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Abstra
t

We investigate the 
laim that fun
tional languages o�er low-
ost parallelism in the 
ontext

of symboli
 programs on modest parallel ar
hite
tures. In our investigation we present the �rst


omparative study of the 
onstru
tion of large appli
ations in a parallel fun
tional language,

in our 
ase in Glasgow Parallel Haskell (GpH). The appli
ations 
over a range of appli
ation

areas, use several parallel programming paradigms, and are measured on two very di�erent

parallel ar
hite
tures.

On the appli
ations level the most signi�
ant result is that we are able to a
hieve modest

wall-
lo
k speedups (between fa
tors of 2 and 10) over the optimised sequential versions

for all but one of the programs. Speedups are obtained even for programs that were not

written with the intention of being parallelised. These gains are a
hieved with a relatively

small programmer-e�ort. One reason for the relative ease of parallelisation is the use of

evaluation strategies, a new parallel programming te
hnique that separates the algorithm

from the 
oordination of parallel behaviour.

On the language level we show that the 
ombination of lazy and parallel evaluation is

useful for a
hieving a high level of abstra
tion. In parti
ular we 
an des
ribe top-level paral-

lelism, and also preserve module abstra
tion by des
ribing parallelism over the data stru
tures

provided at the module interfa
e (\data-oriented parallelism"). Furthermore, we �nd that the

determinism of the language is helpful, as is the largely-impli
it nature of parallelism in GpH.

1 Introdu
tion

Parallelism without pain is perpetually promised but seldom delivered. For appli
ations where

the parallelism is well-stru
tured, well-understood te
hniques su
h as SPMD now deliver good

performan
e [SMT

+

95℄. But for ri
hly-stru
tured symboli
 appli
ations, su
h as 
ompilers and

natural-language pro
essing, the jury is still out. Su
h appli
ations are 
hara
terised as follows.

� The 
omputation is largely symboli
, rather than numeri
al, e.g. with arbitrary pre
ision

integers rather than 
oating point numbers.

� The data stru
tures are 
omplex, e.g. ri
hly 
onne
ted trees or graphs, rather than arrays.

� The algorithm supports modest, rather than massive, parallelism.

� Parallelism arises from several sour
es, often nested within one another.
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� Thread granularities are not stati
ally predi
table.

The literature on parallel appli
ations of this sort is sparse, and good results seem to demand

an unreasonable investment of e�ort, ex
ept in parti
ularly well-studied ni
hes, su
h as parallel

dis
rete event simulation and 
omputer algebra [JSC96℄.

Fun
tional programming languages have long held out the possibility of addressing parallel

symboli
 appli
ations. On the one hand, their automati
 storage allo
ation, polymorphi
 typing,

and ri
h data stru
tures, make them well suited to symboli
 appli
ations. On the other hand,

their expression-oriented style exposes mu
h potential parallelism.

Despite this promise, real parallel implementations have been slow in 
oming. By a `real' im-

plementation we mean one that (a) delivers wall-
lo
k speedups over the best sequential 
ompiler

for the same language, and (b) is robust enough to handle multi-thousand-line appli
ation pro-

grams. The engineering 
hallenge of developing a real implementation in this sense is 
onsiderable.

Hammond [Ham94℄ provides a good overview of work in this area, and Se
tion 7 dis
usses related

work on appli
ations.

We have, however, developed a real implementation of the fun
tional language Haskell [PHA

+

97℄,


alled Glasgow Parallel Haskell (GpH), des
ribed in [THM

+

96℄. Using it we have begun to write

substantial parallel appli
ations, and to develop systemati
 ways of doing so. In this paper we

des
ribe our experien
es of parallelising a set of �ve parallel appli
ations of varying size. Three

are really warm-up exer
ises, serving to set the s
ene. The last two, a 
ompiler for Haskell, and a

natural-language pro
essing system are substantial: 5,000 and 47,000 lines of Haskell respe
tively.

Together, these appli
ations 
over a range of

� appli
ation areas

� parallel programming paradigms

� parallel 
omputer systems.

So, based on this experien
e, what is the verdi
t? Our 
on
lusions are these:

� With a modest investment of e�ort, it is possible to extra
t modest levels of parallelism

(a fa
tor of 2{10), and wall-
lo
k speedup, for 
omplex symboli
 appli
ations that were

originally written without parallelism in mind (Se
tion 5.1). It 
an be diÆ
ult to extra
t

mu
h more parallelism than this without substantial rewriting.

Viewed from the massively-parallel 
omputing standpoint, this looks disappointing. Viewed

from the position of a 
ompiler writer used to 
onsidering a 20% improvement as a huge

win, it looks ex
iting. `Low pain, moderate gain' is our motto. Be
ause this speedup is

a
hieved with only minor 
hanges in the 
ode, merely exposing parallelism rather than


ontrolling it in detail, this style of parallelism should be of interest for non-spe
ialists in

parallel programming.

� Some of the long-time 
laims of the fun
tional 
ommunity do hold good. In parti
ular, deter-

minism is an enormous boon. On
e a program works on a uni-pro
essor, then it also works

on a multi-pro
essor, and always delivers the same results. There are no ra
e hazards, 
ore

dumps, and unrepeatable errors. However, the usual problems and advantages of di�erent

resour
e usage in a multi-pro
essor setting remain, as illustrated in Se
tion 4.5.

� We have found a way to 
leanly separate the algorithm that 
omputes the result from the

evaluation strategy that governs its parallel behaviour. Evaluation strategies are the topi
 of

another paper [THLP98℄, and are introdu
ed in Se
tion 2.1.

Interestingly, lazy evaluation plays an essential role in supporting this modular program

de
omposition. (Lazy evaluation means that a 
omponent of a data stru
ture is only eval-

uated when its value is needed.) This result dire
tly 
ontradi
ts the folk-lore that laziness

and parallelism are in 
on
i
t [TG95, Ken94℄. In short, lazy evaluation allows us to de�ne

parallelism over a data stru
ture produ
ed by a fun
tion without breaking the abstra
tion
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of the fun
tion. This `data-oriented' form of parallel programming en
ourages a modular

design where sequential fun
tions 
an be reused and parallelism is de�ned when 
omposing

several fun
tions.

� Our te
hniques support a variety of parallel programming paradigms , in
luding farms, pipe-

lines, divide-and-
onquer, and data parallelism. Sin
e some of our appli
ations involve sev-

eral di�erent forms of parallelism, it is helpful that our programming framework is not biased

towards one parti
ular paradigm. Several of the programs nest one paradigm within another,

furthermore we exploit the fa
ility to nest paradigms to an arbitrary depth.

These are general remarks. The distin
tive 
ontribution of this paper is that we justify them in

detail, based on experien
e of substantial appli
ations 
overing a range of appli
ation areas.

Parallel fun
tional programming is no pana
ea. Writing parallel algorithms is still hard. For

appli
ations that demand very high utilisation of an expensive massively-parallel ma
hine the

programmer might well be better o� with existing approa
hes. However, in an age where every

desktop ma
hine will soon be a multi-pro
essor, and where under-used networks of workstations

abound, a way to extra
t modest speedups for a modest investment of e�ort is a wel
ome and

en
ouraging development. In 
ontrast to super
omputing parallelism, with its spe
ialised ma
hines

and the high e�ort needed to extra
t parallelism, we therefore term our approa
h one of `desktop

parallelism'.

The stru
ture of the paper is as follows. After dis
ussing the programming language in Se
tion 2

and environment in Se
tion 3, we des
ribe the appli
ations themselves in Se
tion 4. In the rest of

the paper we then try to abstra
t the lessons we learned from that experien
e in Se
tions 5 and 6.

We in
lude a substantial survey of the �eld in Se
tion 7, before 
on
luding with Se
tion 8.

2 GpH | A Parallel Fun
tional Language

The essen
e of the problem fa
ing the parallel programmer is that, in addition to spe
ifying what

value the program should 
ompute, expli
itly parallel programs must also spe
ify how the ma
hine

should organise the 
omputation. There are many aspe
ts to the parallel exe
ution of a program:

threads are 
reated, exe
ute on a pro
essor, transfer data to and from remote pro
essors, and

syn
hronise with other threads, et
. Managing all of these aspe
ts on top of 
onstru
ting a 
orre
t

and eÆ
ient algorithm is what makes expli
it parallel programming so hard. The diametri
ally

opposing approa
h is to rely solely on the 
ompiler and runtime system to manage the parallel

exe
ution without any programmer input. Unfortunately, this purely impli
it approa
h is not yet

fruitful for the large-s
ale fun
tional programs we are interested in.

The approa
h used in GpH is intermediate between purely impli
it and purely expli
it ap-

proa
hes. The runtime system manages most of the parallel exe
ution, only requiring the pro-

grammer to indi
ate those values that might usefully be evaluated by parallel threads and, sin
e

our basi
 exe
ution model is a lazy one, perhaps also the extent to whi
h those values should be

evaluated. We term these programmer-spe
i�ed aspe
ts the program's dynami
 behaviour.

Parallelism is introdu
ed in GpH by the par 
ombinator, whi
h takes two arguments that

are to be evaluated in parallel. The expression p `par` e (here we use Haskell's in�x operator

notation) has the same value as e, and is not stri
t in its �rst argument, i.e. ? `par` e has the

value of e. (? denotes a non-terminating or failing 
omputation.) Its dynami
 behaviour is to

indi
ate that p 
ould be evaluated by a new parallel thread, with the parent thread 
ontinuing

evaluation of e. We say that p has been sparked, and a thread may subsequently be 
reated to

evaluate it if a pro
essor be
omes idle. Sin
e the thread is not ne
essarily 
reated, p is similar to

a lazy future [MKH91℄.

Sin
e 
ontrol of sequen
ing 
an be important in a parallel language [Roe91℄, we introdu
e a

sequential 
omposition operator, seq. If e1 is not ?, the expression e1 `seq` e2 also has the

value of e2; otherwise it is ?. The 
orresponding dynami
 behaviour is to evaluate e1 to weak

head normal form (WHNF) before returning e2. Informally, this means that every data stru
ture

is only evaluated up to the top level 
onstru
tor.
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This se
tion gives an abridged introdu
tion to our parallel programming te
hnique 
alled eval-

uation strategies. We fo
us on the language features ne
essary to a
hieve the basi
 fun
tionality

and highlight the advantages of this parallel programming te
hnique. A 
omplete des
ription and

dis
ussion of evaluation strategies 
an be found in [THLP98℄.

2.1 Evaluation Strategies

Even with the simple parallel programming model provided by par and seq we �nd that more

and more 
ode is inserted in order to obtain better parallel performan
e. In realisti
 programs the

algorithm 
an be
ome entirely obs
ured by the dynami
-behaviour 
ode.

Evaluation strategies use lazy higher-order fun
tions to separate the two 
on
erns of spe
ifying

the algorithm and spe
ifying the program's dynami
 behaviour. A fun
tion de�nition is split

into two parts, the algorithm and the evaluation strategy, with values de�ned in the former being

manipulated in the latter. The algorithmi
 
ode is 
onsequently un
luttered by details relating

only to the dynami
 behaviour. In fa
t the driving philosophy behind evaluation strategies is that

it should be possible to understand the semanti
s of a fun
tion without 
onsidering its dynami


behaviour.

A strategy is a fun
tion that spe
i�es the dynami
 behaviour required when 
omputing a value

of a given type. A strategy makes no 
ontribution towards the value being 
omputed by the

algorithmi
 
omponent of the fun
tion: it is evaluated purely for e�e
t, and hen
e it returns just

the empty tuple ().

type Strategy a = a -> ()

2.1.1 Strategies Controlling Evaluation Degree

The simplest strategies introdu
e no parallelism: they spe
ify only the evaluation degree. The

simplest strategy is termed r0 and performs no redu
tion at all. Perhaps surprisingly, this strategy

proves very useful, e.g. when evaluating a pair we may want to evaluate only the �rst element but

not the se
ond.

r0 :: Strategy a

r0 _ = ()

Be
ause redu
tion to WHNF is the default evaluation degree in GpH, a strategy to redu
e a value

of any type to WHNF is easily de�ned:

rwhnf :: Strategy a

rwhnf x = x `seq` ()

Many expressions 
an also be redu
ed to normal form (NF), i.e. a form that 
ontains no redexes,

by the rnf strategy. The rnf strategy 
an be de�ned over both built-in and user-de�ned types,

but not over fun
tion types or any type in
orporating a fun
tion type | few redu
tion engines

support the redu
tion of inner redexes within fun
tions. Rather than de�ning a new rnfX strategy

for ea
h data type X, it is better to have a single overloaded rnf strategy that works on any data

type. The obvious solution is to use a Haskell type 
lass, NFData, to overload the rnf operation.

Be
ause NF and WHNF 
oin
ide for built-in types su
h as integers and booleans, the default

method for rnf is rwhnf.


lass NFData a where

rnf :: Strategy a

rnf = rwhnf

For ea
h data type an instan
e of NFData must be de
lared that spe
i�es how to redu
e a value

of that type to normal form. Su
h an instan
e relies on its element types, if any, being in 
lass

NFData. Consider lists and pairs for example.

4



instan
e NFData a => NFData [a℄ where

rnf [℄ = ()

rnf (x:xs) = rnf x `seq` rnf xs

instan
e (NFData a, NFData b) => NFData (a,b) where

rnf (x,y) = rnf x `seq` rnf y

2.1.2 Data-Oriented Parallelism

A strategy 
an spe
ify parallelism and sequen
ing as well as evaluation degree. Strategies spe
i-

fying data-oriented parallelism des
ribe the dynami
 behaviour in terms of some data stru
ture.

For example parList is similar to seqList, ex
ept that it applies the strategy to every element

of a list in parallel.

parList :: Strategy a -> Strategy [a℄

parList strat [℄ = ()

parList strat (x:xs) = strat x `par` (parList strat xs)

Data-oriented strategies are applied by the using fun
tion whi
h applies the strategy to the data

stru
ture x before returning it.

using :: a -> Strategy a -> a

using x s = s x `seq` x

A parallel map is an example of data-oriented parallelism, and is used in several of the programs.

The parMap fun
tion de�ned below applies its fun
tion argument to every element of a list in

parallel. Note how the algorithmi
 
ode map f xs is 
leanly separated from the strategy. The

strat parameter determines the dynami
 behaviour of ea
h element of the result list, and hen
e

parMap is parametri
 in some of its dynami
 behaviour.

parMap :: Strategy b -> (a -> b) -> [a℄ -> [b℄

parMap strat f xs = map f xs `using` parList strat

As an alternative to su
h a using-based design of parallel 
ode we have also introdu
ed a new


onstru
t, $||, 
alled strategi
 fun
tion appli
ation. As an extension to the standard fun
tion

appli
ation, $, in Haskell, the 
onstru
t f $|| s $ x applies the strategy s to the argument x in

parallel with applying the fun
tion f to x. This 
onstru
t is espe
ially useful for de�ning data-

oriented parallelism over 
omplex data-stru
tures. This is due to the typi
al design of fun
tional

programs as 
ompositions of small, 
exible sub-fun
tions [Hug89℄. Compared to the above parMap

fun
tion this new 
onstru
t makes it possible to de�ne data-oriented parallelism without 
hanging

the de�nition of map itself. For example the expression g $ parMap rnf f xs 
an also be written

as

g $|| parList rnf $ map f xs

In the latter expression the strategy is separated from the algorithmi
 
ode and the sequential sub-

fun
tions are un
hanged, thus des
ribing parallelism on a higher level in the program. Variants

of this idea are sequential strategi
 fun
tion appli
ation, $|, whi
h adds a syn
hronisation barrier

and thus is useful for de�ning pipelines, and strategi
 fun
tion 
omposition in a parallel, .||, and

a sequential version, .|, respe
tively.

2.2 Summary

The prime motivation in the design of evaluation strategies has been the separation of algorithmi


and behavioural 
ode. This separation will be dis
ussed together with the appli
ations in Se
-

tion 4. A 
omparison of pre-strategy with strategi
 
ode, as given in [Loi97℄, shows that su
h a
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separation aids the performan
e tuning pro
ess of parallel programs and enables the programmer

to experiment with several parallel versions of the 
ode.

