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(e.g., [LPO7, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

= Most based on Yao's garbled circuit approach [Yao82, Yao86]
— Boolean circuits, O (1) rounds

= Use inherently two-party techniques

— E.g., cut-and-choose, oblivious transfer, authenticated bit
shares, . ..

= Fast in general (and only getting faster)

MPC: SPDZ protocol [BDOZ11, DKL*12, DKL*13, DPSZ12, KSS13]
= Arithmetic circuits, O (d) rounds

= Total running time slow, on-line running time fast



MPC in Practice

Existing MPC deployments mostly utilize three parties
= The Danish sugar beet auction [BCD*09]
= Sharemind [BLWO08]
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MPC in Practice

Existing MPC deployments mostly utilize three parties
= The Danish sugar beet auction [BCD109]
= Sharemind [BLWO08]

Why is this?
= Increase in communication/computation cost as # parties increases

= Settings where three parties sufficient (and two is not)
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practice. . .

24



Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in
practice. . .

Question

Can we achieve efficient three-party computation using two-party tools?

In particular, can we lift cut-and-choose-based 2PC protocols to the
three-party setting?




Contribution

Main Contribution

Constant-round maliciously-secure 3PC for boolean circuits at roughly
twice the cost of underlying cut-and-choose-based 2PC used

= Tolerates arbitrary number of malicious parties
= Can lift [LPO7, LP11] and [Lin13] to three-party setting
= Works in Random Oracle model

= Requires almost entirely two-party communication
— Only three (three-party) broadcast calls needed
= Faster start-to-finish running time versus SPDZ
— No implementation (yet...)
— SPDZ has faster on-line running time
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High-level Idea

(S, R): cut-and-choose 2PC protocol between sender S and receiver R
— S generates many garbling circuits using a circuit garbling scheme
— R does cut-and-choose on circuits

6
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High-level Idea

We emulate T using three parties as follows:
— Py and P; run two-party protocol m emulating S

— In particular, the circuit garbling scheme of S
— P3 plays role of R

T
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High-level Idea

We emulate T using three parties as follows:
— Py and P; run two-party protocol m emulating S

— In particular, the circuit garbling scheme of S
— P3 plays role of R

T
Ps

Note: using “arbitrary” 2PC schemes for ™ and 7 won't be efficient!
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Outline of Rest of Talk

1. Distributing S’s circuit garbling scheme

1.1 (Single party) circuit garbling scheme (i.e., garbling scheme for 7)
1.2 Distributing the garbling scheme (i.e., )

2. Adapting 2PC protocols (i.e., 7) to three parties
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(Single-party) Circuit Garbling Scheme

1. Generate mask bits:

—  For all wires w: Generate A, < {0,1}
2. Generate keys:

— For all wires w: Generate Ky 0 & {0,1}* and K, 1 & {0,1}*
3. Garble gates:

— For all gates G with input wires « and 8 and output wire ~:

Enck, 0,k5,0 (K’Y G(ha A g)BAy G(Aa, Ag) @ A )
Enck, 0.k5,1 (K'y, G( A, Ag DDAy 1G(Aa, A @ 1) ® A )
Enck, 1.K5.0 (Kw G(Aa®1,A5)BA, [G(Aa ®1,A5) ® A )

Enc, 151 (Ky.cmotasaner, [[GAa © 1,25 & 1) & A,)

(Note: This is standard Yao using point-and-permute)



Distributing the Garbling Scheme

Desired properties:
1. Obliviousness
— Parties cannot know output key/tag being encrypted
2. Correctness
— If one party malicious, garbled circuit evaluation must either:
— Compute correct answer
— Abort, independent of honest party’s input
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Distributing the Garbling Scheme

Desired properties:
1. Obliviousness
— Parties cannot know output key/tag being encrypted
2. Correctness

— If one party malicious, garbled circuit evaluation must either:
— Compute correct answer

— Abort, independent of honest party’s input

Solution

Combine distributed garbling techniques [DI05] with authenticated bit
shares [NNOB12]
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Distributing the Garbling Scheme: Outline

= Building blocks:
— Authenticated bit shares
— Sub-protocols on authenticated bit shares
— Distributed encryption scheme

= Two-party distributed circuit garbling protocol



Building Blocks: Authenticated Bit Shares [NNOB12]

— (YD) = (by, Ty, K3) and (b)®) = (by, To, K1)
- b=b1 Db
P P2
bl, Ty, Kl bg, T2, K2
T1 = MACk,(b1) T2 = MAC, (b2)

