
A Few Thoughts on How We May
Want to Further Study DNN

Eric Xing
Carnegie Mellon University

Deep Learning is Amazing!!!

What makes it work? Why?

An MLer’s View of the World

Loss functions
(likelihood, reconstruction, margin, …)

Constraints
(normality, sparsity, label, prior, KL, sum, …)

Algorithms
MC (MCMC, Importance), Opt (gradient, IP), …

Stopping criteria
Change in objective, change in update …

Structures
(Graphical, group, chain, tree, iid, …)

DL ML (e.g., GM)

Empirical goal: e.g., classification, feature
learning

e.g., transfer learning, latent
variable inference

Structure: Graphical Graphical

Objective: Something aggregated from local
functions

Something aggregated from local
functions

Vocabulary: Neuron, activation/gate function
…

Variables, potential function

Algorithm: A single, unchallenged, inference
algorithm -- BP

A major focus of open research,
many algorithms, and more to come

Evaluation: On a black-box score -- end
performance

On almost every intermediate
quantity

Implementation: Many untold-tricks More or less standardized

Experiments: Massive, real data (GT unknown) Modest, often simulated data (GT
known)

A slippery slope to heuristics

• How to conclusively determine what an improve in
performance could come from:

– Better model (architecture, activation, loss, size)?

– Better algorithm (more accurate, faster convergence)?

– Better training data?

• Current research in DL seem to get everything above
mixed by evaluating on a black-box “performance
score” that is not directly reflecting

– Correctness of inference

– Achievability/usefulness of model

– Variance due to stochasticity

Although a single dimension (# of layers) is compared,
many other dimensions may also change, to name a
few:

• Per training-iteration time
• Tolerance to inaccurate inference
• Identifiability
• …

An Example

Inference quality

• Training error is the old concept of a classifier with
no hidden states, no inference is involved, and thus
inference accuracy is not an issue

• But a DNN is not just a classifier, some DNNs are not
even fully supervised, there are MANY hidden states,
why their inference quality is not taken seriously?

• In DNN, inference accuracy = visualizing features

– Study of inference accuracy is badly discouraged

– Loss/accuracy is not monitored

Inference/Learning Algorithm,
and their evaluation

Eric Xing 10

Learning in GM with Hidden
Variables

• In fully observed iid settings, the log likelihood decomposes
into a sum of local terms (at least for directed models).

• With latent variables, all the parameters become coupled
together via marginalization

),|(log)|(log)|,(log);(xzc zxpzpzxpD l

z

xz

z

c zxpzpzxpD),|()|(log)|,(log);(l

Eric Xing 11

Gradient Learning for mixture
models

• We can learn mixture densities using gradient descent on the
log likelihood. The gradients are quite interesting:

• In other words, the gradient is aggregated from many other
intermediate states
– Implication: costly iteration, heavy coupling between parameters

Eric Xing 12

Parameter Constraints

• Often we have constraints on the parameters, e.g. Skpk = 1, S

being symmetric positive definite (hence Sii > 0).

• We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.
– For normalized weights, use the softmax transform:

– For covariance matrices, use the Cholesky decomposition:

where A is upper diagonal with positive diagonal:

the parameters gi, li, hij R are unconstrained.

– Use chain rule to compute

)exp(

)exp(

jj

k

k g

g
p

S

AA
TS1

)()(exp ijij ijijijiii 00 AAA hl

. ,
A

 ll

p

Eric Xing 13

Identifiability

• A mixture model induces a multi-modal likelihood.

• Hence gradient ascent can only find a local maximum.

• Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

• Hence we should be careful in trying to interpret the
“meaning” of latent variables.

Eric Xing 14

Then Alternative Approaches Were
Proposed

• The EM algorithm
– M: a convex problem

– E: approximate constrained optimization
• Mean field

• BP/LBP

• Marginal polytope

• Spectrum algorithm:
– redefine intermediate states, convexify the original problem

Learning a DNN

Learning a DNN

• In a nutshell, sequentially, and recursively apply:

• Things can getting hairy when locally defined losses are
introduced, e.g., auto-encoder, which breaks a loss-driven
global optimization formulation

• Depending on starting point, BP converge or diverge with
probability 1
– A serious problem in Large-Scale DNN

DL

Utility of the network
• A vehicle for synthesize complex

decision hypothesis
– stage-wise projection and aggregation

• A vehicle for organizing computing
operations
– stage-wise update of latent states

• A vehicle for designing processing
steps/computing modules
– Layer-wise parallization

• No obvious utility in evaluating DL
algorithms

Utility of the Loss Function
• Global loss? Well it is non-convex

anyway, why bother ?

