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• Part I: Basics of Machine Learning (Deep 
and Shallow) and of Signal Processing

• Part II: Speech

• Part III: Language
(In case you did not get link to slides, send email to: 
alexander.raake@tu-ilmenau.de)



Reading Material
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Books:
Bengio, Yoshua (2009). "Learning Deep 
Architectures for AI".

L. Deng and D. Yu (2014) "Deep 
Learning: Methods and Applications" 
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf

D. Yu and L. Deng (2014). "Automatic 
Speech Recognition: A Deep Learning 
Approach” (Publisher: Springer).

A Deep-Learning 
Approach

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
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Reading Material (cont’d)
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Wikipedia:
https://en.wikipedia.org/wiki/Deep_learning

Papers:
G. E. Hinton, R. Salakutdinov. "Reducing the Dimensionality of Data with Neural Networks". Science 313: 
504–507, 2016.

G. E. Hinton, L. Deng, D. Yu, etc. "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The 
shared views of four research groups," IEEE Signal Processing Magazine, pp. 82–97, November 2012.

G. Dahl, D. Yu, L. Deng, A.  Acero. "Context-Dependent Pre-Trained Deep Neural Networks for Large-
Vocabulary Speech Recognition". IEEE Trans. Audio, Speech, and Language Processing, Vol 20(1): 30–42, 
2012.  (plus other papers in the same special issue)

Y. Bengio, A. Courville, and P. Vincent. "Representation Learning: A Review and New Perspectives," IEEE 
Trans. PAMI, special issue Learning Deep Architectures, 2013.

J. Schmidhuber. “Deep learning in neural networks: An overview,” arXiv, October 2014.

Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning”, Nature, Vol. 521, May 2015.

J. Bellegarda and C. Monz. “State of the art in statistical methods for language and speech processing,” 
Computer Speech and Language, 2015

https://en.wikipedia.org/wiki/Deep_learning
http://www.sciencemag.org/content/313/5786/504.short
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5740583


Part I: Machine Learning (Deep/Shallow)
and Signal Processing
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- Survey of audience background 

PART I:  Basics
PART II: Advanced Topics (tomorrow)
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Machine Learning basics

Revised slide from: Pascal Vincent, 2015

Cognitive
science



Machine Learning & Deep Learning

Deep learning

Machine 
learning

Data
Analysis/

Statistics Programs
Machine learning



What Is Deep Learning?
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Deep learning (deep machine learning, or deep structured
learning, or hierarchical learning, or sometimes DL) is a
branch of machine learning based on a set of algorithms that
attempt to model high-level abstractions in data by using
model architectures, with complex structures or otherwise,
composed of multiple non-linear transformations.[1](p198)[2][3][4]

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BOOK2014-1
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BENGIODEEP-2
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BENGIO2012-3
https://en.wikipedia.org/wiki/Deep_learning#cite_note-SCHIDHUB-4
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(Slide from: Yoshua Bengio)
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Signal Processing  Information Processing
Signals 

Processing

Audio/Music Speech Image/
Animation/
Graphics

Video Text/
Language

Coding/
Compression

Audio
Coding

Speech 
Coding

Image 
Coding

Video
Coding

Document
Compression/
Summary

Communication Voice over IP, DAB,etc 4G/5G Networks, DVB, Home 
Networking, etc

Security Multimedia watermarking, encryption, etc.

Enhancement/
Analysis

De-noising/
Source separation

Speech 
Enhancement/
Feature extraction

Image/video enhancement (Clear 
Type), Segmentation, feature 
extraction

Grammar 
checking, Text 
Parsing

Synthesis/
Rendering

Computer 
Music

Speech
Synthesis
(text-to-speech)

Computer 
Graphics/

Video 
Synthesis

Natural
Language
Generation

User-Interface Multi-Modal Human Computer Interaction (HCI --- Input Methods)

Recognition Auditory
Scene Analysis
(Computer 
audition; e.g. 
Melody Detection 
& Singer ID)

Automatic 
Speech/Speaker
Recognition

Image 
Recognition

Computer
Vision
(e.g. 3-D object 
recognition)

Document
Recognition

Understanding
(Semantic IE)

Spoken 
Language
Understanding

Image 
Understanding

Natural 
Language 
Understanding

Retrieval/Mining Music
Retrieval

Spoken Document 
Retrieval & 
Voice/Mobile Search

Image 
Retrieval

Video 
Search

Text Search
(info retrieval)

Social Media Apps . . Photo Sharing 
(e.g. flickr)

Video Sharing
(e.g. Youtube, 
3D Second 

Blogs, Wiki, 
del.icio.us…

translation Speech translationSpeech translation Machine translation



Machine Learning Basics
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Input Output Decision function Loss function

Inductive 

Transductive 

Generative Generative models

Discriminative
Generative OR
Discriminative models

Discriminative loss (form 
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Supervised Machine Learning 
(classification)

measurements (features)
& 

associated ‘class’ labels

(colors used to show class labels)

Training data set

Training
algorithm

Parameters/weights
(and sometimes structure)

Learned model

Training phase (usually offline)



Supervised Machine Learning 
(classification)

Input test data point

structure + parameters
predicted class label or 
label sequence (e.g. sentence)

Learned model Output

measurements (features) only

Test phase (run time, online)



A key ML concept: Generalization

over-fittingunder-fitting

test set error

best
generalization

model capacity (e.g. size, depth)

e
rr

o
r

training set
error

• To avoid over-fitting,
• The need for regularization (or make model simpler, or to add more training)
• move the training objective away from (empirical) error rate



Generalization – effects of more data

test set error

best
generalization

model capacity

e
rr

o
r

training set
error

over-fittingunder-fitting



A variety of ML methods

• Decision trees/forests/jungles, Boosting
• Support Vector Machines (SVMs)
• Model-Based (Graphical models, often generative models: 

sparse connections w. interpretability)
– model tailored for each new application and incorporates prior 

knowledge
– Bayesian statistics exploited to ‘invert the model’ & infer variables of 

interest

• Neural Networks (DNN, RNN, dense connections)

These two types of methods can be made DEEP: Deep generative models and DNNs



Recipe for (Supervised) Deep
Learning with Big Data

(i.e., overfitting)

Deeper
(i.e., underfitting)



Contrast with Signal Processing Approaches

26

2008

• Strong focus on sophisticated objective 
functions for optimization (e.g. MCE, MWE, 
MPE, MMI, string-level, super-string-level, …)

• Can be regarded as “end2end” learning in ASR
• Almost always non-convex optimization 

(praised by deep-ML researchers)
• Weaker focus on regularization & overfitting
• Why?
• Our ASR community has been using shallow, 

low-capacity models for too long (e.g., GMM-
HMM)

• Less need for overcoming overfitting
• Now, deep models add a new dimension for 

increasing model capacity
• Regularization becomes essential for DNN
• E.g. DBN pre-training, “dropout” method, 

STDP spiking neurons, etc.



Deep Neural Net (DNN) Basics
--- why gradient vanishes & how to rescue it

27



(Shallow) Neural Networks for ASR
(prior to the rise of deep learning)

Temporal & Time-Delay (1-D Convolutional) Neural Nets
• Atlas, Homma, and Marks, “An Artificial Neural Network for Spatio-Temporal Bipolar Patterns, 

Application to Phoneme Classification,” NIPS, 1988.
• Waibel, Hanazawa, Hinton, Shikano, Lang. “Phoneme recognition using time-delay neural 

networks.” IEEE Transactions on Acoustics, Speech and Signal Processing, 1989.
Hybrid Neural Nets-HMM
• Morgan and Bourlard. “Continuous speech recognition using MLP with HMMs,” ICASSP, 1990.
Recurrent Neural Nets
• Bengio. “Artificial Neural Networks and their Application to Speech/Sequence Recognition”, Ph.D. 

thesis, 1991.
• Robinson. “A real-time recurrent error propagation network word recognition system,” ICASSP 

1992.
Neural-Net Nonlinear Prediction
• Deng, Hassanein, Elmasry. “Analysis of correlation structure for a neural predictive model with 

applications to speech recognition,” Neural Networks, vol. 7, No. 2, 1994.
Bidirectional Recurrent Neural Nets
• Schuster, Paliwal. "Bidirectional recurrent neural networks," IEEE Trans. Signal Processing, 1997.
Neural-Net TANDEM
• Hermansky, Ellis, Sharma. "Tandem connectionist feature extraction for conventional HMM 

systems." ICASSP 2000.
• Morgan, Zhu, Stolcke, Sonmez, Sivadas, Shinozaki, Ostendorf, Jain, Hermansky, Ellis, Doddington, 

Chen, Cretin, Bourlard, Athineos, “Pushing the envelope - aside [speech recognition],” IEEE Signal 
Processing Magazine, vol. 22, no. 5, 2005.
 DARPA EARS Program 2001-2004: Novel Approach I  (Novel Approach II: Deep Generative Model)

Bottle-neck Features Extracted from Neural-Nets
• Grezl, Karafiat, Kontar & Cernocky. “Probabilistic and bottle-neck features for LVCSR of meetings,” 

ICASSP, 2007.

