deep topic models (NIPS-2015)

5

14 Aug 201

.,

cs. L

End-to-end Learning of Latent Dirichlet Allocation
by Mirror-Descent Back Propagation

Jianshu Chen*, Ji He!, Yelong Shen®, Lin Xiao®, Xiaodong He®, Jianfeng Gao®,
Xinying Song* and Li Deng*

*Microsoft Research, Redmond, WA 98052, USA,
{jianshuc, yeshen, lin.xiao, xiaohe, jfgao, xinson, deng}@microsoft . com
I'Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA,
Jvkingfuw.edu

Abstract

We develop a fully discriminative learning approach for supervised Latent Dirich-
let Allocation (LDA) model, which maximizes the posterior probability of the pre-
diction variable given the input document. Different from traditional variational
learning or Gibbs sampling approaches, the proposed learning method applies
(i) the mirror descent algorithm for exact maximum a posterior inference and (ii)

ol e o aat. . L e R at, o B a B Al AL e A a e ca%.
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Recall: (Shallow) Generative Model

“TOPICS”
as hidden layer

v, .|
- e T —
. ]

lraqi

it A8 -

]

-
animals

the

Matlab

slide revised from: Max Welling



Interpretable deep learning: Deep generative model

» Constructing interpretable DNNs based on generative topic models

* End-to-end learning by mirror-descent backpropagation

- to maximize posterior probability p(y|x)
e yv: output (win/loss), and x: input feature vector

i fac
) “r
i Normalization
3 ¥
! O]
| exp(Tur- (KA
M o) NN ) Ve W e
O O—0—@ o= 0 i g
- PN Zd,m W n N br | 7 irror Descen 3 1
! N K g Algorithm (MDA) @ 3 @Q(kn/()
\O () | - | . | :
2 p| PV |
| T | 1 T4 |

1

Ty a—1 ) 1
040 = — 0401 O exp | Tye | DT L 0=1,..., L, fq0=—1
d.¢ Ca de—1 C @\P( d¢ [ ‘1’9(1:5—1 + 9(5,@—1}) d,0 =

J. Chen, J. He, Y. Shen, L. Xiao, X. He, J. Gao, X. Song, and L. Deng, “End-to-end Learning of Latent Dirichlet Allocation by Mirror-Descent Back Propagation”, submitted to NIPS2015.



Example 2: Unsupervised learning using
deep generative model (ACL, 2013)

* Distorted character string Images—> Text
* Easier than unsupervised Speech—> Text

* 47% error reduction over Google’s open-source OCR system

Unsupervised Transcription of Historical Documents

Taylor Berg-Kirkpatrick Greg Durrett Dan Klein
Computer Science Division
University of California at Berkeley
{tberg, gdurrett, klein}fcs.berkeley.edu

Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-

(a)
(b)
()

Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and {c) over-inking.

a fmall milk fancepan ;|

the Death of the Decealed,

rule along in silenes

Motivated me to
think about
unsupervised ASR
and NLP
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Power: Character-level LM & generative modeling for
unsupervised learning

* “Image” data are naturally “generated” by the model quite accurately (like “computer graphics”)
* | had the same idea for unsupervised generative Speech-to-Text in 90’s

* Not successful because 1) Deep generative models were too simple for generating speech waves
2) Inference/learning methods for deep generative models not mature then
3) Computers were too slow

LM params T Foni params
Bounding box probs:
M Gilyph widths g
(-] pe)
| [ ] 30
. Left pad Right pad
Inking params i, 0 i g
Inking: #*~*

4k

Glyph weights: g

12

e e TGUPAD  rGLYPH 1 RPAD a
X7 X/ X

-

(2]
(]

C

Offset: #VERT

;

—r e

]
(2]
[

Figure 3: Character tokens ¢ are generated by the language model. For each token index i, a glyph bounding box width g,
left padding width I;, and a right padding width r, are generated. Finally, the pixels in each glyph bounding box X[

are 141
generated conditioned on the corresponding character, while the pixels in left and right padding bounding boxes, X ™" and

X are generated from a background distribution.