= Sharing is linear:
- (@) =((bab)D (bob)?)
~ (b® b)) = (b b, T, ® T, K @ K])
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Building Blocks: Sub-protocols on authenticated bit shares

Two-party sub-protocols:
" Fee((a), (b)) = (G(a, b))
" ]:tlzshare(<b>7 mo, ml) - [mb]
— Inputs mg and my are private to party P;
= Frand() = (b)
= Fes(b) = (b)
— Input b is private to party P;

Note: efficient maliciously secure constructions exist
— Use ideas from [NNOB12]; OT tricks



Building Blocks: Distributed Encryption Scheme [DI05]

[m]=m & my
Ki=(si,s), K2 = (53, 53)

Py P,
my, s, s my, s2, s3
EnCKl,K2([m]) =
(m1 & F3(0)  F3(0), my @ F3(0) © F5(0))

= F!and F? are PRFs

= Encryption is local
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Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
—  For all wires w: Generate A, < {0,1}

2. Generate keys:

—  For all wires w: Generate Ky.0 < {0,1}* and Ki1 & {0,1}*
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Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
— Pi's input wires w: P; sets Ay <i {0,1}; computes (Ay) < ]-'515(/\W)

P>'s input wires w: P sets A\, & {0,1}; computes (\y) + Fa(Aw)
All other wires w: P1 and P> compute (Aw) < Frand

2. Generate keys:

—  For all wires w: Generate Ky o <i {0, 1}k and Ku .1 <i {0, 1}k
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Two-party Distributed Circuit Garbling Protocol

1. Generate mask bits:
—  Pi's input wires w: P; sets Ay & {0,1}; computes (\n) + Fas(Aw)
P»'s input wires w: P> sets Ay, & {0,1}; computes (A\y) < F2(Aw)
All other wires w: P; and P> compute (Aw) < Frand
2. Generate keys:
—  For all wires w: s .
P;, for i € {1,2}, sets si, o ¢ {0,1}* and Sw1 — {0, 1}
Let Ko = (sl}v,07sl/2v,0) and Ku,1 = (53¢,1753/,1)
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Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
— For all gates G with input wires & and 8 and output wire ~:
Enck, 0.65.0 (Ky.60wmam @, |G(Xay As) @ Ay)
Encic, o.k51 (Kv.6(arsanar, [G(Aa, As @ 1) @ Ay)
Enck, 1.k5.0 (Ky,60ae125)82, [[G(ha @ 1,A5) @ \,)
Enck, k51 (Ky.6ometrgener, [G(ha @ 1,25 ®1) @A)
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Two-party Distributed Circuit Garbling Protocol

3. Garble gates:

— For all gates G with input wires & and 8 and output wire ~:
EnCK(X:D’Kﬁ 0 (K'Y G(XasAB) DA ||G()\<n Af) D A«)
( YDA HG()\!\ /\i\ )‘)\7)
Enck,, 1,ks.0 (Kw Graeing)er [G(Aa ©1,05) @ )\m)
EncKa,l»K51(K a@LAgBL)DA, ||G(/\(\+1 )\1+1)+)\ )

EncKDA,OYK,B 1
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Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
For all gates G with input wires « and 8 and output wire ~:

jor, 1G(Xas Ag) @ A,)
IIG(Aa, s @1) ® A,)
ox, 1G(Aa & 1,0) @ A)
Jor [1G(Aa © 1,05 1) & \5)

E”CKa,o,Ka 0 (Ky

Enck, o.K5, (K .G(.

E”CKa,lyKB 0 (K ,G(
(

Enck, 1.k5.0 (/6 00
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Two-party Distributed Circuit Garbling Protocol

3. Garble gates:
— For all gates G with input wires & and 8 and output wire ~:
Enck, 0,k5,0 (K‘»G(M 2p)eas 1G(Aas Ag) @ /\‘r’)
Enck, o.k5.1 (ch(,\,w\ anjar, [|G(Aa, Ag @ 1) ® )u,)
EnCKa.viﬁ,O (K‘»G(/\Hél./\,)%/\ﬁ | G()\u ® 1-, )\3) ©® )\,\’)

Enck, 1,651 (Ky.60matrzoner, [[G(Aa ©@ 1L, A ©1) @ )\»,)

