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Abstrat

We investigate the laim that funtional languages o�er low-ost parallelism in the ontext

of symboli programs on modest parallel arhitetures. In our investigation we present the �rst

omparative study of the onstrution of large appliations in a parallel funtional language,

in our ase in Glasgow Parallel Haskell (GpH). The appliations over a range of appliation

areas, use several parallel programming paradigms, and are measured on two very di�erent

parallel arhitetures.

On the appliations level the most signi�ant result is that we are able to ahieve modest

wall-lok speedups (between fators of 2 and 10) over the optimised sequential versions

for all but one of the programs. Speedups are obtained even for programs that were not

written with the intention of being parallelised. These gains are ahieved with a relatively

small programmer-e�ort. One reason for the relative ease of parallelisation is the use of

evaluation strategies, a new parallel programming tehnique that separates the algorithm

from the oordination of parallel behaviour.

On the language level we show that the ombination of lazy and parallel evaluation is

useful for ahieving a high level of abstration. In partiular we an desribe top-level paral-

lelism, and also preserve module abstration by desribing parallelism over the data strutures

provided at the module interfae (\data-oriented parallelism"). Furthermore, we �nd that the

determinism of the language is helpful, as is the largely-impliit nature of parallelism in GpH.

1 Introdution

Parallelism without pain is perpetually promised but seldom delivered. For appliations where

the parallelism is well-strutured, well-understood tehniques suh as SPMD now deliver good

performane [SMT

+

95℄. But for rihly-strutured symboli appliations, suh as ompilers and

natural-language proessing, the jury is still out. Suh appliations are haraterised as follows.

� The omputation is largely symboli, rather than numerial, e.g. with arbitrary preision

integers rather than oating point numbers.

� The data strutures are omplex, e.g. rihly onneted trees or graphs, rather than arrays.

� The algorithm supports modest, rather than massive, parallelism.

� Parallelism arises from several soures, often nested within one another.
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� Thread granularities are not statially preditable.

The literature on parallel appliations of this sort is sparse, and good results seem to demand

an unreasonable investment of e�ort, exept in partiularly well-studied nihes, suh as parallel

disrete event simulation and omputer algebra [JSC96℄.

Funtional programming languages have long held out the possibility of addressing parallel

symboli appliations. On the one hand, their automati storage alloation, polymorphi typing,

and rih data strutures, make them well suited to symboli appliations. On the other hand,

their expression-oriented style exposes muh potential parallelism.

Despite this promise, real parallel implementations have been slow in oming. By a `real' im-

plementation we mean one that (a) delivers wall-lok speedups over the best sequential ompiler

for the same language, and (b) is robust enough to handle multi-thousand-line appliation pro-

grams. The engineering hallenge of developing a real implementation in this sense is onsiderable.

Hammond [Ham94℄ provides a good overview of work in this area, and Setion 7 disusses related

work on appliations.

We have, however, developed a real implementation of the funtional language Haskell [PHA

+

97℄,

alled Glasgow Parallel Haskell (GpH), desribed in [THM

+

96℄. Using it we have begun to write

substantial parallel appliations, and to develop systemati ways of doing so. In this paper we

desribe our experienes of parallelising a set of �ve parallel appliations of varying size. Three

are really warm-up exerises, serving to set the sene. The last two, a ompiler for Haskell, and a

natural-language proessing system are substantial: 5,000 and 47,000 lines of Haskell respetively.

Together, these appliations over a range of

� appliation areas

� parallel programming paradigms

� parallel omputer systems.

So, based on this experiene, what is the verdit? Our onlusions are these:

� With a modest investment of e�ort, it is possible to extrat modest levels of parallelism

(a fator of 2{10), and wall-lok speedup, for omplex symboli appliations that were

originally written without parallelism in mind (Setion 5.1). It an be diÆult to extrat

muh more parallelism than this without substantial rewriting.

Viewed from the massively-parallel omputing standpoint, this looks disappointing. Viewed

from the position of a ompiler writer used to onsidering a 20% improvement as a huge

win, it looks exiting. `Low pain, moderate gain' is our motto. Beause this speedup is

ahieved with only minor hanges in the ode, merely exposing parallelism rather than

ontrolling it in detail, this style of parallelism should be of interest for non-speialists in

parallel programming.