Be
ause evaluation strategies are written using the same language as the algorithm, they have

additional desirable properties. Strategies are powerful: simpler strategies 
an be 
omposed, or

passed as arguments to form more elaborate strategies. Strategies are extensible: indeed in the

parallelisation of several of the programs in Se
tion 4 we have de�ned new appli
ation-spe
i�


strategies. Strategies 
an be de�ned over all types in the language, and o�er some level of type

safety be
ause the normal type system applies to strategi
 
ode. Strategies have a 
lear semanti
s,

whi
h is pre
isely that used by the algorithmi
 language.

3 Parallel Programming Environment

GpH programs are developed with an integrated suite of software tools, based on the Glasgow

Haskell Compiler, GHC [Pey96℄. Guidelines for the use of these tools are given in the following

subse
tion. The suite in
ludes both a development environment and dynami
 analysis tools,

as outlined below (a more detailed dis
ussion of the parallel programming environment is given

in [TBD

+

98℄):

� The Hugs interpreter, for fast development, experimentation and debugging of sequential


ode. Being an interpreter, Hugs o�ers fast turn-around time for 
ode 
hanges and an inter-

a
tive development environment. This 
omes at the expense of higher exe
ution time 
om-

pared to GHC. In an ongoing proje
t these two 
omponents, Hugs and GHC, are 
ombined

into a single environment, whi
h we 
ould reuse in our parallel programming environment.

� The GHC 
ompiler and sequential runtime system for fast exe
ution of sequential 
ode. GHC

is a state-of-the-art optimising 
ompiler for Haskell. Thus our programs do not sa
ri�
e

sequential performan
e in order to a
hieve good parallelism. Another advantage of this

embedding of GpH into Haskell is, that all future work on sequential program analysis and

optimisation 
an be automati
ally reused in the parallel system. Most importantly, the

parallel program has the same semanti
s as its sequential 
ounterpart.

� The GHC 
ompiler and GUM parallel runtime system for parallel exe
ution on multipro
es-

sors. GUM is eÆ
ient, robust and portable: being available on both shared- and distributed-

memory ar
hite
tures, in
luding the Sun SPARCServer shared-memory multipro
essor and

both a CM5 [Dav96℄ and networks of Sun and Alpha workstations. An IBM SP2 port is

nearing 
ompletion. We dis
uss the ar
hite
ture-independent aspe
t of our parallel system

in [TBD

+

98℄. GUM is freely available and has users and developers worldwide [THM

+

96℄.

The suite also has a number of analysis tools, most of them dynami
 analysers, or pro�lers. Those

used to 
onstru
t the programs in Se
tion 4 are as follows:

� Sequential time and spa
e pro�lers are supplied with GHC [SP95℄. They have proven indis-

pensable in tuning large Haskell programs su
h as GHC itself.

� The GranSim parameterisable parallel simulator [HLP95, Loi98℄ is 
losely integrated with

the GUM runtime system giving a

urate results. It is parameterisable to emulate di�erent

target ar
hite
tures, in
luding an idealised ma
hine, and provides a suite of visualisation

tools to view aspe
ts of the parallel exe
ution of the program. The GUM runtime system

produ
es a subset of the GranSim pro�le data and so 
an produ
e some of the pro�les.

We are 
urrently working on the development of a parallel pro�ler, whi
h enables the programmer

to 
onne
t points in an exe
ution pro�le with statements in the sour
e 
ode. Currently, two

prototypes are in existen
e: GranCC [HLT97℄, whi
h merges GranSim and sequential 
ost


enter pro�ling; and GranSP [KHT98℄, whi
h is an extension of the GranSim runtime-system

for tra
king the evaluation history of parallel threads. GranCC already a
hieved promising results

and helped in the parallelisation of Naira.
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3.1 Parallelisation Guidelines

From our experien
es engineeringGpH programs we have developed some guidelines for 
onstru
t-

ing large non-stri
t fun
tional programs (the guidelines are dis
ussed in detail in [LT97, THLP98℄):

1. Sequential implementation. Start with a 
orre
t implementation of an inherently parallel

algorithm.

2. Parallelise and tune.

� Seek top-level parallelism. Often a program will operate over independent data items,

or the program may have a pipeline stru
ture.

� Time Pro�le the sequential appli
ation to dis
over the `big eaters', i.e. the 
omputa-

tionally intensive pipeline stages.

� Parallelise Big Eaters using evaluation strategies.

� Idealised Simulation. Simulate the parallel exe
ution of the program on an idealised

exe
ution model, i.e. with an in�nite number of pro
essors, no 
ommuni
ation laten
y,

no thread-
reation 
osts et
. This is a `proving' step: if the program is not parallel on

an idealised ma
hine it will not be on a real ma
hine.

� Realisti
 Simulation. GranSim 
an be parameterised to 
losely resemble the GUM

runtime system for a parti
ular ma
hine, forming a bridge between the idealised and

real ma
hines.

3. Real Ma
hine. The GUM runtime system supports some of the GranSim performan
e

visualisation tools. This seamless integration helps understand real parallel performan
e.

4 Parallel Programs

4.1 Introdu
tion

This se
tion outlines �ve GpH programs, that 
over a range of appli
ations domains. The Alpha-

Beta sear
h is an AI sear
h appli
ation; A

ident Bla
kspots is a data-intensive appli
ation; Lin-

Solv is a symboli
 
omputation appli
ation; Naira is a 
ompiler, and Lolita is a natural language-

pro
essor. Detailed des
riptions of these programs have already been published in separate papers.

Here we fo
us on 
ommon aspe
ts of the programs and of the parallelisation pro
ess.

All of the programs ex
ept Alpha-Beta solve real problems with real data, although LinSolv

should be viewed as a 
omponent of a larger system. The Alpha-Beta sear
h program is in
luded

�rst be
ause it is simple, and illustrates our approa
h.

The programs manipulate symboli
, rather than numeri
al data, using 
omplex data stru
tures,

e.g. the forests of SGML trees found in Lolita, or arbitrary pre
ision integers rather than 
oating

point numbers in LinSolv.

None of the programs have a regular parallel stru
ture. A typi
al program has a number of

stages, and these 
an be linked in a pipeline and ea
h stage uses a di�erent parallel paradigm,

e.g. data-parallel or divide-and-
onquer. Some programs, like Naira, exhibit even deeper levels of

nested parallelism. Be
ause of this 
omplex parallelism, neither the number of threads nor the

granularity of the threads 
an be determined stati
ally.

4.2 Alpha-Beta Sear
h

4.2.1 Program Des
ription

The Alpha-Beta sear
h algorithm is typi
al of arti�
ial intelligen
e appli
ations. It is mainly used

for game-playing programs to �nd the best next move. The sequential version of the algorithm

presented here has been developed by John Hughes [Hug89℄ in order to demonstrate the strengths

7



bestMove depth p f g = 

  last                             .|| rwhnf $ -- list of approx
  (mise f g)                       .|| rwhnf $ -- cropped eval tree
  cropTree                         .|| rwhnf $ -- static eval tree
  (mapTree (static p))             .|| rwhnf $ -- pruned search tree
  (prune depth)                    .|| rwhnf $ -- full search tree
  repTree (newPositions p) 

          (newPositions (opposite p))

Figure 1: Parallel pipeline stru
ture of 
hoosing the best next move

of lazy fun
tional languages. Most notably, this algorithm relies on laziness to improve the eÆ-


ien
y of the naive sequential algorithm by pruning the sear
h tree based on intermediate results.

Therefore, the parallel version has to retain the laziness expressed in the sequential algorithm

in order to avoid redundant work. In this se
tion we parallelise this lazy fun
tional algorithm

and study the parallel runtime behaviour. We investigate the use of strategies to develop an eÆ-


ient parallel algorithm without sa
ri�
ing the advantages of the original lazy algorithm. A more

detailed dis
ussion of two variants of this parallel algorithm is given in [LT97℄.

The Alpha-Beta algorithm examines the possible next moves and pi
ks the best move for the

player, assuming that the opponent pi
ks the worst move for the player. The result is either

the maximum (player's move) or the minimum (opponent's move) of the evaluations of all next

positions. Following a typi
al fun
tional programming style, this algorithm 
an be very naturally

des
ribed as a sequen
e of fun
tion 
ompositions performing the following tasks (see Figure 1

ignoring the bold fa
e parts of the 
ode):

1. Starting with the 
urrent position p, build a tree with positions as nodes and all possible

next moves as subtrees. Sin
e this tree is built lazily no restri
tions to its size apply. The

higher-order fun
tion repTree is used to repeatedly apply a newPosition fun
tion to the

nodes in the tree, alternating between the fun
tions for the two players.

2. Prune the tree, whi
h might be in�nite at this stage, to a �xed depth to bound the sear
h

via prune.

3. Map a stati
 evaluation fun
tion, stati
, over all nodes of the tree, via mapTree.

4. Crop o� subtrees from winning or losing positions, via 
ropTree. If su
h a position is found

it is not ne
essary to sear
h deeper in a subtree.

5. Generate a list of approximations of the value of the 
urrent position, via mise f g. This

is done by pi
king the maximum or minimum of the resulting evaluations of the subtrees.

The fun
tions f and g represent the 
ombination fun
tions for the two players and alternate

when traversing the tree.

6. The last element in the list of approximations returned by the mise fun
tion is the �nal

value of the evaluation.

One 
ru
ial optimisation of the algorithm outlined above is the pruning of subtrees inside the

mise fun
tion based on intermediate results. Figure 2 shows an example of the pruning pro
ess

realised via lazy evaluation. Based on the result of the left subtree, the overall result must be

at least 1, the last element of the list of approximations. (The modi�ed min fun
tion yields a

de
reasing list of values.) Propagating this information as an intermediate result into the right

subtree, we 
an prune this whole subtree after �nding the value 0: sin
e a minimum fun
tion is

used to 
ombine the result, it will be at most 0, whi
h is smaller than the value we already have.

It is not ne
essary to evaluate the unknown value in the rightmost subtree at all.

This dynami
 behaviour is en
oded as follows. The algorithm returns an in
reasing list (player's

move) of approximations with the exa
t value as last list element rather than a single value. The

8



0 ?

min min

max

3 1

[3,1] [0,..]1

1

Figure 2: Pruning subtrees in the optimised Alpha-Beta algorithm

main pruning fun
tion inside mise, minleq, has to test whether the opponent's move from a

subtree, represented as a de
reasing list, 
an be ignored. This is the 
ase if the worst result of the

de
reasing list l, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result x.

Or more formally: min l � x ,: minleq l x. Sin
e minleq works on de
reasing lists it 
an stop

examining the list as soon as it �nds a value less than x. Thus, laziness is used to ignore parts

of the list of approximations, whi
h amounts to pruning subtrees in the sear
h tree. A 
omplete

des
ription of this lazy fun
tional pruning algorithm 
an be found in [Hug89℄.

4.2.2 Parallelisation

Pipeline Parallelism. Considering the stru
ture of the algorithm as a 
omposition of several

fun
tions, our initial attempt of parallelising this algorithm was to add pipeline parallelism to the

top level stru
ture of the 
ode. This approa
h has the advantage of modifying only a small portion

of the overall 
ode and has proven su

essful in parallelising large programs su
h as Lolita (see

Se
tion 4.5). The 
ode in Figure 1 uses the strategi
 fun
tion 
omposition operator .|| to de�ne

the parallelism and the evaluation degree on the arguments of the individual fun
tions.

Alas, the data dependen
ies of the algorithm do not permit the use of aggressive strategies.

Therefore, only a strategy redu
ing to weak head normal form, rwhnf, is used in every stage,

amounting to a pipeline stru
ture with extremely short stages. Most of the work has to be

performed by the �nal stage, resulting in virtually no speed up at all.

Data Parallelism. More promising than the pipeline parallel version is a data parallel approa
h.

Our goal is to evaluate all possible next moves in parallel. The only ne
essary 
hange to a
hieve

this form of data parallelism a�e
ts the mise fun
tion in Stage 5 of the algorithm. This fun
tion

has to 
ombine the results of all subtrees into a result at the 
urrent node. The parallel version of

this fun
tion is shown in Figure 3. The only di�eren
e to the sequential version is the use of the

parMap rnf strategy to 
apture a data parallel dynami
 behaviour of this fun
tion. Depending

on whether it is the player's or the opponent's move, the binary fun
tion max or min is taken as

argument and folded over the list of results from the subtrees. Note that the fun
tions f and g


hange position in the re
ursive 
all to re
ord the swit
h in turns.

Unfortunately, this naive use of data parallelism generates a lot of redundant work be
ause

no pruning of subtrees is performed any more. This is indi
ated by the use of rnf, whi
h fully

evaluates the individual subtrees. Detailed measurements of variants of this algorithm in [LT97℄

reveal that the performan
e of this parallel algorithm is even worse than that of a naive parallel

algorithm that omits any pruning of subtrees. Although the version in Figure 3 generates a lot of

9



-- This does simple minimaxing without pruning subtrees 

mise :: Player -> Player -> (Tree Evaluation) -> Evaluation

mise f g (Branch a []) = a

mise f g (Branch _ l) = foldr f (g OWin XWin) (parMap rnf (mise g f) l)

Figure 3: Data parallel 
ombination fun
tion in the Alpha-Beta sear
h algorithm

-- Parallel version of the pruning version

mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]

mise f g (Branch a []) = [a]

mise f g (Branch _ l) =  -- force the first n elems of the result list

  f ((map (mise g f) l) 

     ‘using‘ \ xs -> if force_len==-1  -- infinity 
                      then parList rnf xs ‘par‘ ()
                      else parList rnf (take force_len xs) ‘par‘
                           parList rwhnf (drop force_len xs) ‘par‘ () )

Figure 4: Strategy for a pruning Alpha-Beta sear
h with a stati
 for
e length

parallelism, most of it is spe
ulative and therefore potentially redundant.

Data Parallelism with Pruning. In order to 
ontrol the degree of spe
ulative parallelism in

the algorithm we for
e the evaluation of only an initial segment in the list of possible next positions.

We 
all the length of this segment the `for
e length'. This parameter therefore represents a handle

to tune the degree of spe
ulative 
omputation in the program. We have experimented with stati


for
e lengths as well as dynami
 for
e lengths that depend on the level in the sear
h tree. To

date the best results have been obtained from using a stati
 for
e length as shown in the 
ode in

Figure 4. The strategy in this 
ode 
he
ks the value of the global variable for
e len to de
ide

how many possible next moves to evaluate. Sin
e strategies are simply Haskell fun
tions, the

prelude fun
tion take for sele
ting an initial segment of a list 
an be used together with the


orresponding fun
tion drop, whi
h returns the rest of the list. Whereas rnf for
es the evaluation

of the whole list of approximations 
orresponding to a possible next move, rwhnf only evaluates

the top level list 
ell, delaying any further 
omputation. Note that this pruning version returns a

list of evaluations and therefore does not use a foldr fun
tion for 
ombination.

Measurements. In order to demonstrate the e�e
t of the for
e length parameter, Figure 5


ompares the dynami
 behaviour of Alpha-Beta sear
h with a simple ti
-ta
-toe game, using two

di�erent for
e lengths. These a
tivity pro�les show on the x-axis time and on the y-axis the


umulative number of running, runnable, fet
hing, and blo
ked threads, visualised as areas of

di�erent 
olour. In all test runs we used a realisti
 GranSim setup modelling a tightly 
onne
ted

distributed memory ma
hine with 32 pro
essors, a laten
y of 64 ma
hine 
y
les, and pre-fet
hing

of data. In this 
ase in
reasing the for
e length improves the average parallelism from 10.6 to 29.9,

but the runtime only drops from 11.4 to 8.2 M
y
les. (Throughout the paper time is measured in

ma
hine 
y
les.) This indi
ates a high degree of spe
ulative 
omputation in the right hand graph.

More detailed measurements of this algorithm show that the largest speedup of 15.7 is obtained

from a setup with a for
e length of 4. Of 
ourse, the optimal for
e length depends on the position

to be analysed. For example if a winning position is found early on in the sequential algorithm only

a poor speedup is a
hieved. However, with this additional parameter it is possible to 
ontrol how

mu
h e�ort should be invested into potentially redundant work. Con
rete runtimes and speedups

for various variants of this algorithm and for di�erent for
e lenghts are given in [LT97℄.
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 cycles M6.2Runtime = 

GrAnSim

Figure 5: Data parallel versions with stati
 for
e lengths of 0 and 4

4.2.3 Dis
ussion

The main interest in this algorithm lies in the interplay between lazy and parallel evaluation.

