Efficient Secure Three-Party Computation

Seung Geol Choi¹ and Jonathan Katz² and **Alex J. Malozemoff**² and Vassilis Zikas³

¹United States Naval Academy

²University of Maryland, College Park

³University of California, Los Angeles

Presented at the Workshop on Applied Multi-Party Computation, Redmond, Washington, USA, February 20–21, 2014.

Prior Work

Setting: Malicious adversary, arbitrary # corruptions

Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions (e.g., [LP07, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

- Most based on Yao's garbled circuit approach [Yao82, Yao86]
 - Boolean circuits, $\mathcal{O}(1)$ rounds
- Use inherently two-party techniques
 - E.g., cut-and-choose, oblivious transfer, authenticated bit shares, . . .
- Fast in general (and only getting faster)

Prior Work

Setting: Malicious adversary, arbitrary # corruptions

2PC: Many efficient constructions (e.g., [LP07, LP11, SS11, NNOB12, HKE13, Lin13, MR13, SS13])

- Most based on Yao's garbled circuit approach [Yao82, Yao86]
 - Boolean circuits, $\mathcal{O}(1)$ rounds
- Use inherently two-party techniques
 - E.g., cut-and-choose, oblivious transfer, authenticated bit shares, . . .
- Fast in general (and only getting faster)

MPC: SPDZ protocol [BDOZ11, DKL+12, DKL+13, DPSZ12, KSS13]

- *Arithmetic* circuits, $\mathcal{O}(d)$ rounds
- Total running time slow, on-line running time fast

MPC in Practice

Existing MPC deployments mostly utilize three parties

- The Danish sugar beet auction [BCD⁺09]
- Sharemind [BLW08]

MPC in Practice

Existing MPC deployments mostly utilize three parties

- The Danish sugar beet auction [BCD+09]
- Sharemind [BLW08]

Why is this?

- Increase in communication/computation cost as # parties increases
- Settings where three parties sufficient (and two is not)

Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in practice. . .

Question

Since 2PC is fast and MPC is slow(er), but 3PC seems useful in practice. . .

Question

Can we achieve efficient three-party computation using two-party tools?

In particular, can we *lift* cut-and-choose-based 2PC protocols to the three-party setting?

Contribution

Main Contribution

Constant-round maliciously-secure 3PC for boolean circuits at roughly *twice* the cost of underlying cut-and-choose-based 2PC used

- Tolerates arbitrary number of malicious parties
- Can lift [LP07, LP11] and [Lin13] to three-party setting
- Works in Random Oracle model
- Requires almost entirely two-party communication
 - Only three (three-party) broadcast calls needed
- Faster start-to-finish running time versus SPDZ
 - No implementation (yet...)
 - SPDZ has faster on-line running time

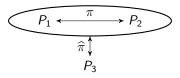
High-level Idea

- $\widehat{\pi}(S,R)$: cut-and-choose 2PC protocol between sender S and receiver R
- S generates many garbling circuits using a circuit garbling scheme
- R does cut-and-choose on circuits

High-level Idea

We *emulate* $\widehat{\pi}$ using three parties as follows:

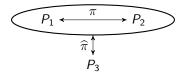
- P₁ and P₂ run two-party protocol π emulating S
 In particular, the *circuit garbling scheme* of S
- P_3 plays role of R



High-level Idea

We *emulate* $\hat{\pi}$ using three parties as follows:

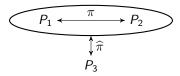
- P_1 and P_2 run two-party protocol π emulating S
 - In particular, the circuit garbling scheme of S
- P_3 plays role of R



Note: using "arbitrary" 2PC schemes for $\widehat{\pi}$ and π won't be efficient!