Deep Generative Model for Image-Text Deep Generative Model for Speech-Text

(Berg-Kirkpatrick et al., 2013, 2015) (Deng, 1998; Deng et al, 1997, 2000, 2003, 2006)

Language 1

Language Model g Model
PE) prisort L
P{W)
Lexicon
Typesetting Model (feature organizer)

P(T|E) ‘ P{f lw )
Cross-Word

Feature-Overlaps
Rendering Model r l r I P(FIVW
P(X|E,T) |( )

| Interface
P @Z)IF)
smooth linear
task dynamics
dynamic
P(Z(t)IF)
model
staiic
MNL distortion
P{O(}F, W)

R TIT—

L.Deng, A dynamic, feature-based approach to the interface between phonology
& phonetics for speech modeling and recognition, Speech Communication,
vol. 24, no. 4, pp. 299-323, 1998. 142



http://research.microsoft.com/apps/pubs/default.aspx?id=78736
http://research.microsoft.com/apps/pubs/default.aspx?id=78736

Deep Generative Model for Image-Text
(Berg-Kirkpatrick et al., 2013, 2015)

Language Model
P(E)

Typesetting Model
P(T|E)

Rendering Model
P(X|E,T)

Word-level
Language model
Plus
Feature-level
ronunciation mode

Deep Generative Model for Speech-Text

(Deng, 1998; Deng et al, 2000, 2003, 2006)

Language
Model

b PW)
Lexicon
(feature organizer)

‘ P(f lw )
Cross-Word
eature-Overlap

‘r‘lﬁﬁf)

| Interface
P (2)IF)
smooth linear
task dynamics
dynamic
P({(Z(t)IF)
model
static
NL distortion

P(O()IF, W)

T—
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Deep Generative Model for Image-Text
(Berg-Kirkpatrick et al., 2013, 2015)

Language Model
P(E)

Prisgort

Typesetting Model
P(T|E)

Rendering Model
P(X|E,T)

Articulatory
dynamics

Easy: likely no “explaining away” problem in
inference and learning

Deep Generative Model for Speech-Text

(Deng, 1998; Deng et al, 2000, 2003, 2006)

Language
Model

b PW)
Lexicon
(feature organizer)

‘ P(f lw )
Cross-Word
Feature-Overlaps

]
| Interface |
P (Z)IF)

smooth linear

/ as dynamics
/ dynami

model

IF)

static
NL distortion

| PO@F,W)
AN

Hard: pervasive “explaining away” problem

due to speech dynamics L



Deep Generative Model for Image-Text
(Berg-Kirkpatrick et al., 2013, 2015)

Deep Generative Model for Speech-Text

(Deng, 1998; Deng et al, 2000, 2003, 2006)

Language \|

Language Model r i S O 1 Model
P(E) P b Pow)
Lexicon
Typesetting Model (feature organizer)
P(T|E) i | P(flw)
Cross-Word
Rendering Model r l ( FBElture-}Ova:?::v ;
S 1) |Interface
Pe(f)IF)
smooth linear
task dynamics
dynamic
P(Z(t)IF)
model
Articulatory o tie
istortion
To
Acoustics P(O@)F. W)
mapping —
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Deep Generative Model for Image-Text

Rendering Model

Glyph box  Vertical Inking
width offset level

EF

e Sample '
'F pixels

M =

Bernoulli
pixel probs

Very simple, & easy to model accurately

.9

Deep Generative Model for Speech-Text

In contrast, articulatory-to-acoustics
mapping in ASR is much more complex
During 1997-2000, shallow NNs were used
for this as “universal approximator”

Not successful

Now we have better DNN tool

Even RNN/LSTM/CTC tool for dynamic
modeling

Essence: exploit the strong prior of LM:
trained with billions of words/text

No need to pair the text with acoustics;
hence unsupervised learning

Think of it as using a new objective function
based on distribution matching between LM
prior and the distribution of words

predicted from acoustic models e



Further thoughts on unsupervised ASR

* Deep generative modeling experiments not successful in 90’s
+ Computersweretoo-slow

 Models were too simple from text to speech waves

Still true = need speech scientists to work harder with technologists

And when generative models are not good enough, discriminative models
and learning (e.g., RNN) can help a lot

Further, can iterate between the two, like wake-sleep (algorithm)

* Inference/learning methods for deep generative models not mature
at that time

Only partially true today
< due to recent big advances in machine learning

Based on new ways of thinking about generative graphical modeling
motivated by the availability of deep learning tools (e.g. DNN)

A brief review next
147



Advances in Inference Algms for Deep Generative Models

Kingma & Welling 2014, Salakhutdinov et al, 2015

ICML-2014 Talk Monday June 23, 15:20
In Track F (Deep Learning Il)

“Efficient Gradient Based Inference
through Transformations between
Bayes Nets and Neural Nets”

Other solutions to solve the "large variance problem” in variational inference:

-Variational Bayesian Inference with Stochastic Search [D.M. Blei, M.I. Jordan and J.W. Paisley, 2012]

-Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression [T. Salimans and A. Knowles, 2013].
-Black Box Variational Inference. [R. Ranganath, S. Gerrish and D.M. Blei. 2013]

-Stochastic Variational Inference [M.D. Hoffman, D. Blei, C. Wang and J. Paisley, 2013]

-Estimating or propagating gradients through stochastic neurons. [Y. Bengio, 2013].