Sin
e the eÆ
ien
y of this algorithm relies on the lazy traversal of the sear
h tree, this laziness

must be preserved in the parallel algorithm. Measurements in [LT97℄ show that in some 
ases a

naive parallel algorithm without pruning is faster than a parallel algorithm with pruning, be
ause

in the latter the data parallel strategy destroys almost all possibilities of pruning, resulting in a

signi�
ant amount of redundant work.

On the other hand, Figure 5 shows that a 
onservative approa
h towards parallelism in the

pruning version yields a very poor degree of parallelism. In order to improve the eÆ
ien
y of the

parallel version we had to introdu
e spe
ulative parallelism into the program. We had to add

an additional parameter to the key fun
tion in the program and we used strategies in order to

express the spe
ulative 
omputation based on this parameter. Although the runtime-system of

GranSim and GUM does not automati
ally kill threads that turn out to be unne
essary, thus

running the risk of wasting resour
es, the resulting performan
e 
learly ex
eeds the 
onservative

parallel version. One diÆ
ulty in the tuning of the algorithm then lies in �nding the right level

of spe
ulation in the program. In pra
ti
e, this has to be 
hosen based on the 
on
rete sear
h

problem that is implemented via an Alpha-Beta sear
h algorithm.

4.3 A

ident Bla
kspots

4.3.1 Program Des
ription

The University of London Centre for Transport Studies wishes to analyse road traÆ
 a

ident

data. Given a set of poli
e a

ident re
ords (modi�ed to preserve priva
y) the task is to dis
over

a

ident bla
kspots: lo
ations where two or more a

idents have o

urred. A number of 
riteria


an be used to determine whether two a

ident reports are for the same lo
ation. Two a

idents

may be at the same lo
ation if they o

urred at the same jun
tion number, at the same pair of

roads, at the same grid referen
e, or within a small radius of ea
h other. The radius is determined

by the 
lass of the roads, type of the jun
tion et
. The problem is obviously data-intensive, and

too 
omplex for 
onventional database query languages like SQL.

Lo
ating bla
kspots amounts to 
ombining several partitions of a set into a single partition.

For example if the partition on road pairs is {{2,4,5},{3},{6,7}} and on grid referen
es is

{{2,5},{3},{4,6},{7}}, the 
ombined partition is {{2,4,5,6,7},{3}}. The problem of union-

ing disjoint sets, union �nd, has been mu
h studied by algorithm designers as it has an interesting

sequential 
omplexity. For n union and m �nd operations, an algorithm with an amortised 
om-

plexity of O(n + F(m,n)) 
an be given, where F is a very small fun
tion (the inverse of the
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Table 1: Idealised simulation

Parallel Variant Work Average Run Time

(M
y
les) Parallelism (M
y
les)

Pipeline only 327 1.2 273

Par. Pipeline Stages

327 2.8 124

Par. Pipeline Stages

& pre
onstru
ted Ixs 304 3.5 87

Geographi
ally

Partitioned (Tiled) 389 3.7 105

A
kermann fun
tion) [Tar75℄. These RAM algorithms are not dire
tly appli
able in our appli
a-

tion be
ause not all of a large data set may be randomly a

essed in memory. We have adopted

an index-, or tree-, based solution with 
omplexity O(n log n) if n is the number of elements in

the sets. The motivation for this 
hoi
e is that for very large data sets not all of the tree need be

memory resident at any time.

Sequential Implementations. The appli
ation was originally written at the Centre for Trans-

port Studies [WH96℄ in PFL and has subsequently been rewritten in Haskell. PFL is an interpreted

fun
tional language [PS93℄, designed spe
i�
ally to handle large dedu
tive databases. Unusually

for a fun
tional language, PFL provides a uniform persistent framework for both data and pro-

gram. The PFL program uses sele
tors, a spe
ial bulk-data manipulating 
onstru
t, and hen
e an

algorithm that is slightly di�erent from that used in the Haskell program. It 
omprises approxi-

mately 500 lines.

The Haskell implementation 
onstru
ts a binary sameSite relation 
ontaining an element for

ea
h pair of a

idents that mat
h under one of the four 
onditions. The 
ombined partition is

formed by repeatedly �nding all of the a

idents rea
hable in sameSite from a given a

ident. The

program has four major phases: reading and parsing the �le of a

idents; building indi
es over

the a

ident data; 
onstru
ting sameSite, and indi
es over sameSite; forming the partition. The

program is a 300-line module, together with 3 spe
ialised library modules totalling 1300 lines.

The original data set 
omprises 7310 a

ident reports, and the programs dis
over 1229 multiple-

a

ident sites where a total of 5450 a

ident o

ur. The programs are run on similar, but not

identi
al, workstations: PFL on a Sun ELC, and Haskell on a Sun Spar
 Classi
. The runtimes

of the programs are as follows, PFL: 1105 se
onds, Haskell: 123 se
onds. The faster exe
ution of

the Haskell program is attributed to it being both 
ompiled and highly optimised, where PFL is

an interpreted resear
h language. More measurements of the PFL and Haskell programs, together

with a more detailed dis
ussion 
an be found in [THLP98℄.

4.3.2 Parallelisation

Simulated Parallel Variants. Following the guidelines, we initially investigated the appli
a-

tion's parallelism using an idealised simulation. On
e adequate parallelism was obtained, we used

a realisti
 simulation of our �rst 4-pro
essor shared-memory target ma
hine. Tables 1 and 2

report the results obtained from the simulators when just 1000 a

idents are partitioned, runtimes

and work are in units of 10

6

GranSim ma
hine 
y
les.

Pipeline only. The �rst version simply 
onverted the 4 phases of the program outlined in

se
tion 4.3.1 into a pipeline. The speedup of 1.2 is low be
ause the pipeline is blo
ked by the trees

passed between stages.

Parallel Pipeline Stages. The next version introdu
es parallelism within ea
h pipeline stage

using a variety of paradigms, as dis
ussed below.
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Table 2: Realisti
 SPARCserver simulation

Parallel Variant Work Average Run Time

(M
y
les) Parallelism (M
y
les)

Par. Pipeline Stages

& pre
onstru
ted Ixs 393 2.3 171

Geographi
ally

Partitioned (Tiled) 394 3.7 105

Table 3: Monolithi
 and tiled runtimes

Program Variant Work Average Run Time

(M
y
les) Parallelism (M
y
les)

Sequential

Monolithi
 498 1.0 498

Sequential Tiled 394 1.0 394

Parallel Tiles 394 3.7 105

Parallel Pipeline Stages and Pre
onstru
ted Indi
es. Parallelism is further improved

by merging the �rst two pipeline stages. That is, the indi
es on the a

ident data were 
onstru
ted

before the program is run, and the program reads the indi
es from a �le rather than 
onstru
ting

them. The resulting parallelism is satisfa
tory on an idealised simulation of a 4-pro
essor ma
hine,

but poor under a realisti
 simulation. The poor realisti
 results are due to the �ne grain of

parallelism and the volume of data being 
ommuni
ated.

Geographi
ally Partitioned (Tiled). A very di�erent, 
oarse-grained, parallel stru
ture


an be obtained by splitting the a

ident data into geographi
al areas. Ea
h area, or tile, 
an

be partitioned in parallel before aggregating the results, using this standard te
hnique [MS95℄.

A

idents o

urring near the edges of a tile must be treated spe
ially. This approa
h is only

feasible be
ause every a

ident has a grid referen
e and we assume that a

idents o

urring more

than 200m apart 
annot be at the same site. A

idents o

urring within 100m of the nominal edge

between two tiles are dupli
ated in both tiles. Splitting the original data into 4 tiles results in a

4% in
rease in data volume. As a result of the dupli
ated border a

idents, some multiple-a

ident

sites may be dis
overed in more than one tile.

Breaking the data into tiles redu
es the work required to form a partition as long as the

the border is suÆ
iently smaller than the body of the tile. Less work is required be
ause ea
h

a

ident is 
ompared with fewer a

idents: the trees 
onstru
ted during the partition are smaller.

Table 3 shows the runtimes for a sequential partition of the original (monolithi
) set of a

idents,

a sequential partition of the data in 4 tiles, and a parallel partition of the 4 tiles. More formally,

for the n a

idents in the monolithi
 data, the algorithm is O(n logn), whereas if we assume that

the borders are suÆ
iently small, then the tiled algorithm is O(n logn=4).

Parallel Ma
hine Measurements. The program is measured on two very di�erent ma
hines,

making use of the portability of the GUM runtime system. One is a shared-memory ar
hite
ture

and the other distributed-memory. The shared-memory ma
hine is a Sun SPARCserver with 4

Spar
 10 pro
essors and 256MB of RAM. The ma
hine is shared with other users, but measure-

ments are performed when it is very lightly loaded. The distributed-memory ma
hine is a network

of up to 16 Sun 4/15 workstations ea
h with 24MB of RAM, and 
onne
ted on a single ethernet

segment. Both ar
hite
tures use a shared �le system, i.e. any PE 
an a

ess any �le. On the
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Figure 6: Speedups of Bla
kspots on heterogeneous tiles

network of workstations the �les are stored on a single �le server and a

essed via NFS.

Data. The original data set of 7310 a

ident reports o

upies 0.3MB and is too small to obtain

good results on the parallel ma
hines. For the purposes of this se
tion, the data is repli
ated 6

times. The larger data set 
ould be kept in larger tiles, or in more tiles of the same size, and

the latter approa
h is taken for the following reasons. As shown in Se
tion 4.3.2, as long as the

tiles are large relative to the border area, many smaller tiles are more eÆ
ient than a few large

tiles. Peak resour
e usage is redu
ed be
ause if there is one tile per PE then all of the �le reading

o

urs at the start of the program, indu
ing intense network traÆ
. With mulitple tiles per PE

the �le reading is spread through the program exe
ution. Multiple tiles utilise the dynami
 load

management provided by GUM, demonstrating that the GpH program is independent both of

the number of PEs and of the number and size of tiles. In 
ontrast a small number of large tiles


ould be stati
ally allo
ated to PEs. However it is a tedious task to maintain the allo
ation as the

number of tiles and PEs 
hange.

The repli
ated data o

upies 1.8 MB and is split into 40 tiles with two di�erent sizes. There

are 32 small tiles, ea
h 
ontaining approximately 1000 a

idents and o

upying 37KB, and 8 large

tiles ea
h 
ontaining approximately 2000 a

idents and o

upying 73KB.

Program. Only one 
hange is required to the GranSim version of the program to enable it

to run under GUM. GUM pro
esses don't inherit �le handles from the main thread, and hen
e

to permit them to read �les the program uses the `unsafe' C-interfa
e supported by GHC [LP95℄.

On both ma
hines the program is warm started, i.e. it is run at least on
e before measurements

are taken. Warm starts redu
e runtime be
ause the data is preloaded into RAM disk 
a
hes in

the �le system.

Measurements. Figure 6 shows the speedups obtained when the Bla
kspots program is run on

both the SPARCserver multipro
essor and the network of workstations. In ea
h graph the top

line is linear speedup. The se
ond line is the relative speedup, i.e. 
ompared to a single pro
essor

running the parallel program. The third line is the absolute or wall-
lo
k speedup, i.e. 
ompared to

a single pro
essor running the optimised sequential 
ode. The workstation speedups are good, with

16 workstations relative speedup rea
hes 12 and absolute speedup rea
hes 10. The 4-pro
essor

SPARCserver runtime is signi�
antly less than on the workstations, but the speedups are less

impressive, rea
hing 2.8 relative and 2.2 absolute.

S
aling. In addition to speedups, an important measure for data-intensive appli
ations is s
aleup,

i.e. 
an a ma
hine twi
e the size pro
ess twi
e the volume of data in the same time? Figure 7

shows the s
aleup for the two ma
hines. There are as many large tiles as there are pro
essors. The
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Figure 7: Appli
ation s
aleup

s
aleup of the workstations is satisfa
tory: a 44% in
rease in runtime between 1 and 16 pro
essors.

Also note that mu
h of the in
rease o

urs as soon as a se
ond pro
essor is added. S
aleup on the

SPARCserver is not nearly so impressive: a 32% in
rease in runtime with just 4 pro
essors.

4.3.3 Dis
ussion

The GpH Bla
kspots program solves a real problem using real data and exhibits good wall-


lo
k speedups and a

eptable s
aleup on two very di�erent parallel ar
hite
tures. The sequential

Haskell implementation is an order of magnitude faster than the (interpreted) PFL implementa-

tion, and on 16 workstations the GpH program is an order of magnitude faster still.

The simulator and strategies have allowed us to 
arry out low-
ost experiments with several

possible parallel variants of the program. The tiled variant is sele
ted for exe
ution on the parallel

ar
hite
tures be
ause it delivers good 
oarse-grained parallelism under both idealised and realisti


simulation. In some ways the parallelism exhibited by this variant is insuÆ
iently irregular to

exhibit the strengths of GpH.

The parallelism exploited by the variants of the program is very di�erent. For simpli
ity we


ontrast two extremes, by 
omparing the parallel-pipeline-stages variant with the tiled variant.

The parallel-pipeline-stages variant introdu
es parallelism within ea
h pipeline stage using a

variety of paradigms. The �le reading and parsing stage is made data parallel by partitioning

the data and reading from n �les. Control parallelism is used to 
onstru
t the a

ident indi
es.

The stages 
onstru
ting the same-site relation and the partition both use benign spe
ulative

parallelism. A total of 8 strategies are used in the parallel-pipeline-stages variant, some of whi
h

are hand 
rafted. The strategy that spe
ulatively evaluates the �rst n elements of a list is used

twi
e within the program, is similar in stru
ture to the strategy in Alpha-Beta and may be useful

in other programs.

The tiled variant has very simple top-level data parallelism. Essentially the partition fun
tion is

mapped in parallel over a list of tiles, prior to being aggregated to produ
e the result. The parallel

map fun
tion is a standard parallel higher-order fun
tion. In all the variants parallelisation entails

minimal restru
turing of the algorithm.

4.4 Naira

4.4.1 Program Des
ription

Naira is a parallel, parallelising 
ompiler for a ri
h, purely fun
tional programming language. It

pro
esses, and its front-end is written in, a subset of the standard Haskell 1.2 language with

type 
lasses as the main feature omitted. The front-end 
omprises about 5,000 lines of Haskell
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ode organised in 18 modules. The ba
k-end is written, following popular tradition, in the C

programming language.

The main motivation for writing Naira is to explore the prospe
ts and problems of parallelising

a modern fun
tional language 
ompiler [Jun98℄. Another aspe
t is to make the 
ompiler a

ept

parallelised program inputs and to generate multithreaded parallel 
ode so that we 
an assess the

eÆ
ien
y of the resulting parallel 
ode. These two aspe
ts of Naira | that it is itself parallel

and that it generates parallel 
ode | makes it, to our knowledge, the �rst fun
tional language


ompiler of its kind. It is also the se
ond largest parallelised Haskell program, following the Lolita

natural language pro
essor des
ribed in Se
tion 4.5.

The front-end of Naira, whi
h we parallelise, 
ompiles to a graph-redu
ing parallel abstra
t

ma
hine with a strong data
ow in
uen
e. In this se
tion we highlight the stru
ture, parallelisation

and performan
e analysis of the 
ompiler on the GranSim simulator as well as on a network of

Sun workstations. A more detailed exposition of the various aspe
ts of the 
ompiler is given

in [JDH97℄ and in the PhD Thesis [Jun98℄.

The top-level stru
ture of the 
ompiler in terms of the pipeline of its main phases is shown

in Figure 8. The �rst, analysis, pass 
onsists of the lexi
al analyser and the parser. The next

four passes implement the pattern mat
hing 
ompiler, the lambda lifter, the type 
he
ker and the

intermediate language optimiser, respe
tively. The detailed organisation and implementation of

these passes is des
ribed elsewhere [Jun98℄.

Lexer and
Parser

Pattern
matcher

lambda
lifter

Type
checker

Lambda
lifter Back end

OptimisermkDefs lLift

optimiseParseTree

tcModule

showModule

parseModule

Figure 8: The pipeline stru
ture of Naira's main phases

The two-way split after the lambda lifting pass indi
ates that the result of the lambda lifter


an be piped simultaneously to both the type 
he
ker and the optimiser. These latter two phases


an pro
eed in parallel 
ombining their results, using showModule, to produ
e the intermediate


ode whi
h is input to the 
ode generator.

