QUORUMS QUICKEN QUERIES: EFFICIENT ASYNCHRONOUS SECURE MULTIPARTY COMPUTATION

Mahnush Movahedi with Jared Saia, Valerie King, Varsha Dani University of New Mexico and University of Victoria

Multi-Party Computation

- Given
 - n parties
 - Each party has a private input
 - Function f over n inputs
- Goals
 - Correctness
 - Privacy

Our Model

- Communication model
 - Pairwise private channels
 - Asynchronous
- Adversary
 - Static
 - Unbounded
 - t < n/8 are malicious (bad)

Asynchronous Model

- The adversary can control latency of channels
 - Can arbitrarily delay messages
 - Cannot delete messages
- MPC simulates a trusted third party
 - Waits for n t input,
 - Computes f,
 - Sends the output to every party.

What is the difference?

- Count inputs that are received
- Parties cannot wait for all messages
 - Decrease number of bad parties
 - Wait until sufficient number of the same message is received.

First Step

Count ready inputs

Threshold Counting

- Problem
 - n good parties with a bit initially set to 0.
 - \blacksquare At least τ parties eventually set their bits to 1.
 - \blacksquare Goal: parties learn when at least τ bits are 1.
- Solution: τ-Counter
 - Bits sent/received per party: $O(\log n)$
 - Computation per party: $O(\log n)$
 - Total latency: $O(\log n)$

Approach

- Naïve approach: binary tree
 - A message is sent up for each new input
 - Problem: Load balancing
- τ-Counter
 - Forwards to random nodes
 - Collects inputs and aggregates them before forwarding

τ-Counter Data Structure

□ Root node has $O(\log n)$ children.

τ-Counter Up Stage

τ-Counter Up Stage

τ-Counter

Next Step

Our MPC Construction

Previous Work

- [BGW88], [CR93], [CDD99], [HM01],[BH06], [AIK10], ...
- □ Assume the circuit has m gates
 - Each party sends O(mn) messages
 - Each party performs O(mn) computation

Our Contribution

- Improve computation and communication costs
- In average, each party
 - □ Sends $\tilde{O}\left(\frac{m}{n}\right)$ bits
 - Performs $\tilde{O}\left(\frac{m}{n}\right)$ computation
- We solve MPC w.h.p. meaning
 - $\Box 1 O(1/n^c)$ for any fixed c

Algorithm Overview

Use quorums

- Has $\theta(\log n)$ parties, < 1/8 fraction are bad
- Used for input counting
- Each gate is computed by a quorum

Preserve privacy

- Mask gate inputs and output with random values
- Random number are known collectively via verifiable secret sharing

Asynchronous issues

π-Counter counts the number of ready inputs

Tools

- Quorum building
 - Parties agree on *n* quorums *w.h.p* [BGH13]
- Preserve privacy and computation
 - Verifiable secret sharing of [CR93]
 - MPC in quorums [CR93]

Circuit

The Algorithm: Input commitment

- Quorums form a τ-Counter
- Each party VSS a random mask to an input quorum
- Each party sends its masked input to an input quorum

The Algorithm: Computation

Conclusion

More Open Problem

- Designing scalable interactive computation
- Scalable interactive Coding for Multiparty Protocols
- Server based MPC based on quorums

Thank you!