-Neural Variational Inference and Learning in Belief Networks. [A. Mnih and K. Gregor, 2014, ICML]

-Stochastic backprop & approximation inference in deep generative models [D. Rezende, S. Mohamed, D. Wierstra, 2014]
-Semi-supervised learning with deep generative models [K. Kingma, D. Rezende, S. Mohamed, M. Welling, 2014, NIPS]
-auto-encoding variational Bayes [K. Kingma, M. Welling, 2014, ICML]

-Learning stochastic recurrent networks [Bayer and Osendorfer, 2015 ICLR]

-DRAW: A recurrent neural network for image generation. [K. Gregor, Danihelka, Rezende, Wierstra, 2015]

- Plus a number of NIPS-2015 papers, to appear.

ICML-2014 tutorial



Further thoughts on unsupervised ASR

 And when generative models are not good enough, discriminative models
and learning (e.g., RNN) can help a lot; but to do it? A hint next
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RNN

h, = f(h—1:Wpp, Wi . X;)

Yi = g(hy: W)

Parameterization:
* Whn, Why, Wyp: all unstructured
regular matrices

vs. Generative HDM

h, = i?(ht—l;‘vfﬂtff)

F(ht,Q;f)

Zz
|

Parameterization:
Wy, =Mly;); sparse system matrix
« Wq =(Q); Gaussian-mix params; MLP




Generative HDM

ht =dqgq h[—l:WI

r(h, .Q]{)

Language ]

Mode

¥

P{W)

Lexicon
(feature organizer)

P(f lw )

Cross-Word
Feature-Overlaps

'

P(FIW)

| Interface

Pe@)F)

task

smooth linear —
dynamics

dynamic

model

P(Z(t)IF)

i

NL distortion

_|||fr[l]|J‘| .

P{O()IF, W)

! E_FM‘II-.
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RNN vs. Generative HDM

h, = f(h—1:Wpn, Wy X;)
Y: =8 (hti‘vhy)

e.g. Generative pre-training

(analogous to generative DBN pretraining for DNN)

Better ways of integrating deep generative/discriminative models are possible
- Hint: Example 1 where generative models are used to define the DNN architecture



end of
Part Il: Speech

-Deep supervised learning shattered ASR via DNN/LSTM

-Deep unsupervised learning may impact more in the future
-No more low-hanging fruit

Deep Learning also Shattered the Entire Field of
Image Recognition and Computer Vision (since 2012)
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ImageNet-1K Competition

. | Progress of object recognition (1k ImageNet)
Krizhevsky, Sutskever, Hinton, “ImageNet 30%
Classification with Deep Convolutional Neural

Networks” NIPS, Dec. 2012

shallow model

25%

20% deep model

1st year

40

GooglLeNet
6.67%
deep model

3rd year

15%

10% deep model
2nd year

Fall 2012

5 - K 4.94%
I 2012 - 2015

; ™

Top-5 classification error rate

Error
N N
o

1102

10z

£10Z

vI0Z
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=
o

J Mic rosoft Research

o‘d

dﬂ“ Rls
*§L£W$

0t Deep CNN GO nge
Univ. Toronto team
Balébﬁl‘?' ?

Aot
oV
N3 [N

Top-5 classification error rate
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Microsoft:

Research

Part lll: Language

Moving from perception: phonetic/word recognition, image/gesture recognition, etc
to
Cognition: memory, attention, reasoning, Q/A, & decision making, etc.

Embedding enables exploring models for these human cognitive functions
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Microsoft
Research

Embedding Linguistic entities
in low-dimensional continuous space
and
Examples of NLP Applications



Semantic embedding

Project raw text into a continuous semantic space
e.g., word embedding

Captures the word meaning in a semantic space % s
cegu NI
06 ;:':..o’.o:".".;_-:: o Za
- NEEEATRREY T
s I

. 02
f(cat) = a.k.a the 1-hot word e.mbeddlng o ek Sy L n
word vector vector in the 02 Gt et T T A

04 Stier wBlnge o SEP R 50
M Y .l' Se O ‘.:." s
e, .o .,8 3 . oY ‘Q ey
> semantic Space 06 e ed oy e s portahd, L
08 G vt e AN L seattfer
v, eSOt g Beety. s ”
: S v