4.4.2 Parallelising Naira

The 
ompiler is parallelised using evaluation strategies [THLP98℄ and an allied parallel name-

server, whi
h is used to minimise data-dependen
ies and thus expose more parallelism [JDH97℄.

The parallelisation pro
eeded top-down, starting with the top-level pipeline, then pro
eeding to

the lower-levels to parallelise four main passes of the 
ompiler | the pattern mat
her, lambda

lifter, type 
he
ker, and the optimiser | as summarised below.

Top-level Parallelisation. The top-level pipeline is parallelised in a data-oriented fashion by

annotating (with evaluation strategies) the intermediate data stru
tures used to 
ommuni
ate

analyses results between the 
ompiler phases. The laziness of the language is 
ru
ial here to

ensure that the output of one phase is made available in
rementally to the next phase(s) so that

the analyses in the phases 
an pro
eed in parallel.

Figure 9 shows the fun
tion, analyseModule, that implements the top-level pipeline. We use

strategi
 fun
tion appli
ation, $||, to 
ombine the individual passes into a 
omplete program and

at the same time de�ne parallelism over the intermediate data stru
tures.
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analyseModule fileName modName imports exports symbTabs defs  =

  showModule modName impVals dats exports           $||
                                parPair parForceList parForceList $
  fork (optimiseParseTree fileName exports stOpt  aInfo,

        tcModule fileName stTE exports tInfo  syns) $|| parForceList $
  lLift fileName stPM                               $|| parForceList $
  mkDefs fileName stPM                              $|| parForceList $ 
  funs

  where (stPM,stTE,stOpt)      = symbTabs

        (dats,syns,funs)       = defs   

        (aInfo,tInfo,impVals)  = imports

fork (f, g) inp = (f inp, g inp)

parForceList = parList rnf

Figure 9: analyseModule rewritten using pipeline strategies

Parallelising Individual Passes. The pattern mat
her, lambda lifter and the intermediate

language optimiser are parallelised, generally, in a data-parallel manner by ensuring that the

respe
tive analyses in ea
h phase are applied to all fun
tion de�nitions in a module in parallel.

Results of parallelising ea
h of these phases gave only modest speedups of up 2.4 under an idealised

GranSim simulation. A more detailed dis
ussion of the parallelisation of these phases is reported

in [Jun98℄.

Cost-
entre pro�ling [SP97℄ reveals that, as is often the 
ase, the type 
he
ker is the most

expensive part of the 
ompiler, both in terms of spa
e usage and runtime. Therefore, in order to

get good overall parallel performan
e, more attention was paid to the parallelisation of the type

inferen
e phase than to the other 
ompiler phases.

The type 
he
ker is parallelised using a parallel name server to minimise data dependen
ies

and thus avoid sequentialising the inferen
e pro
ess. For instan
e, to type-
he
k two quantities d

1

and d

2

, we analyse them simultaneously in the 
urrent type environment, ea
h returning a type

and a substitution re
ord. If a variable v 
ommon to both d

1

and d

2

is assigned (possibly di�erent)

types t

1

and t

2

from these two independent operations, t

1

and t

2

will be uni�ed in the presen
e

of the resulting substitutions and the uni�ed type asso
iated with v.

Table 4: Performan
e of Naira with idealised and realisti
 8-pro
essor GranSim simulations

Idealised Simulation Realisti
 Simulation

SMP DMP

Avg. Par. Speedup Avg. Par. Speedup Avg. Par. Speedup

Best 8.4 8.13 4.9 4.68 5.6 5.32

Worst 1.9 1.40 1.8 1.39 1.8 1.35

Mean 5.5 4.36 4.0 3.95 3.5 3.55

Parallelism has been exploited at four di�erent stages in the type 
he
ker:

� in a data-parallel fashion when type-
he
king de�nitions in a module;

� in type-
he
king lo
al de�nitions in parallel with the top-level ones;

� on 
alls to frequently used fun
tions; and

� in type-
he
king aggregate expressions.

The �rst stage of the parallelisation yields signi�
ant parallelism and speedup with the paralleli-

sation of the other stages also leading to modest improvements. Most notably, the overall perfor-
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man
e obtained for parallelising the type 
he
ker is higher than that obtained after parallelising

the top-level pipeline (the latter a
hieved a mean speedup of 2.4 in an idealised simulation).

Measurements. The 
ompiler has been measured on both idealised and standard setups of

GranSim simulating both shared-memory (SMP) and distributed memory (DMP) ar
hite
tures.

The results are summarised in Table 4. The idealised simulation a
hieved a speedup of up to

8.13, with 4.36 as the mean value for all inputs. The results of realisti
 simulations on a 8

pro
essor ma
hine show a mean speedup of 3.95 in a shared-memory setup and of 3.55 in a

distributed-memory setup. The input programs used in the experiments are the 
ompiler's own

sour
e modules, 18 in total with 5,000 lines of 
ode. The �gures in the table summarise the best,

worst and mean results for all modules using idealised, shared-memory and distributed-memory

simulations.
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Naira’s Speedups on a Network of Sun Workstations
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Ideal Speedups

Figure 10: Speedup summary of Naira on GUM

Naira has also been measured on a network of Sun workstations (SPARCstations 4/20), running

Solaris 2 and 
onne
ted to a 
ommon Ethernet segment. Figure 10 shows the result of measuring

Naira on GUM. Overall this �gure shows a wall-
lo
k speedup of 2.46, and a relative speedup

of 2.73 on a network of �ve workstations. These results are in agreement with those obtained

using GranSim whi
h predi
ted a speedup of 3.01 simulating su
h a high laten
y network (this

GranSim estimate is based on a simulated distributed-memory ma
hine with a laten
y of 50

K
y
les).

4.4.3 Dis
ussion

At the overall parallelisation stage, where we a
tivated parallelisation 
ode in all the stages, we

found that the parallelism measured fell short of the sum of the parallelism �gures obtained in

the individual stages. This indi
ates that the evaluation strategies in the di�erent pla
es interfere

with one another. Without a more detailed parallel pro�ler it is quite hard to understand and

predi
t the performan
e of this rather large program: small 
hanges in the parallelisation 
ode


an lead to signi�
ant 
hanges in parallel behaviour for some inputs.
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Further experimentation with di�erent evaluation strategies 
ould not a
hieve signi�
ant over-

all performan
e improvements. This led us to re-examine more 
losely the algorithms on whi
h

the individual phases of the 
ompiler were based. We found that 
omposition of substitutions,

whi
h is performed quite often in Naira, forms the main bottlene
k in the parallel performan
e of

the 
ompiler. We revised our implementation of this algorithm and �ne-tuned our strategi
 
ode

resulting in substantial performan
e improvements (see [Jun98℄ for details).

We have experimented with lists and sorted (unbalan
ed) binary trees to represent the data

stru
tures used in the 
ompiler. Although a tree stru
ture exposes parallelism faster than a list

(for the data-parallel pro
essing of the 
omponents), the 
omputations needed to maintain the

sorting of the trees 
an be more expensive. Consequently, our experimental results using these

representations were, by and large, the same.

Careful study of the parallelism pro�les, using the tools of [SP97, HLT97℄, reveals that �le

I/O and parsing a

ount for a signi�
ant part of the remaining sequential 
omponent of the


omputation and therefore by Amdahl's law represent a major limitation on further optimisation.

Parallelising I/O 
an be quite diÆ
ult, and is beyond the s
ope of the work reported here.

4.5 Lolita

4.5.1 Program Des
ription

This se
tion dis
usses the Lolita natural language engineering system [MSS94℄, whi
h has been

developed at Durham University. A more detailed presentation of the parallelisation together

with measurements of the parallel runtime behaviour 
an be found in [LMT

+

97℄. The goal of

parallelising this appli
ation is mainly to redu
e runtime but also to in
rease fun
tionality within

an a

eptable response-time. The overall stru
ture of the program bears some resemblan
e to that

of a 
ompiler, being formed from the following large stages:

� Morphology (
ombining symbols into tokens; similar to lexi
al analysis);

� Synta
ti
 Parsing (similar to parsing in a 
ompiler);

� Normalisation (to bring senten
es into some kind of normal form);

� Semanti
 Analysis (
ompositional analysis of meaning);

� Pragmati
 Analysis (using 
ontextual information from previous senten
es).

Depending on how Lolita is to be used, a �nal additional stage may perform a dis
ourse analysis,

the generation of text (e.g. in a translation system), or it may perform inferen
e on the text to

extra
t the required information.

Central to Lolita's 
exibility is the semanti
 network, 
alled SemNet, a graph based knowledge

representation used in the 
ore of Lolita. In SemNet 
on
epts and relationships are represented

by nodes and ar
s respe
tively, with knowledge being eli
ited by graph traversal. The task of the

analysis stages is to transform the possibly ambiguous input into a pie
e of SemNet. Appli
ation-

dependent ba
kend stages 
an then extra
t pie
es of the SemNet and present it in the required

form. Currently, SemNet 
omprises approximately 100,000 nodes or 12MB.

Sin
e every text has to be translated into a pie
e of SemNet the parallelisation of this pro
ess

o�ers the largest payo� in redu
ed runtime. Therefore, most of our e�ort has gone into the

parallelisation of this part of the system.

4.5.2 Parallelisation

Pipeline Parallelism. Our immediate goal in parallelising this system is to expose suÆ
ient

parallelism to fully utilise a 4-pro
essor shared-memory Sun SPARCserver, our target ma
hine.

Following our guidelines for developing parallel programs, we use a pipeline approa
h to a
hieve

this relatively small degree of parallelism. Ea
h stage listed above is exe
uted by a separate thread.
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These threads are linked to form a pipeline. In 
ontrast to 
lassi
al pipelines, whi
h require a large

input set to a
hieve good parallelism, the lazy evaluation me
hanism makes it possible to overlap

stages of the pipeline operating on the same pie
e of data.

In order to analyse the parallelism generated by this version it is 
ru
ial to understand how

this algorithm depends on a lazy evaluation me
hanism. The parsing stage generates a forest of

possible parse trees. The analysis stages then examine individual trees and pi
k the most likely

tree as the result. Sin
e the analyses in general do not require the full parse tree, it is often

possible to avoid generating all of an unlikely tree in the parsing stage, although its probability is

determined no earlier than in the analyses stages.

This dynami
 behaviour requires spe
ial 
are in the design of the parallel algorithm. It must

be guaranteed that no unne
essary parse trees are generated, be
ause sequential pro�ling indi
ates

that parsing amounts to up to 20% of the overall exe
ution time.

Data-Oriented Parallelism. In order to add data-oriented parallelism to the above program

we de�ne strategies on the 
omplex intermediate data stru
tures (e.g. parse trees) whi
h are used

to 
ommuni
ate between these stages. This approa
h simpli�es the top-down parallelisation of

this very large system, sin
e it is possible to de�ne the parts of the data stru
ture that should be

evaluated in parallel without 
onsidering the algorithms that produ
e the data stru
tures. It is

not ne
essary to break the abstra
tion provided by the sub-fun
tions.

Parallel Stages. Finally, we introdu
e parallelism in the most time 
onsuming stage, the syn-

ta
ti
 parsing stage. Again we have used 
ost-
entre pro�ling to determine the most expensive

stage in the program. The parallelism in this module has the overall stru
ture of a parallel tree

traversal. To avoid an ex
ess of parallelism in this stage it is ne
essary to use a thresholding

strategy, whi
h improves the granularity of the parallel threads. This strategy is applied to a

system parameter, whi
h re
e
ts the depth in the tree. In fa
t the same polymorphi
 thresholding

strategy 
an be applied to two lists of di�erent types.

Spe
ulative Parallelism. Spe
ulative parallelism 
an be used to improve the quality of the

analysis by applying the semanti
 and pragmati
 analyses in a data-parallel fashion on di�erent

possible parse trees for the same senten
e. Be
ause of the 
omplexity of these analyses the se-

quential system always pi
ks the �rst parse tree, whi
h may 
ause the analysis to fail, although it

would su

eed for a di�erent parse tree.

Combined Parallelism. Figure 11 shows the parallel stru
ture arising when all of the sour
es

of parallelism des
ribed above are used. Note that the analyses also produ
e information that is

put into a `global 
ontext' 
ontaining information about the semanti
s of the text. This 
reates

an additional dependen
e between di�erent instan
es of the analysis (indi
ated as verti
al ar
s).

Lazy evaluation ensures that this does not 
ompletely sequentialise the analyses, however.

The 
ode of the top level fun
tion wholeTextAnalysis in Figure 12 
learly shows how the al-

gorithm is separated from the dynami
 behaviour in ea
h stage. The only 
hanges in the algorithm

are

1. the use of parList in the de�nition of rawParseForest to des
ribe the data parallelism in

the parsing stage;

2. the evalS
ores strategy whi
h de�nes spe
ulative data parallelism in the analysis stages

over possible parse trees; and

3. the use of strategi
 fun
tion appli
ations to des
ribe the overall pipeline stru
ture.

The strategies used in parse2prag are of spe
ial interest. The parse forest rawParseForest


ontains all possible parses of a senten
e. The semanti
 and pragmati
 analyses are then applied

to a prede�ned number (spe
i�ed in global) of these parses. The strategy that is applied to the
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Figure 11: Detailed Stru
ture of Lolita

list of these results (parList (parPair ...)) demands only the s
ore of ea
h analysis (the �rst

element in the triple), and not the 
omplete parse tree. This s
ore is used in pi
kBestAnalysis

to de
ide whi
h of the parses to 
hoose as the result of the whole text analysis. Sin
e Lolita

makes heavy use of laziness it is very important that the strategies are not too stri
t. Otherwise

redundant 
omputations are performed, whi
h yield no further improvements in runtime.

Measurements. Realisti
 simulations of the pipeline parallel version of Lolita show an average

parallelism of 1.6, whi
h is rather satisfa
tory for only a few top-level 
hanges in the program. The

parallelised parsing stage 
an easily produ
e several hundred threads. Therefore it is important

to tune the thresholding parameter in this stage to avoid ex
ess parallelism. We have not system-

ati
ally measured the possible improvements in the quality of the result that should be possible

by the spe
ulative parallelism des
ribed above. A more detailed dis
ussion of the parallel variants

of Lolita is given in [LMT

+

97℄.

A realisti
 simulation of Lolita showed an average parallelism between 2.5 and 3.1, using just

the pipeline parallelism and parallel parsing. Sin
e Lolita was originally written without any


onsideration for parallel exe
ution and 
ontains a sequential front end (written in C) of about

10{15%, we are pleased with this amount of parallelism. In parti
ular the gain for a set of rather

small 
hanges is quite remarkable.

In 
ontrast, under GUM with two pro
essors and small inputs we only obtain an average par-

allelism of 1.4 (see Figure 13). With more pro
essors the available physi
al memory is insuÆ
ient

and heavy swapping 
auses a drasti
 degradation in performan
e, whi
h prohibits any wall-
lo
k

speedup. The reason for this behaviour is that GUM, whi
h is designed to support distributed-

memory ar
hite
tures uniformly, loads a 
opy of the entire 
ode, and a separate lo
al heap, onto

ea
h pro
essor. Lolita is a very large program, in
orporating large stati
 data segments (totaling

16MB), and requires 100MB of virtual memory in total in its sequential in
arnation.