Outline of Rest of Talk

- 1. Distributing S's circuit garbling scheme
 - 1.1 (Single party) circuit garbling scheme (i.e., garbling scheme for $\widehat{\pi}$)
 - 1.2 Distributing the garbling scheme (i.e., π)
- 2. Adapting 2PC protocols (i.e., $\widehat{\pi}$) to three parties



(Single-party) Circuit Garbling Scheme

- 1. Generate mask bits:
 - For all wires w: Generate $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$
- 2. Generate keys:
 - For all wires w: Generate $K_{w,0} \stackrel{\$}{\leftarrow} \{0,1\}^k$ and $K_{w,1} \stackrel{\$}{\leftarrow} \{0,1\}^k$
- 3. Garble gates:
 - For all gates G with input wires α and β and output wire γ :

$$\begin{split} &\mathsf{Enc}_{\mathsf{K}_{\alpha,0},\mathsf{K}_{\beta,0}}\left(\mathsf{K}_{\gamma,\mathsf{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}}\|\mathsf{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{\mathsf{K}_{\alpha,0},\mathsf{K}_{\beta,1}}\left(\mathsf{K}_{\gamma,\mathsf{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\|\mathsf{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{\mathsf{K}_{\alpha,1},\mathsf{K}_{\beta,0}}\left(\mathsf{K}_{\gamma,\mathsf{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}}\|\mathsf{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{\mathsf{K}_{\alpha,1},\mathsf{K}_{\beta,1}}\left(\mathsf{K}_{\gamma,\mathsf{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\|\mathsf{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \end{split}$$

(Note: This is standard Yao using point-and-permute)

Distributing the Garbling Scheme

Desired properties:

- Obliviousness
 - Parties cannot know output key/tag being encrypted
- 2. Correctness
 - If one party malicious, garbled circuit evaluation must either:
 - Compute correct answer
 - Abort, independent of honest party's input

Distributing the Garbling Scheme

Desired properties:

- Obliviousness
 - Parties cannot know output key/tag being encrypted
- 2. Correctness
 - If one party malicious, garbled circuit evaluation must either:
 - Compute correct answer
 - Abort, independent of honest party's input

Solution

Combine distributed garbling techniques [DI05] with authenticated bit shares [NNOB12]

Distributing the Garbling Scheme: Outline

- Building blocks:
 - Authenticated bit shares
 - Sub-protocols on authenticated bit shares
 - Distributed encryption scheme
- Two-party distributed circuit garbling protocol

Building Blocks: Authenticated Bit Shares [NNOB12]

•
$$\langle b \rangle = (\langle b \rangle^{(1)}, \langle b \rangle^{(2)})$$

• $\langle b \rangle = (\langle b \rangle^{(1)}, \langle b \rangle^{(2)})$

• $\langle b \rangle^{(1)} = (b_1, T_1, K_2) \text{ and } \langle b \rangle^{(2)} = (b_2, T_2, K_1)$

• $b = b_1 \oplus b_2$

• P_1

• P_2

• b_1, T_1, K_1

• b_2, T_2, K_2

• $T_1 = MAC_{K_2}(b_1)$

• $T_2 = MAC_{K_1}(b_2)$

Sharing is linear:

$$\begin{array}{ll}
- & \langle b \rangle \oplus \langle b' \rangle = (\langle b \oplus b' \rangle^{(1)}, \langle b \oplus b' \rangle^{(2)}) \\
- & \langle b \oplus b' \rangle^{(i)} = (b_i \oplus b'_i, T_i \oplus T'_i, K_i \oplus K'_i)
\end{array}$$

Building Blocks: Sub-protocols on authenticated bit shares

Two-party sub-protocols:

- $\mathcal{F}^{G}_{\mathbf{gate}}(\langle a \rangle, \langle b \rangle) \rightarrow \langle G(a, b) \rangle$
- $\mathcal{F}_{\mathsf{oshare}}^i(\langle b \rangle, m_0, m_1) o [m_b]$
 - Inputs m_0 and m_1 are private to party P_i
- $\mathcal{F}_{\mathsf{rand}}() \rightarrow \langle b \rangle$
- $\mathcal{F}_{ss}^{i}(b) \rightarrow \langle b \rangle$
 - Input b is private to party P_i