The index of “cat” in i Fd ;;:3;“'
the vocabulary o

Dim=100~1000

Dim=|V|=100K~100M

Deerwester, Dumais, Furnas, Landauer,
Harshman, "Indexing by latent
semantic analysis," JASIS 1990




Microsoft

Research

NN Word Embedding

LM: predict the next word given the past:
e.g., p(chases|the cat) =?, p(says|the cat) =?

i-th output = P(w; = i | context)

softmax
®® - - - oe® )
Y
. A

mostl computation here s

)
\
v
]
tanh |
. e ) I

Bengio, Ducharme, Vincent, Jauvin, “A
neural probabilistic language model. “
JMLR, 2003

e

shared parameters
across words

mndex for Wi_n 1 index for wy_»> index for w;_4



SENNA word embedding

Scoring:

Score(wy, Wy, W3, Wy, Ws) = UTU(W[fpfz;fs:fzpfs] + b)
Training:

J =max(0,1+5~ —5%) Update the model until S* > 1+ 5~

Where

St = Score(wy, wy, W3, Wy, We)

ST = Score(wy, Wy, W™, Wy, ws)
And
< Wy, Wy, W3, Wy, Ws > is a valid 5-gram
< Wy, Wy, W™, Wy, We > is @ “negative sample” constructed Y

by replacing the word w; with a random word w™ 0000 0000

e.g., a negative example: “cat chills X a mat” T ,
ﬁ....l@..‘ 0000 0000/ 0000
Collobert, Weston, Bottou, Karlen, / 1
Kavukcuoglu, Kuksa, “Natural Language T T T
Processing (Almost) from Scratch,” JMLR Word embedding cat Ch|”5 on a mat

2011




RNN-LM base word embedding

Word Embedding

cat > s(t) >

>  chases

Y

~ _"‘\ —
!
~ -7 > is

{
)

[ —

(delaved)

Mikolov, Yih, Zweig, “Linguistic
Regularities in Continuous Space
Word Representations,” NAACL
2013




CBOW/Skip-gram Word Embeddings

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
l
w(t-2) wi(t-2)
| | /; |
wit-1) wit-1)
— SUM
/ . gi s .
wit+1) \ wi(t+1)
[ ] |
wit+2) wit+2)

CBOW Skip-gram

Continuous Bag-of-Words

The CBOW architecture (a) on the left, and the Skip-gram architecture (b) on the right.
[Mikolov et al., 2013 ICLR].




Word embedding: rethinking

- Word embedding is a neat and effective representation:

< # words \

TI\ word embeddin
%
w1l,w2, w Wy

= However, for large scale NL tasks a decomposable, robust representation is preferable

Vocabulary of real-world big data tasks could be huge (scalability)

>100M unique words in a modern commercial search engine log, and keeps growing

New words, misspellings, and word fragments frequently occur
(generalizability)




Build semantic embedding on top of sub-word units

Learn semantic embedding on top of sub-word units (SWU)

« Decompose any word into sub-word units
« Scale the capacity to handle almost unbounded variability (word)
based on bounded variability (sub-word)

embedding vector W-UxVv embedding vector

word embedding 1 U matrix: 500 X 50K

< W \/< matrix: 500 X 100M rrm— -— y
encoding
<:ﬁ matrix

dim = 100M dim = 100M
1-hot word vector 1-hot word vector \

. Could to ext ly |
Huang, He, Gao, Deng, Acero, Heck, “Learning deep structured OUI 9o Up 1o extremely farge

semantic models for web search using clickthrough data,” CIKM, 2013



Sub-word unit

« Letters, context-dept letters, positioned-phones,
context-dept phones, positioned-roots/morphs,
context-dept morphs

« Multi-hashing approach to word input
representation

Or random projection (random basis)



From sub-word unit embedding vectors to word
vectors

SWU uses context-dependent letter, e.g., letter-trigram.

