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Problem Statement

To provide sufficient conditions which

guarantee the stability of oscillations

in a class of dynamical systems known

as piecewise linear feedback systems.

Why?
There exist numerous examples where

assessing the stability of oscillations is
important, e.g.

y Planetary movement
y Cardiac rhythms
y Circadian rhythms
y AC electrical power
y Cristal oscillators (which provide the
clock signal for digital microprocessors)

Why piecewise linear?
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Furthermore, PWL models are ideally
suited for certain common nonlinear
phenomena:

y Saturation.

y Multiple modes of operation
(e.g. on/off).

y Hysteresis (magnetic, electrical,
elastic)

Background information

PWL dynamical systems

ẋ(t) = f (x(t),u(t))

y(t) = g(x(t),u(t))

Dynamical system

u(t) y(t)

A dynamical systemrenders a time-
dependent relationship between theinputs
u(t) ∈ R

m and theoutputs y(t) ∈ R
p via

a set of quantitiesx(t) ∈ R
n called states

which characterise the system’s internal
circumstances or attributes.

The class of PWL systems considered here
are defined by a set of affine linear systems

{

ẋ(t) = Aq x(t)+Bq u(t)
y(t) = C x(t)

(1.a)

where Aq ∈ R
n×n, Bq ∈ R

n and C⊤ ∈ R
n,

together with a logical rule to switch among
them

q(x) ∈ {1, . . . ,M} (1.b)

which depends on present values ofx(t).

Switching surfaces

We define theswitching surfacesSi as
the regions of the state space where
the mathematical description of the PWL
systemswitchesfrom

ẋ(t) = A j x(t)+B j u(t)

to
ẋ(t) = Ak x(t)+Bk u(t)

where j 6= k.

Impact maps

The impact mapsHi(·) show how the
trajectory of the system evolves from one
switching surface to the next one.
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xi+1 = Hi(xi) ∈ Si+1 for all xi ∈ Si

Lyapunov functions

LetV (·) be a nonnegative function such that

V (x) > 0 for all x 6= x◦ andV (x◦) = 0
V (xk+1) < V (xk)

Thenxk → x◦ ask → ∞

System to be considered
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In this case, theswitching surfacesare
given by

S := {x ∈ R
n |Cx = d}

S := {x ∈ R
n |Cx = −d}

The oscillatory trajectory of the system,
denotedT ◦, is assumed to intersect the
switching surfacesSi at the pointsx◦i .
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Proposed methodology

Finding Lyapunov functionsVi on the
switching surfacesSi such that

Vi+1(xi+1) < Vi(xi) for all xi+1 = Hi(xi)

would guarantee thatxi → x◦i as time
elapses, thus guaranteeing the stability
of the oscillatory trajectory.

Results

•A constructive methodology
for finding the aforementioned
Lyapunov functionshas been
proposed [2] as an extension
of the work presented in [1].

•Extensions which consider a
wider class of PWL systems
than the one considered here
are still pending.
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