Note: efficient maliciously secure constructions exist

- Use ideas from [NNOB12]; OT tricks

Building Blocks: Distributed Encryption Scheme [DI05]

$$\begin{matrix} [m] = m_1 \oplus m_2 \\ K_1 = (s_1^1, s_1^2), \ K_2 = (s_2^1, s_2^2) \end{matrix}$$

$$\begin{matrix} \mathbf{P_1} & \mathbf{P_2} \end{matrix}$$

$$\begin{matrix} m_1, \ s_1^1, \ s_2^1 & m_2, \ s_1^2, \ s_2^2 \end{matrix}$$

$$\begin{matrix} Enc_{K_1, K_2}([m]) = \\ (m_1 \oplus F_{s_1^1}^1(0) \oplus F_{s_2^1}^2(0), \end{matrix}$$

$$\begin{matrix} m_2 \oplus F_{s_1^2}^1(0) \oplus F_{s_2^2}^2(0) \end{matrix}$$

- F^1 and F^2 are PRFs
- Encryption is local

- 1. Generate mask bits:
 - For all wires w: Generate $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$
- 2. Generate keys:
 - For all wires w: Generate $K_{w,0} \stackrel{\$}{\leftarrow} \{0,1\}^k$ and $K_{w,1} \stackrel{\$}{\leftarrow} \{0,1\}^k$

- 1. Generate mask bits:
 - For all wires w: Generate $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$
- 2. Generate keys:
 - For all wires w: Generate $K_{w,0} \stackrel{\$}{\leftarrow} \{0,1\}^k$ and $K_{w,1} \stackrel{\$}{\leftarrow} \{0,1\}^k$

1. Generate mask bits:

- P_1 's input wires w: P_1 sets $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$; computes $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{ss}^1(\lambda_w)$ P_2 's input wires w: P_2 sets $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$; computes $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{ss}^2(\lambda_w)$ All other wires w: P_1 and P_2 compute $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{rand}$

2. Generate keys:

- For all wires w: Generate $K_{w,0} \stackrel{\$}{\leftarrow} \{0,1\}^k$ and $K_{w,1} \stackrel{\$}{\leftarrow} \{0,1\}^k$

1. Generate mask bits:

- P_1 's input wires w: P_1 sets $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$; computes $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{ss}^1(\lambda_w)$ P_2 's input wires w: P_2 sets $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$; computes $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{ss}^2(\lambda_w)$ All other wires w: P_1 and P_2 compute $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{rand}$

2. Generate keys:

- For all wires w: Generate $K_{w,0} \stackrel{\$}{\leftarrow} \{0,1\}^k$ and $K_{w,1} \stackrel{\$}{\leftarrow} \{0,1\}^k$

1. Generate mask bits:

- P_1 's input wires w: P_1 sets $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$; computes $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{ss}^1(\lambda_w)$ P_2 's input wires w: P_2 sets $\lambda_w \stackrel{\$}{\leftarrow} \{0,1\}$; computes $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{ss}^2(\lambda_w)$ All other wires w: P_1 and P_2 compute $\langle \lambda_w \rangle \leftarrow \mathcal{F}_{rand}$

2. Generate keys:

- For all wires w: P_i , for $i \in \{1,2\}$, sets $s_{w,0}^i \overset{\$}{\leftarrow} \{0,1\}^k$ and $s_{w,1}^i \overset{\$}{\leftarrow} \{0,1\}^k$ Let $K_{w,0} = (s_{w,0}^1, s_{w,0}^2)$ and $K_{w,1} = (s_{w,1}^1, s_{w,1}^2)$

3. Garble gates:

$$\begin{split} &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,0}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,1}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,0}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,1}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \end{split}$$

3. Garble gates:

$$\begin{split} &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,0}}\left(K_{\gamma,G(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}}\| \textit{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,1}}\left(K_{\gamma,G(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\| \textit{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,0}}\left(K_{\gamma,G(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}}\| \textit{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,1}}\left(K_{\gamma,G(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\| \textit{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \end{split}$$

3. Garble gates:

$$\begin{split} &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,0}}\left({}^{}_{K_{\gamma,\mathsf{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}}} \| \mathit{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma} \right) \\ &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,1}}\left({}^{}_{K_{\gamma,\mathsf{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}} \| \mathit{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma} \right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,0}}\left({}^{}_{K_{\gamma,\mathsf{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}}} \| \mathit{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma} \right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,1}}\left({}^{}_{K_{\gamma,\mathsf{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}} \| \mathit{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma} \right) \end{split}$$