Learn one vector per letter-trigram (LTG), the encoding matrix is a fixed matrix
« Use the count of each LTG in the word for encoding

ﬁxample: cat — #cat# — #-c-a, c-a-t, a-t- \
(w/ word boundary mark #)
Uy
/[\ K
dim v(cat) = Z(acat,k |:|)

| k=1
A A A J T T
1. 1. Count of LTG(k)

#-c- “a-t.a-t-#
S &l et e i ot e ol T

Two words has the same LTG:
collision rate ~ 0.004%




Supervised Embeddings for
Semantic Modeling with Applications

--- embedding linguistic symbols by backprop
--- mining distant supervision signals



Deep Structured Semantic Model (DSSM)

» Build word/phrase, or sentence-level semantic
vector representation

» Trained by a similarity-driven objective

« projecting semantically similar phrases to vectors close to each
other

« projecting semantically different phrases to vectors far apart



DSSM for learning semantic embedding

Initialization:

Neural networks are initialized with random weights

Semantic vector S

Letter-trigram @

embedding matrix — W, t

Letter-trigram encoding dim = 50K

matrix (fixed) — W, t

dim = 100M dim = 100M

Input word/phrase s: “racing car” t*: "formula one” t-: "racing to me”

o
Il
Ul
o
o

dim = 50K

I»I»

Bag-of-words vector

Ll
B Microsoft Research




DSSM for learning semantic embedding

Training:
Compute Cosine similarity between semantic vectors

Compute exp(cos(vs,v+))
gradients Xy _+ i €xp(cos(vg, vy))

Semantic vector s Us ﬁ% Uyt +

ol -

/oW

—
a—

cos(vg, v¢-)
t
-

d=300 d=300

4 . 4

d=500 d=500

cos(Vs, Vy+)
v

Letter-trigram @

embedding matrix — W,

[
H

Letter-trigram encoding dim = 50K dim = 50K dim = 50K
matrix (fixed) — W,

Bag-of-words vector dim = 100M dim = 100M dim = 100M
Input word/phrase s: “racing car” t*: "formula one” t-: "racing to me”

B Microsoft Research




DSSM for learning semantic embedding

Runtime:

similar

Semantic vector

@

Ws,4

@ d=500

w,; 4

Letter-trigram @
—w,, {

===
t

1
dim = 50K
1

embedding matrix

52
Letter-trigram encoding dim = 50K

matrix (fixed) — W, t

Bag-of-words vector dim = 100M dim = 100M dim = 100M

Input word/phrase s: “racing car” t1: "formula one” t2: "racing to me”

H
B Microsoft Research




Training of the DSSM

Data: semantically-similar text pairs
e.g., context <-> word in word embedding vector learning
query <-> clicked-doc in Web Search
pattern<-> relationship in Question Answering
Objective: cosine similarity based loss

- Web search as an example: a query q and a list of docs D = {d*,d7, ...dg}
- d* positive doc; d7,...dg are negative docs to g ( e.g., sampled from not clicked docs)

 Objective: the posterior probability of clicked document given query

exp (y cos(q,d™))
ZdeD exp(y cos(q,d))

P(d*|q) =
« Optimize 0 to maximize P(d*|q). SGD training on GPU (NVidia K20x)

171
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Many applications of DSSM (many low-hanging fruits):

Learning semantic similarity between Xand Y

Word semantic embedding

Web search

Query intent detection
Question answering
Machine translation
Query auto-suggestion
Query auto-completion
Apps recommendation

Distillation of survey feedbacks

Automatic image captioning
Image retrieval

Natural user interface

Ads selection

Ads click prediction

Email analysis: people prediction
Email search

Email declutering

Knowledge-base construction

Contextual entity search
Automatic highlighting

Text summarization

context

search query

Search query

pattern / mention (in NL)
sentence in language a
Search query

Partial search query
User profile

Feedbacks in text
image

text query

command (text / speech / gesture)
search query

search query

Email content

Search query

Email contents

entity from source

key phrase / context
documents in reading

long text

word

web documents

Use intent

relation / entity (in KB)

translated sentences in language b
Suggested query

Completed query

recommended Apps

Relevant feedbacks

text caption
images

actions

ad keywords

ad documents
Recipients, senders
Email content

Email contents in similar threads

entity fitting desired relationship

entity / its corresponding page
key phrases to be highlighted

summarized short text



Automatic image captioning (MSR system)

signs
T Bl light
i, Computer

Vision — m I
Systern stop T

a red stop sign sitting under a traffic light on a city street Caption

a stop sign at an intersection on a street Generation

! ! ! ! a stop sign with two street signs on a pole on a sidewalk System
a stop sign at an intersection on a city street a stop sign at an intersection on a city street
|

a stop sign
a red traffic light

Semantic I
Ranking 4

System

Fang, Gupta, landola, Srivastava, Deng, Dollar,
Gao, He, Mitchell, Platt, Zitnick, Zweig, “From
captions to visual concepts and back,” accepted
to appear in CVPR, 2015; in arXiv 2014