28
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One-hidden-layer neural networks

• Starting from (nonlinear) regression

• Replace each fj with a variable zj,

where

and h() is a fixed activation function

• The outputs obtained from

where s() is another fixed function

• In all, we have (simplifying biases):



Multi-layer neural networks

• The sum is over those values of j with 
instantiated weights wkj

Denote all activation 

functions by h



Unchallenged learning algorithm: Back propagation (BP)

• For regression, we consider a squared error cost 
function:

E(w) = ½ Sn Sk ( tnk – yk(xn,w) )2

which corresponds to a Gaussian density p(t|x)

• We can substitute

and use a general purpose optimizer to estimate w, 

but it is much more efficient to exploit derivatives of E, 
the essence of BP



Learning neural networks

E(w) = ½ Sn Sk ( tnk – yk(xn,w) )2

• Recall that for linear regression:

E(w)/wm = -Sn ( tn - yn )  xnm

• We’ll use the chain rule of differentiation to derive a 

similar-looking expression, where

– Local input signals are forward-propagated from the input

– Local error signals are back-propagated from the output 

Error signal Input signalWeight in-between error 

signal and input signal



Local signals needed for learning

• For clarity, consider the error for one training case:

• To compute En/wji, note that wji appears in only one 

term of the overall expression, namely

• Using the chain rule of differentiation, we have

where

if wji is in the 1st layer, 

zi is actually input xi

Weight
Local 
error 
signal

Local 
input 
signal



Forward-propagating local input signals

• Forward propagation gives all the a’s and z’s



Back-propagating local error signals

• Back-propagation gives all the d ’s

t2

t1



Back-propagating error signals

• To compute En/aj (i.e., dj), aj (also called “logit”) appears in 

all those expressions ak = Si wki h(ai) that depend on aj

• Using the chain rule, we have

• The sum is over k s.t. unit j is connected to unit k and 

for each such term, ak/aj = wkj h’(aj)

• Noting that En/ak = dk, we get the back-propagation 

rule:

• For output units:          -



Putting the propagations together

• For each training case n, apply forward propagation 

and back-propagation to compute

for each weight wji

• Sum these over training cases to compute

• Use these derivatives for steepest descent learning 

(too slow for large set of training data)

• Minibatch learning: After a small set of input samples, 

use the above gradient to update the weights (so 

update more often)



Why gradients tend to vanish for DNN

• Recall BP for adjacent layer pair:

• For sigmoid units: If the = h       (1-h      )

• If there is one hidden layer,

gradients are not likely to vanish

• Problem becomes serious when nets

get deep

39



Why gradients tend to vanish for DNN
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Why gradients tend to vanish for DNN

• To illustrate to problem, let’s use matrix form of error BP:

[ ]+1l+2l+2

…, …, …

• So even if forward pass is nonlinear, error backprop is a linear process

• It suffers from all problems associated with linear processes

• Many terms of    (1- ) for sigmoid units

• In addition, many terms in the product of W’s

• If any sigmoid unit saturates in either direction, the error gradient becomes zero

• If ||W||<1, the product will shrink fast for high depths

• If ||W||>1, the product may grow fast for high depths

…, …, …



How to rescue it

• Pre-train the DNN by generative DBN (solution by 2010)
– Complicated process

• Discriminative pre-training (much easier to do)

• Still random initialization but with carefully set variance values; e.g.
– Layer-dependent variance values

– For lower layers (with more terms in the product),

make the variance closer to 0 (e.g. < 0.1)

• Use bigger training data to reduce the chance 

of vanishing gradients for each epoch

• Use ReLU units: only one side of zero gradient

instead of two as for sigmoid units 

The power of understanding root causes!!! 

(mid 2010 at MSR Redmond)
42



An alternative way of training NN 
• Backprop takes partial derivatives:

• If the output layer is linear, total (instead of partial) 
derivative can be computed

• This is basic learning method for Deep Convex/Stacking Net 
(DSN), designed to be easily parallelizable by batch training

• Using the total derivative is equivalent to coordinate 
descent algorithm with an “infinite” step size to achieve the 
global optimum along the “coordinate” of updating U while 
fixing W.

43



Deep Stacking Nets

44

... ...

... ...

...

W2

U2

... ...

... ...

...

W1

U1

Wrand

... ... ...

... ...

...

W3Wrand

U3

...... ... ...

... ...

...

Wrand
W4

U4• Learn weight matrices U 
and W in individual 
modules separately.

• Given W and linear output 
layer, U can be expressed 
as explicit nonlinear 
function of W.

• This nonlinear function is 
used as the constraint in 
solving nonlinear least 
square for learning W.

• Initializing W with RBM 
(bottom layer)

• For higher layers, part of W 
is initialized with the 
optimized W from the 
immediately lower layer 
and part of it with random 
numbers

(Deng, Yu, Platt, ICASSP-2012; Hutchinson, Deng, Yu, IEEE T-PAMI, 2013)



A neat way of learning DSN weights

45

𝜕𝐸

𝜕𝑼
= 2𝑯 𝑼𝑇𝑯− 𝑻 𝑇

 𝑼 = 𝑯𝑯𝑻 −1
𝑯𝑻𝑇 = F(𝑾),   where 𝒉𝑛 = 𝜎 𝑾𝑇𝒙𝑛

X

H

Y

U

W

E =
1

2
෍

𝑛

||𝒚𝑛 −𝒕𝑛||
2, where 𝒚𝑛 = 𝑼𝑇𝒉𝑛 = 𝑼𝑇𝜎 𝑾𝑇𝒙𝑛 = 𝐺𝑛(𝑼,𝑾)

E =
1

2
σ𝑛 ||𝐺𝑛(𝑼,𝑾) − 𝒕𝑛||

2, subject to U= F(𝑾), 

E =
1

2
σ𝑛 ||𝐺𝑛(𝑼,𝑾) − 𝒕𝑛||

2 + 𝜆 ||U −F 𝑾 ||

Use of Lagrange multiplier method:

to learn W (& then U) full derivation       in closed form
(i.e. no longer recursion on partial derivation as in backpropagation

• Advantages found: 
--- less noise in gradient than using chain rule which ignores explicit constraint U= F(𝑾)
--- batch learning is effective, aiding parallel training 



How the Brain May Do BackProp
• Canadian Psychology, Vol 44, pp 10-13, 2003.

• Feedback system in biological neural nets

• Key roles of STDP (Spike-Time-Dependent Plasticity) --- temporal derivative

• To provide a way to encode error derivatives

46



How the Brain May Do BackProp
• Backprop algorithm requires that feedforward and feedback weights are the same

• This is clearly not true for biological neural nets

• How to reconcile this discrepancy?

• Recent studies showed that use of random feedback weights in BP performs close to rigorous BP

• Implications for regularizing BP learning (like dropout, which may not make sense at 1st glance) 

47



Recurrent Neural Net (RNN) Basics
--- why memory decays fast or explode (1990’s)

--- how to rescue it (2010’s, in the new deep learning era)

48



49Microsoft Research

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙3

𝒉3

𝒚3

𝒗𝑇

𝒉𝑇

𝒚𝑇

𝑾 𝑾

𝑽 𝑽 𝑽 𝑽

𝑼 𝑼 𝑼 𝑼

Basic architecture of an RNN

…
𝑾

[Mesnil, He, Deng, Bengio, 2013; Yao, Zweig, Hwang, Shi, Yu, 2013]

where 𝑥𝑡: 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑤𝑜𝑟𝑑 , 𝑦𝑡: 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑡𝑎𝑔

𝑦𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 𝑈 ∙ ℎ𝑡 , 𝑤ℎ𝑒𝑟𝑒 ℎ𝑡 = 𝜎(𝑊 ∙ ℎ𝑡−1 + 𝑉 ∙ 𝑥𝑡)

ℎ𝑡 is the hidden layer that carries the information from time 0~𝑡

Used for slot filling in SLU
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Back-propagation through time (BPTT)

𝒙1

𝒉1

𝒚1

𝒙2

𝒉2

𝒚2

𝒙3

𝒉3

𝒚3

𝑾 𝑾

𝑼 𝑼 𝑼

𝒍𝒂𝒃𝒆𝒍3 at time 𝑡 = 3

1. Forward propagation

𝑽 𝑽 𝑽

2. Generate output

3. Calculate error

4. Back propagation

5. Back prop. through time
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Some early attempts to examine 
difficulties in learning RNNs

• Yoshua Bengio’s Ph.D. thesis at McGill University (1991)
• Based on attractor properties of nonlinear dynamic systems
• His recent, more intuitive explanation --- in extreme of 

nonlinearity, discrete functions and gradients vanish or 
explode:

• An alternative analysis: based on perturbation analysis of 
nonlinear differential equations (next several slides)
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• NN for nonlinear sequence prediction (like NN language model used today)
• Memory (temporal correlation) proved to be stronger than linear prediction
• No GPUs to use; very slow to train with BP; did not make NN big and deep, etc.