3. Garble gates:

$$\begin{split} &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,0}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha},\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,0},K_{\beta,1}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha},\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,0}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta})\oplus\lambda_{\gamma}\right) \\ &\mathsf{Enc}_{K_{\alpha,1},K_{\beta,1}}\left(K_{\gamma,\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}}\|\mathcal{G}(\lambda_{\alpha}\oplus1,\lambda_{\beta}\oplus1)\oplus\lambda_{\gamma}\right) \end{split}$$

$$\lambda_{lpha}=1,\,\lambda_{eta}=0,\,\lambda_{\gamma}=1$$

Standard (single-party) garbling:

Step 1: Compute tags:

$$\begin{array}{cccc} i & j & AND(\lambda_{\alpha} \oplus i, \lambda_{\beta} \oplus j) \oplus \lambda_{\gamma} \\ 0 & 0 & AND(1 \oplus 0, 0 \oplus 0) \oplus 1 = 1 \\ 0 & 1 & AND(1 \oplus 0, 0 \oplus 1) \oplus 1 = 0 \\ 1 & 0 & AND(1 \oplus 1, 0 \oplus 0) \oplus 1 = 1 \\ 1 & 1 & AND(1 \oplus 1, 0 \oplus 1) \oplus 1 = 1 \end{array}$$

$$\lambda_{lpha}=1,\,\lambda_{eta}=0,\,\lambda_{\gamma}=1$$

Standard (single-party) garbling:

Step 2: Encrypt:

$$\begin{array}{ccccc} i & j \\ & 0 & 0 & \mathsf{Enc}_{K_{\alpha,0},K_{\beta,0}}(K_{\gamma,1}\|1) \\ 0 & 1 & \mathsf{Enc}_{K_{\alpha,0},K_{\beta,1}}(K_{\gamma,0}\|0) \\ 1 & 0 & \mathsf{Enc}_{K_{\alpha,1},K_{\beta,0}}(K_{\gamma,1}\|1) \\ 1 & 1 & \mathsf{Enc}_{K_{\alpha,1},K_{\beta,1}}(K_{\gamma,1}\|1) \end{array}$$

$$\dfrac{lpha}{eta}$$
 $\dfrac{\gamma}{eta}$ $\langle\lambda_lpha
angle=0$, $\langle\lambda_\gamma
angle=1$

Distributed garbling:

Step 1: Compute *oblivious sharings* of tags:

$$\begin{array}{cccc} i & j & \langle AND(\lambda_{\alpha} \oplus i, \lambda_{\beta} \oplus j) \oplus \lambda_{\gamma} \rangle \\ \\ 0 & 0 & \mathcal{F}_{\mbox{\scriptsize gate}}^{AND}(\langle 1 \rangle \oplus \langle 0 \rangle, \langle 0 \rangle \oplus \langle 0 \rangle) \oplus \langle 1 \rangle = \langle 1 \rangle \\ \\ 0 & 1 & \mathcal{F}_{\mbox{\scriptsize gate}}^{AND}(\langle 1 \rangle \oplus \langle 0 \rangle, \langle 1 \rangle \oplus \langle 1 \rangle) \oplus \langle 1 \rangle = \langle 0 \rangle \\ \\ 1 & 0 & \mathcal{F}_{\mbox{\scriptsize gate}}^{AND}(\langle 1 \rangle \oplus \langle 1 \rangle, \langle 0 \rangle \oplus \langle 0 \rangle) \oplus \langle 1 \rangle = \langle 1 \rangle \\ \\ 1 & 1 & \mathcal{F}_{\mbox{\scriptsize gate}}^{AND}(\langle 1 \rangle \oplus \langle 1 \rangle, \langle 0 \rangle \oplus \langle 1 \rangle) \oplus \langle 1 \rangle = \langle 1 \rangle \\ \end{array}$$

$$\frac{\alpha}{\beta} \boxed{\gamma}$$
 $\langle \lambda_{lpha} \rangle = 1$, $\langle \lambda_{eta} \rangle = 0$, $\langle \lambda_{\gamma} \rangle = 1$

Distributed garbling:

