Building an *Interesting* Quantum Computer...

Rob Schoelkopf Applied Physics Yale University

Pl's @ Yale: RS Michel Devoret Luigi Frunzio Steven Girvin Leonid Glazman Liang Jiang

9

Postdocs & grad students wanted!

Overview

Where are "we" today?

We will build (in next ~ 5 years) *interesting* quantum devices: = complexity that CANNOT EVER be classically simulated (> 50 qubits or equivalent)

Now beginning a new era where a merger is needed:

quantum device physics systems engineering

information thy./algorithms

"quantum computer science"

Outstanding questions: what's the best architecture? how much overhead for error correction (QEC)? who will be the first to build something *useful*?

Still lots of innovation in physics, engineering, and theory ahead!

Classical vs. Quantum Bits

Information as state of a two-level quantum system

Classical objects go *either* one way or the other. Quantum objects (electrons, photons) go *both* ways. Gives a quantum computation an inherent kind of parallelism! What's so special about the quantum world?

Part 2: Entanglement, or when more is (exponentially) different!

Start with N non-interacting qubits

"Product" state (non-interacting) of N qubits: ~ N bits of info

What's so special about the quantum world? Part 2: Entanglement, or when more is (exponentially) different! Most general state of N (=5) interacting qubits:

$|\Psi_{tot}\rangle = c_1 |00001\rangle + c_2 |00010\rangle + \ldots + c_{64} |11111\rangle$

Now we need 2^N (=64) separate complex amplitudes for the state Entangled state of N qubits: ~ 2*(2^N-1) bits of info! And simulating a 200-qubit machine requires ~ 10⁶⁰ classical bits!

What's the catch?

Part 3: Decoherence and Errors

Want qubits to interact strongly w/ each other, but nothing else!

Qubit Research Combines Many Technologies

Low Temperatures

Cryogen-free dilution refrigerator T = 0.01 K

High-Speed Control

Microwave signals FPGA feedback quantum-limited msmts.

RF Simulation & Custom Design

Superconducting Devices & Materials

Superconducting Qubits

few yocto-Joules!

"Voltage level:" 1 μV (RMS)

Logical "1": one µ-wave "photon"

Excite & control with GHz signal on wires: gate time ~ 20 ns

Superconductivity should prevent losses (gapped!)

Transmon Qubit

Josephson tunnel junction

Aluminum electrodes with ~ 10¹⁰ electrons

Properties of qubit are engineered, via fabrication or tuning

Advantages of "transmon" design:

Simple (smallest number of parts to debug) Hidden from environment (no DC properties)

Other practitioners (many!): UCSB, Berkeley, Princeton, Delft, Zurich, Saclay, Chicago...

Algorithms: DiCarlo et al., Nature 460, 240 (2009).

A classical search

2.25 guesses on average

The quantum search

peeks under all cards at once, finds answer in one try

A quantum card trick find the red card

Showed all the hallmarks of a quantum algorithm:

- Speedup thru quantum parallelism
- Use of entanglement
- Quantum coherence

~ 100 ns total run time 80% success probability (1 μs lifetimes then)

The quantum search

peeks under all cards at once, finds answer in one try

Progress in Superconducting Qubits

transistors

Improving the Coherence of Quantum Bits

how long before your quantum bit "forgets" its information?

Stages of Quantum Computing?

"We" are ~ here (also ions, Rydbergs, q-dots, ...)

M. Devoret and RS, Science (2013)

Different Error Correction Architectures

Standard QEC

- 7 or 9 physical qubits per logical (+ concatenation!)
- threshold ~ 10⁻⁴
- many ops., syndromes per QEC cycle

Surface Code

- 10² 10⁴ /logical
- threshold ~ 1%
- large system to see effects?

Modular Approach

- few qubits/ module
- good local gates (10⁻⁴?) remote gates fair (90%?)
- then construct QEC as software layer?

Overhead required in known schemes: 1,000 actual qubits for every logical!!

Classical Error Correction

Probability *p* of having a bit flipped

Repetition code: redundantly encode, majority voting

 $\begin{array}{c} 0 \rightarrow 000 \\ 1 \rightarrow 111 \end{array}$

Reduces classical error rate to $3p^2 - 2p^3$

Can we do this for quantum computing? Some reasons to think no:

- "No cloning" theorem
- Errors are continuous (or are they?)
- Measurements change the state

How Do You Correct **Quantum** Errors?

Replace physical qubit with a logical register of three qubits $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle + \beta |111\rangle$

(e.g. Shor, Gottesman, ...)

"a GHZ entangled state"

Now measure the quantum version of their parity:

$$\left< \frac{\mathbf{Z}_1 \mathbf{Z}_2}{\mathbf{Z}_2} \right> = +1 \text{ or } -1$$
 ?

and tell me **only** the correlations!!

Flipped qubit	State	Z ₁ Z ₂	Z_2Z_3
None	$\alpha 000\rangle + \beta 111\rangle$	+1	+1
Q ₁	$\alpha 100\rangle + \beta 011\rangle$	-1	+1
Q ₂	$\alpha 010\rangle + \beta 101\rangle$	-1	-1
Q_3	$\alpha 001\rangle + \beta 110\rangle$	+1	-1

Each error has a different observable! - The basis for the bit flip code

Performance of Bit-Flip Code Experiment with 3 planar transmons in cavity 1.0 Depends only quadratically 0.8 on error probability! Process fidelity 0.6 ·O.O. Error corrected 0.4 Not err. corrected 300000000 1 mm 0.2 $(\Pi) \overline{V_3}$ V_4 (\square 0.0 0.2 0.4 0.6 0.8 0.0 1.0 Phase flip probability Challenge: QEC that actually makes lifetime longer!

Bit flip code: Reed et al., Nature 482, 382 (2012).

or Can QEC be Hardware-Efficient?

200 time(μs)

Summary

• Solid-state qubits are here!

- Performance passing QEC threshold
 - Qubits: T2 ~ 2*T1 ~ 0.0001 sec Cavities: T1 ~ 0.01 sec
 - Now entering the stage of error correction, architectures, fault tolerance

Next challenge: error correction that actually makes lifetime longer!

END