• Conceptually easy to make it deep using (state-space) signal processing & graphical models… 
by moving away from NN…
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Why gradients vanish/explode for RNN

• The easiest account is to follow the analysis for 
DNN

• except that “depth” of RNN is much larger: the 
length of input sequence

• Especially serious for speech sequence (not as 
bad for text input)

• Tony Robinson group was the only one that made 
RNN work for TIMIT phone recognition (1994)

58



How to rescue it

• Echo state nets (“lazy” approach)

– avoiding problems by not training input & recurrent weights

– H. Jaeger. “Short term memory in echo state networks”, 2001

• But if you figure out smart ways to train them, you get much better results

59
(NIPS-WS, 2013)



How to rescue it
• By Better optimization

– Hessian-free method 

– Primal-dual method

60



How to rescue it

• Use of LSTM (long short-term memory) cells

– Sepp Hochreiter & Jürgen Schmidhuber (1997). "Long short-
term memory" Neural Computation 9 (8): 1735–1780.

– Many earlier-to-read materials, especially after 2013

• The best way so far to train RNNs well

– Increasingly popular in speech/language processing

– Attracted big attention from ASR community at ICASSP-2013’s 
DNN special session (Graves et al.)

– Huge progress since then

61

https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
https://en.wikipedia.org/wiki/Neural_Computation


Many ways to show an LSTM cell

62(Slide revised from: Koutnik & Schmidhuber, 2015)



Many ways to show an LSTM cell
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Many ways to show an LSTM cell
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Huh?....

Don’t worry, we’ll come back to this shortly



LSTM Cells in an RNN
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LSTM cell unfolding over time

68

(Jozefowics, Zarembe, Sutskever, 
ICML 2015)



Gated Recurrent Unit (GRU)
(simpler than LSTM; no output gates)

69

(Jozefowics, Zarembe, Sutskever, ICML 2015; Google
Kumar et al., arXiv, July, 2015; Metamind)
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(2006, 2012)



Part II: Speech
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Deep/Dynamic Structure in Human 
Speech Production and Perception

(part of my tutorial at 2009 NIPS WS)
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Production & Perception: Closed-Loop Chain

message
Internal

model

decoded

message

SPEAKER LISTENER

Speech Acoustics in 

closed-loop chain



Encoder: Two-Stage Production Mechanisms

message

Speech Acoustics

Phonology (higher level):
•Symbolic encoding of linguistic message
•Discrete representation by phonological features
•Loosely-coupled multiple feature tiers
•Overcome beads-on-a-string phone model
•Theories of distinctive features, feature geometry
& articulatory phonology

• Account for partial/full sound deletion/modification
in casual speech 

SPEAKER

Phonetics (lower level):
•Convert discrete linguistic features to
continuous acoustics

•Mediated by motor control & articulatory     
dynamics
•Mapping from articulatory variables to
VT area function to acoustics 

•Account for co-articulation and reduction   
(target undershoot), etc.



Encoder: Phonological Modeling

message

Speech Acoustics

Computational phonology:
• Represent pronunciation variations as
constrained factorial Markov chain 

• Constraint: from articulatory phonology
• Language-universal representation

SPEAKER

ten themes

/  t         ε n      ө i:   m      z /

Tongue
Tip

Tongue
Body

High / Front
Mid / Front



Encoder: Phonetic Modeling

message

Speech Acoustics

SPEAKER

Computational phonetics:
• Segmental factorial HMM for sequential target 

in articulatory or vocal tract resonance domain
• Switching trajectory model for target-directed

articulatory dynamics
• Switching nonlinear state-space model for

dynamics in speech acoustics
• Illustration:





Decoder I: Auditory Reception

message
Internal

model

decoded

message

LISTENER
• Convert speech acoustic waves into

efficient & robust auditory representation
• This processing is largely independent 

of phonological units
• Involves processing stages in cochlea

(ear), cochlear nucleus, SOC, IC,…, all
the way to A1 cortex

• Principal roles: 
1) combat environmental acoustic 

distortion;
2) detect relevant speech features 
3) provide temporal landmarks to aid

decoding

• Key properties: 
1) Critical-band freq scale, logarithmic compression,
2) adapt freq selectivity, cross-channel correlation,
3) sharp response to transient sounds
4) modulation in independent frequency bands,
5) binaural noise suppression, etc. 



Decoder II: Cognitive Perception

message
Internal

model

decoded

message

LISTENER• Cognitive process: recovery of linguistic
message

• Relies on 
1) “Internal” model: structural knowledge of 

the encoder (production system)
2) Robust auditory representation of features
3) Temporal landmarks

• Child speech acquisition process is one that 
gradually establishes the “internal” model

• Strategy: analysis by synthesis
• i.e., Probabilistic inference on (deeply) 

hidden linguistic units using the internal
model

• No motor theory: the above strategy 
requires no articulatory recovery from 
speech acoustics



Human Speech Perception (decoder)

message
Internal
model

decoded
message

LISTENER• Convert speech acoustic waves into

efficient & robust auditory representation

• This processing is largely independent 

of phonological units

• Involves processing stages in cochlea

(ear), cochlear nucleus, SOC, IC,…, all

the way to A1 cortex

• Two principal roles: 

1) combat environmental acoustic 

distortion; 

2) provide temporal landmarks to aid

decoding

• Key properties: 

1) Critical-band freq scale, logarithmic compression,

2) adapt freq selectivity, cross-channel correlation,

3) sharp response to transient sounds (CN),

4) modulation in independent frequency bands,

5) binaural noise suppression, etc. 



Types of Speech Perception 

Theories 

• Active vs. Passive

• Bottom up vs./and Top Down

• Autonomous vs. Interactive



Active vs. Passive

• Active theories suggests that speech 

perception and production are closely related

– Listener knowledge of how sounds are produced 

facilitates recognition of sounds

• Passive theories emphasizes the sensory 

aspects of speech perception

– Listeners utilize internal filtering mechanisms

– Knowledge of vocal tract characteristics plays a minor 

role, for example when listening in noise conditions



Bottom up vs. & Top Down

• Top-down processing works with 
knowledge a listener has about a 
language, context, experience, 
etc.
– Listeners use stored information 

about language and the world to 
make sense of the speech 

• Bottom-up processing works in 
the absence of a knowledge base 
providing top-down information
– listeners receive auditory information, 

convert it into a neural signal and 
process the phonetic feature 
information 



Specific Speech Perception 

Theories
• Motor Theory

• Acoustic Invariance Theory

• Direct Realism

• Trace Model (based on neural nets)

• Cohort Theory

• Fuzzy Logic Model of Perception

• Native Language Magnet Theory



Motor Theory

• Postulates speech is perceived by 

reference to how it is produced

– when perceiving speech, listeners access 

their own knowledge of how phonemes 

are articulated

– Articulatory gestures (such as rounding or 

pressing the lips together) are units of 

perception that directly provide the 

listener with phonetic information

Liberman, Cooper, Shankweiler, & Studdert-

Kennedy, 1967



Acoustic Invariance Theory
• Listeners inspect the incoming signal for the so-

called acoustic landmarks which are particular 
events in the spectrum carrying information 
about gestures which produced them. 

• Gestures are limited by the capacities of 
humans’ articulators and listeners are sensitive 
to their auditory correlates, the lack of 
invariance simply does not exist in this model. 

• The acoustic properties of the landmarks 
constitute the basis for establishing the 
distinctive features. 

• Bundles of the distinctive features uniquely 
specify phonetic segments (phonemes, 
syllables, words).

Stevens, K.N. (2002). "Toward a model of lexical access based on 
acoustic landmarks and distinctive features" (PDF). Journal of the 
Acoustical Society of America 111 (4): 1872–1891.

http://linguistics.berkeley.edu/~kjohnson/ling210/stevens2002.pdf
http://en.wikipedia.org/wiki/PDF


TRACE Model
• For example, a listener hears the 

beginning of bald, and the words bald, 

ball, bad, bill become active in memory. 

Then, soon after, only bald and ball 

remain in competition (bad, bill have 

been eliminated because the vowel 

sound doesn't match the input). 

– Soon after, bald is recognized. 