Figure 13 shows the a
tivity pro�le of running Lolita under GUM with 2 pro
essors. The

sequential front end in Figure 13 is 
aused by the sequential part of the parsing pro
ess. The

middle third of the graph shows a high degree of parallelism generated by the parallelised parsing

stage. In this setup we have tuned the thresholding parameter to produ
e only a small amount of

parallelism to avoid high memory 
onsumption, whi
h is the main reason for not a
hieving further

redu
tions in runtime when using a 3 or 4 pro
essor setup. In the �nal third of the exe
ution the

pipeline parallelism of the analysis stages generates a good utilisation of the ma
hine.
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wholeTextAnalysis opts inp global =

  result

  where

    -- (1) Morphology

    (g2, sgml) = prepareSGML inp global

    sentences  = selectEntitiesToAnalyse global sgml

    -- (2) Parsing

    rawParseForest = map (heuristic_parse global) sentences ‘using‘ parList rnf

    -- (3)-(5) Analysis

    anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

    -- (6) Back End

    result = back_end anlys opts

-- Pick the parse tree with the best score from the results of

-- the semantic and pragmatic analysis.  This is done speculatively!

parse2prag opts parse_forest global =

 pickBestAnalysis global  $|| evalScores  $
 take (getParsesToAnalyse global)         $

 map analyse parse_forest

 where

   analyse pt =   mergePragSentences opts $ evalAnalysis

   evalAnalysis = stateMap_TimeOut analyseSemPrag pt global

   evalScores =   parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses

analyseSemPrag parse global =

 prag_transform             $|| rnf   $
 pragm                      $|| rnf   $
 sem_transform              $|| rnf   $
 sem (g,[])                 $|| rnf   $
 addTextrefs global         $|  rwhnf $ 
 subtrTrace global parse

back_end inp opts =

 mkWholeTextAnalysis     $|  parTriple rwhnf (parList rwhnf) rwhnf $
 optQueryResponse opts   $|| rnf $
 traceSemWhole           $|| rnf $
 addTitleTextrefs        $|| rnf $
 unifyBySurfaceString    $|| rnf $
 storeCategoriseInf      $|| rnf $
 unifySameEvents opts    $|  parPair rwhnf (parList (parPair rwhnf rwhnf)) $
 unpackTrees             $|  parPair rwhnf (parList rwhnf)  $
 inp

Figure 12: The top level fun
tion of Lolita

4.5.3 Dis
ussion

The most intriguing aspe
t in the parallelisation of Lolita is that the parallelism is a
hieved using

a very small number of 
hanges to the Haskell parts of the appli
ation. We have been able to

use a top-down approa
h of the parallelisation to an extent, whi
h would be very diÆ
ult in

a stri
t language. All of the parallelism has been spe
i�ed by evaluation strategies a
ting on

the data stru
tures passed between modules. As a result, the parallelism has been introdu
ed

without 
hanging, and indeed without understanding most of the program. This abstra
tion is


ru
ial when working on an appli
ation of this size. For example, introdu
ing top-level parallelism

entailed 
hanging just one out of around three hundred modules.

We have used spe
ulative parallelism in order to improve the quality of the results. This

underlines the importan
e of spe
ulative parallelism, whi
h we have already seen in parallelising

the Alpha-Beta algorithm. The integration of the C 
ode into the parallel version 
ompli
ated the

parallel algorithm be
ause foreign language 
alls impli
itly fully evaluate their results, bypassing
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Figure 13: A
tivity pro�le of Lolita run under GUM with 2 pro
essors

the strategi
 des
ription of the dynami
 behaviour. Finally, we have found a need for limited

support of persisten
e. The SemNet is a 
on
eptually persistent data stru
ture, be
ause it is

required by every invo
ation of Lolita. In the absen
e of support for persisten
e the 
urrent 
ode

uses foreign language 
alls to a
hieve eÆ
ient I/O. Again, these 
alls interfere with the strategies

de�ned in the program.

The a
hieved average parallelism of Lolita lies between 2.5 and 3.1 under GranSim emulating

a 4-pro
essor shared-memory ma
hine. The 
orresponding speedup, however, does not ex
eed

2.4. This is partly due to overhead 
aused by very �ne-grained parallelism and partly due to

strategies that perform spe
ulative 
omputations (although we avoided spe
ulation on potentially

expensive 
omponents). The GUM version does not a
hieve signi�
ant wall-
lo
k speedups, yet.

This, however, is not due to a la
k of parallelism but due to the very high memory 
onsumption

of the appli
ation, whi
h ex
eeds the available main memory in the 
urrent setting.

4.6 LinSolv

4.6.1 Program Des
ription

The linear system solver that is dis
ussed in this se
tion, and in more detail in [Loi97℄, is an

appli
ation from the area of symboli
 
omputation and uses an approa
h that is very 
ommon for


omputer algebra algorithms: a multiple homomorphi
 images approa
h [Lau82℄. The main idea

of this approa
h is to solve a problem in a set of simpler domains, 
alled homomorphi
 images,

and then to re
onstru
t the overall solution from the solutions in the individual domains.

In the 
ase of the LinSolv algorithm the original domain is Z, the set of all integer values,

and the homomorphi
 images are the domains Z

p

, the set of integers modulo p with p being a

prime number. The advantage of this approa
h be
omes 
lear when the input numbers are very

big and ea
h prime number is small enough to �t into one ma
hine word. In this 
ase the basi


arithmeti
 in the homomorphi
 images is ordinary �xed pre
ision arithmeti
 with the results never

ex
eeding one ma
hine word. No additional 
ost for handling arbitrary pre
ision integers has to

be paid. Only in the 
ombination phase will the big numbers appear again. In the 
ase of Z as

original domain the well-studied Chinese Remainder Algorithm (CRA) 
an be used in the 
ombine

step [Lip71℄. This overall stru
ture of the algorithm is shown in Figure 14.
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Figure 14: Stru
ture of the LinSolv algorithm

In the solution phase we use an algorithm based on Cramer's rule, whi
h des
ribes how the


omponents of the result ve
tor 
an be 
omputed as the ratio of two determinants. Although

this algorithm is less eÆ
ient than alternatives like Gaussian elimination in the sequential 
ase,

it is very attra
tive be
ause of its high potential of parallelism, yielding good s
alability. In this

algorithm the result is 
omputed by evaluating n + 1 independent determinants, with n being

the size of the input matrix. The determinant 
omputation itself 
an be parallelised using a

divide-and-
onquer stru
ture.

Figure 15 shows the top level of the LinSolv algorithm. Note that xList is an in�nite list of

solutions in homomorphi
 images 
orresponding to prime numbers in the in�nite list primes. The

CRA 
omputation itself is hidden in list 
ra, whi
h basi
ally performs a left asso
iative fold

operation, a

umulating the produ
t of all prime numbers met so far until this produ
t be
omes

larger than s

n

n! (n is the size of the matrix a and s is the maximal element in a and b). The

gen xList fun
tion has to 
he
k whether the determinant in the homomorphi
 image generated

by the prime p is 0. In this 
ase the result 
annot be used in the lifting stage in order to 
ompute

the overall solution. The 
orresponding prime number is termed unlu
ky.

The strategy strat in the body of the let 
onstru
t des
ribes the dynami
 behaviour of the


ode separately from the algorithmi
 
ode. For the sequential version the default strategy rwhnf is

used. The following se
tion dis
usses a strategy that des
ribes a parallel version of this algorithm.

4.6.2 Parallelisation

Algorithm. In the parallelisation of this algorithm it is important to de�ne evaluation degree

and parallelism over the in�nite list xList. Without 
ontrolling the parallelism on this data

stru
ture the CRA will demand ea
h solution sequentially, be
ause the most eÆ
ient version of

the CRA uses a list fold operation.

The de�nition of strat in Figure 16 represents the �nal strategy in the performan
e tuning

of the algorithm. In order to avoid a dependen
y between the solution phases, this strategy

guesses the number of primes needed to 
ompute the overall result and uses a parListN strategy

to generate data parallelism over an initial segment of the in�nite list xList of the solutions in all

homomorphi
 images. Using parList inside the par sol strat strategy 
auses ea
h 
omponent of

the result to be evaluated in parallel. However, it is ne
essary to 
he
k whether the homomorphi


image of the original matrix is zero to avoid redundant 
omputation if the prime is unlu
ky. In
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linSolv a b = 

  let 

    {- forward mapping and solution via Cramer’s rule -}

    ...

    xList :: [[Integer]]  -- infinite list of solutions in hom images

    xList = gen_xList primes

    gen_xList (p:ps) = 

       let 

          modDet = toHom p (determinant (toHom p a))

          pmx = [ toHom p (determinant (replaceColumn j (toHom p a) (toHom p b) ))

                | j <- [jLo..jHi] ]

          ((iLo,jLo),(iHi,jHi)) = bounds a

       in

       if modDet /= 0

         then (p : modDet : pmx)  : gen_xList ps

         else gen_xList ps

   {- combination via CRA -}

    ...   

    detList = projection 1 xList

    det = list_cra pBound primes detList detList

    x_i i = list_cra pBound primes x_i_List detList

            where x_i_List = projection (i+2) xList   

    x = map x_i [0..n-1]

  in

  x ‘using‘ strat
  

Figure 15: Top level 
ode of the LinSolv algorithm

strat =

  rnf noOfPrimes                               ‘seq‘
  parListN noOfPrimes par_sol_strat xList      ‘par‘
  parList rnf xs
  where

    par_sol_strat :: Strategy [Integer]

    par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘ 
                                        if modDet /= 0

                                          then parList rnf pmx 
                                          else ()

Figure 16: Strategy strat of the parallel LinSolv algorithm

order to minimise data dependen
ies in the algorithm we do not already 
he
k the determinant

when 
omputing noOfPrimes. If some primes turn out to be unlu
ky the list 
ra will evaluate

more results by demanding a so far unevaluated list element. The �nal strategy appli
ation

parList rnf xs spe
i�es that all elements of the result should be 
ombined in parallel. Without

this 
omponent there would be a sequen
e of 
ombination steps at the end of the exe
ution, one

for ea
h element in the result ve
tor.

Measurements. In developing this parallel algorithm we have used GranSim in a realisti


setup, simulating a 
losely-
onne
ted 32 pro
essor ma
hine. Whereas earlier versions showed

bottlene
ks at some points during the 
omputation, the a
tivity pro�le for this �nal version in

Figure 17 shows a 
onsistently high degree of parallelism.

Our measurements of LinSolv under GUM on a 3 pro
essor shared-memory ma
hine 
orre-

spond to the behaviour predi
ted by the GranSim simulator. We a
hieved relative speedups of

up to 2.1 and absolute speedups of up to 1.7. More details of these measurements 
an be found

in [Loi97℄.

In the performan
e tuning of this algorithm the visualisation tools have been 
ru
ially im-

portant. Early parallel versions of the algorithm showed bottlene
ks 
aused by the sequential
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Figure 17: A
tivity pro�le of �nal LinSolv

demand on the solutions generated by the list-stru
tured lifting phase. This behaviour resulted

in a sequen
e of parallel exe
utions with regular drops in between. The 
ode in Figure 16 avoids

this bottlene
k by guessing the number of primes that are needed and by using data parallelism

via a parListN strategy. A more detailed dis
ussion of the performan
e tuning of the parallel

algorithm is given in [Loi97℄.

4.6.3 Dis
ussion

Several properties of evaluation strategies have been important in parallelising the algorithm.

We made use of strategies being higher-order to des
ribe nested parallelism: an outer strategy

de�nes the parallelism over xList with a strategy par sol strat as argument that de�nes the

parallelism over the elements of this list. Thereby the strategy re
e
ts the nested data-stru
ture

over whi
h the parallelism is de�ned. The separation between algorithmi
 and behavioural 
ode

made it possible to experiment with di�erent versions of the parallel 
ode, without 
hanging the

algorithm. This was very important during the performan
e tuning of the algorithm. It is worth

noting that all parallelism 
an be des
ribed on top level, unlike in the pre-strategy 
ode where a

lot of the parallelism was de�ned in sub-fun
tions.

The strategy in Figure 16 also demonstrates how 
onservative parallelism 
an be de�ned over

an in�nite data stru
ture. There is no need to rewrite the algorithmi
 
ode that generates the

data stru
ture in order to express a degree of parallelism that does not generate any spe
ulative


omputation.

The development and performan
e tuning of LinSolv predated the design of evaluation strate-

gies. This gives us the possibility to dire
tly 
ompare the pre-strategy with a strategi
 version

of the 
ode. The pre-strategy version of the 
ode 
ombined the 
omputation of the result with a

spe
i�
 dynami
 behaviour suitable for parallelism. For example a tree-stru
tured CRA algorithm

has been used in order to for
e the 
omputation of the individual solutions independently. Be
ause

some homomorphi
 images may turn out to be not suitable for 
omputing the overall result, a

separate `fail handler' had to be used in order to 
ompute more results if ne
essary. The result-

ing 
ontrol parallelism yielded rather opaque 
ode with parallelism de�ned in one sub-fun
tion,

namely the CRA. In 
ontrast, the strategy version only uses data parallelism and 
leanly separates

the parallelism from the algorithmi
 
ode.

The multiple homomorphi
 images approa
h is used in many 
omputer algebra algorithms su
h

as resultant 
omputation [HL94℄ and p-adi
 
omputation [LL93℄. It should be possible to use the
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Table 5: Results summary

Program Lines of 
ode Wall-
lo
k Simulated Best wall-
lo
k

speedup on speedup speedup

few pro
s (no. pro
s) (ar
h:no. pro
s)

(ar
h:no. pro
s)

Bla
kspots 1,300 3.14 (WkStn:4) 3.7 (4) 10.00 (WkStn:16)

Bla
kspots 1,300 2.16 (SMP:4) 3.7 (4) 2.16 (SMP:4)

Naira 5,000 2.33 (WkStn:4) 3.0 (4) 2.46 (WkStn:5)

Lolita 47,000 0.90 (SMP:2) 2.4 (4) 0.90 (SMP:2)

LinSolv 800 1.66 (SMP:3) 2.3 (4) 1.66 (SMP:3)

same overall stru
ture of parallelism for these versions, only repla
ing the fun
tion that guesses the

number of primes and the strategy de�ning the inner parallelism. In this 
ase the polymorphism

of strategies enables a 
ode reuse for de�ning parallelism.

5 Program Comparison

Where the previous se
tion des
ribed the implementation and measurement of individual pro-

grams, this se
tion dis
usses 
ommon aspe
ts of the programs. We fo
us on the parallel paradigms

used in the programs, and the large-s
ale issues en
ountered. We also summarise the results al-

lowing approximate 
omparison.

5.1 Comparative Measurements

The most signi�
ant result of this paper is that we are able to a
hieve modest wall-
lo
k speedups

for all of the programs, ex
ept Lolita. The simulated speedup for Lolita is good, and we believe

that it is only limitations on physi
al memory that prevent a wall-
lo
k speedup of Lolita.

It is also important to emphasise that the programs have been measured on several parallel

systems, utilising di�erent ports of the GUM runtime-system. In a separate paper [TBD

+

98℄

we fo
us on this aspe
t of ar
hite
ture-independent parallelism, and its pra
ti
al impa
t on the

development of parallel GpH programs. The following measurements are based on networks of

workstations and shared-memory multipro
essors, as detailed in Se
tion 4. The systems represent

two very di�erent 
lasses of parallel ar
hite
tures: shared- and distributed memory ma
hines. The

wall-
lo
k speedups on both ar
hite
tures underline the 
exibility of our parallel programming

system.

Table 5 summarises the results for ea
h program, and the 
olumns are interpreted as follows.

The �rst 
olumn gives the program name. The se
ond 
olumn gives the approximate number of

lines of sour
e-
ode, in
luding libraries. The third 
olumn is the wall-
lo
k speedup of the pro-

gram on a small number of pro
essors, together with the number of pro
essors and the parallel

ar
hite
ture | a network of workstations (WkStn) or a shared-memory multipro
essor (SMP).

Wall-
lo
k speedup is measured by dividing the elapsed time for the program 
ompiled and opti-

mised for sequential exe
ution by the elapsed time for the same program under parallel exe
ution.

The fourth 
olumn gives the simulated speedup a
hieved under GranSim emulating the target ar-


hite
ture. The last 
olumn gives the best wall-
lo
k speedup a
hieved, together with the number

of pro
essors used and the ar
hite
ture.

The Bla
kspots program a
hieves the greatest wall-
lo
k speedup, but although it uses some


omplex algorithms, it has a simple data parallel stru
ture, and only a small amount of irregular-

ity in the thread sizes. Although the speedups for the Naira 
ompiler are smaller, it more truly

represents the 
lass of programs that we expe
t GpH to be used for, that is Naira as a 
omplex
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symboli
 
omputation with an elaborate parallel stru
ture. Lolita is similar in being symboli


and having an irregular parallel stru
ture. It is also very large and multi-lingual (Haskell and

C). Unfortunately, while a realisti
 simulation of Lolita delivers good speedups, exhibiting a large

amount of inherent parallelism, the wall-
lo
k �gures are poor be
ause of the high resour
e utili-

sation. LinSolv is symboli
, and has irregular parallelism de�ned over a potentially-in�nite data

stru
ture. It delivers modest wall-
lo
k speedups on a shared-memory ma
hine.