Microsoft System (MSR):
Use of DSSM for Global
Semantic Matching

1. Word 2. Sentence " 3. Sentence
Detection = Generation Re-Ranking
woman, CI‘OWd, Cat, A purple camera with a woman. #1 A holdi
. A woman holding a camera in a crowd. woman nolding a
camera, holding, camera in a crowd
purp|e A woman holding a cat. ’




a woman in a kitchen preparing
food

woman working on counter near
kitchen sink preparing a meal




a woman in a kitchen preparing
food

woman working on counter near
kitchen sink preparing a meal




Machine- a group of motorcycles parked next

generated (but

wrkerprefereq) {0 @ Motorcycle

two girls wearing are wearing short
Human-annotated - gkjrts and one of them sits on a
(but turker not

prefered) motorcycle while the other stands
nearby

Machine-generated (but a clock tower in the middle of
turker prefered) the sfreet

Human-annotated (but turker a statue with a clock on it
ROE Brararad) near a parking lot

prefered)

not prefered)

machinegenerated put @ WOMAN in a Kitchen preparing
turker prefered) fOOd

Human-annotated ut  WOMaN working on counter near
wrkernotprefered) — kitchen sink preparing a meal

Machine-generated (but
turker prefered)

machine-generatea it~ @ Kitchen with wooden cabinets
turker prefered) and a sink

Human-annotated (but
mumanannotatea et @N OFNate kitchen is designed ~ turker not prefered)
HEKerDotRIuiend) with rustic wooden parts

Machine-generated (outturker @ DICYClE IS parked next to a

river

Human-annotated puturker @ DIKE Sits parked next to a

body of water
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&
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Y
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a man holding a tennis
racquet on a tennis court

the man is on the tennis court
playing a game



Potential Scenarios

take a snapshot, generate a caption,
and share the fun ©

a dining room table and chairs a group of people sitting at a table @ man that is standing in front of a
next to a window a young boy standing on a beach  with laptops store

Field test of our prototype App: on cell phone-quality photos

Slide from Xiaodong He (MSR)



Competition results (CVPR-2015, June, Boston)

Won 15t Prize at MS COCO Captioning Challenge 2015! Microsoft COCO

The top teams and the state-of-the-art

Measure the quahty of % of captions that Official

the captions by human pass the Turing Test  Rank

judge (e.qg., Turing Test). MSR 32.2% Ist(tie)
Google 31.7% 1st(tie)
MSR Captivator 30.1% 3rd(tie)
Montreal/Toronto 27.2% 3rd(tie)
Berkeley LRCN 26.8% 5th

Note: even a Human Other groups: Baidu/UCLA, Stanford, Tsinghua, etc.

cannot guarantee to

pass Turing Test by 100% Human 67.5%




Many applications of DSSM (many low-hanging fruits):

Learning semantic similarity between Xand Y

Word semantic embedding

Web search

Query intent detection
Question answering

Machine translation

Query auto-suggestion

Query auto-completion

Apps recommendation
Distillation of survey feedbacks
Automatic image captioning
Image retrieval

Natural user interface

Ads selection

Ads click prediction

Email analysis: people prediction
Email search

Email declutering

Knowledge-base construction

Contextual entity search

Automatic highlighting

Text summarization

context

search query

Search query

pattern / mention (in NL)
sentence in language a
Search query

Partial search query
User profile

Feedbacks in text

image

text query

command (text / speech / gesture)
search query

search query

Email content

Search query

Email contents

entity from source

key phrase / context

documents in reading

lona text

word

web documents

Use intent

relation / entity (in KB)
translated sentences in language b
Suggested query
Completed query
recommended Apps
Relevant feedbacks
text caption

images

actions

ad keywords

ad documents
Recipients, senders
Email content

Email contents in similar threads

entity fitting desired relationship

entity / its corresponding page

key phrases to be highlighted

cummarized <short text



l) i [1 {_j ‘ O C S This is a place devoted to giving you deeper insig
g ' J trends, people and technology behind Bing.

(#) Blogs (¥ Regions riowus [ B @ B E Subscribe all

DECEMBER

10 Bing brings the world’s knowledge
~ straight to you with Insights for Office

Today Bing and Office are introducing Insights for Office, a new, more powerful way to search for the information you
need while in Office Word Online — available in English to all markets in the next few days. We encourage you to try it
here, always free.

