Efficient Secure Three-Party Computation

Seung Geol Choi' and Jonathan Katz? and Alex J. Malozemoff?
and Vassilis Zikas®

'United States Naval Academy
2University of Maryland, College Park

3University of California, Los Angeles

Presented at the Workshop on Applied Multi-Party Computation, Redmond,
Washington, USA, February 20-21, 2014.

Prior Work

Setting: Malicious adversary, arbitrary # corruptions

Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions
(e.g., [LPO7, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])
= Most based on Yao's garbled circuit approach [Yao82, Yao86]
— Boolean circuits, O (1) rounds
= Use inherently two-party techniques
— E.g., cut-and-choose, oblivious transfer, authenticated bit
shares, . ..

= Fast in general (and only getting faster)

Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions
(e.g., [LPO7, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

= Most based on Yao's garbled circuit approach [Yao82, Yao86]
— Boolean circuits, O (1) rounds

= Use inherently two-party techniques

— E.g., cut-and-choose, oblivious transfer, authenticated bit
shares, . ..

= Fast in general (and only getting faster)

MPC: SPDZ protocol [BDOZ11, DKL*12, DKL*13, DPSZ12, KSS13]
= Arithmetic circuits, O (d) rounds

= Total running time slow, on-line running time fast

MPC in Practice

Existing MPC deployments mostly utilize three parties
= The Danish sugar beet auction [BCD*09]
= Sharemind [BLWO08]

3/24

MPC in Practice

Existing MPC deployments mostly utilize three parties
= The Danish sugar beet auction [BCD109]
= Sharemind [BLWO08]

Why is this?
= Increase in communication/computation cost as # parties increases

= Settings where three parties sufficient (and two is not)

Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in
practice. . .

24

Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in
practice. . .

Question

Can we achieve efficient three-party computation using two-party tools?

In particular, can we lift cut-and-choose-based 2PC protocols to the
three-party setting?

Contribution

Main Contribution

Constant-round maliciously-secure 3PC for boolean circuits at roughly
twice the cost of underlying cut-and-choose-based 2PC used

= Tolerates arbitrary number of malicious parties
= Can lift [LPO7, LP11] and [Lin13] to three-party setting
= Works in Random Oracle model

= Requires almost entirely two-party communication
— Only three (three-party) broadcast calls needed
= Faster start-to-finish running time versus SPDZ
— No implementation (yet...)
— SPDZ has faster on-line running time

24

High-level Idea

(S, R): cut-and-choose 2PC protocol between sender S and receiver R
— S generates many garbling circuits using a circuit garbling scheme
— R does cut-and-choose on circuits

6

24

High-level Idea

We emulate T using three parties as follows:
— Py and P; run two-party protocol m emulating S

— In particular, the circuit garbling scheme of S
— P3 plays role of R

T

6

24

High-level Idea

We emulate T using three parties as follows:
— Py and P; run two-party protocol m emulating S

— In particular, the circuit garbling scheme of S
— P3 plays role of R

T
Ps

Note: using “arbitrary” 2PC schemes for ™ and 7 won't be efficient!

6/2

Outline of Rest of Talk

1. Distributing S’s circuit garbling scheme

1.1 (Single party) circuit garbling scheme (i.e., garbling scheme for 7)
1.2 Distributing the garbling scheme (i.e.,)

2. Adapting 2PC protocols (i.e., 7) to three parties

24

(Single-party) Circuit Garbling Scheme

1. Generate mask bits:

— For all wires w: Generate A, < {0,1}
2. Generate keys:

— For all wires w: Generate Ky 0 & {0,1}* and K, 1 & {0,1}*
3. Garble gates:

— For all gates G with input wires « and 8 and output wire ~:

Enck, 0,k5,0 (K’Y G(ha A g)BAy G(Aa, Ag) @ A)
Enck, 0.k5,1 (K'y, G(A, Ag DDAy 1G(Aa, A @ 1) ® A)
Enck, 1.K5.0 (Kw G(Aa®1,A5)BA, [G(Aa ®1,A5) ® A)

Enc, 151 (Ky.cmotasaner, [[GAa © 1,25 & 1) & A,)

(Note: This is standard Yao using point-and-permute)