5.2 Parallel Paradigms

The programs use a number of parallel paradigms, often nesting one paradigm inside another. For

example both Naira and Lolita nest a pipeline within a data-parallel paradigm. Version II of the

Bla
kspots program is still more elaborate having a pipeline with stages using data-parallelism,


ontrol-parallelism, and benign spe
ulation. The following parallel paradigms have been used in

the development of the parallel algorithms dis
ussed in this paper.

� Data parallelism: Naira, Lolita, Alpha-Beta.

In the data parallel paradigm every element of a data-stru
ture is evaluated in parallel. Naira

is data parallel over the fun
tion de�nitions in a module. Lolita is data parallel over the

senten
es in the text. Alpha-Beta is data parallel over all next moves, but has to 
ombine

this paradigm with spe
ulative parallelism.

� Pipeline parallelism: Naira, Lolita.

In the pipeline parallel paradigm a sequen
e of stream-pro
essing fun
tions is 
omposed

together, ea
h 
onsuming the stream of values 
onstru
ted by the previous stage and pro-

du
ing new values for the next stage. Pipelines in a non-stri
t language are very 
exible

over the data type they operate on and have �ne-grained parallelism. That is, a pipeline 
an

be de�ned over any data-stru
ture passed between stages, e.g. both Naira and Lolita pass

forests of trees between pipeline stages. The �ne granularity means that the produ
er and


onsumer may syn
hronise on every node of a data stru
ture, or the produ
er may 
onstru
t

all of the stru
ture before any of it is 
onsumed or, more likely, something in-between. As a

result of this �ne granularity, pipelines in a non-stri
t language 
an be e�e
tive even for small

input data sets. Both Naira and Lolita a
hieve modest speedups via pipeline parallelism.

� Task Farm: Bla
kspots (Version III).

In the task farm paradigm a `farmer' pro
ess has a 
olle
tion of tasks, and `worker' pro
esses

obtain a task from the farmer, and on 
ompleting it, obtain another. In Bla
kspots the task

farm has a spe
ial form be
ause ea
h task is to evaluate some data stru
ture, and su
h a

farm is more a

urately termed a data farm [MS95℄.

� Divide-and-
onquer: LinSolv, Lolita.

In the divide-and-
onquer paradigm the problem to be solved is de
omposed into smaller

problems that are solved in parallel and the solutions are re
ombined to produ
e the result.

It is easy to generate a great deal of parallelism with this paradigm: the number of tasks is

exponential in the number of division steps. The unfortunate 
orollary is that there may be

a large number of very �ne-grained tasks generated. We maintain a good thread granularity

by in
luding a threshold in the strategy that ensures that small tasks are not sub-divided but

evaluated sequentially. Both LinSolv and Lolita require thresholding in order to be eÆ
ient.

� Spe
ulation: Alpha-Beta, Bla
kspots (Version II), Lolita.

GpH does not support general spe
ulation, e.g. spe
ulative and mandatory threads are not

distinguished, and there is no me
hanism for killing unwanted spe
ulative threads. We do,

however, use a restri
ted form of spe
ulation, whi
h we term benign. The restri
tion is that

the spe
ulative threads must perform only a small amount of work and 
reate no new threads.

Often spe
ulation is 
ontrolled by a parameter of the spe
ulative strategy, and sele
ting an

appropriate value is 
ru
ial to avoid wasting resour
es, as shown in Alpha-Beta, Bla
kspots,
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and Lolita [LMT

+

97℄. It is interesting that several of the programs use spe
ulation be
ause

it is a te
hnique that 
annot easily be introdu
ed by automati
 parallelisation methods.

Some parallel paradigms not explored in these programs in
lude bran
h and bound, SPMD,

bounded bu�er and general spe
ulation. We have strategies, and some toy examples, for bounded

bu�ers and SPMD. It appears that general spe
ulation and bran
h and bound are more problem-

ati
 within GpH.

Another important aspe
t of the parallel runtime-system is dynami
 load management. It has

previously proven to be essential for obtaining good speedups on some programs exe
uted on the

GRIP ar
hite
ture [HP92℄. In the 
ontext of GUM the importan
e of dynami
 load management

is best re
e
ted by the �nal version of the Bla
kspots program. This version uses dynami
 load

management to obtain an even load when evaluating the tiles of a geographi
ally partitioned data

set.

5.3 Large-S
ale Issues

In the implementation of the programs we en
ounter a number of aspe
ts of parallel programming

in-the-large.

� Appli
ation-spe
i�
 strategies 
an be rather easily reused in large appli
ations. One example

is the merging of lists of a polymorphi
 type in Lolita, whi
h is used in two pla
es. Clearly,

the polymorphi
 nature of the language aids 
ode reuse in this 
ase.

� Some of the programs were made parallel by someone other than the original author, most

notably Lolita. In these 
ir
umstan
es the largely-impli
it parallel programming model

is 
ru
ially important, be
ause parallelisation does not require the expli
it introdu
tion,

and syn
hronisation, of threads. Instead parallelisation is similar to sequential performan
e

tuning in that it entails understanding time and spa
e 
onsumption, data dependen
ies,

and often 
ontrolling evaluation degree. In that sense parallelisation does not add a new

dimension of 
omplexity to the program design, it merely 
ompli
ates the existing pro
ess

of performan
e tuning. We believe that it would be mu
h harder to parallelise a se
ond

author's program using an expli
itly parallel programming model.

� Parallelism 
an be des
ribed at a high-level, and this means that only a small part of a large

system needs to be understood, 
hanged, and re
ompiled. For example adding parallelism

entails 
hanging just two out of three hundred modules in Lolita, and one out of �ve in

Bla
kspots.

� The parallel version of a large programmay have very large resour
e utilisation. This is likely

to be a problem on shared-resour
e ma
hines, e.g. multi-pro
essors with shared memory or

disks. For example the sequential variant of Lolita uses 100MB of heap, and the parallel

variant needs approximately 64MB per pro
essor. Similarly, in Bla
kspots every pro
essor

initially reads a �le, generating intense network and disk traÆ
.

� A major task in parallelising a large program is to de�ne basi
 strategies over the data types,

in parti
ular a strategy to redu
e values of the type to normal form (rnf). Fortunately the

rnf fun
tion 
an be derived automati
ally from the type, and we have 
onstru
ted a tool that

allows us, inter alia to automati
ally add basi
 strategi
 de�nitions to a module [Win97℄.

� Strategies may also be required over library data types, e.g. parSet. Unfortunately this

entails using a private 
opy of the library module.

� A GpH program 
an be used to prototype alternative parallelisations of an imperative pro-

gram. Experimenting with alternative parallelisations is easier in GpH than in imperative

languages. Parallel prototyping has been used in LinSolv to tune the algorithm.
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� Many of the programs had been written without the intention of making them parallel, e.g.

Naira and Lolita. It is still possible to obtain parallelism, albeit modest, without restru
tur-

ing these programs.

6 Evaluation of GpH Programming

In this se
tion we re
e
t on our experien
es programming in GpH, i.e. in a fun
tional language

with largely impli
it parallelism. We both analyse and 
onsider future dire
tions for the language,

the 
o-ordination me
hanism (evaluation strategies) and the programming environment.

The most important language result is that despite the apparent tension between parallel an

lazy 
omputation, they 
an be usefully 
ombined to produ
e a programming model with a high

degree of modularity. This modularity is due to the data-oriented style of programming o�ered

by a lazy parallel programming model. This means that it is suÆ
ient to de�ne the parallelism

only on a few 
ru
ial data stru
tures, whi
h typi
ally are passed between sub-fun
tions at the

top level of the program. Be
ause lazy evaluation delays the generation of the result until it is

needed, strategies 
an be used to de�ne evaluation degree and parallelism outside the fun
tion

generating the data stru
ture. This a
hieves a level of modularity not en
ountered in languages

with a stri
t evaluation me
hanism. Most importantly, the programmer 
an de�ne the parallelism

without breaking the abstra
tion of individual fun
tions, whi
h is an important property for large

programs where the parallelisation is probably not performed by the author of the program.

Furthermore, the experien
e with large lazy fun
tional programs shows that the optimisation

of sequential programs sometimes requires to expli
itly 
ontrol the evaluation order and degree in

order to minimise resour
e utilisation. Thus, evaluation strategies 
an be used for both sequential

and parallel performan
e tuning. In this sense, parallelisation is just a re�nement of the perfor-

man
e tuning pro
ess, whi
h o�ers even faster 
omputation. Most notably, however, there is no

need to extend the underlying programming language by e.g. introdu
ing an expli
it notion of

threads. Our experien
es with the use of evaluation strategies on large lazy fun
tional programs

indi
ate that a lazy parallel programming model o�ers the prospe
t of 
heap, modular parallelism

with only a minimal 
oding e�ort.

6.1 Language

The parallel language we are using, GpH, is only expli
it in exposing parallelism in the sour
e


ode. The management of the parallel threads is 
ompletely hidden by the runtime-system. In

this approa
h many 
lassi
al problems of 
on
urrent programming su
h as generating deadlo
ks or

ra
e 
onditions between threads do not arise. However, it is still possible to tune the parallelism

by spe
ifying the size of the parallel 
omputation and the evaluation order.

The features of the language that we found to be most important are as follows.

� Determinism makes parallel program development easier be
ause the algorithmi
 part of

the program 
an be developed in a sequential 
ontext. Inserting strategies to introdu
e par-

allelism does not 
hange the value 
omputed, and will not 
hange the termination 
onditions

as long as the strategies are not more stri
t than the original fun
tion, i.e. the parallelism is


onservative.

� Largely impli
it parallelism ensures that only a small amount of additional 
ode is

required to introdu
e parallelism. In parti
ular, it is only ne
essary to expose parallelism,

by marking expressions.

6.2 Evaluation Strategies

For any program, the primary bene�ts of the evaluation strategy approa
h are similar to those that

are obtained by using laziness to separate the di�erent parts of a sequential algorithm [Hug89℄: the

30



separation of 
on
erns makes both the algorithm and the dynami
 behaviour easier to 
omprehend

and modify [THLP98℄.

In large programs, strategies allow us to raise the level of abstra
tion be
ause the programmer

introdu
ing parallelism need not understand the low-level details of the whole program. Strategies

allow us to

� des
ribe top-level parallelism. Often some initial parallelism 
an be obtained by par-

allelising the top-level of the program with a very shallow understanding of the algorithms

used in the program.

� preserve module abstra
tion. Parallelism 
an often be spe
i�ed on the data stru
tures

passed between modules. The programmer need only know whi
h items of the data stru
ture


an be 
omputed independently, whi
h is often simpler than understanding the algorithm

used to 
ompute them. Indeed the type of the data stru
ture may even give a hint on whi
h

strategy to use for parallelising the program.

This style of programming o�ers a level of abstra
tion to the programmer that does not exist

in parallel imperative languages. However, if it is ne
essary, the evaluation 
an be 
ontrolled

in more detail, yielding parallelism des
ribed on a similar level as in more 
onventional parallel

programming models.

The presented programs use the power of strategies. In most of the programs strategies are

de�ned over many types, program-spe
i�
 strategies are 
onstru
ted, and some of the new strate-

gies are 
reated by 
omposing existing strategies. The spe
i�
 features that proved most useful

are mainly the high-level 
onstru
ts. Many of the strategies are

� polymorphi
. Strategies that 
an be used at many types are easier to re-use, for example

the polymorphi
 mergeStrategy strategy is re-used in Lolita.

� parametri
. The behaviour of a strategy 
an be modi�ed by parameters. For example the

number of elements of a list to evaluate in parallel is a parameter in the Bla
kspots program,

and the similar for
e-length parameter in Alpha-Beta.

� higher-order. This is parti
ularly useful when a strategy takes another strategy as a

parameter, thus 
apturing a 
lass of behaviours as determined by the argument strategy. In

LinSolv, for example, a list strategy is passed to another list strategy to des
ribe parallelism

over a list of lists. Nesting strategies in this way is a natural means of a
hieving nested

parallelism.

Finally it should be noted that evaluation strategies must be used with 
are to avoid 
on
i
t and

malignant spe
ulative 
omputations. The latter 
an yield higher parallelism be
ause of the extra

spe
ulative 
omputations but 
an also adversely a�e
t a program's 
ompletion time. For example

generating more possible synta
ti
 parses in Lolita would produ
e more spe
ulative parallelism,

be
ause ea
h of the parse 
an be analysed in parallel, but it would not redu
e the total runtime,

be
ause only the best result will be 
hosen at the end.

6.3 Programming Environment

It has proved essential to develop the programs in a ri
h programming environment. Several

programs were initially developed using the Hugs interpreter, where the intera
tive mode fa
ilitates

debugging. All programs were run under GHC's sequential runtime system. Almost all of the

programs used time and heap pro�ling to identify 
omputationally-intensive 
omponents.

To develop the parallelism the programs are �rst run under GranSim to produ
e idealised,

and then realisti
 simulations. We �nd that visualising the parallel exe
ution in several ways is

essential to the programmer's understanding, and hen
e improving, the parallelism. The most

useful means of visualising the exe
ution are a
tivity pro�les like Figure 17 and thread granularity

pro�les, whi
h show the total runtimes of the individual threads as a histogram.
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Using GUM the parallel performan
e of the programs is measured on a number of platforms.

Some of the programs are measured on a network of workstations, e.g. Naira. Other programs

are measured on a shared-memory SUNserver, e.g. Lolita. Bla
kspots has been measured on

both workstations and SUNserver. It is unusual to have both shared- and distributed-memory

measurements for a single program. We dis
uss the ar
hite
ture-independent nature of GpH

programming in detail in [TBD

+

98℄.

7 Related Work

In his 1993 thesis [Cla93℄ 
on
erning the implementation of a large parallel rule-based interpreter

written in Haskell, Clayman observed with some 
hagrin that

\the 
urrent fa
ilities for exe
uting fun
tional programs in parallel environments are

not e�e
tive for large appli
ations. The use of hand-
oded annotations may be �ne for

small programs but it is unsuitable for large programs. Furthermore, there is a la
k of

parallel systems on whi
h programs 
an be exe
uted."

Clearly, in the last 5 years some 
onsiderable progress has been made towards addressing the


riti
isms raised in Clayman's thesis. In our own setting we have:

� demonstrated that it is possible to write large parallel appli
ations in Haskell;

� introdu
ed evaluation strategies [THLP98℄ to allow simple and 
exible 
ontrol of parallel

programs, so addressing Clayman's 
riti
ism of hand-
oded annotations; and

� produ
ed an implementation based on standard portable message passing libraries, so vastly

extending the number of parallel systems on whi
h our programs may be run.

Although our work is not isolated, and other groups have produ
ed systems that possess similar


hara
teristi
s to those we espouse (e.g. Sisal [Ske91℄, NESL [Ble96℄, Con
urrent Clean [NSvP91℄,

Id [Nik91℄, or Paralation Lisp [DGF97℄), Clayman's 
riti
isms do still apply to some extent in

a general setting, however. Despite the fa
t that many parallel implementations of fun
tional

languages have been produ
ed, there are relatively few systems that have been developed beyond

the prototype stage, and fewer that 
an also 
laim to demonstrate ar
hite
ture independen
e.

Those that 
an make this 
laim have been surveyed in an independent paper [TBD

+

98℄.

This se
tion surveys existing large parallel fun
tional programs whi
h, like those introdu
ed

in this paper, either form 
omplete real end-user appli
ations or are realisti
 in being taken from

a real appli
ation domain rather than arti�
ially designed to demonstrate some ben
hmarking

issue. We have therefore ex
luded su
h ben
hmarks, unless they form part of some larger, more

interesting appli
ation.

The term `large' is not pre
isely de�ned, of 
ourse; we have taken it to mean over about 500

lines of fun
tional 
ode (whi
h 
orresponds to an imperative program of some 1500-5000 lines).

For 
omparison, all the appli
ations des
ribed in this paper apart from the Alpha-Beta sear
h

algorithm 
omprise more than 800 lines of 
ode. Unlike the Lolita program whi
h was des
ribed

earlier, however, the majority of the appli
ations presented here are not large in a stri
t software

engineering sense, sin
e they have been written by single users rather than as large 
ollaborative

proje
ts.