� Some of the long-time laims of the funtional ommunity do hold good. In partiular, deter-

minism is an enormous boon. One a program works on a uni-proessor, then it also works

on a multi-proessor, and always delivers the same results. There are no rae hazards, ore

dumps, and unrepeatable errors. However, the usual problems and advantages of di�erent

resoure usage in a multi-proessor setting remain, as illustrated in Setion 4.5.

� We have found a way to leanly separate the algorithm that omputes the result from the

evaluation strategy that governs its parallel behaviour. Evaluation strategies are the topi of

another paper [THLP98℄, and are introdued in Setion 2.1.

Interestingly, lazy evaluation plays an essential role in supporting this modular program

deomposition. (Lazy evaluation means that a omponent of a data struture is only eval-

uated when its value is needed.) This result diretly ontradits the folk-lore that laziness

and parallelism are in onit [TG95, Ken94℄. In short, lazy evaluation allows us to de�ne

parallelism over a data struture produed by a funtion without breaking the abstration
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of the funtion. This `data-oriented' form of parallel programming enourages a modular

design where sequential funtions an be reused and parallelism is de�ned when omposing

several funtions.

� Our tehniques support a variety of parallel programming paradigms , inluding farms, pipe-

lines, divide-and-onquer, and data parallelism. Sine some of our appliations involve sev-

eral di�erent forms of parallelism, it is helpful that our programming framework is not biased

towards one partiular paradigm. Several of the programs nest one paradigm within another,

furthermore we exploit the faility to nest paradigms to an arbitrary depth.

These are general remarks. The distintive ontribution of this paper is that we justify them in

detail, based on experiene of substantial appliations overing a range of appliation areas.

Parallel funtional programming is no panaea. Writing parallel algorithms is still hard. For

appliations that demand very high utilisation of an expensive massively-parallel mahine the

programmer might well be better o� with existing approahes. However, in an age where every

desktop mahine will soon be a multi-proessor, and where under-used networks of workstations

abound, a way to extrat modest speedups for a modest investment of e�ort is a welome and

enouraging development. In ontrast to superomputing parallelism, with its speialised mahines

and the high e�ort needed to extrat parallelism, we therefore term our approah one of `desktop

parallelism'.

The struture of the paper is as follows. After disussing the programming language in Setion 2

and environment in Setion 3, we desribe the appliations themselves in Setion 4. In the rest of

the paper we then try to abstrat the lessons we learned from that experiene in Setions 5 and 6.

We inlude a substantial survey of the �eld in Setion 7, before onluding with Setion 8.

2 GpH | A Parallel Funtional Language

The essene of the problem faing the parallel programmer is that, in addition to speifying what

value the program should ompute, expliitly parallel programs must also speify how the mahine

should organise the omputation. There are many aspets to the parallel exeution of a program:

threads are reated, exeute on a proessor, transfer data to and from remote proessors, and

synhronise with other threads, et. Managing all of these aspets on top of onstruting a orret

and eÆient algorithm is what makes expliit parallel programming so hard. The diametrially

opposing approah is to rely solely on the ompiler and runtime system to manage the parallel

exeution without any programmer input. Unfortunately, this purely impliit approah is not yet

fruitful for the large-sale funtional programs we are interested in.

The approah used in GpH is intermediate between purely impliit and purely expliit ap-

proahes. The runtime system manages most of the parallel exeution, only requiring the pro-

grammer to indiate those values that might usefully be evaluated by parallel threads and, sine

our basi exeution model is a lazy one, perhaps also the extent to whih those values should be

evaluated. We term these programmer-spei�ed aspets the program's dynami behaviour.

Parallelism is introdued in GpH by the par ombinator, whih takes two arguments that

are to be evaluated in parallel. The expression p `par` e (here we use Haskell's in�x operator

notation) has the same value as e, and is not strit in its �rst argument, i.e. ? `par` e has the

value of e. (? denotes a non-terminating or failing omputation.) Its dynami behaviour is to

indiate that p ould be evaluated by a new parallel thread, with the parent thread ontinuing

evaluation of e. We say that p has been sparked, and a thread may subsequently be reated to

evaluate it if a proessor beomes idle. Sine the thread is not neessarily reated, p is similar to

a lazy future [MKH91℄.