GM

• A vehicle for synthesize a global
loss function from local structure
– potential function, feature function

• A vehicle for designing sound and
efficient inference algorithm
– Sum-product, mean-field

• A vehicle to inspire approximation
and penalization
– Structured MF, Tree-approx

• Vehicle for monitoring theoretical
and empirical behavior and
accuracy of inference

• A major measure of quality of
algorithm and model

GMFr

GMFb

BP

An Old Study of DL as GM Learning

A sigmoid belief network, and mean-field partitions

Study focused on only inference/learning accuracy, speed, and partition

[Xing, Russell, Jordan, UAI 2013]

Now we can ask, with a correctly learned DN, is it doing will on the desired task?

Why A Graphical Model
formulation of DL might be fruitful

• Modular design: easy to incorporate knowledge and interpret,
easy to integrate feature learning with high level tasks, easy to
built on existing (partial) solutions

• Defines an explicit and natural learning objective

• Guilds strategies for inference, parallelization, evaluation, and
theoretical analysis

• A clear path to further upgrade:
– structured prediction

– Integration of multiple data modality

– Modeling complex: time series, missing data, online data …

• Big DL on distributed architectures, where things can get
messy everywhere due to incorrect parallel computations

Easy to incorporate knowledge
and interpret

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors &
feedback to articulation Slides Courtesy:

Li Deng

Easy to integrate feature learning with
high level tasks

Hidden Markov Model

+
Gaussian Mixture Model

Hidden Markov Model

+
Deep Neural Network

Jointly trained, but shallow Deep, but separately trained

Hidden Markov Model

+
Deep Graphical Models

Jointly trained and deep

Mathematics 101 for ML

Model ParameterData

This computation needs to be parallelized!

Toward Big ML

Data Parallel Model Parallel Task Parallel

Data-Parallel DNN using Petuum
Parameter Server

• Just put global parameters in
SSPTable:

• DNN (SGD)
– The weight table

• Topic Modeling (MCMC)
– Topic-word table

• Matrix Factorization (SGD)
– Factor matrices L, R

• Lasso Regression (CD)
– Coefficients β

• SSPTable supports generic classes
of algorithms
– With these models as examples

L

R
SSPTable

Topic 1

Topic 2

Topic 3

Topic 4

β

25

• If the undistributed BP updates of a multi-
layer DNN lead to weights , and the
distributed BP updates under SSP lead to
weights , then converges in probability to

, i.e .

Consequently

wt

wt

~

wt

~

wt

Theorem: Multilayer convergence of
SSP based distributed DNNs to optima

Model-Parallel DNN using Petuum
Scheduler

Neuron Partition

Weight Partition

Theorem: Multilayer convergence of
model distributed DNNs to optima

• If the undistributed BP updates of a multi-layer
DNN lead to weights and the distributed BP
updates in model distributed setting lead to
weights , then converges in probability to

, i.e . .Consequently

• In case of model distributed DNN we divided the
DNN vertically such that a single layer is
distributed across processors

wt

wt

~

wt

~

wt

Distributed DNN: (preliminary)

• Application: phoneme classification in speech recognition.

• Dataset: TIMIT dataset with 1M samples.

• Network configuration: input layer with 440 units, output layer with 1993
units, six hidden layers with 2048 units in each layer

Methods PER

Conditional Random Field [1] 34.8%

Large-Margin GMM [2] 33%

CD-HMM [3] 27.3%

Recurrent Neural Nets [4] 26.1%

Deep Belief Network [5] 23.0%

Petuum DNN (Data Partition) 24.95%

Petuum DNN (Model Partition) 25.12%

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8
Sp

ee
d

u
p

Number of Cores

Linear

Petuum DNN

Conclusion

• In GM: lots of efforts are directed to improving inference
accuracy and convergence speed
– An advanced tutorial would survey dozen’s of inference

algorithms/theories, but few use cases on empirical tasks

• In DL: most effort is directed to comparing different
architectures and gate functions (based on empirical
performance on a downstream task)
– An advanced tutorial typically consist of a list of all designs of nets,

many use cases, but a single name of algorithm: back prop of SGD

• The two fields are similar at the beginning (energy, structure,
etc.), and soon diverge to their own signature pipelines

• A convergence might be necessary and fruitful