The appli
ations des
ribed in this se
tion 
over a wide variety of problem domains, from

numeri
al appli
ations written in Sisal [Ske91, Can92℄ or NESL [Ble95℄ to theorem provers [RW95℄

and real-time 
ommer
ial telephony systems [Arm96℄. We have not, however, attempted to 
over

individual implementations or language 
onstru
ts in depth. The interested reader is referred to

the more general literature on parallel fun
tional programming for 
overage of these and other

signi�
ant issues (e.g. [Ham94, TLH99℄). The most 
losely related approa
hes to parallelisation,

our earlier work on the FLARE appli
ations [RW95℄ and the Dut
h Parallel Redu
tion Ma
hine

proje
t [BvH

+

87℄, are brie
y surveyed in Se
tion 7.8.
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7.1 Compilers and Rule-Based Systems

While Naira is unique, as far as we know, in being the �rst 
omplete fun
tional language 
ompiler to

have been parallelised [Jun98℄, there have been a few parallel systems with similar 
hara
teristi
s.

Clayman's thesis des
ribed one su
h appli
ation: a fun
tional version of the OPS5 rule-based

system that is often used to implement expert systems [Cla93℄. This appli
ation has a similar

stru
ture to Naira, 
omprising a rule 
ompiler plus produ
tion mat
her and evaluator. The rule


ompiler in
ludes pattern-mat
hing and other 
omponents. The produ
tion mat
her and evaluator

are best regarded as being analogous to Naira's runtime-system.

Unfortunately, as hinted above, despite mapping out the parallelisation pro
ess that he in-

tended to pursue, Clayman was ultimately frustrated by the state of the 
ompiler and implemen-

tation te
hnology in 1993, and therefore never a
hieved his goal of su

essfully parallelising his

program. We are therefore deprived of a potentially interesting 
omparison between two similar

appli
ations. We hope that we are now in a position where Clayman's work 
ould be 
ompleted

in order to allow a good 
omparison between these systems.

While not dire
tly usable as part of the 
ompilation pro
ess itself, Bou
her and Feeley have


onstru
ted a parallel implementation of an LR(0) parser generator in MultiLisp [BF94℄. The

parallelisation pro
ess involves the 
reation of all rea
hable states in parallel. Simple lo
ks are

used in pla
e of the sequential hash table to prevent several tasks working on the same state

simultaneously, and to ensure atomi
 update for ea
h state.

Overall, the parser generator a
hieves an absolute speedup of 10.4 on 32 pro
essors. The

parallel overhead was parti
ularly serious for this system, generating a slowdown of a fa
tor of 3

on one parallel pro
essor, so this represents an impressive superlinear relative speedup (a fa
tor

of 33.6 on 32 pro
essors). Given that the overhead exists in the one-pro
essor 
ase, and that

the algorithm exhibits super-linear speedup, it seems unlikely that this overhead is simply a


onsequen
e of poor lo
ality, as the authors suggest. The super-linearity is 
laimed to re
e
t

de
reased garbage 
olle
tion 
osts in the parallel implementation.

Finally, although it has not yet been exe
uted on a parallel ma
hine as far as we are aware, the

Id in Id 
ompiler from MIT is, of 
ourse, parallel in prin
iple. Id is untyped so the parallel type

inferen
e algorithm that gave e�e
tive performan
e improvements in the Naira 
ompiler would be

of no dire
t use (it might 
on
eivably be exploited for e.g. 
ode generation, however). Work we

have done in relieving dependen
ies in the Naira symbol table and pipeline stages seems likely to

�nd a 
ounterpart in any parallel version of the Id 
ompiler, however.

Theorem Provers

There have been several attempts to parallelise fun
tional theorem-provers. As part of the FLARE

proje
t [RW95℄, Hanna and Howell parallelised the 8500 line tautology 
he
ker that forms the 
ore

of the Veritas theorem prover. This parallelisation was a
hieved using only the basi
 par and

seq 
ombinators des
ribed earlier. Granularity 
ontrol was introdu
ed using thresholding based

on the size of the propositions to be 
he
ked. Performan
e results for the GRIP multi-pro
essor

showed that an absolute speedup of a fa
tor of 18 
ould be a
hieved on 20 pro
essors. Work on

this appli
ation and others from the FLARE proje
t motivated the design of evaluation strategies

to help simplify the parallelisation pro
ess.

There have also been several implementations of the Boyer-Moore theorem prover. For exam-

ple, Sodan and Bo
k's automati
ally parallelising Lisp system, ParLisp, has a
hieved a simulated

speedup of between 5.1 and 29.5 on an idealised 
on�guration of the MANNA ma
hine 
ontaining

an in�nite number of pro
essors [SB95℄. In 
ondu
ting these experiments Sodan and Bo
k observe

that it is important to 
he
k the potential parallelism of the appli
ation before pro
eeding along an

expensive implementation route. This is in a

ordan
e with the methodology we have propounded

both in this paper and elsewhere [THLP98℄, of using �rst an ideal simulation to demonstrate par-

allel feasibility and then re�ning the simulation to deliver more a

urate information for parti
ular


lasses of target ar
hite
ture.

The Boyer-Moore theorem prover has also be implemented in Id as part of the Impala ben
h-

33



mark suite [Sha98℄, but we are not aware of any parallel performan
e results that 
an be used for


omparison.

7.2 Image Pro
essing

Graphi
al appli
ations are obvious 
andidates for parallelisation. While imperative parallel graph-

i
s appli
ations generally depend on partitioning (updatable) arrays, more sophisti
ated data

stru
tures may simplify the partitioning pro
ess and o�er better long-term opportunities for par-

allelism. Several appli
ations have been produ
ed that perform 
omplex graphi
al manipulations,

in
luding ray tra
ing to determine the intensity of light that falls on an obje
t, and the 
omputer

vision appli
ations prototyped by Mi
haelson and S
aife in Standard ML.

Ray Tra
ing

The simple ray tra
er that was originally developed in Kelly's thesis for the Caliban 
o-ordination

language [Kel89℄ has formed the basis for a number of subsequent studies, in
luding as one of

the FLARE appli
ations des
ribed above. In the latter 
ase we were able to demonstrate good

speedup for this appli
ation running on GRIP under a variety of 
onditions, a
hieving an absolute

speedup of 10.5 on 17 pro
essors, with no eviden
e of a software performan
e bound [HMP94℄.

Relative speedup for the same 
on�guration was a fa
tor of 14.

In his thesis [Tay97℄, Taylor studies this same ray tra
er in the 
ontext of Advan
ed Caliban.

Advan
ed Caliban extends the Caliban 
o-ordination language in a number of new and interest-

ing ways that parallel the development of evaluation strategies (for example, the use of nested

moreover 
lauses to 
ontrol pla
ement is similar to our use of strategies to des
ribe pro
ess stru
-

tures). Unlike evaluation strategies, however, Caliban remains �rmly rooted in a stati
 model

of pro
ess pla
ement, and the target ar
hite
ture is restri
ted to a distributed, 
losely-
oupled

parallel ma
hine (in Taylor's 
ase, the 48-node AP1000 at the Imperial College Parallel Cen-

tre, London). Using a stati
 pro
ess farm, with limited spe
ulative evaluation, Taylor a
hieves

a relative speedup of 17 on 35 pro
essors for this implementation of the ray tra
er. With the

introdu
tion of manual granularity 
ontrol, performan
e 
an be boosted to a relative speedup of

24 on 35 pro
essors. This is broadly in line with the GRIP results 
ited above, though speedup is

slightly lower.

Bratvold also studied the performan
e of the ray tra
er appli
ation [Bra94℄ using his automat-

i
ally parallelising skeleton-based 
ompiler for SML, SkelML. Bratvold's thesis results show that

a speedup of 9.5 on 22 Transputers 
ould be a
hieved for the largest example that was tried. In


ontrast to the dynami
 approa
h we have used in our implementation and in a

ordan
e with

the Caliban philosophy adopted by Taylor, Bratvold's approa
h uses a stati
 
ost-modeling step

to guide the 
hoi
e of skeleton from a �xed library.

Kesseler also used the ray tra
er as a ben
hmark for Con
urrent Clean [Kes95, Kes96℄. Kesseler's

system adopts a similar skeleton approa
h to that taken by Bratvold, and also targets a Transputer

system. Kesseler reports a speedup of 10.0 on 16 pro
essors, rising to 33.5 on 64 pro
essors, where

he is 
learly en
ountering some performan
e bound. From our own experien
e, we 
onje
ture that

this may be due to poor distribution as a 
onsequen
e of stati
 pro
ess allo
ation.

While it is hazardous to 
ompare only speedup and not look at absolute performan
e, it is

interesting that the systems using stati
 pla
ement do not exhibit better speedup results than the

system of dynami
 pla
ement used in GRIP. This is, of 
ourse, partly due to the lower 
ommuni-


ation laten
ies that apply in GRIP hardware. However, we feel it is a strong indi
ator that our

model of dynami
 pro
ess pla
ement 
an yield good parallel performan
e whilst requiring rather

less programmer e�ort than pre
ise stati
 pla
ement, despite the greater overheads of dynami



ontrol.
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Parallel Vision

Mi
haelson and S
aife [MS95℄ des
ribe the implementation of several 
omponents of a parallel

vision system. The overall purpose of the system is to re
ognise 3D obje
ts in a 2D s
ene by using

information about the relative intensity of light throughout the s
ene. The parallel algorithms are

prototyped using a skeleton-based SML implementation, before being translated to O

am and

exe
uted on a distributed-memory Meiko ma
hine (based on Transputers). The SML prototype

required 1700 lines against the 3000 lines of the �nal O

am implementation. It was used to verify

the general line of parallelism to be taken in the �nal implementation, in a similar way to our own

simulator-based proo�ng steps.

The primary algorithm used in this appli
ation is the Hough transform for solving sets of

underdetermined equations. This is parallelised in a data-oriented fashion using a farm skeleton to

realise a parallel map over a nested list. Performan
e was optimised by splitting the data into more

sets of equations, so introdu
ing more small tasks whi
h 
an be managed more eÆ
iently to improve

the overall load balan
e. This 
on�rms our own observations 
on
erning task granularity [LH95℄ as

well as theoreti
al analyses [BR94℄: �ner-grained programs are mu
h easier to manage dynami
ally,

and result in mu
h better balan
ed 
omputation. Overall, Mi
haelson and S
aife a
hieve an

absolute speedup of 10.5 on the 30-pro
essor Meiko. This performan
e was less than hoped for,

possibly as a 
onsequen
e of poor load-balan
ing and/or high 
ommuni
ation 
osts that may arise

from the nature of the farm skeleton, whi
h will tend to introdu
e 
ommuni
ation bottlene
ks to

the farming pro
essor.

Mitrovi
 and Trobina have implemented some 
omponents of a 
omputer vision system in

Sisal [MT93℄: spe
i�
ally the Gaussian smoothing and Canny edge dete
tor algorithms that are

also used by Mi
haelson and S
aife. The Sisal program was about 300 lines, 
ompared with 600 for

the C version, and took 2 days to write, 
ompared with about a week for the C program. The �nal

stage of the vision system (image 
ompilation) was however slightly larger than the 
orresponding

C program (600 lines versus 500). Overall the Sisal program ran 10% faster than the C program

when run sequentially and a
hieved a relative speedup of 3.1 on a 4-pro
essor shared-memory SGI

ma
hine, without requiring further 
oding e�ort. This is 
learly a very 
reditable performan
e

gain for su
h modest programmer e�ort. Similar performan
e results have been veri�ed by other

Sisal appli
ations [Can92℄, some of whi
h are des
ribed below (Se
tion 7.4).

7.3 Data Intensive Appli
ations

There have been relatively few attempts to produ
e large-s
ale data-intensive fun
tional appli-


ations, and even fewer that have been su

essfully parallelised. One of the most interesting is

the AGNA system, whi
h implements read-only sele
tions (lookups) over a parallel fun
tional

database [HN91℄.

AGNA

The AGNA system uses list 
omprehensions to stru
ture read-only queries over an on-disk database.

Sin
e ea
h lookup is independent of the results of any other lookup, parallelisation is straightfor-

ward and very high parallelism 
an be a
hieved with a good prospe
t of s
alability. Heytens and

Nikhil [HN91℄ report a speedup of 31 on a 32 pro
essor distributed-memory ma
hine for non-

indexed lookup. Indexed lookup is mu
h faster, but speedup is limited to a fa
tor of 8, due to

task 
reation and result 
onstru
tion 
osts in the implementation that was adopted.

Parade

As part of the EPSRC Parade proje
t we have investigated parallel fun
tional database transa
tion

pro
essing where the transa
tions involve not simply queries, as with AGNA, but also update op-

erations that may introdu
e dependen
ies with subsequent database transa
tions [AHPT93℄. Our

results show that a

eptable parallel performan
e 
an be a
hieved through the use of te
hniques

to redu
e the `hot-spot' that arises from 
ontention on the root of the B-tree data stru
ture that
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forms the index to the on-disk database. Overall, we a
hieved an absolute speedup of 12.6 on 15

GRIP pro
essors. Larger data sets gave better performan
e than smaller ones, so it seems likely

that these results 
ould be s
aled to larger systems with higher throughput. Unlike AGNA, our

results apply only to in-memory 
opies of the database, however, with simulated disk a

esses.

The same proje
t also studied the A

ident Bla
kspots program, whose performan
e results

are presented in Se
tion 4.3.

7.4 Numeri
al Appli
ations

Perhaps surprisingly, some of the most su

essful parallel fun
tional appli
ations have been nu-

meri
al programs. In addition to the bene�ts of mu
h higher-level 
oding, whi
h in
lude shorter,

simpler (and hopefully more maintainable) 
ode, several Sisal appli
ations not only approa
h the

speed of slow imperative implementations su
h as C, but ex
eed the performan
e produ
ed by the

fastest Fortran 
ompilers. For parallel 
ode, this is usually a
hieved without requiring any 
hanges

to the sour
e 
ode. Similar, though slightly less spe
ta
ular, results have been a
hieved for the

NESL language [Ble95℄, mainly for generi
 problems su
h as the n-body problem [BN97℄. Other

generi
 numeri
al problems that have been studied in a parallel fun
tional 
ontext in
lude 
onju-

gate gradient algorithms [YA93, GMZ94℄ and various Eigen-Solver implementations [SB94, BH95℄.

This se
tion surveys the most signi�
ant parallel numeri
al appli
ations that have been written

in these and other languages.

The Australian weather system

The Australian weather predi
tion model is a 10000 line Fortran program for short-term (36 h)

weather fore
asting [Les85℄. Egan has re-implemented the kernel of this appli
ation as a 500-

line Sisal program [Ega93℄ that 
an be 
alled from the original Fortran shell. No signi�
ant

restru
turing of the 
ode was performed, however. The parallelising Fortran 
ompiler for the

Cray-90 was unable to lo
ate any parallelism within this subroutine.

For the Sisal version, Egan a
hieved a speedup of 3.7 on a 4-pro
essor Cray-90. This repre-

sented a performan
e improvement of 34% over the sequential Fortran 
ode. Subsequent work

on the 
ompiler has improved the performan
e of Sisal relative to Fortran, to the extent that it

is now possible to a
hieve a relative speedup of 6.1 on an 8-pro
essor Cray Y-MP/864 (20 iter-

ations), representing a speedup of 5.8 over the equivalent Fortran program running on a single

pro
essor [LAN98℄. The �nal Sisal program 
omprises 33 sour
e modules { a signi�
antly large

program by most standards.

Photon Transport

The 750-line Id program Gamtebwas written by resear
hers from Los Alamos National Laboratories

to simulate the traje
tory of photons through a 
arbon rod that has been divided into a number

of 
ells of a given geometry. Ea
h photon 
an be tested independently exploiting data parallelism.

On the 8-pro
essor prototype Monsoon data
ow ma
hine, this highly-parallel appli
ation a
hieved

a speedup of 7.4 for a problem 
ontaining 40,000 parti
les [HCAA93℄.

The same appli
ation has been written in Sisal [HLB95, HB97℄, but the speedups a
hieved

on a 4-pro
essor shared-memory Sun were not signi�
ant (1.9 relative, 1.3 absolute for 50,000

parti
les). The overall performan
e was also signi�
antly less than for C { sequential C was 8.8

times faster than the one-pro
essor parallel Sisal program. The poor performan
e is perhaps due

to ineÆ
ien
ies 
reating large intermediate data stru
tures.