Distributing the Garbling Scheme

Desired properties:
1. Obliviousness
— Parties cannot know output key/tag being encrypted
2. Correctness
— If one party malicious, garbled circuit evaluation must either:
— Compute correct answer
— Abort, independent of honest party’s input

9/24

Distributing the Garbling Scheme

Desired properties:
1. Obliviousness
— Parties cannot know output key/tag being encrypted
2. Correctness

— If one party malicious, garbled circuit evaluation must either:
— Compute correct answer

— Abort, independent of honest party’s input

Solution

Combine distributed garbling techniques [DI05] with authenticated bit
shares [NNOB12]

9/24

Distributing the Garbling Scheme: Outline

= Building blocks:
— Authenticated bit shares
— Sub-protocols on authenticated bit shares
— Distributed encryption scheme

= Two-party distributed circuit garbling protocol

Building Blocks: Authenticated Bit Shares [NNOB12]

— (YD) = (by, Ty, K3) and (b)®) = (by, To, K1)
- b=b1 Db
P P2
bl, Ty, Kl bg, T2, K2
T1 = MACk,(b1) T2 = MAC, (b2)

= Sharing is linear:
- (@) =((bab)D (bob)?)
~ (b® b)) = (b b, T, ® T, K @ K])

11/24

Building Blocks: Sub-protocols on authenticated bit shares

Two-party sub-protocols:
" Fee((a), (b)) = (G(a, b))
"]:tlzshare(7 mo, ml) - [mb]
— Inputs mg and my are private to party P;
= Frand() = (b)
= Fes(b) = (b)
— Input b is private to party P;

Note: efficient maliciously secure constructions exist
— Use ideas from [NNOB12]; OT tricks

Building Blocks: Distributed Encryption Scheme [DI05]

[m]=m & my
Ki=(si,s), K2 = (53, 53)

Py P,
my, s, s my, s2, s3
EnCKl,K2([m]) =
(m1 & F3(0) F3(0), my @ F3(0) © F5(0))

= F!and F? are PRFs

= Encryption is local

13 /24

Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
— For all wires w: Generate A, < {0,1}

2. Generate keys:

— For all wires w: Generate Ky.0 < {0,1}* and Ki1 & {0,1}*

14 /24

Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
— For all wires w: Generate A, < {0,1}

2. Generate keys:

— For all wires w: Generate Ky.0 < {0,1}* and Ki1 & {0,1}*

14 /24

Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
— Pi's input wires w: P; sets Ay <i {0,1}; computes (Ay) <]-'515(/\W)

P>'s input wires w: P sets A\, & {0,1}; computes (\y) + Fa(Aw)
All other wires w: P1 and P> compute (Aw) < Frand

2. Generate keys:

— For all wires w: Generate Ky o <i {0, 1}k and Ku .1 <i {0, 1}k

14 /24

Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
— Pi's input wires w: P; sets Ay <i {0,1}; computes (Ay) <]-'515(/\W)

P>'s input wires w: P sets A\, & {0,1}; computes (\y) + Fa(Aw)
All other wires w: P1 and P> compute (Aw) < Frand

2. Generate keys:

— For all wires w: Generate Ky, 0 & {0,1}* and Ku 1 & {0,1}*

14 /24

Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
— Pi's input wires w: P; sets Ay & {0,1}; computes (\n) + Fas(Aw)
P»'s input wires w: P> sets Ay, & {0,1}; computes (A\y) < F2(Aw)
All other wires w: P; and P> compute (Aw) < Frand
2. Generate keys:
— For all wires w: s .
P;, for i € {1,2}, sets si, o ¢ {0,1}* and Sw1 — {0, 1}
Let Ko = (sl}v,07sl/2v,0) and Ku,1 = (53¢,1753/,1)

14 /24

Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
— For all gates G with input wires & and 8 and output wire ~:
Enck, 0.65.0 (Ky.60wmam @, |G(Xay As) @ Ay)
Encic, o.k51 (Kv.6(arsanar, [G(Aa, As @ 1) @ Ay)
Enck, 1.k5.0 (Ky,60ae125)82, [[G(ha @ 1,A5) @ \,)
Enck, k51 (Ky.6ometrgener, [G(ha @ 1,25 ®1) @A)