• TRACE simulates this process by 

representing the temporal dimension of 

speech, allowing words in the lexicon to 

vary in activation strength, and by having 

words compete during processing. 

http://en.wikipedia.org/wiki/Image:Bald.png
http://en.wikipedia.org/wiki/Image:Bald.png


A Deep/Generative Model of Speech Production/Perception
--- Perception as “variational inference”

message

Speech Acoustics

SPEAKER

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors & 
feedback to articulation



Deep Generative Models, 

Variational Interference/Learning, & 

Applications to Speech

90



Deep Learning 
≈

Neural Networks, Deep 
in space & time (recurrent LSTM), & deep RNN

+

Generative Models, Deep 
in space & time (dynamic), & deep/hidden dynamic models

+ 
…, …, …

91



Deep Neural Nets Deep Generative Models

Structure Graphical; info flow: bottom-up Graphical; info flow: top-down

Incorp constraints & 
domain knowledge

Hard Easy

Semi/unsupervised Harder or impossible Easier, at least possible

Interpretation Harder Easy (generative “story” on data and hidden variables)

Representation Distributed Localist (mostly); can be distributed also

Inference/decode Easy Harder (but note recent progress)

Scalability/compute Easier (regular computes/GPU) Harder  (but note recent progress)

Incorp. uncertainty Hard Easy

Empirical goal Classification, feature learning, … Classification (via Bayes rule), latent 
variable inference…

Terminology Neurons, activation/gate functions, 
weights … 

Random vars, stochastic “neurons”, 
potential function, parameters …

Learning algorithm A single, unchallenged, algorithm --
BackProp

A major focus of open research, many 
algorithms, & more to come

Evaluation On a black-box score – end performance On almost every intermediate quantity

Implementation Hard (but increasingly easier) Standardized but insights needed

Experiments Massive, real data Modest, often simulated data

Parameterization Dense matrices Sparse (often PDFs); can be dense



Example: (Shallow) Generative Model

war animals computers“TOPICS”
as hidden layer

…

Iraqi the Matlab

slide revised from: Max Welling
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Another example: Medical Diagnosis

symptoms

diseases
Inference problem: 

What is the most 

probable disease 

given the 

symptoms?



Example: (Deep) Generative Model

Speech Acoustics

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors & 
feedback to articulation



Deep Generative/Graphical Model Inference

• Key issues:  
– Representation:  syntax and semantics (directed/undirected,variables/factors,..)

– Inference:   computing probabilities and most likely assignments/explanations

– Learning:   of model parameters based on observed data.  Relies on inference!

• Inference is NP-hard (incl. approximation hardness)

• Exact inference:   works for very limited subset of models/structures
– E.g., chains or low-treewidth trees

• Approximate inference:   highly computationally intensive

– Deterministic:   Variational, loopy belief propagation, expectation propagation

– Numerical sampling (Monte Carlo):    Gibbs sampling

• Variational learning: 
– EM algorithm

– E-step uses variational inference (recent new advances in ML)
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Variational inference/learning is not 

trivial: Example

symptoms

diseases
Difficulty: 

Explaining away: 

observation introduces 

correlation of nodes in 

the parent hidden layer



98

Variational EM 

Step 1: Maximize the bound with respect to Q

(Q approximates true posterior, often by factorizing it) 

Step 2: Fix Q, maximize with respect to  

),(maxarg  :step) (E )()1( k

Q

k QLQ 

),(maxarg  :step) (M )1()1(  
  kk QL

Note in traditional EM, Q is precise; e.g. posteriors computed by forward/backward 

algorithm for HMMs
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Bridle, Deng, Picone, Richards, Ma, Kamm, Schuster, Pike, Reagan. Final Report for Workshop on Language Engineering, 
Johns Hopkins University, 1998.  (experiments on Switchboard tasks)

Deterministic
HDM

Statistical HDM
(hidden dynamic
Model)



ICASSP-2004
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Auxiliary function:



Surprisingly Good Inference Results for 
Continuous Hidden States

103

• By-product: accurately 
tracking dynamics of 
resonances (formants) in 
vocal tract (TIMIT & SWBD).

• Best formant tracker by 
then in speech analysis; 
used as basis to form a 
formant database as 
“ground truth”

• We thought we solved the 
ASR problem, except

• “Intractable” for decoding

Deng & Huang, Challenges in Adopting Speech Recognition, Communications of the ACM, vol. 47, pp. 69-75, 2004.
Deng, Cui, Pruvenok, Huang, Momen, Chen, Alwan, A Database of Vocal Tract Resonance Trajectories for Research in Speech , ICASSP, 2006.

http://research.microsoft.com/apps/pubs/default.aspx?id=75861
http://research.microsoft.com/apps/pubs/default.aspx?id=77520


Deep Generative Models in Speech Recognition
(prior to the rising of deep learning) 

Segment & Nonstationary-State Models
• Digalakis, Rohlicek, Ostendorf. “ML estimation of a stochastic linear system with the EM alg & 

application to speech recognition,” IEEE T-SAP, 1993

• Deng, Aksmanovic, Sun, Wu, Speech recognition using HMM with polynomial regression functions 
as nonstationary states,” IEEE T-SAP, 1994.

Hidden Dynamic Models (HDM)
• Deng, Ramsay, Sun. “Production models as a structural basis for automatic speech recognition,” 

Speech Communication, vol. 33, pp. 93–111, 1997.

• Bridle et al. “An investigation of segmental hidden dynamic models of speech coarticulation for 
speech recognition,” Final Report Workshop on Language Engineering, Johns Hopkins U, 1998.

• Picone et al. “Initial evaluation of hidden dynamic models on conversational speech,” ICASSP, 1999.

• Deng and Ma. “Spontaneous speech recognition using a statistical co-articulatory model for the 
vocal tract resonance dynamics,” JASA, 2000.

Structured Hidden Trajectory Models (HTM)

• Zhou, et al. “Coarticulation modeling by embedding a target-directed hidden trajectory model into 
HMM,” ICASSP, 2003.  DARPA EARS Program 2001-2004: Novel Approach II 

• Deng, Yu, Acero. “Structured speech modeling,” IEEE Trans. on Audio, Speech and Language 
Processing, vol. 14, no. 5, 2006.

Switching Nonlinear State-Space Models 
• Deng. “Switching Dynamic System Models for Speech Articulation and Acoustics,” in Mathematical Foundations of 

Speech and Language Processing, vol. 138, pp. 115 - 134, Springer, 2003.

• Lee et al. “A Multimodal Variational Approach to Learning and Inference in Switching State Space 
Models,” ICASSP, 2004. 104

1993

1994

1997
1998

1999
2000

2003
2006



Other Deep Generative Models 
(developed outside speech)

105

• Sigmoid belief nets & wake/sleep alg. (1992) 
• Deep belief nets (DBN, 2006);
 Start of deep learning 
• Totally non-obvious result:

Stacking many RBMs (undirected)
 not Deep Boltzmann Machine (DBM, undirected)
 but a DBN (directed, generative model)
• Excellent in generating images & speech synthesis

• Similar type of deep generative models to HDM
• But simpler: no temporal dynamics
• With very different parameterization
• Most intriguing of DBN: inference is easy 

(i.e. no need for approximate variational Bayes)
 ”Restriction” of connections in RBM  

• Pros/cons analysis Hinton coming to MSR 2009



This is a very different kind of deep generative model

(Deng et al., 2006; Deng & Yu, 2007)(Mohamed, Dahl, Hinton, 2009, 2012)

(after adding Backprop to the generative DBN)



d
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• Elegant model formulation & knowledge 
incorporation

• Strong empirical results: 96% TIMIT accuracy 
with Nbest=1001; 75.2% lattice decoding w. 
monophones; fast approx. training 

• Still very expensive for decoding; could not 
ship (very frustrating!)

Error Analysis

-- DBN/DNN made many new errors 
on short, undershoot vowels

-- 11 frames contain too much “noise”



Early Successes of Deep Learning

in Speech Recognition

108



Academic-Industrial Collaboration (2009,2010)

• I invited Geoff Hinton to work with me at MSR, Redmond

• Well-timed academic-industrial collaboration:

– ASR industry searching for new solutions when “principled” 
deep generative approaches could not deliver

– Academia developed deep learning tools (e.g. DBN 2006) 
looking for applications

– Add Backprop to deep generative models (DBN)  DNN 
(hybrid generative/discriminative)

– Advent of GPU computing (Nvidia CUDA library released 
2007/08)

– Big training data in speech recognition were already available  
109



110
Mohamed, Dahl, Hinton, Deep belief networks for phone recognition, NIPS 2009 Workshop on Deep Learning, 2009
Yu, Deng, Wang, Learning in the Deep-Structured Conditional Random Fields, NIPS 2009 Workshop on Deep Learning, 2009
…, …, …

Invitee 1: give me one week 
to decide …,… 
Not worth my time to fly to 
Vancouver for this…



Expanding DNN at Industry Scale

• Scale DNN’s success to large speech tasks (2010-2011)
– Grew output neurons from context-independent phone states (100-200) to context-dependent 

ones (1k-30k)  CD-DNN-HMM for Bing Voice Search and then to SWBD tasks
– Motivated initially by saving huge MSFT investment in the speech decoder software 

infrastructure 
– CD-DNN-HMM also gave much higher accuracy than CI-DNN-HMM
– Earlier NNs made use of context only as appended inputs, not coded directly as outputs
– Discovered that with large training data Backprop works well without DBN pre-training by 

understanding why gradients often vanish (patent filed for “discriminative pre-training” 2011)