Step 2: Compute *oblivious sharings* of each party's output sub-keys:

i	j		
0	0	$\mathcal{F}^1_{f oshare}(\langle 1 angle, s^1_{\gamma,0}, s^1_{\gamma,1}) = \left[s^1_{\gamma,1} ight]$	$\mathcal{F}^2_{oshare}(\langle 1 \rangle, s^2_{\gamma,0}, s^2_{\gamma,1}) = \left[s^2_{\gamma,1} \right]$
0	1	$\mathcal{F}_{\mathbf{oshare}}^{1}(\langle 0 \rangle, s_{\gamma,0}^{1}, s_{\gamma,1}^{1}) = \left[s_{\gamma,0}^{1}\right]$	$\mathcal{F}_{\mathbf{oshare}}^2(\langle 0 \rangle, s_{\gamma,0}^2, s_{\gamma,1}^2) = \left[s_{\gamma,0}^2\right]$
1	0	$\mathcal{F}_{f oshare}^1(\langle 1 angle, s_{\gamma,0}^1, s_{\gamma,1}^1) = \left[s_{\gamma,1}^1\right]$	$\mathcal{F}^2_{f oshare}(\langle 1 angle, s^2_{\gamma,0}, s^2_{\gamma,1}) = \left[s^2_{\gamma,1}\right]$
1	1	$\begin{array}{l} \mathcal{F}_{\mathbf{oshare}}^{1}(\langle 1 \rangle, s_{\gamma,0}^{1}, s_{\gamma,1}^{1}) = \begin{bmatrix} s_{\gamma,1}^{1} \end{bmatrix} \\ \mathcal{F}_{\mathbf{oshare}}^{1}(\langle 0 \rangle, s_{\gamma,0}^{1}, s_{\gamma,1}^{1}) = \begin{bmatrix} s_{\gamma,0}^{1} \end{bmatrix} \\ \mathcal{F}_{\mathbf{oshare}}^{1}(\langle 1 \rangle, s_{\gamma,0}^{1}, s_{\gamma,1}^{1}) = \begin{bmatrix} s_{\gamma,1}^{1} \end{bmatrix} \\ \mathcal{F}_{\mathbf{oshare}}^{1}(\langle 1 \rangle, s_{\gamma,0}^{1}, s_{\gamma,1}^{1}) = \begin{bmatrix} s_{\gamma,1}^{1} \end{bmatrix} \end{array}$	$\mathcal{F}^2_{oshare}(\langle 1 angle, s^2_{\gamma,0}, s^2_{\gamma,1}) = \left[s^2_{\gamma,1} ight]$

$$rac{lpha}{eta}$$
 γ $\langle \lambda_lpha
angle = 1,\ \langle \lambda_eta
angle = 0,\ \langle \lambda_\gamma
angle = 1$

Distributed garbling:

Step 3: Use *distributed* encryption to encrypt:

i	j	
0	0	$Enc_{\mathcal{K}_{lpha,0},\mathcal{K}_{eta,0}}(\left[s_{\gamma,1}^1 ight] \ \left[s_{\gamma,1}^2 ight] \ \langle 1 angle)$
0	1	$Enc_{\mathcal{K}_{\alpha,0},\mathcal{K}_{\beta,0}}(\left[s_{\gamma,1}^{1}\right] \left\ \left[s_{\gamma,1}^{2}\right]\right\ \left\langle 1\right\rangle) \\ Enc_{\mathcal{K}_{\alpha,0},\mathcal{K}_{\beta,1}}(\left[s_{\gamma,0}^{1}\right] \left\ \left[s_{\gamma,0}^{2}\right]\right\ \left\langle 0\right\rangle)$
1	0	$Enc_{K_{\alpha,1},K_{\beta,0}}(s_{\gamma,1}^1 s_{\gamma,1}^2 \langle 1 \rangle)$
1	1	$Enc_{\mathcal{K}_{\alpha,1},\mathcal{K}_{\beta,1}}([s_{\gamma,1}^{1,1}]\parallel[s_{\gamma,1}^{2,1}]\parallel\langle 1\rangle)$

3PC Using Distributed Garbled Circuits

High-level Idea

- Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
- Replace sender's circuit generation by distributed circuit generation

(Many details ignored here...)

3PC Using Distributed Garbled Circuits

High-level Idea

- Take existing cut-and-choose protocol (e.g., [LP07, LP11, Lin13])
- Replace sender's circuit generation by distributed circuit generation

(Many details ignored here...)

