
Efficient Secure Three-Party Computation

Seung Geol Choi1 and Jonathan Katz2 and Alex J. Malozemoff2

and Vassilis Zikas3

1United States Naval Academy

2University of Maryland, College Park

3University of California, Los Angeles

Presented at the Workshop on Applied Multi-Party Computation, Redmond,
Washington, USA, February 20–21, 2014.



Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions
(e.g., [LP07, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

• Most based on Yao’s garbled circuit approach [Yao82, Yao86]
Boolean circuits, O (1) rounds

• Use inherently two-party techniques
E.g., cut-and-choose, oblivious transfer, authenticated bit
shares, . . .

• Fast in general (and only getting faster)

MPC: SPDZ protocol [BDOZ11, DKL+12, DKL+13, DPSZ12, KSS13]
• Arithmetic circuits, O (d) rounds
• Total running time slow, on-line running time fast

2 / 24



Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions
(e.g., [LP07, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

• Most based on Yao’s garbled circuit approach [Yao82, Yao86]
Boolean circuits, O (1) rounds

• Use inherently two-party techniques
E.g., cut-and-choose, oblivious transfer, authenticated bit
shares, . . .

• Fast in general (and only getting faster)

MPC: SPDZ protocol [BDOZ11, DKL+12, DKL+13, DPSZ12, KSS13]
• Arithmetic circuits, O (d) rounds
• Total running time slow, on-line running time fast

2 / 24



Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions
(e.g., [LP07, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

• Most based on Yao’s garbled circuit approach [Yao82, Yao86]
Boolean circuits, O (1) rounds

• Use inherently two-party techniques
E.g., cut-and-choose, oblivious transfer, authenticated bit
shares, . . .

• Fast in general (and only getting faster)

MPC: SPDZ protocol [BDOZ11, DKL+12, DKL+13, DPSZ12, KSS13]
• Arithmetic circuits, O (d) rounds
• Total running time slow, on-line running time fast

2 / 24



MPC in Practice

Existing MPC deployments mostly utilize three parties
• The Danish sugar beet auction [BCD+09]
• Sharemind [BLW08]

Why is this?
• Increase in communication/computation cost as # parties increases
• Settings where three parties sufficient (and two is not)

3 / 24



MPC in Practice

Existing MPC deployments mostly utilize three parties
• The Danish sugar beet auction [BCD+09]
• Sharemind [BLW08]

Why is this?
• Increase in communication/computation cost as # parties increases
• Settings where three parties sufficient (and two is not)

3 / 24



Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in
practice. . .

Question
Can we achieve efficient three-party computation using two-party tools?

In particular, can we lift cut-and-choose-based 2PC protocols to the
three-party setting?

4 / 24



Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in
practice. . .

Question
Can we achieve efficient three-party computation using two-party tools?

In particular, can we lift cut-and-choose-based 2PC protocols to the
three-party setting?

4 / 24



Contribution

Main Contribution
Constant-round maliciously-secure 3PC for boolean circuits at roughly
twice the cost of underlying cut-and-choose-based 2PC used

• Tolerates arbitrary number of malicious parties
• Can lift [LP07, LP11] and [Lin13] to three-party setting
• Works in Random Oracle model
• Requires almost entirely two-party communication

Only three (three-party) broadcast calls needed
• Faster start-to-finish running time versus SPDZ

No implementation (yet. . . )
SPDZ has faster on-line running time

5 / 24



High-level Idea

π̂(S,R): cut-and-choose 2PC protocol between sender S and receiver R
S generates many garbling circuits using a circuit garbling scheme
R does cut-and-choose on circuits

S

R
π̂

Note: using “arbitrary” 2PC schemes for π̂ and π won’t be efficient!

6 / 24



High-level Idea

We emulate π̂ using three parties as follows:
P1 and P2 run two-party protocol π emulating S

In particular, the circuit garbling scheme of S
P3 plays role of R

P3

P1 P2
π

π̂

Note: using “arbitrary” 2PC schemes for π̂ and π won’t be efficient!

6 / 24



High-level Idea

We emulate π̂ using three parties as follows:
P1 and P2 run two-party protocol π emulating S

In particular, the circuit garbling scheme of S
P3 plays role of R

P3

P1 P2
π

π̂

Note: using “arbitrary” 2PC schemes for π̂ and π won’t be efficient!