• Engineering for large speech systems:
– Combined expertise in DNN (esp. with GPU implementation) and speech recognition
– Collaborations among MSRR, MSRA, academic researchers

• Yu, Deng, Dahl, Roles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMMs for Real-World Speech Recognition, in NIPS Workshop on Deep Learning, 2010. 
• Dahl, Yu, Deng, Acero, Large Vocabulary Continuous Speech Recognition With Context-Dependent DBN-HMMS, in Proc. ICASSP, 2011.
• Dahl, Yu, Deng, Acero, Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, in IEEE Transactions on Audio, Speech, and Language 

Processing (2013 IEEE SPS Best Paper Award) , vol. 20, no. 1, pp. 30-42, January 2012.
• Seide, Li, Yu, "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks", Interspeech 2011, pp. 437-440.
• Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury, Deep Neural Networks for Acoustic Modeling in SpeechRecognition, in IEEE Signal 

Processing Magazine, vol. 29, no. 6, pp. 82-97, November 2012
• Sainath, T., Kingsbury, B., Ramabhadran, B., Novak, P., and Mohamed, A. “Making deep belief networks effective for large vocabulary continuous speech recognition,” Proc. 

ASRU, 2011.
• Sainath, T., Kingsbury, B., Soltau, H., and Ramabhadran, B. “Optimization Techniques to Improve Training Speed of Deep Neural Networks for Large Speech Tasks,” IEEE 

Transactions on Audio, Speech, and Language Processing, vol.21, no.11, pp.2267-2276, Nov. 2013.
• Jaitly, N., Nguyen, P., Senior, A., and Vanhoucke, V. “Application of Pretrained Deep Neural Networks to Large Vocabulary Speech Recognition,” Proc. Interspeech, 2012.

112

http://research.microsoft.com/apps/pubs/default.aspx?id=143619
http://research.microsoft.com/apps/pubs/default.aspx?id=144224
http://research.microsoft.com/apps/pubs/default.aspx?id=144412
http://research.microsoft.com/apps/pubs/?id=153169
http://research.microsoft.com/apps/pubs/default.aspx?id=171498


DNN-HMM
(replacing GMM only; longer MFCC/filter-back windows w. no transformation)

113

Model tied triphone states directly

Many layers of 

nonlinear 

feature 

transformation 

+ SoftMax



DNN vs. Pre-DNN Prior-Art

Features Setup Error Rates

Pre-DNN GMM-HMM with BMMI 23.6%

DNN 7 layers x 2048 15.8% 

Features Setup Error Rates

Pre-DNN GMM-HMM with MPE 36.2%

DNN 5 layers x 2048 30.1%  

• Table: Voice Search SER (24-48 hours of training)

 Table: SwitchBoard WER (309 hours training)

 Table: TIMIT Phone recognition (3 hours of training)

Features Setup Error Rates

Pre-DNN Deep Generative Model 24.8%

DNN 5 layers x 2048 23.4%  

~10% relative
improvement

~20% relative
improvement

~30% relative
Improvement

114
For DNN, the more data, the better!



Scientists See Promise in Deep-Learning Programs
John Markoff

November 23, 2012

Rick Rashid in Tianjin, China, October, 25, 2012

Deep learning 

technology enabled 

speech-to-speech 

translation

A voice recognition program translated a speech given by 

Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese. 



CD-DNN-HMM 
Dahl, Yu, Deng, and Acero, “Context-Dependent Pre-
trained Deep Neural Networks for Large Vocabulary 
Speech Recognition,” IEEE Trans. ASLP, Jan. 2012 (also 
ICASSP 2011)

Seide et al, Interspeech, 2011.

After no improvement for 10+ years 

by the research community…
…MSR reduced error from ~23% to

<13% (and under 7% for Rick 

Rashid’s S2S demo in 2012)!



Impact of deep learning in speech technology

Cortana
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119Microsoft Research



120
(Slide from Bengio, 2015)
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In Academic World

122

“This joint paper from the major 

speech recognition laboratories 

was the first major industrial 

application of deep learning.”



DNN: (Fully-Connected) Deep Neural  Networks
“DNN for acoustic modeling in speech recognition,” in IEEE SPM, Nov. 2012

First train a stack of N models each of 
which has one hidden layer. Each model in 
the stack treats the hidden variables of the 
previous model as data.

Then compose them into 
a single Deep Belief 
Network (DBN).

Then add outputs 
and train the DNN 
with backprop.



124Microsoft Research

ASR Issues Solutions

How to reduce the runtime without 
accuracy loss? 

SVD

How to do speaker adaptation with 
low footprints?

SVD-based adaptation

How to be robust to noise? Variable component CNN

How to reduce accuracy gap 
between large and small DNN?

Teacher-student learning using 
output posterior

How to deal with large variety of 
data?

DNN factorization, mixed band 
training

How to enable languages with 
limited training data?

Multi-lingual DNN



More Recent Development of 

Deep Learning for Speech

125
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Chapter 7



Innovation: Better Optimization

127

Input data X

• Sequence discriminative training for DNN:
- Mohamed, Yu, Deng: “Investigation of full-sequence training of deep
belief networks for speech recognition,” Interspeech, 2010.
- Kingsbury, Sainath, Soltau. “Scalable minimum Bayes risk training of    
DNN acoustic models using distributed hessian-free optimization,” 
Interspeech, 2012.
- Su, Li, Yu, Seide. “Error back propagation for sequence training of CD 
deep networks for conversational speech transcription,” ICASSP, 2013.
- Vesely, Ghoshal, Burget, Povey. “Sequence-discriminative training of 
deep neural networks, Interspeech, 2013.

• Distributed asynchronous SGD 
- Dean, Corrado,…Senior, Ng. “Large Scale Distributed Deep Networks,” 
NIPS, 2012.
- Sak, Vinyals, Heigold, Senior, McDermott, Monga, Mao. “Sequence 
Discriminative Distributed Training of Long Short-Term Memory 
Recurrent Neural Networks,” Interspeech,2014.



Innovation: Towards Raw Inputs

128

Input data X

• Bye-Bye MFCCs (no more cosine transform, Mel-scaling?) 
- Deng, Seltzer, Yu, Acero, Mohamed, Hinton. “Binary coding of speech spectrograms using a deep 

auto-encoder,” Interspeech, 2010.
- Mohamed, Hinton, Penn. “Understanding how deep belief networks perform acoustic modeling,” 
ICASSP, 2012.
- Li, Yu, Huang, Gong, “Improving wideband speech recognition using mixed-bandwidth training data 
in CD-DNN-HMM” SLT, 2012
- Deng, J. Li, Huang, Yao, Yu, Seide, Seltzer, Zweig, He, Williams, Gong, Acero. “Recent advances in 
deep learning for speech research at Microsoft,” ICASSP, 2013.
- Sainath, Kingsbury, Mohamed, Ramabhadran. “Learning filter banks within a deep neural network 
framework,” ASRU, 2013.

• Bye-Bye Fourier transforms?
- Jaitly and Hinton. “Learning a better representation of speech sound waves using RBMs,” ICASSP, 
2011.
- Tuske, Golik, Schluter, Ney. “Acoustic modeling with deep neural networks using raw time signal for 
LVCSR,” Interspeech, 2014.
- Golik et al, “Convolutional NNs for acoustic modeling of raw time signals in LVCSR,” Interspeech, 
2015.
- Sainath et al. “Learning the Speech Front-End with Raw Waveform CLDNNs,” Interspeech, 2015

• DNN as hierarchical nonlinear feature extractors: 
- Seide, Li, Chen, Yu. “Feature engineering in context-dependent deep neural networks for 

conversational speech transcription, ASRU, 2011.
- Yu, Seltzer, Li, Huang, Seide. “Feature learning in deep neural networks - Studies on speech 
recognition tasks,” ICLR, 2013.
- Yan, Huo, Xu. “A scalable approach to using DNN-derived in GMM-HMM based acoustic modeling in 
LVCSR,” Interspeech, 2013.
- Deng, Chen. “Sequence classification using high-level features extracted from deep neural 
networks,” ICASSP, 2014.



Innovation: Transfer/Multitask Learning
& Adaptation

129

Adaptation to speakers & 
environments (i-vectors)

• Too many references to list & organize



Innovation: Better regularization & nonlinearity

130

Input data X

x x

xx

xx



Innovation: Better architectures

131

• Recurrent Nets (bi-directional RNN/LSTM) 
and Conv Nets (CNN) are superior to fully-
connected DNNs

• Sak, Senior, Beaufays. “LSTM Recurrent Neural 
Network architectures for large scale acoustic 
modeling,” Interspeech,2014. 

• Soltau, Saon, Sainath. ”Joint Training of 
Convolutional and Non-Convolutional Neural 
Networks,” ICASSP, 2014. 



