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Problem Statement Background information System to be considered

[ . " i ] SISO

To provide sufficient conditions which [ PWL dynamical systems } LTI
guarantee the stability of oscillations (O AlB
In a class of dynamical systems known : | ClO
as piecewise linear feedback systems K
X(t) = (x(t),u(t
Why? y(t) = g(x(t), u(t))
. (

There exist numerous examples where Ax— K B, Cx>d
assessing the stability of oscillations is A dynamical systemrenders a time- x=1{ (A—KBC)x, |Cx <d
Important, e.g. detpen%egt re(;ailr?nshlp li[)etV\ieen I[1{1{|r|[1;qa)u_ts A+ KB Cx < —d

* Planetary movement u(t) € R™ and theoutputsy(t) € RP via AR BERS CTERS k>0 d> 0

a set of quantitiex(t) € R" called states

e Cardiac rhythms _ _ _
which characterise the system’s internal

In this case, thewitching surfaceare

) ilécaldlan. rhlythms circumstances or attributes. given by
. electrical power . .
_ | P | | The class of PWL systems considered here S:={xeR"|Cx=d}
Cristal oscillators (which provide the are defined by a set of affine linear systems S:={xecR"|Cx=—d}
clock signal for digital microprocessors)
Why piecewise linear? X(t) = AgX(t) + Bqu(t) (1.a) The osclillatory trajectory of the system,
y(t) =Cx(t) denotedT?, is assumed to intersect the
\ L o
where A, € R™, By € R" andCT € R", switching surface§ at the points<’.
_ together with a logical rule to switch among
. E, Nonlinear them
= < | | systems q(x) € {1,...,M} (1.b)
Q .
= PWL | % which depends on present valuesf).
o * L
= 2 Linear { Switching surfaces }
= = systems
o We define theswitching surfacesS as
f I > the regions of the state space wherg
a e_W a c?t the mathematical description of the PWL Proposed methodology
Analytical tools available systemswitchesirom Finding Lyapunov functionsV; on the
Furthermore, PWL models are ideally X(t) = Ajx(t) + Bju(t) switching surfaces such that
suited for certain common nonlinear to Vip1(Xi1) < Vi(x) for all X1 = Hi(x)
phenomena: e\ _
. X(t) = AX(t) +Bru(t) would guarantee that; — x° as time
e Saturation. . . -
| where|] # k. elapses, thus guaranteeing the stability
-4 of the oscillatory trajectory.
| |£| = { Impact maps }
T The impact mapsH;(-) show how the /?esults N
« Multiple modes of operation traj_ect(_)ry of the system evolves from one e A constructive methodology
(e.g. on/off). switching surface to the next one. for finding the aforementioned
Lyapunov functiondhas been
S S+1 -
proposed [2] as an extension
of the work presented in [1].
e EXxtensions which consider a
wider class of PWL systems
X1 = Hi(x) € Sy forallx € S than the one considered here
* Hysteresis  (magnetic,  electrical, are still pending.
elastic) | < )
» { Lyapunov functions }
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