6 / 24



Outline of Rest of Talk

1. Distributing S’s circuit garbling scheme
1.1 (Single party) circuit garbling scheme (i.e., garbling scheme for π̂)
1.2 Distributing the garbling scheme (i.e., π)

2. Adapting 2PC protocols (i.e., π̂) to three parties

P3

P1 P2
π

π̂

7 / 24



(Single-party) Circuit Garbling Scheme

1. Generate mask bits:
For all wires w : Generate λw

$← {0, 1}
2. Generate keys:

For all wires w : Generate Kw,0
$← {0, 1}k and Kw,1

$← {0, 1}k

3. Garble gates:
For all gates G with input wires α and β and output wire γ:

EncKα,0,Kβ,0
(
Kγ,G(λα,λβ )⊕λγ‖G(λα, λβ)⊕ λγ

)
EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ )⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

(Note: This is standard Yao using point-and-permute)

8 / 24



Distributing the Garbling Scheme

Desired properties:
1. Obliviousness

Parties cannot know output key/tag being encrypted
2. Correctness

If one party malicious, garbled circuit evaluation must either:
Compute correct answer
Abort, independent of honest party’s input

Solution
Combine distributed garbling techniques [DI05] with authenticated bit
shares [NNOB12]

9 / 24



Distributing the Garbling Scheme

Desired properties:
1. Obliviousness

Parties cannot know output key/tag being encrypted
2. Correctness

If one party malicious, garbled circuit evaluation must either:
Compute correct answer
Abort, independent of honest party’s input

Solution
Combine distributed garbling techniques [DI05] with authenticated bit
shares [NNOB12]

9 / 24



Distributing the Garbling Scheme: Outline

• Building blocks:
Authenticated bit shares
Sub-protocols on authenticated bit shares
Distributed encryption scheme

• Two-party distributed circuit garbling protocol

10 / 24



Building Blocks: Authenticated Bit Shares [NNOB12]

• 〈b〉 = (〈b〉(1), 〈b〉(2))
〈b〉(1) = (b1,T1,K2) and 〈b〉(2) = (b2,T2,K1)

b = b1 ⊕ b2

P1 P2

b1, T1, K1 b2, T2, K2
T1 = MACK2(b1) T2 = MACK1(b2)

• Sharing is linear:
〈b〉 ⊕ 〈b′〉 = (〈b ⊕ b′〉(1), 〈b ⊕ b′〉(2))
〈b ⊕ b′〉(i) = (bi ⊕ b′

i ,Ti ⊕ T ′
i ,Kj ⊕ K ′

j )

11 / 24



Building Blocks: Sub-protocols on authenticated bit shares

Two-party sub-protocols:
• FG

gate(〈a〉, 〈b〉)→ 〈G(a, b)〉
• F i

oshare(〈b〉,m0,m1)→ [mb]

Inputs m0 and m1 are private to party Pi

• Frand()→ 〈b〉
• F i

ss(b)→ 〈b〉
Input b is private to party Pi

Note: efficient maliciously secure constructions exist
Use ideas from [NNOB12]; OT tricks

12 / 24



Building Blocks: Distributed Encryption Scheme [DI05]

[m] = m1 ⊕m2
K1 = (s1

1 , s2
1 ), K2 = (s1

2 , s2
2 )

P1 P2

m1, s1
1 , s1

2 m2, s2
1 , s2

2
EncK1,K2([m]) =

(m1 ⊕ F 1
s1

1
(0)⊕ F 2

s1
2
(0), m2 ⊕ F 1

s2
1
(0)⊕ F 2

s2
2
(0))

• F 1 and F 2 are PRFs
• Encryption is local

13 / 24



Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
For all wires w : Generate λw

$← {0, 1}
2. Generate keys:

For all wires w : Generate Kw,0
$← {0, 1}k and Kw,1

$← {0, 1}k

14 / 24



Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
For all wires w : Generate λw

$← {0, 1}
2. Generate keys:

For all wires w : Generate Kw,0
$← {0, 1}k and Kw,1

$← {0, 1}k

14 / 24



Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
P1’s input wires w : P1 sets λw

$← {0, 1}; computes 〈λw 〉 ← F1
ss(λw )

P2’s input wires w : P2 sets λw
$← {0, 1}; computes 〈λw 〉 ← F2

ss(λw )
All other wires w : P1 and P2 compute 〈λw 〉 ← Frand

2. Generate keys:

For all wires w : Generate Kw,0
$← {0, 1}k and Kw,1

$← {0, 1}k

14 / 24



Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
P1’s input wires w : P1 sets λw