Innovation: Ensemble Deep Learning

132

• Ensembles of RNN/LSTM, DNN, & Conv Nets (CNN) give 
huge gains:

• T. Sainath,  O. Vinyals, A. Senior, H. Sak. “Convolutional, Long Short-Term Memory, Fully 
Connected Deep Neural Networks,” ICASSP 2015.

• L. Deng and John Platt, Ensemble Deep Learning for Speech Recognition, Interspeech, 
2014.

• G. Saon, H. Kuo, S. Rennie, M. Picheny. “The IBM 2015 English conversational telephone 
speech recognition system,” arXiv, May 2015. (8% WER on SWB-309h)

http://research.microsoft.com/apps/pubs/default.aspx?id=219987


Innovation: Better learning objectives/methods

133

• Use of CTC as a new objective in RNN/LSTM with 
end2end learning drastically simplifies ASR 
systems

• Predict graphemes or words directly; no pron. 
dictionaries; no CD; no decision trees 

• Use of “Blank” symbols may be equivalent to a 
special HMM state tying scheme

 CTC/RNN has NOT replaced HMM (left-to-right)
• Relative 8% gain by CTC has been shown by a very

limited number of labs

• A. Graves and N. Jaitly. “Towards End-to-End Speech Recognition 
with Recurrent Neural Networks,” ICML, 2014.

• A. Hannun, A. Ng et al. “DeepSpeech: Scaling up End-to-End 
Speech Recognition,” arXiv Nov. 2014.

• A. Maas et al. “Lexicon-Free Conversational ASR with NN,” NAACL, 
2015

• H. Sak et al. “Learning Acoustic Frame Labeling for ASR with RNN,” 
ICASSP, 2015

• H. Sak, A. Senior, K. Rao, F. Beaufays. “Fast and Accurate Recurrent 
Neural Network Acoustic Models for Speech Recognition,” 
Interspeech, 2015



Innovation: A new paradigm for speech recognition

134

• Seq2seq learning with attention 
mechanism (borrowed from NLP-MT)

• W. Chan, N. Jaitly, Q. Le, O. Vinyals. “Listen, attend, and spell,”
arXiv, 2015.

• J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio. 
“Attention-Based Models for Speech Recognition,” arXiv, 2015.



A Perspective on Recent Innovations of ASR

• All above deep learning innovations are based on 
supervised, discriminative learning of DNN and recurrent 
variants

• Capitalizing on big, labeled data

• Incorporating monotonic-sequential structure of speech 
(non-monotonic for language, later)

• Hard to incorporate many other aspects of speech 
knowledge with (e.g. speech distortion model)

• Hard to do semi- and unsupervised learning

Deep generative modeling may overcome such difficulties

135

Li Deng and Roberto Togneri, Chapter 6: Deep Dynamic Models for Learning Hidden Representations of Speech Features, pp. 153-196, 
Springer, December 2014.

Li Deng and Navdeep Jaitly, Chapter 2: Deep discriminative and generative models for pattern recognition, ~30 pages, in Handbook of 
Pattern Recognition and Computer Vision: 5th Edition, World Scientific Publishing, Jan 2016.

http://research.microsoft.com/apps/pubs/default.aspx?id=210535
http://research.microsoft.com/apps/pubs/default.aspx?id=251677


Deep Neural Nets Deep Generative Models

Structure Graphical; info flow: bottom-up Graphical; info flow: top-down

Incorp constraints & 
domain knowledge

Hard Easy

Unsupervised Harder or impossible Easier, at least possible

Interpretation Harder Easier (generative “story” on data and hidden variables)

Representation Distributed Localist (mostly); can be distributed also

Inference/decode Easy Harder (but note recent progress)

Scalability/compute Easier (regular computes/GPU) Harder  (but note recent progress)

Incorp. uncertainty Hard Easy

Empirical goal Classification, feature learning, … Classification (via Bayes rule), latent 
variable inference…

Terminology Neurons, activation/gate functions, 
weights … 

Random vars, stochastic “neurons”, 
potential function, parameters …

Learning algorithm A single, unchallenged, algorithm --
BackProp

A major focus of open research, many 
algorithms, & more to come

Evaluation On a black-box score – end performance On almost every intermediate quantity

Implementation Hard (but increasingly easier) Standardized but insights needed

Experiments Massive, real data Modest, often simulated data

Parameterization Dense matrices Sparse (often PDFs); can be dense



Example 1: Interpretable deep learning    
using deep topic models (NIPS-2015)
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Recall: (Shallow) Generative Model

war animals computers“TOPICS”
as hidden layer

…

Iraqi the Matlab

slide revised from: Max Welling



Interpretable deep learning: Deep generative model

• Constructing interpretable DNNs based on generative topic models 

• End-to-end learning by mirror-descent backpropagation

 to maximize posterior probability p(y|x)
• y: output (win/loss), and x: input feature vector

Mirror Descent 
Algorithm (MDA) 

J. Chen, J. He, Y. Shen, L. Xiao, X. He, J. Gao, X. Song, and L. Deng, “End-to-end Learning of Latent Dirichlet Allocation by Mirror-Descent Back Propagation”, submitted to NIPS2015.



Example 2: Unsupervised learning using 
deep generative model (ACL, 2013)

• Distorted character string Images Text

• Easier than unsupervised  Speech Text
• 47% error reduction over Google’s open-source OCR system

140

Motivated me to 
think about 
unsupervised ASR
and NLP



Power: Character-level LM & generative modeling for 
unsupervised learning 

141

• “Image” data are naturally “generated” by the model quite accurately (like “computer graphics”)

• I had the same idea for unsupervised generative Speech-to-Text in 90’s
• Not successful because 1) Deep generative models were too simple for generating speech waves

2) Inference/learning methods for deep generative models not mature then
3) Computers were too slow   
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Deep Generative Model for Image-Text Deep Generative Model for Speech-Text

L.Deng, A dynamic, feature-based approach to the interface between phonology
& phonetics for speech modeling and recognition, Speech Communication, 

vol. 24, no. 4, pp. 299-323, 1998.

(Berg-Kirkpatrick et al., 2013, 2015) (Deng, 1998; Deng et al, 1997, 2000, 2003, 2006)

http://research.microsoft.com/apps/pubs/default.aspx?id=78736
http://research.microsoft.com/apps/pubs/default.aspx?id=78736
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Deep Generative Model for Image-Text Deep Generative Model for Speech-Text

(Berg-Kirkpatrick et al., 2013, 2015) (Deng, 1998; Deng et al, 2000, 2003, 2006)

Word-level
Language model

Plus
Feature-level

Pronunciation model
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Deep Generative Model for Image-Text Deep Generative Model for Speech-Text

Easy: likely no “explaining away” problem in 
inference and learning

Hard: pervasive “explaining away” problem
due to speech dynamics

(Berg-Kirkpatrick et al., 2013, 2015) (Deng, 1998; Deng et al, 2000, 2003, 2006)

Articulatory
dynamics



145

Deep Generative Model for Image-Text Deep Generative Model for Speech-Text

(Berg-Kirkpatrick et al., 2013, 2015) (Deng, 1998; Deng et al, 2000, 2003, 2006)

Articulatory
To

Acoustics
mapping
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• In contrast, articulatory-to-acoustics 
mapping in ASR is much more complex

• During 1997-2000, shallow NNs were used
for this as “universal approximator”

• Not successful
• Now we have better DNN tool 
• Even RNN/LSTM/CTC tool for dynamic 

modeling

• Essence: exploit the strong prior of LM: 
trained with billions of words/text 

• No need to pair the text with acoustics; 
hence unsupervised learning

• Think of it as using a new objective function 
based on distribution matching between LM 
prior and the distribution of words 
predicted from acoustic models

Very simple, & easy to model accurately



Further thoughts on unsupervised ASR
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• Deep generative modeling experiments not successful in 90’s

• Computers were too slow   

• Models were too simple from text to speech waves 

• Still true  need speech scientists to work harder with technologists

• And when generative models are not good enough, discriminative models 
and learning (e.g., RNN) can help a lot 

• Further, can iterate between the two, like wake-sleep (algorithm)

• Inference/learning methods for deep generative models not mature 
at that time 
• Only partially true today 

•  due to recent big advances in machine learning 

• Based on new ways of thinking about generative graphical modeling 
motivated by the availability of deep learning tools (e.g. DNN)

• A brief review next



Advances in Inference Algms for Deep Generative Models
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-Variational Bayesian Inference with Stochastic Search [D.M. Blei, M.I. Jordan and J.W. Paisley, 2012]
-Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression [T. Salimans and A. Knowles, 2013].
-Black Box Variational Inference. [R. Ranganath, S. Gerrish and D.M. Blei. 2013]
-Stochastic Variational Inference [M.D. Hoffman, D. Blei, C. Wang and J. Paisley, 2013]
-Estimating or propagating gradients through stochastic neurons. [Y. Bengio, 2013].
-Neural Variational Inference and Learning in Belief Networks. [A. Mnih and K. Gregor, 2014, ICML]
-Stochastic backprop & approximation inference in deep generative models [D. Rezende, S. Mohamed, D. Wierstra, 2014]
-Semi-supervised learning with deep generative models [K. Kingma, D. Rezende, S. Mohamed, M. Welling, 2014, NIPS] 
-auto-encoding variational Bayes [K. Kingma, M. Welling, 2014, ICML]
-Learning stochastic recurrent networks [Bayer and Osendorfer, 2015 ICLR] 
-DRAW: A recurrent neural network for image generation. [K. Gregor, Danihelka, Rezende, Wierstra, 2015]
- Plus a number of NIPS-2015 papers, to appear.