15 /24

Two-party Distributed Circuit Garbling Protocol

3. Garble gates:

— For all gates G with input wires & and 8 and output wire ~:
EnCK(X:D’Kﬁ 0 (K'Y G(XasAB) DA ||G()\<n Af) D A«)
(YDA HG()\!\ /\i\)‘)\7)
Enck,, 1,ks.0 (Kw Graeing)er [G(Aa ©1,05) @)\m)
EncKa,l»K51(K a@LAgBL)DA, ||G(/\(\+1)\1+1)+)\)

EncKDA,OYK,B 1

15 /24

Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
For all gates G with input wires « and 8 and output wire ~:

jor, 1G(Xas Ag) @ A,)
IIG(Aa, s @1) ® A,)
ox, 1G(Aa & 1,0) @ A)
Jor [1G(Aa © 1,05 1) & \5)

E”CKa,o,Ka 0 (Ky

Enck, o.K5, (K .G(.

E”CKa,lyKB 0 (K ,G(
(

Enck, 1.k5.0 (/6 00

15 /24

Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
— For all gates G with input wires & and 8 and output wire ~:
Enck, 0,k5,0 (K‘»G(M 2p)eas 1G(Aas Ag) @ /\‘r’)
Enck, o.k5.1 (ch(,\,w\ anjar, [|G(Aa, Ag @ 1) ®)u,)
EnCKa.viﬁ,O (K‘»G(/\Hél./\,)%/\ﬁ | G()\u ® 1-,)\3) ©®)\,\’)

Enck, 1,651 (Ky.60matrzoner, [[G(Aa ©@ 1L, A ©1) @)\»,)

15 /24

Example: Garbling an AND Gate

=D

B

Standard (single-party) garbling:
Step 1: Compute tags:

i AND(X, @ i, Ag @ J) B Ay
AND(1®0,0®0) @1 =1
AND(1®0,001)®1=0
AND(1&1,080)&1=1
AND(1&1,081)@l1=1

=)
_H O R O |-

16 /24

Example: Garbling an AND Gate

=D

B

Standard (single-party) garbling:
Step 2: Encrypt:

EnCK
EncK
EncK

«,0,Ks,0

«,0,Kp,1
K’v,1|
Kyall

«,1:K5,0
EnCKmLK&I

== O o
R ORrO|%-.
—_————

“QX

=

16

24

Example: Garbling an AND Gate

Distributed garbling;:

Step 1: Compute oblivious sharings of tags:

i (AND(M\o ® i, Mg B Jj) @ A\y)

0 0 Fal((1) ®(0),(0) @ (0)) @ (1) = (1)
0 1 Fae((1)®(0), (1)@ (1))@ (1) = (0)
1 0 Fae((1)@(1),(0)@(0) & (1) = (1)
1 1 Fae (D) e (1),0) e (1) (1) = (1)

i
Il
=
=
g ol e
o I
O =
a) ST &
= —
<L Il
c 3
© =
on
= £
= 3
2 S
& 5
[0}
=)
80 =
(0] 2
S a
Q0]
X
LL]

Step 2: Compute oblivious sharings of each party's output sub-keys:

o
- o — -

PRI
57257257257

[R I

e N N
— - -

PRI SRS
5725357257

A~ AN SN~
— - -

17 /24

Example: Garbling an AND Gate

Distributed garbling;:

Step 3: Use distributed encryption to encrypt:

i

= = O O

H O R O |-

EncKao KBO [1] ”
EncKa 0,K3, 1([5'{ O] ”
EnCKa 1,Ks.0 [5¥ 1] ”

s3] |

EncK 1,Ks, 1(S’Y

S,

1
{

3PC Using Distributed Garbled Circuits

High-level |dea

= Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
= Replace sender’s circuit generation by distributed circuit generation

(Many details ignored here. . .)

18 /24

3PC Using Distributed Garbled Circuits

High-level |dea

= Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
= Replace sender’s circuit generation by distributed circuit generation

(Many details ignored here. . .)