Sine ontrol of sequening an be important in a parallel language [Roe91℄, we introdue a

sequential omposition operator, seq. If e1 is not ?, the expression e1 `seq` e2 also has the

value of e2; otherwise it is ?. The orresponding dynami behaviour is to evaluate e1 to weak

head normal form (WHNF) before returning e2. Informally, this means that every data struture

is only evaluated up to the top level onstrutor.
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This setion gives an abridged introdution to our parallel programming tehnique alled eval-

uation strategies. We fous on the language features neessary to ahieve the basi funtionality

and highlight the advantages of this parallel programming tehnique. A omplete desription and

disussion of evaluation strategies an be found in [THLP98℄.

2.1 Evaluation Strategies

Even with the simple parallel programming model provided by par and seq we �nd that more

and more ode is inserted in order to obtain better parallel performane. In realisti programs the

algorithm an beome entirely obsured by the dynami-behaviour ode.

Evaluation strategies use lazy higher-order funtions to separate the two onerns of speifying

the algorithm and speifying the program's dynami behaviour. A funtion de�nition is split

into two parts, the algorithm and the evaluation strategy, with values de�ned in the former being

manipulated in the latter. The algorithmi ode is onsequently unluttered by details relating

only to the dynami behaviour. In fat the driving philosophy behind evaluation strategies is that

it should be possible to understand the semantis of a funtion without onsidering its dynami

behaviour.

A strategy is a funtion that spei�es the dynami behaviour required when omputing a value

of a given type. A strategy makes no ontribution towards the value being omputed by the

algorithmi omponent of the funtion: it is evaluated purely for e�et, and hene it returns just

the empty tuple ().

type Strategy a = a -> ()

2.1.1 Strategies Controlling Evaluation Degree

The simplest strategies introdue no parallelism: they speify only the evaluation degree. The

simplest strategy is termed r0 and performs no redution at all. Perhaps surprisingly, this strategy

proves very useful, e.g. when evaluating a pair we may want to evaluate only the �rst element but

not the seond.

r0 :: Strategy a

r0 _ = ()

Beause redution to WHNF is the default evaluation degree in GpH, a strategy to redue a value

of any type to WHNF is easily de�ned:

rwhnf :: Strategy a

rwhnf x = x `seq` ()

Many expressions an also be redued to normal form (NF), i.e. a form that ontains no redexes,

by the rnf strategy. The rnf strategy an be de�ned over both built-in and user-de�ned types,

but not over funtion types or any type inorporating a funtion type | few redution engines

support the redution of inner redexes within funtions. Rather than de�ning a new rnfX strategy

for eah data type X, it is better to have a single overloaded rnf strategy that works on any data

type. The obvious solution is to use a Haskell type lass, NFData, to overload the rnf operation.

Beause NF and WHNF oinide for built-in types suh as integers and booleans, the default

method for rnf is rwhnf.

lass NFData a where

rnf :: Strategy a

rnf = rwhnf

For eah data type an instane of NFData must be delared that spei�es how to redue a value

of that type to normal form. Suh an instane relies on its element types, if any, being in lass

NFData. Consider lists and pairs for example.
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instane NFData a => NFData [a℄ where

rnf [℄ = ()

rnf (x:xs) = rnf x `seq` rnf xs

instane (NFData a, NFData b) => NFData (a,b) where

rnf (x,y) = rnf x `seq` rnf y

2.1.2 Data-Oriented Parallelism

A strategy an speify parallelism and sequening as well as evaluation degree. Strategies spei-

fying data-oriented parallelism desribe the dynami behaviour in terms of some data struture.

For example parList is similar to seqList, exept that it applies the strategy to every element

of a list in parallel.

parList :: Strategy a -> Strategy [a℄

parList strat [℄ = ()

parList strat (x:xs) = strat x `par` (parList strat xs)

Data-oriented strategies are applied by the using funtion whih applies the strategy to the data

struture x before returning it.

using :: a -> Strategy a -> a

using x s = s x `seq` x

A parallel map is an example of data-oriented parallelism, and is used in several of the programs.