Kingma & Welling 2014, Salakhutdinov et al, 2015

Other solutions to solve the "large variance problem“ in variational inference:

Slide provided by Max Welling (ICML-2014 tutorial) w. my updates on references of 2015 and late 2014 

ICML-2014 Talk Monday June 23, 15:20

In Track F (Deep Learning II)

“Efficient Gradient Based Inference 

through Transformations between

Bayes Nets and Neural Nets” 



Further thoughts on unsupervised ASR
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• Deep generative modeling experiments not successful in 90’s

• Computers were too slow   

• Models were too simple from text to speech waves 

• Still true  need speech scientists to work harder with technologists

• And when generative models are not good enough, discriminative models 
and learning (e.g., RNN) can help a lot; but to do it? A hint next 

• Further, can iterate between the two, like wake-sleep (algorithm)

• Inference/learning methods for deep generative models not mature 
at that time 
• Only partially true today 

•  due to recent big advances in machine learning 

• Based on new ways of thinking about generative graphical modeling 
motivated by the availability of deep learning tools (e.g. DNN)

• A brief review next



RNN           vs.  Generative HDM
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Parameterization:
• 𝑊ℎℎ,𝑊ℎ𝑦 , 𝑊𝑥ℎ: all unstructured

regular matrices

Parameterization:
• 𝑊ℎℎ =M(ɣ𝑙); sparse system matrix
• 𝑊Ω =(Ω𝑙); Gaussian-mix params; MLP 
• Λ = 𝒕𝑙



Generative HDM
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RNN           vs.  Generative HDM

e.g. Generative pre-training
(analogous to generative DBN pretraining for DNN)

NIPS-2015 paper to appear on simpler dynamic models for a non-ASR application

~DBN~DNN

Better ways of integrating deep generative/discriminative models are possible
- Hint: Example 1 where generative models are used to define the DNN architecture 
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Deep Learning also Shattered the Entire Field of 
Image Recognition and Computer Vision (since 2012)

end of 
Part II: Speech

-Deep supervised learning shattered ASR via DNN/LSTM
-Deep unsupervised learning may impact more in the future
-No more low-hanging fruit
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Deep CNN 

Univ. Toronto team

Krizhevsky, Sutskever, Hinton, “ImageNet
Classification with Deep Convolutional Neural 
Networks.” NIPS, Dec. 2012

4.94%

GoogLeNet
6.67%



Part III: Language
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Moving from perception: phonetic/word recognition, image/gesture  recognition, etc
to

Cognition: memory, attention, reasoning, Q/A, & decision making, etc.

Embedding enables exploring models for these human cognitive functions



Embedding Linguistic entities
in low-dimensional continuous space

and
Examples of NLP Applications

156
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𝑓 𝒄𝒂𝒕 =

The index of “cat” in 

the vocabulary

a.k.a the 1-hot

word vector
word embedding 

vector in the 

semantic space

Deerwester, Dumais, Furnas, Landauer, 

Harshman, "Indexing by latent 

semantic analysis," JASIS 1990



NN Word Embedding

Bengio, Ducharme, Vincent, Jauvin, “A 
neural probabilistic language model. “ 
JMLR, 2003
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W

U

Word embedding

𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 = 𝑈𝑇𝜎(𝑊 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 + 𝑏)
Scoring: 

Training:

𝐽 = max 0, 1 + 𝑆− − 𝑆+

Where 

𝑆+ = 𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5

𝑆− = 𝑆𝑐𝑜𝑟𝑒 𝑤1, 𝑤2, 𝑤
−, 𝑤4, 𝑤5

And

< 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5 > is a valid 5-gram

< 𝑤1, 𝑤2, 𝑤
−, 𝑤4, 𝑤5 > is a “negative sample” constructed

by replacing the word 𝑤3 with a random word 𝑤−

Collobert, Weston, Bottou, Karlen, 

Kavukcuoglu, Kuksa, “Natural Language 

Processing (Almost) from Scratch,” JMLR 

2011

Update the model until 𝑆+ > 1 + 𝑆−

e.g., a negative example: “cat chills X a mat”
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Mikolov, Yih,  Zweig, “Linguistic 

Regularities in Continuous Space 

Word Representations,” NAACL 

2013

Word Embedding

cat

chases

is

…
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The CBOW architecture (a) on the left, and the Skip-gram architecture (b) on the right. 

[Mikolov et al., 2013 ICLR].

Continuous Bag-of-Words
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word embedding 

matrix

w1,w2,        …                                                                                      wN

𝒗 𝑤 =

# words

dim

w

 However, for large scale NL tasks a decomposable, robust representation is preferable

 Vocabulary of real-world  big data tasks could be huge (scalability)

>100M unique words in a modern commercial search engine log, and keeps growing

 New words, misspellings, and word fragments frequently occur 

(generalizability) 
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dim = 100M

dim=500

dim = 50K

1-hot word vector

embedding vector

word embedding 

matrix: 500 × 100𝑀

dim = 100M

dim=500

1-hot word vector

embedding vector

SWU embedding 

matrix: 500 × 50𝐾

SWU encoding

matrix

𝑊

𝑈

𝑉

Could go up to extremely large

𝑊 → 𝑈 × 𝑉

Huang, He, Gao, Deng, Acero, Heck, “Learning deep structured 

semantic models for web search using clickthrough data,” CIKM, 2013
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.…1,...0…                      1,…    1,…

…#-c-a           …… c-a-t ... a-t-#
…

෍

𝑘=1

𝐾

(𝛼𝑐𝑎𝑡,𝑘 ∙ )
Letter-trigram embedding 

matrix

# total letter-trigrams

dim

𝒖𝑘

Count of LTG(k)

in the word “cat” 𝒖:The vector of LTG(k)

Example: cat → #cat# → #-c-a, c-a-t, a-t-# 
(w/ word boundary mark #)

𝒗 𝑐𝑎𝑡 =

Two words has the same LTG: 

collision rate ≈ 0.004%
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Supervised Embeddings for

Semantic Modeling with Applications

--- embedding linguistic symbols by backprop

--- mining distant supervision signals



167Microsoft Research

• Build word/phrase, or sentence-level semantic 
vector representation

• Trained by a similarity-driven objective
• projecting semantically similar phrases to vectors close to each 

other

• projecting semantically different phrases to vectors far apart

Deep Structured Semantic Model (DSSM)
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

W1

W2

W3

W4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

Initialization:

Neural networks are initialized with random weights

DSSM for learning semantic embedding
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

W1

W2

W3

W4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

DSSM for learning semantic embedding

Compute 

gradients
ൗ𝜕

𝒆𝒙𝒑(𝒄𝒐𝒔 𝒗𝒔 , 𝒗𝒕+ )

σ𝒕′={𝒕+,𝒕−} 𝒆𝒙𝒑(𝒄𝒐𝒔 𝒗𝒔 , 𝒗𝒕′ )
𝜕W

cos(𝑣𝑠, 𝑣𝑡+) cos(𝑣𝑠, 𝑣𝑡−)

Compute Cosine similarity between semantic vectors 

Training:
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t1: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t2: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔

DSSM for learning semantic embedding

Runtime:

𝒗𝒕𝟏 𝒗𝒕𝟐

similar apart

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4
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context <-> word 

query <-> clicked-doc 

pattern<-> relationship 

𝑷 𝒅+ 𝒒

𝑃 𝑑+ 𝑞 =
exp (𝛾 𝑐𝑜𝑠 𝑞, 𝑑+ )

σ𝑑∈𝑫 exp(𝛾 𝑐𝑜𝑠 𝑞, 𝑑 )



Many applications of DSSM (many low-hanging fruits):
Learning semantic similarity between X and Y

172

Tasks Source X Target Y

Word semantic embedding context word

Web search search query web documents

Query intent detection Search query Use intent

Question answering pattern / mention (in NL) relation / entity (in KB)