Security Intuition

= Exactly one of P; or P, malicious: garbled circuits either correct or
abort independent of input, even with malicious P;3

= Both P; and P, malicious: cut-and-choose by P; detects cheating

18 /24

3PC Using Distributed Garbled Circuits

Efficiency versus underlying 2PC protocol:
= Roughly two times more expensive in computation

= Roughly three times more expensive in communication

Approach works for several cut-and-choose-based 2PC protocols:
= : Combination of [LP07, LP11] (probably [SS11, KsS12] as well)
= /:[Lin13]
= X: [HKE13] and [MR13], due to symmetry between P; and P,

19/24

Summary

Can "lift" cut-and-choose-based 2PC to 3PC setting
— Only twice as slow as underlying 2PC protocol
— Only three broadcast calls needed
— Important since broadcast expensive in WAN setting

Work still needs to be done to determine empirical efficiency
— Free-XOR? (very important in practice!)

— Implementation? Many engineering issues to consider

Paper to be published on ePrint shortly!

Thank you

Extra slides. . .

3PC Using Distributed Garbled Circuits

= Two main challenges of cut-and-choose:
1. Input Inconsistency
— Malicious generator (either Py or P») inputs inconsistent
sub-keys in two different circuits; Ps evaluates on different inputs
— Solution: apply Diffie-Hellman pseudorandom synthesizer
trick [LP11, MFO06]
2. Selective Failure
— Sender in OT can input invalid keys, potentially learning bit of
Ps's input
— Solution: “XOR-tree” approach [LP07, Woo07]

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

24 /24

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1. Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

24 /24

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1. Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

2. Py/P, generate commitments for input consistency, as in [LP11]

24 /24

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

2. Py/P, generate commitments for input consistency, as in [LP11]

3. P1/P;, construct s garbled circuits using distributed garbling protocol

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

2. Py/P, generate commitments for input consistency, as in [LP11]

3. P1/P;, construct s garbled circuits using distributed garbling protocol

4. P;/P, compute authenticated sharings of input bits

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Al

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

P1 /P, generate commitments for input consistency, as in [LP11]
Py /P, construct s garbled circuits using distributed garbling protocol
Py /P, compute authenticated sharings of input bits

P1/P> run (separately) OT protocol with P5 for each of P3's inputs;
Py /P, input sub-keys and P3 chooses based on its input

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Al

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

P1 /P, generate commitments for input consistency, as in [LP11]

Py /P, construct s garbled circuits using distributed garbling protocol
Py /P, compute authenticated sharings of input bits

P1/P> run (separately) OT protocol with P5 for each of P3's inputs;
Py /P, input sub-keys and P3 chooses based on its input

P1/P; send (distributed) garbled circuits, along with input
consistency commitments, to Ps

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Al

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

P1 /P, generate commitments for input consistency, as in [LP11]

Py /P, construct s garbled circuits using distributed garbling protocol
Py /P, compute authenticated sharings of input bits

P1/P> run (separately) OT protocol with P5 for each of P3's inputs;
Py /P, input sub-keys and P3 chooses based on its input

P1/P; send (distributed) garbled circuits, along with input
consistency commitments, to Ps

Py /P5/P5 run coin-tossing protocol to determine which circuits to
open and which to evaluate

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Al

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

P1 /P, generate commitments for input consistency, as in [LP11]

Py /P, construct s garbled circuits using distributed garbling protocol
Py /P, compute authenticated sharings of input bits

P1/P> run (separately) OT protocol with P5 for each of P3's inputs;
Py /P, input sub-keys and P3 chooses based on its input

P1/P; send (distributed) garbled circuits, along with input
consistency commitments, to Ps

Py /P5/P5 run coin-tossing protocol to determine which circuits to
open and which to evaluate

For check circuits: Py/P, send required info for P3 to decrypt and
verify correctness

3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Al

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

P1 /P, generate commitments for input consistency, as in [LP11]
Py /P, construct s garbled circuits using distributed garbling protocol
Py /P, compute authenticated sharings of input bits

P1/P> run (separately) OT protocol with P5 for each of P3's inputs;
Py /P, input sub-keys and P3 chooses based on its input

P1/P; send (distributed) garbled circuits, along with input
consistency commitments, to Ps

Py /P5/P5 run coin-tossing protocol to determine which circuits to
open and which to evaluate

For check circuits: Py/P, send required info for P3 to decrypt and
verify correctness

For evaluation circuits: Py/P, send sub-keys and selector bits to Ps;
P53 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