15 /24



Example: Garbling an AND Gate

=D

B

Standard (single-party) garbling:
Step 1: Compute tags:

i AND(X, @ i, Ag @ J) B Ay
AND(1®0,0®0) @1 =1
AND(1®0,001)®1=0
AND(1&1,080)&1=1
AND(1&1,081)@l1=1

=)
_H O R O |-
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Example: Garbling an AND Gate

=D

B

Standard (single-party) garbling:
Step 2: Encrypt:

EnCK
EncK
EncK

«,0,Ks,0

«,0,Kp,1
K’v,1|
Kyall

«,1:K5,0
EnCKmLK&I

== O o
R ORrO|%-.
—_————

“QX

=

16
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Example: Garbling an AND Gate

Distributed garbling;:

Step 1: Compute oblivious sharings of tags:

i (AND(M\o ® i, Mg B Jj) @ A\y)

0 0 Fal((1) ®(0),(0) @ (0)) @ (1) = (1)
0 1 Fae((1)®(0), (1)@ (1))@ (1) = (0)
1 0 Fae((1)@(1),(0)@(0) & (1) = (1)
1 1 Fae (D) e (1),0) e (1) (1) = (1)
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Step 2: Compute oblivious sharings of each party's output sub-keys:
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Example: Garbling an AND Gate

Distributed garbling;:

Step 3: Use distributed encryption to encrypt:

i

= = O O

H O R O |-

EncKao KBO [ 1] ”
EncKa 0,K3, 1( [5'{ O] ”
EnCKa 1,Ks.0 [5¥ 1] ”

s3] |

EncK 1,Ks, 1( S’Y

S,

1
{



3PC Using Distributed Garbled Circuits

High-level |dea

= Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
= Replace sender’s circuit generation by distributed circuit generation

(Many details ignored here. . .)
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3PC Using Distributed Garbled Circuits

High-level |dea

= Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
= Replace sender’s circuit generation by distributed circuit generation

(Many details ignored here. . .)

Security Intuition

= Exactly one of P; or P, malicious: garbled circuits either correct or
abort independent of input, even with malicious P;3

= Both P; and P, malicious: cut-and-choose by P; detects cheating
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3PC Using Distributed Garbled Circuits

Efficiency versus underlying 2PC protocol:
= Roughly two times more expensive in computation

= Roughly three times more expensive in communication

Approach works for several cut-and-choose-based 2PC protocols:
= : Combination of [LP07, LP11] (probably [SS11, KsS12] as well)
= /:[Lin13]
= X: [HKE13] and [MR13], due to symmetry between P; and P,
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Summary

Can "lift" cut-and-choose-based 2PC to 3PC setting
— Only twice as slow as underlying 2PC protocol
— Only three broadcast calls needed
— Important since broadcast expensive in WAN setting

Work still needs to be done to determine empirical efficiency
— Free-XOR? (very important in practice!)

— Implementation? Many engineering issues to consider

Paper to be published on ePrint shortly!



Thank you



Extra slides. . .



3PC Using Distributed Garbled Circuits

= Two main challenges of cut-and-choose:
1. Input Inconsistency
— Malicious generator (either Py or P») inputs inconsistent
sub-keys in two different circuits; Ps evaluates on different inputs
— Solution: apply Diffie-Hellman pseudorandom synthesizer
trick [LP11, MFO06]
2. Selective Failure
— Sender in OT can input invalid keys, potentially learning bit of
Ps's input
—  Solution: “XOR-tree” approach [LP07, Woo07]



3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:
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3PC Using Distributed Garbled Circuits

Based on [LPO7, LP11]:

1.

Al

Parties replace input circuit C° with a circuit C using “XOR-tree”
approach for P3's input wires

P1 /P, generate commitments for input consistency, as in [LP11]
Py /P, construct s garbled circuits using distributed garbling protocol
Py /P, compute authenticated sharings of input bits

P1/P> run (separately) OT protocol with P5 for each of P3's inputs;
Py /P, input sub-keys and P3 chooses based on its input

P1/P; send (distributed) garbled circuits, along with input
consistency commitments, to Ps

Py /P5/P5 run coin-tossing protocol to determine which circuits to
open and which to evaluate

For check circuits: Py/P, send required info for P3 to decrypt and
verify correctness

For evaluation circuits: Py/P, send sub-keys and selector bits to Ps;
P53 checks input consistency using ZKPoK as in [LP11]; evaluates
circuits, outputting majority output