Machine translation sentence in language a translated sentences in language b

Query auto-suggestion Search query Suggested query

Query auto-completion Partial search query Completed query

Apps recommendation User profile recommended Apps

Distillation of survey feedbacks Feedbacks in text Relevant feedbacks

Automatic image captioning image text caption

Image retrieval text query images

Natural user interface command (text / speech / gesture) actions

Ads selection search query ad keywords

Ads click prediction search query ad documents

Email analysis: people prediction Email content Recipients, senders

Email search Search query Email content

Email declutering Email contents Email contents in similar threads

Knowledge-base construction entity from source entity fitting desired relationship

Contextual entity search key phrase / context entity / its corresponding page

Automatic highlighting documents in reading key phrases to be highlighted

Text summarization long text summarized short text



DSSM Model

Language 
Model

Detector Models,
Deep Neural Net 

Features, …

Computer 
Vision 
System sign

stop

street
signs

on

traffic

light

red

under

building

city

pole

bus

Caption 
Generation 

System

a red stop sign sitting under a traffic light on a city street
a stop sign at an intersection on a street
a stop sign with two street signs on a pole on a sidewalk
a stop sign at an intersection on a city street
…
a stop sign
a red traffic light

Semantic 
Ranking 
System

a stop sign at an intersection on a city street

Fang, Gupta, Iandola, Srivastava, Deng, Dollar, 
Gao, He, Mitchell, Platt, Zitnick, Zweig, “From 
captions to visual concepts and back,” accepted 
to appear in CVPR, 2015; in arXiv 2014

Automatic image captioning (MSR system)
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Microsoft System (MSR):
Use of DSSM for Global 
Semantic Matching



A

B



Machine:

Human:







Won 1st Prize at MS COCO Captioning Challenge 2015!

The top teams and the state-of-the-art 

%  of  captions that 

pass the Turing Test

Official 

Rank

MSR 32.2% 1st(tie)

Google 31.7% 1st(tie)

MSR Captivator    30.1% 3rd(tie)

Montreal/Toronto 27.2% 3rd(tie)

Berkeley LRCN 26.8% 5th

Other groups: Baidu/UCLA, Stanford, Tsinghua, etc.

Measure the quality of 
the captions by human 
judge (e.g., Turing Test).

Note: even a Human 
cannot guarantee to 
pass Turing Test by 100% Human 67.5% --

Competition results (CVPR-2015, June, Boston)



Many applications of DSSM (many low-hanging fruits):
Learning semantic similarity between X and Y

181

Tasks Source X Target Y

Word semantic embedding context word

Web search search query web documents

Query intent detection Search query Use intent

Question answering pattern / mention (in NL) relation / entity (in KB)

Machine translation sentence in language a translated sentences in language b

Query auto-suggestion Search query Suggested query

Query auto-completion Partial search query Completed query

Apps recommendation User profile recommended Apps

Distillation of survey feedbacks Feedbacks in text Relevant feedbacks

Automatic image captioning image text caption

Image retrieval text query images

Natural user interface command (text / speech / gesture) actions

Ads selection search query ad keywords

Ads click prediction search query ad documents

Email analysis: people prediction Email content Recipients, senders

Email search Search query Email content

Email declutering Email contents Email contents in similar threads

Knowledge-base construction entity from source entity fitting desired relationship

Contextual entity search key phrase / context entity / its corresponding page

Automatic highlighting documents in reading key phrases to be highlighted

Text summarization long text summarized short text



182

http://blogs.bing.com/search/2014/12/10/bing-brings-the-worlds-knowledge-straight-to-you-with-insights-for-office/



Scenario: Contextual search in Microsoft Office/Word 

183When “Lincoln” is selected, pages of a car company, movie, or the town in Nebraska will not appear 
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Towards Modeling Cognitive Functions: 

Memory and Attention

-seq-to-seq learning via LSTM with attention mechanism

-memory nets and neural Turing machines

-dynamic memory nets 

-from seq2seq to seq2struct and to struct2struct
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Deep “Thought”-Vector Approach to MT
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Deep “Thought”-Vector Approach to MT
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“attention” mechanism 
used for “softly” selecting 
relevant input portion from 
memory
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Popular theories of human memory/attention

191

The attention and memory models discussed so far are far from human memory/attention 
Mechanisms (https://en.wikipedia.org/wiki/Atkinson%E2%80%93Shiffrin_memory_model):

Hopfield nets store (associative) memories as 

attractors of the dynamic network



LSTM mainly models short-term memory

192



LSTM does not model long-term memory well

193

• LSTM makes short-term memory lasting via a simple “unit-loop” mechanism, very
different from long-term memory in human cognition
• Review of a very recent modeling study on episodic and semantic memories, extending 
the basic LSTM formulation
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Slides from: Coursera, 2014
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Going beyond L-STM --- towards more realist long-term memory (episodic & semantic)
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Towards Modeling Cognitive Functions: 

Memory and Attention

-seq-to-seq learning via LSTM with attention mechanism

-memory nets and neural Turing machines

-dynamic memory nets 

-from seq2seq to seq2struct & to struct2struct



Review: embedding in the form of “flat” vectors

• A linguistic or physical entity or a simple “relation”

A low-dim continuous-space vector or embedding

198

PDP book, 1986

Special Issue, vol. 46 (1990)
Connectionist Symbol Processing
(4 articles)

mapping via distributed representations by NN



Extension: “flat” vectors structures (tree/graph)

•Structured embedding vectors via tensor-product rep.

symbolic semantic parse tree (complex relation)

Then, reasoning in symbolic-space (traditional AI) can be beautifully carried out in the continuous-space in human 
cognitive and neural-net (i.e., connectionist) terms

Smolensky & Legendre: The Harmonic Mind, MIT Press, 2006
From Neural Computation to Optimality-Theoretic Grammar 

Volume I: Cognitive Architecture; Volume 2: Linguistic Implications

199

Rogers & McClelland

Semantic Cognition
MIT Press, 2006
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“Passive sentence”
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Output
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Patient

Input

W
ψ

Few leaders are admired by George Bush admire(George Bush, few leaders)

W = Wcons0
[Wex1

Wex0
Wex1

] +

Wcons1
[Wcons0

(Wex1
Wex1

Wex1
)+Wcons1

(Wex0
)]

ƒ(s) = cons(ex1(ex0(ex1(s))),
cons(ex1(ex1(ex1(s))), ex0(s)))

ψ

Isomorphism

Slide from Paul Smolensky, 2015



Summary & Perspective
• Speech recognition is the first success example of deep learning at industry 

scale

• Deep learning is very effective in speech recognition, speech translation (Skype 
Translator), image recognition (Onedrive Image tagging), image captioning, 
language understanding (Cortana), semantic intelligence, multimodal and 
multitask learning, web search, advertising, entity search (Insights for MS 
Office), user and business activity prediction, etc.

• Enabling factors:
• Big datasets for training deep models

• Powerful GPGPU computing

• Innovations in deep learning architectures and algorithms 
• How to discover distant supervision signals free from human labeling

• How to build deep learning systems grounded on exploiting such “smart” signals (example: DSSM)

• …
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Summary & Perspective

• Speech recognition: all low-hanging fruits are taken 
• i.e. more innovation and hard work needed than before

• Image recognition: most low-hanging fruits are taken

• Natural Language: does not seem there is much low-hanging fruit there 
• i.e. even more innovation and hard work needed than before 

• Big data analytics (e.g. user behavior, business activities, etc):

- A new frontier

• Small data: deep learning may still win (e.g. 2012 Kaggle’s drug discovery) 

• Perceptual data: deep learning methods always win, and win big

• Be careful: data with adversarial nature; data with odd variability
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Issues for “Near” Future of Deep Learning

• For perceptual tasks (e.g. speech, image/video, gesture, etc.)
• With supervised data: what will be the limit for growing accuracy wrt increasing 

amounts of labeled data?

• Beyond this limit or when labeled data are exhausted or non-economical to 
collect, will novel and effective unsupervised deep learning emerge and what 
will they be (e.g. deep generative models)? 

• Many new innovations are to come, likely in the area of unsupervised learning

• For cognitive tasks (e.g. natural language, reasoning, 
knowledge, decision making, etc.)

• Will supervised deep learning (e.g. MT) beat the non-deep-learning state of the 
art like speech/image recognition?

• How to distill/exploit “distant” supervision signals for supervised deep learning?

• Will dense vector embedding be sufficient for language? Do we really need to 
directly encode and recover syntactic/semantic structure of language?

• Even more new innovations are to come, likely in the area of new architectures 
and learning methods pertaining to distant supervised learning
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The Future of Deep Learning

• Continued rapid progress in language processing methods 
and applications by both industry and academia

• From image to video processing/understanding

• From supervised learning  (huge success already) to 
unsupervised learning (not much success yet but ideas abound)

• From perception to cognition
• More exploration of attention modeling
• Combine representation learning with complex knowledge 

extraction & reasoning
• Modeling human memory functions more faithfully
• Learning to act and control (deep reinforcement learning)

• Successes in business applications will propel more rapid 
advances in deep learning (positive feedbacks)
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