How Bing's intelligence powers Insights for Office

Bing indexes and stores entity data from around the web representing real world people, places and things. Insights for
Office utilizes Bing's ability to index the world’s knowledge and our machine learned relevance models to semantically
understand the most important content in a user's document and then return the most relevant results This capability is
derived largely from patterns of text analysis developed in collaboration with Microsoft Research. The results deliver the
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http://blogs.bing.com/search/2014/12/10/bing-brings-the-worlds-knowledge-straight-to-you-with-insights-for-office/



Scenario: Contextual search in Microsoft Office/Word

Lincolr was ™
the 16th preside;.
the United State: =~
was born in e

When “Lincoln” is selected, pages of a car company, movie, or the town in Nebraska will not appear'®



Towards Modeling Cognitive Functions:
Memory and Attention

-seqg-to-seq learning via LSTM with attention mechanism
-memory nets and neural Turing machines

-dynamic memory nets

-from seq2seq to seqg2struct and to struct2struct



Seq-2-Seq Learning for Machine Translation

[Sutskever, Vinyals, Le, NIPS, 2014]




Seq-2-Seq Learning for Machine Translation

[Sutskever, Vinyals, Le, NIPS, 2014]

“thought vector” for src language




Bahdanau et al., ICLR, 2015

RNN Encoder-Decoder: Issues

e has to remember the whole sentence Y1 Y2 yr . : ;

NSNS ‘ “attention” mechanism
S e ST1 used for “softly” selecting

relevant input portion from

o fixed size representation can be the bottleneck

e humans do it differently

B ; , : : memory
= EE performance drops on |

= : long sentences: Yia Y.

a . .

- 15

w

D10

Ll
T

(=]

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the f-th tar-

. Microsoft Research get word ¥, given a source
sentence (ry.xr2...., xrr).




The full picture where “attention” is situated

(slide from Y. Bengio)

Word
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Microsoft

Research
Popular theories of human memory/attention

The attention and memory models discussed so far are far from human memory/attention
Mechanisms (https://en.wikipedia.org/wiki/Atkinson%E2%80%93Shiffrin_memory_model):

Atkinson and Shiffren e Second Edition ™

oo

Memory

An Integrated Approach

(1968)

m Sensory m Short-term Long-term
Memory Memory Memory

JOHN R. ANDERSON

as5u0dsay

Hopfield nets store (associative) memories as
attractors of the dynamic network




Microsoft

Research
LSTM mainly models short-term memory

Short-term
Memory

P—

Digit Span
(Primary
Memory)

Working
Memory



Microsoft:

Research
LSTM does not model long-term memory well

* LSTM makes short-term memory lasting via a simple “unit-loop” mechanism, very

different from long-term memory in human cognition
* Review of a very recent modeling study on episodic and semantic memories, extending

the basic LSTM formulation



Microsoft

Research

TYPES OF LONG-TERM MEMORY

Semantic
Memory

Procedural
Memory

“When was the last
time you rode a
bicycle?”

“What is a bicycle?”

Bike-riding Skill

Internal
Diary

Internal
Encyclopedia

Internal
Computer
Program

Retrieval by
conscious
contextual
cues

Retrieval by
conscious
conceptual
cues

Unconscious
automatic
play-back

Slides from: Coursera, 2014
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[cs.CL] 24 Jul 2015

Ask Me Anything: Dynamic Memory Networks

for Natural Language Processing

Ankit Kumar Ozan Irsoy Jonathan Su James Bradbury Robert English

Brian Pierce Peter Ondruska Mohit Iyyer Ishaan Gulrajani Richard Socher

firstname @metamind.io
MetaMind
Palo Alto, CA

Abstract

Most tasks in natural language processing can be cast into question answering
(QA) problems over language input. We introduce the dynamic memory network
(DMN), a unified neural network framework which processes input sequences
and questions, forms semantic and episodic memories, and generates relevant an-
swers. Questions trigger an iterative attention process which allows the model to
condition its attention on the result of previous iterations. These results are then
reasoned over in a hierarchical recurrent seauence model to generate answers.

Going beyond L-STM --- towards more realist long-term memory (episodic & semantic)
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* Word
vectors

+ Knowledge
Basis

Semantic
Memory

Episodic Memory

Y

Answer

Input Text Sequence

Figure 2: Overview of DMN modules. Communication between them is indicated by arrows and
uses only vector representations. Questions trigger gates which allow vectors for certain input words
or sentences to be given to the episodic memory module. The final state of the episodic memory is

the input to the answer module.