$← {0, 1}; computes 〈λw 〉 ← F1
ss(λw )

P2’s input wires w : P2 sets λw
$← {0, 1}; computes 〈λw 〉 ← F2

ss(λw )
All other wires w : P1 and P2 compute 〈λw 〉 ← Frand

2. Generate keys:

For all wires w : Generate Kw,0
$← {0, 1}k and Kw,1

$← {0, 1}k

14 / 24



Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
P1’s input wires w : P1 sets λw

$← {0, 1}; computes 〈λw 〉 ← F1
ss(λw )

P2’s input wires w : P2 sets λw
$← {0, 1}; computes 〈λw 〉 ← F2

ss(λw )
All other wires w : P1 and P2 compute 〈λw 〉 ← Frand

2. Generate keys:
For all wires w :
Pi , for i ∈ {1, 2}, sets s i

w,0
$← {0, 1}k and s i

w,1
$← {0, 1}k

Let Kw,0 = (s1
w,0, s2

w,0) and Kw,1 = (s1
w,1, s2

w,1)

14 / 24



Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
For all gates G with input wires α and β and output wire γ:

EncKα,0,Kβ,0
(
Kγ,G(λα,λβ )⊕λγ‖G(λα, λβ)⊕ λγ

)
EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ )⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

15 / 24



Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
For all gates G with input wires α and β and output wire γ:

EncKα,0,Kβ,0
(
Kγ,G(λα,λβ )⊕λγ‖G(λα, λβ)⊕ λγ

)
EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ )⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

15 / 24



Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
For all gates G with input wires α and β and output wire γ:

EncKα,0,Kβ,0
(
Kγ,G(λα,λβ )⊕λγ‖G(λα, λβ)⊕ λγ

)
EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ )⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

15 / 24



Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
For all gates G with input wires α and β and output wire γ:

EncKα,0,Kβ,0
(
Kγ,G(λα,λβ )⊕λγ‖G(λα, λβ)⊕ λγ

)
EncKα,0,Kβ,1

(
Kγ,G(λα,λβ⊕1)⊕λγ‖G(λα, λβ ⊕ 1)⊕ λγ

)
EncKα,1,Kβ,0

(
Kγ,G(λα⊕1,λβ )⊕λγ‖G(λα ⊕ 1, λβ)⊕ λγ

)
EncKα,1,Kβ,1

(
Kγ,G(λα⊕1,λβ⊕1)⊕λγ‖G(λα ⊕ 1, λβ ⊕ 1)⊕ λγ

)

15 / 24



Example: Garbling an AND Gate

α

β

γ

λα = 1, λβ = 0, λγ = 1

Standard (single-party) garbling:

Step 1: Compute tags:

i j AND(λα ⊕ i , λβ ⊕ j)⊕ λγ
0 0 AND(1⊕ 0, 0⊕ 0)⊕ 1 = 1
0 1 AND(1⊕ 0, 0⊕ 1)⊕ 1 = 0
1 0 AND(1⊕ 1, 0⊕ 0)⊕ 1 = 1
1 1 AND(1⊕ 1, 0⊕ 1)⊕ 1 = 1

16 / 24



Example: Garbling an AND Gate

α

β

γ

λα = 1, λβ = 0, λγ = 1

Standard (single-party) garbling:

Step 2: Encrypt:

i j
0 0 EncKα,0,Kβ,0(Kγ,1‖1)
0 1 EncKα,0,Kβ,1(Kγ,0‖0)
1 0 EncKα,1,Kβ,0(Kγ,1‖1)
1 1 EncKα,1,Kβ,1(Kγ,1‖1)

16 / 24



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 1: Compute oblivious sharings of tags:

i j 〈AND(λα ⊕ i , λβ ⊕ j)⊕ λγ〉
0 0 FAND

gate (〈1〉 ⊕ 〈0〉, 〈0〉 ⊕ 〈0〉)⊕ 〈1〉 = 〈1〉
0 1 FAND

gate (〈1〉 ⊕ 〈0〉, 〈1〉 ⊕ 〈1〉)⊕ 〈1〉 = 〈0〉
1 0 FAND

gate (〈1〉 ⊕ 〈1〉, 〈0〉 ⊕ 〈0〉)⊕ 〈1〉 = 〈1〉
1 1 FAND

gate (〈1〉 ⊕ 〈1〉, 〈0〉 ⊕ 〈1〉)⊕ 〈1〉 = 〈1〉

17 / 24



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 2: Compute oblivious sharings of each party’s output sub-keys:

i j
0 0 F1

oshare(〈1〉, s1
γ,0, s1

γ,1) =
[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

0 1 F1
oshare(〈0〉, s1

γ,0, s1
γ,1) =

[
s1
γ,0
]
F2

oshare(〈0〉, s2
γ,0, s2

γ,1) =
[
s2
γ,0
]