Security Intuition

- Exactly one of P₁ or P₂ malicious: garbled circuits either correct or abort independent of input, even with malicious P₃
- Both P_1 and P_2 malicious: cut-and-choose by P_3 detects cheating

Efficiency versus underlying 2PC protocol:

- Roughly two times more expensive in computation
- Roughly three times more expensive in communication

Approach works for several cut-and-choose-based 2PC protocols:

- ✓: Combination of [LP07, LP11] (probably [SS11, KsS12] as well)
- ✓: [Lin13]
- X: [HKE13] and [MR13], due to symmetry between P_1 and P_2

Summary

Can "lift" cut-and-choose-based 2PC to 3PC setting

- Only twice as slow as underlying 2PC protocol
- Only three broadcast calls needed
 - Important since broadcast expensive in WAN setting

Work still needs to be done to determine empirical efficiency

- Free-XOR? (very important in practice!)
- Implementation? Many engineering issues to consider

Paper to be published on ePrint shortly!

Thank you

Extra slides...

- Two main challenges of cut-and-choose:
 - 1. Input Inconsistency
 - Malicious generator (either P₁ or P₂) inputs inconsistent sub-keys in two different circuits; P₃ evaluates on different inputs
 - Solution: apply Diffie-Hellman pseudorandom synthesizer trick [LP11, MF06]
 - 2. Selective Failure
 - Sender in OT can input invalid keys, potentially learning bit of P₃'s input
 - Solution: "XOR-tree" approach [LP07, Woo07]

Based on [LP07, LP11]:

1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol
- 4. P_1/P_2 compute authenticated sharings of input bits

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol
- 4. P_1/P_2 compute authenticated sharings of input bits
- 5. P_1/P_2 run (separately) OT protocol with P_3 for each of P_3 's inputs; P_1/P_2 input sub-keys and P_3 chooses based on its input

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol
- 4. P_1/P_2 compute authenticated sharings of input bits
- 5. P_1/P_2 run (separately) OT protocol with P_3 for each of P_3 's inputs; P_1/P_2 input sub-keys and P_3 chooses based on its input
- 6. P_1/P_2 send (distributed) garbled circuits, along with input consistency commitments, to P_3

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol
- 4. P_1/P_2 compute authenticated sharings of input bits
- 5. P_1/P_2 run (separately) OT protocol with P_3 for each of P_3 's inputs; P_1/P_2 input sub-keys and P_3 chooses based on its input
- 6. P_1/P_2 send (distributed) garbled circuits, along with input consistency commitments, to P_3
- 7. $P_1/P_2/P_3$ run coin-tossing protocol to determine which circuits to open and which to evaluate

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol
- 4. P_1/P_2 compute authenticated sharings of input bits
- 5. P_1/P_2 run (separately) OT protocol with P_3 for each of P_3 's inputs; P_1/P_2 input sub-keys and P_3 chooses based on its input
- 6. P_1/P_2 send (distributed) garbled circuits, along with input consistency commitments, to P_3
- 7. $P_1/P_2/P_3$ run coin-tossing protocol to determine which circuits to open and which to evaluate
- 8. For check circuits: P_1/P_2 send required info for P_3 to decrypt and verify correctness

- 1. Parties replace input circuit C^0 with a circuit C using "XOR-tree" approach for P_3 's input wires
- 2. P_1/P_2 generate commitments for input consistency, as in [LP11]
- 3. P_1/P_2 construct s garbled circuits using distributed garbling protocol
- 4. P_1/P_2 compute authenticated sharings of input bits
- 5. P_1/P_2 run (separately) OT protocol with P_3 for each of P_3 's inputs; P_1/P_2 input sub-keys and P_3 chooses based on its input
- 6. P_1/P_2 send (distributed) garbled circuits, along with input consistency commitments, to P_3
- 7. $P_1/P_2/P_3$ run coin-tossing protocol to determine which circuits to open and which to evaluate
- 8. For check circuits: P_1/P_2 send required info for P_3 to decrypt and verify correctness
- 9. For evaluation circuits: P_1/P_2 send sub-keys and selector bits to P_3 ; P_3 checks input consistency using ZKPoK as in [LP11]; evaluates circuits, outputting majority output