Question

Semantic Memory
Module Module

Episodic Memorye) ) 2 2

2 1
e e e, e, e; e

00 o3 0.0 0.0 00 o9

Answer module
o N |

7l |
-
e, e e, e, e, e e

03 | oo 00 00 00

S
0

3
J\II\I\I\HIIHH\IHljé

|
|
Question Module g

Figure 3: Real example of an input sentence sequence and the attention gates that are triggered by a
specific question. Gate values g; are shown above the corresponding vectors. The gates change with
each search over inputs. We do not draw connections for gates that are close to zero. See Section

4.1 for details on the dataset that this example comes from.
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-from seqg2seq to seq2struct & to struct2struct



Review: embedding in the form of “flat” vectors

* A linguistic or physical entity or a simple “relation”

‘ mapping via distributed representations by NN
A low-dim continuous-space vector or embedding

ificial Intelligence CElRLE A S
'PARALLEL DISTRIBUTED
PROCESSING= [/ |
Special Issue, vol. 46 (1990) S A s
Connectionist Symbol Processing PDP book, 1986 [BE st msiansti e

(4 articles)
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Extension: “flat” vectors =2 structures (tree/graph)

Structured embedding vectors via tensor-product rep.

symbolic semantic parse tree (complex relation)

Then, reasoning in symbolic-space (traditional Al) can be beautifully carried out in the continuous-space in human
cognitive and neural-net (i.e., connectionist) terms

Smolensky & Legendre: The Harmonic Mind, MIT Press, 2006

From Neural Computation to Optimality-Theoretic Grammar

the harmonic mind

Semantic Cognilion L

A Paralisd Diotr Suted Frocessing Woa;;—
Rogers & McClelland :g
i =

Semantic Cognition [
MIT Press, 2006

Temothy 1. Rogers and James L McCletiand
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f

Few leaders are admired by George Bush

A 4

admire(George Bush, few leaders)

f(s) = cons(ex,(ex,(ex,(s))),
SACACEAEC)) IEENE)))
W = Wconso[WexlwexOWexi] +
Wcons][ Wex1Wex1Wex1 Wexo ]

Meaning (LF)

A P;sSTon

by ﬁ Isomorphism

“Passive sentence”

Slide from Paul Smolensky, 2015



Summary & Perspective

» Speech recognition is the first success example of deep learning at industry
scale

* Deep learning is very effective in speech recognition, speech translation (Skype
Translator), image recognition (Onedrive Image tagging), image captioning,
language understanding (Cortana), semantic intelligence, multimodal and
multitask learning, web search, advertising, entity search (Insights for MS
Office), user and business activity prediction, etc.

* Enabling factors:
» Big datasets for training deep models
e Powerful GPGPU computing

* Innovations in deep learning architectures and algorithms
* How to discover distant supervision signals free from human labeling
* How to build deep learning systems grounded on exploiting such “smart” signals (example: DSSM)
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Summary & Perspective

* Speech recognition: all low-hanging fruits are taken
* j.e. more innovation and hard work needed than before

* Image recognition: most low-hanging fruits are taken

* Natural Language: does not seem there is much low-hanging fruit there
* i.e. even more innovation and hard work needed than before

* Big data analytics (e.g. user behavior, business activities, etc):
- A new frontier
* Small data: deep learning may still win (e.g. 2012 Kaggle’s drug discovery)
* Perceptual data: deep learning methods always win, and win big
 Be careful: data with adversarial nature; data with odd variability
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Issues for “Near” Future of Deep Learning

* For perceptual tasks (e.g. speech, image/video, gesture, etc.)

* With supervised data: what will be the limit for growing accuracy wrt increasing
amounts of labeled data?

* Beyond this limit or when labeled data are exhausted or non-economical to
collect, will novel and effective unsupervised deep learning emerge and what
will they be (e.g. deep generative models)?

* Many new innovations are to come, likely in the area of unsupervised learning

* For cognitive tasks (e.g. natural language, reasoning,

knowledge, decision making, etc.)

* Will supervised deep learning (e.g. MT) beat the non-deep-learning state of the
art like speech/image recognition?

* How to distill/exploit “distant” supervision signals for supervised deep learning?

* Will dense vector embedding be sufficient for language? Do we really need to
directly encode and recover syntactic/semantic structure of language?

* Even more new innovations are to come, likely in the area of new architectures
and learning methods pertaining to distant supervised learning
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The Future of Deep Learning

* Continued rapid progress in language processing methods
and applications by both industry and academia

* From image to video processing/understanding

* From supervised learning (huge success already) to
unsupervised learning (not much success yet but ideas abound)

* From perception to cognition
* More exploration of attention modeling

* Combine representation learning with complex knowledge
extraction & reasoning

* Modeling human memory functions more faithfully
* Learning to act and control (deep reinforcement learning)

* Successes in business applications will propel more rapid
advances in deep learning (positive feedbacks)
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