1 0 F1
oshare(〈1〉, s1

γ,0, s1
γ,1) =

[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

1 1 F1
oshare(〈1〉, s1

γ,0, s1
γ,1) =

[
s1
γ,1
]
F2

oshare(〈1〉, s2
γ,0, s2

γ,1) =
[
s2
γ,1
]

17 / 24



Example: Garbling an AND Gate

α

β

γ

〈λα〉 = 1, 〈λβ〉 = 0, 〈λγ〉 = 1

Distributed garbling:

Step 3: Use distributed encryption to encrypt:

i j
0 0 EncKα,0,Kβ,0(

[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

0 1 EncKα,0,Kβ,1(
[
s1
γ,0
]
‖
[
s2
γ,0
]
‖〈0〉)

1 0 EncKα,1,Kβ,0(
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

1 1 EncKα,1,Kβ,1(
[
s1
γ,1
]
‖
[
s2
γ,1
]
‖〈1〉)

17 / 24



3PC Using Distributed Garbled Circuits

High-level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

(Many details ignored here. . . )

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input, even with malicious P3

• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating

18 / 24



3PC Using Distributed Garbled Circuits

High-level Idea
• Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
• Replace sender’s circuit generation by distributed circuit generation

(Many details ignored here. . . )

Security Intuition
• Exactly one of P1 or P2 malicious: garbled circuits either correct or

abort independent of input, even with malicious P3

• Both P1 and P2 malicious: cut-and-choose by P3 detects cheating

18 / 24



3PC Using Distributed Garbled Circuits

Efficiency versus underlying 2PC protocol:
• Roughly two times more expensive in computation
• Roughly three times more expensive in communication

Approach works for several cut-and-choose-based 2PC protocols:
• X: Combination of [LP07, LP11] (probably [SS11, KsS12] as well)
• X: [Lin13]
• X: [HKE13] and [MR13], due to symmetry between P1 and P2

19 / 24



Summary

Can “lift” cut-and-choose-based 2PC to 3PC setting
Only twice as slow as underlying 2PC protocol
Only three broadcast calls needed

Important since broadcast expensive in WAN setting

Work still needs to be done to determine empirical efficiency
Free-XOR? (very important in practice!)
Implementation? Many engineering issues to consider

Paper to be published on ePrint shortly!

20 / 24



Thank you

21 / 24



Extra slides. . .

22 / 24



3PC Using Distributed Garbled Circuits

• Two main challenges of cut-and-choose:
1. Input Inconsistency

Malicious generator (either P1 or P2) inputs inconsistent
sub-keys in two different circuits; P3 evaluates on different inputs
Solution: apply Diffie-Hellman pseudorandom synthesizer
trick [LP11, MF06]

2. Selective Failure
Sender in OT can input invalid keys, potentially learning bit of
P3’s input
Solution: “XOR-tree” approach [LP07, Woo07]

23 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]

3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol

4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits

5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;
P1/P2 input sub-keys and P3 chooses based on its input

6. P1/P2 send (distributed) garbled circuits, along with input
consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input

6. P1/P2 send (distributed) garbled circuits, along with input
consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24



3PC Using Distributed Garbled Circuits
Based on [LP07, LP11]:

1. Parties replace input circuit C0 with a circuit C using “XOR-tree”
approach for P3’s input wires

2. P1/P2 generate commitments for input consistency, as in [LP11]
3. P1/P2 construct s garbled circuits using distributed garbling protocol
4. P1/P2 compute authenticated sharings of input bits
5. P1/P2 run (separately) OT protocol with P3 for each of P3’s inputs;

P1/P2 input sub-keys and P3 chooses based on its input
6. P1/P2 send (distributed) garbled circuits, along with input

consistency commitments, to P3

7. P1/P2/P3 run coin-tossing protocol to determine which circuits to
open and which to evaluate

8. For check circuits: P1/P2 send required info for P3 to decrypt and
verify correctness

9. For evaluation circuits: P1/P2 send sub-keys and selector bits to P3;
P3 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output

24 / 24