Fluid Dynami
s

A se
ond large appli
ation that was developed as part of the FLARE proje
t was the Swansea


omputational 
uid dynami
s program [RW95, GSWZ95℄. In its sequential in
arnation, this 2000-

line program made heavy use of arrays. In order to produ
e a parallel implementation, quadtree
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and trie data stru
tures were used instead to yield a straightforward parallel de
omposition of the

problem domain.

Overall, the absolute speedup a
hieved by this appli
ation was 2.3 on a 4-pro
essor GRIP.

Additional pro
essors gave slight performan
e improvements, up to a fa
tor of 3 on 17 pro
essors,

but gave mu
h worse pro
essor utilisation. This was in sharp 
ontrast to idealised simulated

results, whi
h showed available parallelism of up to 100 simultaneous tasks. The dis
repan
y is

probably best explained by tight data dependen
ies introdu
ing signi�
ant 
ommuni
ation 
osts in

the real implementation. This highlights the importan
e of providing a

urate as well as idealised

simulation, as we have done in the parallel workben
h des
ribed above.

A further lesson obtained from this appli
ation was the importan
e of providing good support

for large data stru
tures, for example distributed appli
ative arrays [KG91℄. We have not yet

implemented support for su
h stru
tures, so would not expe
t good performan
e for programs

that made heavy use of array stru
tures in our system.

A similar appli
ation to the Swansea program is the 1000-line Id program simple whose pur-

pose is to simulate hydrodynami
s and heat-
ondu
tion. On an 8-pro
essor Monsoon, Hi
ks et

al. [HCAA93℄ report a speedup of 6.3 for 100 iterations of a 100�100 grid of nodes 
ontaining

information about position and velo
ity, over a series of zones with di�erent 
uid 
hara
teristi
s.

This appli
ation has also been implemented in Sisal, where resear
hers a
hieved relative speedups

of 4.3 on an 8-pro
essor Cray Y-MP/864 and 13.9 on a 20-pro
essor Sequent Symmetry for 62 it-

erations [LAN98℄. In both 
ases the Sisal version was signi�
antly faster than the single-pro
essor

Fortran 
ode, representing speedups over Fortran of 4.1 and 13.7 respe
tively.

Tidal Predi
tion

Hartel et al. have used Miranda to produ
e a 560 line tidal predi
tion program, using skeletons

to expose the parallelism in this program [HHL

+

95℄. A `
ommuni
ation lifting' transformation is

applied in order to exploit wavefront parallelism in a grid performing 
omputational 
uid dynam-

i
s operations that involve solving partial di�erential equations in a data-parallel fashion. The

program uses a tile-based partitioning approa
h similar to that we have used for the A

ident

Bla
kspots program.

The relative speedup a
hieved for this appli
ation is 2.5 on a 4-pro
essor shared-memory ma-


hine, though the appli
ation would presumably s
ale to larger shared-memory systems if these

were available, by simply introdu
ing additional tiles. Unfortunately, this is still 58% slower

than sequential C, however, and therefore 
onsiderably slower than 
ould be expe
ted for a Sisal

implementation of this appli
ation.

Global O
ean Cir
ulation

A similar appli
ation to the tidal predi
tion problem is the global o
ean 
ir
ulation model that

has been 
onverted to Id from the Fortran original [SAC

+

98℄. This program has a regular 
ontrol

stru
ture (the 
entral part is a triply nested loop) but an irregular data stru
ture. The appli
ation

was tuned for parallel exe
ution on Monsoon using loop unrolling and the introdu
tion of k-

bounded loops [AN90℄ for throttling ex
ess parallelism. Performan
e results for realisti
 data-sets,

measured in ma
hine independent 
y
les per required 
oating point operations, showed that the

8-pro
essor Id/Monsoon appli
ation was between 2 times slower and 2 times faster than the

equivalent 128-pro
essor CM Fortran/CM-5 version.

7.5 Symboli
 Computation

Computer Algebra

S
hreiner has applied his small stri
t para-fun
tional language pD to a number of problems taken

from 
omputer algebra: a linear equation solver that is similar to the one presented in Se
tion 4.6;

two programs to 
ompute multivariate polynomial resultants; and part of a polynomial fa
torisa-

tion algorithm.
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Highly signi�
antly, S
hreiner's performan
e results show that good absolute speedup 
an be

a
hieved using his approa
h [S
h95℄. Compared with sequential C, S
hreiner a
hieved performan
e

of 14 on a 16-pro
essor shared-memory system for the linear equation solver (his best result).

Sequential performan
e is also broadly in line with that obtained for the 
orresponding C programs.

Although these appli
ations are small, they do suggest that parallel symboli
 
omputation is

amenable to exploitation by fun
tional programming te
hniques.

Nu
lei
 A
ids

Feeley et al. have worked on a parallel appli
ation for determining the three-dimensional stru
ture

of nu
lei
 a
ids [FTL94℄. This appli
ation involves solving a set of 
onstraints that 
olle
tively

de�ne all legal 3D stru
tures that 
an be built from the input set of nu
leotides.

Ea
h nu
leotide 
ontains one free variable des
ribing its three-dimensional position relative to

other nu
leotides. This position 
onstrains the pla
ement of other nu
leotides in the stru
ture. The

parallel implementation of the algorithm involves 
he
king ea
h possible solution for a nu
leotide's

position in parallel. The appli
ation is written as a 3500-line MultiLisp program and uses lazy

task 
reation [MKH91, Ito96℄ to introdu
e parallel tasks.

This appli
ation has been tested on two interesting data sets. For the larger of the two data

sets, pseudoknot, it is possible to a
hieve a maximum absolute speedup of 13.7 on 24 pro
essors.

This represents the limit of parallelism | additional pro
essors result in lower speedups due to

added 
ontention. While the parallel overhead is a quite reasonable 21%, the single-pro
essor

parallel 
ase is still 2.4 times slower than sequential C. The smaller data set, anti
odon displays

good absolute speedup of 49 on 64 pro
essors.

7.6 Digital Signal Pro
essing

In his thesis, Reekie des
ribes the design of a parallel digital signal pro
essing system written

using a visual diale
t of Haskell [Ree95℄. While no performan
e �gures are available, the thesis

is interesting in introdu
ing a number of laws 
on
erning fun
tional pro
ess networks that 
ould

perhaps apply to behavioural 
ode written using evaluation strategies, su
h as the appli
ations

des
ribed in this paper.

Dennis has studied a similar appli
ation in a stati
 data
ow 
ontext [Den95℄, as an exer
ise

in parallelisation. This Sisal program is the 
ore of a system that 
ould be used to pro
ess

information obtained from a sky-s
anning opti
al surveillan
e devi
e. A series of �lters work as a

parallel pipeline over several input stream of values, representing data obtained by the surveillan
e

sensors. The appli
ation is highly parallel to the extent that throttling and other load management

strategies would probably be required in a real implementation. Unfortunately, the appli
ation

has not yet been implemented on real parallel hardware so no performan
e results are available

for this appli
ation either.

7.7 Telephony

Finally, while not a purely fun
tional implementation, and di�ering from the goals of our resear
h

in representing a distributed implementation of a 
on
urrent language with expli
it pro
ess 
ontrol

for semanti
 modeling, Erlang [AWWV96℄ has produ
ed the �rst 
ommer
ial distributed fun
tional

appli
ations of whi
h we are aware [Arm96℄. The Erlang appli
ations are both `fast enough' for

real 
ommer
ial use and use less memory than their 
ounterparts in C. The largest appli
ation

that has so far been programmed in Erlang is the 230,000 line Mobility Server, whi
h a
ts as an

intelligent 
all routing system linked to an internal telephone ex
hange, and whi
h is in widespread

use. Clearly, taken with the Lolita appli
ation whi
h we have des
ribed here, there is a strong

body of eviden
e to show that fun
tional languages 
an be used for real, 
omplex appli
ations.
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7.8 Related Approa
hes to Parallelism

The FLARE Appli
ations

The appli
ations produ
ed by the FLARE proje
t [RW95℄ formed a dire
t pre
ursor to those de-

s
ribed here, representing the �rst real attempt to write a number of reasonably large appli
ations

in a purely fun
tional language and to produ
e parallel implementations of those programs. Like

the appli
ations des
ribed in this paper, the appli
ations 
onsidered in the FLARE proje
t were

drawn from a wide variety of appli
ation areas: notably a 
omputational 
uid dynami
s problem,

a proof assistant, text 
ompression and a geometri
 modeling system. The 
uid dynami
s program

and the proof assistant (Veritas) are des
ribed above.

The attempts to parallelise the FLARE appli
ations motivated the use of simulation (in this


ase using an idealised simulator, hb
-pp [RW93℄) as well as real-ma
hine exe
ution, and spurred

the long-term development of evaluation strategies for more pre
ise ma
hine 
ontrol (the FLARE

appli
ations used only the primitive par and seq annotations). They also demonstrated the limi-

tations of the GRIP prototype in exe
uting su
h large programs, and highlighted the desirability

of using sto
k parallel ma
hines that 
ould be made more generally available.

Overall parallel performan
e results were, however, quite promising. Depending on the appli-


ation type, absolute speedups of between 4 and 15 were a
hieved on a 16-pro
essor GRIP.

The Dut
h Parallel Programming Toolkit

The toolkit developed as part of the Dut
h Parallel Redu
tion Ma
hine Proje
t [BvH

+

87, HHL

+

95℄

takes an approa
h to parallel program development that is similar to the one we have des
ribed

in this paper. As in our approa
h, the Dut
h system provides both an interpreter and a 
ompiler

for sequential algorithmi
 debugging and initial overall performan
e optimisation, together with

both simulated and real parallel ma
hine implementations for parallel performan
e optimisation.

The simulator supports three levels of detail: task-level, instru
tion-level and bus-
y
le simulation.

Like the GranSim simulator, the instru
tion-level simulation is a

eptably a

urate, delivering

predi
tions that are 15%{23% too optimisti
, though. The system has been used to develop the

560 line tidal predi
tion program dis
ussed earlier.

Finally, it is worth noting that the 
ompiler used in this proje
t, FAST/FCG, has limited

support for 
ode optimisation. GHC provides many more optimisations, as well as sour
e-level

pro�ling (both sequential and parallel) through the use of 
ost-
entre pro�les [SP97℄. These

bene�ts are of great signi�
an
e for large parallel programs.

7.9 Summary

This se
tion has surveyed a variety of large-s
ale parallel fun
tional appli
ations written in many

languages and often exhibiting irregular parallelism. These appli
ations 
over a wide range of

programming domains from data-intensive appli
ations su
h as database transa
tion managers

to high-performan
e numeri
al 
al
ulations su
h as weather predi
tion systems or 
omputational


uid dynami
s appli
ations. Many appli
ations have demonstrated that good relative speedups


an be a
hieved, and several, notably those written in stri
t languages su
h as Sisal, MultiLisp

and pD, have shown that the performan
e of 
onventional imperative languages su
h as C or

Fortran 
an be ex
eeded with minimal programmer e�ort. The distributed language Erlang has

shown that distributed fun
tional appli
ations 
an a
hieve 
ommer
ial su

ess, e
lipsing their

imperative 
ounterparts through ease of 
onstru
tion and overall performan
e. These are positive

and en
ouraging results for the work that we are undertaking.
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8 Con
lusions

8.1 Summary

We have des
ribed the development of several parallel symboli
 programs in Glasgow Parallel

Haskell (GpH). The programs are large, 
over a range of appli
ation areas, and have been measured

on networks of workstations, and a shared-memory multipro
essor. From our experien
es with

developing these appli
ations we draw 
on
lusions on the appli
ations, the programming language,

and the programming environment.

On the appli
ations level the most signi�
ant result is that we are able to a
hieve modest

wall-
lo
k speedups over the optimised sequential versions for all but one of the programs, despite

the fa
t that some of the programs were not written with the intention of being parallelised (see

Table 5 in Se
tion 5.1). We �nd that it is easy to use di�erent parallel programming paradigms

in GpH, and even to 
ombine the paradigms within a single program.

On the language level we have been able to evaluate some long-standing 
laims about parallel

fun
tional programming. Both the determinism of the language proves helpful, as does the largely

impli
it nature of the parallelism. Our new parallel programming te
hnique, evaluation strategies,

has been proven su

essful on a large s
ale. Parti
ularly important for large programs we �nd

that strategies allow a high level of abstra
tion to be maintained. There are two aspe
ts to

this abstra
tion: we 
an des
ribe top-level parallelism, and also preserve module abstra
tion by

des
ribing parallelism over the data stru
tures provided at the module interfa
e (`data-oriented

parallelism'). The bene�ts of this approa
h are elaborated in more detail via developing several

versions of parallel programs in the PhD thesis [Loi98℄[Chapter 4℄.

On the programming environment level we have shown the importan
e of an integrated parallel

programming environment, with fa
ilities for prototyping parallel 
ode, optimising the program,

and visualising parallel behaviour. Although not the fo
us of this paper, the GpH programming

environment has been developed alongside the programs, and is still being extended as detailed

below.

Overall, our motto in exploiting parallelism in large appli
ations is `low pain, moderate gain.'

The goal of this approa
h is to bring the power of parallel pro
essing, in
reasingly o�ered by

the latest generation of desktop ma
hines, to non-spe
ialists in parallel programming. To a
hieve

su
h `desktop parallelism', as we 
all it, we use a programming model o�ering largely impli
it

parallelism, namely parallel fun
tional programming. However, our model is not restri
ted to

ma
hines with modest parallelism, and indeed it is possible to spe
ify more details of the parallel


omputation if ne
essary. These aspe
ts are in 
ontrast to 
lassi
al `super
omputer parallelism',

where it is feasible to spend a lot of e�ort in parallelising a program and the parallelisation is

usually done by a spe
ialist in parallel pro
essing. With the appli
ations presented in this paper

we also hope to have demonstrated the merit of su
h a `desktop parallelism' approa
h in order to

make the power of parallel pro
essing more easily available to programmers.

8.2 Future Work

We are extending the work in several dire
tions. Even with the existing suite of pro�ling and

visualisation tools available it is hard to fully understand the parallel behaviour, of large irregularly

parallel programs. Additional tools are under 
onstru
tion and the most signi�
ant of these are

as follows. The GranCC pro�ler attributes the work done by a thread to a 
ost 
entre, i.e. an

expression in the program [HLT97℄. The strategi
 pro�ler, GranSP, attributes a thread to the

strategy that indu
ed it [KHT98℄. A standard format for pro�ling data is being designed, and

the tools may be o�ered in a user-friendly environment [JMPW98℄. We have experimented with

a number of di�erent ways of visualising the exe
ution of parallel fun
tional programs. We intend

to des
ribe our experien
es with the pro�lers and visualisations in a separate paper.

It would be useful to reason more formally about the strategies used in our programs. For

example to demonstrate that two strategies are equivalent w.r.t. the amount of parallelism they

generate, or that one generates more parallelism than another. So far, most of this reasoning has
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been done informally. However, we are 
urrently working on an operational semanti
s for GpH,

in order to prove identities about strategies [HBTK98℄. The strategi
 identities 
an then be used

to prove equalities and inequalities between strategi
 fun
tions.

We intend to improve and extend the GUM runtime system, and to port it to new plat-

forms. The goal of these improvements is to make the management of parallelism more eÆ
ient

without sa
ri�
ing the ar
hite
ture-independen
e of GUM. Among the aspe
ts of GUM that


ould be improved are the bookkeeping of potential parallelism via lazy threads as developed in

[GSC96℄, the work-stealing algorithm and the message-pro
essing as suggested by measurements

in [LH96b℄. Furthermore, there are a number of obvious extensions to GUM, e.g. to introdu
e

thread migration, i.e. the relo
ation of a running thread from one pro
essor to another, or support

for spe
ulative parallelism. A number of GUM ports are under way or planned, in
luding to a

Fujitsu AP1000, a Fujitsu AP3000, and a Beowulf platform.

In the longer-term, we would like to develop an even more impli
itly parallel language. One

means of doing so would be to automati
ally insert strategies into a program, guided by stati


analyses of the program text. Stri
tness analysis [BHA86℄ indi
ates when it is safe to introdu
e

parallelism, and granularity analysis [LH96a℄ indi
ates when it is worthwhile to do so. Be
ause

strategies are part of GpH it is then possible for the programmer to tune the parallel performan
e

by re�ning the automati
ally generated strategies.
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