
MPC in Large Networks
with Applications to Anonymous Broadcast

Mahdi Zamani
University of New Mexico

with Jared Saia and Mahnush Movahedi

Motivation

• Growth of modern networks

~250 million users

~1.2 billion users

~300 million users

~1.2 million users

Our Goal

• Practical MPC for large networks

– From thousands to billions of parties

– Malicious parties

– Arithmetic functions

• Applications

– Anonymous communication

– Secure analysis of big data

MPC Approaches

• Compute a function 𝑓 over

– Secret-shared values

• Shamir’s sharing

• Small computation cost

• Multiplication requires several rounds.

– Encrypted values

• Fully Homomorphic Encryption (FHE)

• Optimal round complexity

• Has large computation cost.

Our Model

• 𝑛 parties

– Connected pairwise via private channels.

• ≤ 𝑛/10 are malicious

– Can deviate arbitrarily from our protocol.

• Adversary is

– Computationally bounded

– Static

• Synchronous communication

Our Results

• Average costs

– Online phase

• 𝑂 𝑚 log3 𝑛 messages of size 𝑂 log 𝑝

• 𝑂 𝑚 log4 𝑛 operations

– Offline phase

• 𝑂 𝑛 𝜅2 messages and operations

– 𝑂(𝑑) rounds of communication

Scalability via Quorums

• Logarithmic-size set of parties

• < 𝑁/9 malicious parties in each quorum

• Quorum building of [BGH’13]

• Used for MPC

– Scalable MPC [DKMS’12]

– Communication locality in MPC [BGT’13]

Building Blocks

• Efficient VSS of [KZG’10]

– Shamir’s scheme along with commitments

• Threshold FHE of [AJTV’12]

– Adopted [BGV’12] to the malicious case

• Preprocessing Model of [DPSZ’11]

– FHE in offline phase

Our Protocol

• Create 𝑛 quorums.

• Assign each gate 𝐺 to a quorum 𝑄.

• For each party 𝑃𝑖 ∈ 𝑄,

– Compute 𝐺 over secret-shared inputs.

𝑎𝑖 𝑏𝑖

𝑐𝑖

𝑐𝑖 = 𝐹𝐺 𝑎𝑖 , 𝑏𝑖
𝑄

𝑐 = 𝐹𝐺(𝑎, 𝑏)

Challenges

𝑐𝑖
′

𝑎𝑖 𝑏𝑖

𝑐𝑖
𝑐𝑖 = 𝐹𝐺 𝑎𝑖 , 𝑏𝑖

Challenges

𝑐𝑖
′

𝑎𝑖 𝑏𝑖

𝑐𝑖
𝑐𝑖 = 𝐹𝐺 𝑎𝑖 , 𝑏𝑖

• Resharing

Challenges

𝑐𝑖
′

𝑎𝑖 𝑏𝑖

𝑐𝑖
𝑐𝑖 = 𝐹𝐺 𝑎𝑖 , 𝑏𝑖

• Resharing

• Multiplication

Resharing

• A Shamir sharing can be easily refreshed.

• A new polynomial with the same free term.

A frequent change of this type can greatly
enhance security since the pieces exposed by
security breaches cannot be accumulated unless
all of them are values of the same edition of the
polynomial.”

Adi Shamir. How to share a secret. 1979.

Resharing

Resharing

𝑐

𝜙 𝑥

Resharing

𝑟

𝑐

𝜙 𝑥

𝜌 𝑥

Resharing

𝑟

𝑐

𝜙 𝑥

𝑥 ⋅ 𝜌 𝑥

𝜌 𝑥

Resharing

𝑟

𝑐

𝜙 𝑥

𝑥 ⋅ 𝜌 𝑥

𝜌 𝑥

𝜙′ 𝑥

𝜙′ 𝑥 = 𝜙 𝑥 + 𝑥 ⋅ 𝜌 𝑥

Multiplication over Shares

𝑃𝑖

How to compute 𝑎𝑖 ⋅𝑏𝑖

from 𝑎𝑖 and 𝑏𝑖?

Beaver’s Multiplication Triples

𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖

𝑤 = 𝑢 ⋅ 𝑣

TFHE in

Offline phase

Beaver’s Multiplication Triples

𝑐𝑖 = 𝑤𝑖 −𝛿𝑎𝑖 −𝜀𝑏𝑖 +𝜀𝛿

𝜀𝑖 = 𝑎𝑖 + 𝑢𝑖

𝛿𝑖 = 𝑏𝑖 + 𝑣𝑖

In online

phase

Application: Anonymous Broadcast

• Each party has a message to broadcast,

• No coalition should be able to map

messages to senders.

• Current schemes are either

vulnerable to traffic analysis

or are impractical.

Anonymous Broadcast via MPS

• Let 𝑚𝑖 be 𝑃𝑖 ’s message.

• 𝑃𝑖 picks a random value 𝑟𝑖 .

• Parties jointly sort their pairs 𝑟𝑖 , 𝑚𝑖 over 𝑟𝑖.

• Multi-Party Sorting (MPS)

– Each party receives a vector of all sorted inputs.

Multi-Party Sorting (MPS)

P1 P2 P3 P4 P5 P6 P7 P8

 4 7

 4 7

Multi-Party Sorting (MPS)

P1 P2 P3 P4 P5 P6 P7 P8

 7 4

 4 7

Microbenchmarks

Microbenchmarks

5 KB

Conclusion

• An efficient protocol for MPC

• Tolerates up to 𝑛/10 malicious parties

• Efficient anonymous broadcast via

multiparty sorting.

Open Problems

• Blacklist bad parties over time

• Asynchronous communication

• Adaptive adversary

Thank you!

Questions?

Costs Breakdown

• One sorting (𝑛 = 225)

Phase % phase % total

Setup 76%

 Quorum building 5%

 Key generation 95%

 Triple generation <1%

Online 24%

 Circuit computation 1%

 Output propagation 99%*

Costs Breakdown

Phase 𝒏 = 𝟐𝟏𝟎 𝒏 = 𝟐𝟑𝟎

Setup 99% 8%

Online 1% 92%

Cost per Party

Each party sends about 160 GB for

sorting 600 MB of data.

Overhead = 1:250

Protocol Recap

• Setup

– Create 𝑛 quorums.

– Assign each gate to a quorum.

– For each gate, create a multiplication triple via FHE.

• Online

– Compute each gate over secret-shared values.

– Reshare the result to parent gates.

– Propagate the final result to all quorums.

InitTriple

Multiply

Reshare