The parMap funtion de�ned below applies its funtion argument to every element of a list in

parallel. Note how the algorithmi ode map f xs is leanly separated from the strategy. The

strat parameter determines the dynami behaviour of eah element of the result list, and hene

parMap is parametri in some of its dynami behaviour.

parMap :: Strategy b -> (a -> b) -> [a℄ -> [b℄

parMap strat f xs = map f xs `using` parList strat

As an alternative to suh a using-based design of parallel ode we have also introdued a new

onstrut, $||, alled strategi funtion appliation. As an extension to the standard funtion

appliation, $, in Haskell, the onstrut f $|| s $ x applies the strategy s to the argument x in

parallel with applying the funtion f to x. This onstrut is espeially useful for de�ning data-

oriented parallelism over omplex data-strutures. This is due to the typial design of funtional

programs as ompositions of small, exible sub-funtions [Hug89℄. Compared to the above parMap

funtion this new onstrut makes it possible to de�ne data-oriented parallelism without hanging

the de�nition of map itself. For example the expression g $ parMap rnf f xs an also be written

as

g $|| parList rnf $ map f xs

In the latter expression the strategy is separated from the algorithmi ode and the sequential sub-

funtions are unhanged, thus desribing parallelism on a higher level in the program. Variants

of this idea are sequential strategi funtion appliation, $|, whih adds a synhronisation barrier

and thus is useful for de�ning pipelines, and strategi funtion omposition in a parallel, .||, and

a sequential version, .|, respetively.

2.2 Summary

The prime motivation in the design of evaluation strategies has been the separation of algorithmi

and behavioural ode. This separation will be disussed together with the appliations in Se-

tion 4. A omparison of pre-strategy with strategi ode, as given in [Loi97℄, shows that suh a
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separation aids the performane tuning proess of parallel programs and enables the programmer

to experiment with several parallel versions of the ode.

Beause evaluation strategies are written using the same language as the algorithm, they have

additional desirable properties. Strategies are powerful: simpler strategies an be omposed, or

passed as arguments to form more elaborate strategies. Strategies are extensible: indeed in the

parallelisation of several of the programs in Setion 4 we have de�ned new appliation-spei�

strategies. Strategies an be de�ned over all types in the language, and o�er some level of type

safety beause the normal type system applies to strategi ode. Strategies have a lear semantis,

whih is preisely that used by the algorithmi language.

3 Parallel Programming Environment

GpH programs are developed with an integrated suite of software tools, based on the Glasgow

Haskell Compiler, GHC [Pey96℄. Guidelines for the use of these tools are given in the following

subsetion. The suite inludes both a development environment and dynami analysis tools,

as outlined below (a more detailed disussion of the parallel programming environment is given

in [TBD

+

98℄):

� The Hugs interpreter, for fast development, experimentation and debugging of sequential

ode. Being an interpreter, Hugs o�ers fast turn-around time for ode hanges and an inter-

ative development environment. This omes at the expense of higher exeution time om-

pared to GHC. In an ongoing projet these two omponents, Hugs and GHC, are ombined

into a single environment, whih we ould reuse in our parallel programming environment.

� The GHC ompiler and sequential runtime system for fast exeution of sequential ode. GHC

is a state-of-the-art optimising ompiler for Haskell. Thus our programs do not sari�e

sequential performane in order to ahieve good parallelism. Another advantage of this

embedding of GpH into Haskell is, that all future work on sequential program analysis and

optimisation an be automatially reused in the parallel system. Most importantly, the

parallel program has the same semantis as its sequential ounterpart.

� The GHC ompiler and GUM parallel runtime system for parallel exeution on multiproes-

sors. GUM is eÆient, robust and portable: being available on both shared- and distributed-

memory arhitetures, inluding the Sun SPARCServer shared-memory multiproessor and

both a CM5 [Dav96℄ and networks of Sun and Alpha workstations. An IBM SP2 port is

nearing ompletion. We disuss the arhiteture-independent aspet of our parallel system

in [TBD

+

98℄. GUM is freely available and has users and developers worldwide [THM

+

96℄.

The suite also has a number of analysis tools, most of them dynami analysers, or pro�lers. Those

used to onstrut the programs in Setion 4 are as follows:

� Sequential time and spae pro�lers are supplied with GHC [SP95℄. They have proven indis-

pensable in tuning large Haskell programs suh as GHC itself.

� The GranSim parameterisable parallel simulator [HLP95, Loi98℄ is losely integrated with

the GUM runtime system giving aurate results. It is parameterisable to emulate di�erent

target arhitetures, inluding an idealised mahine, and provides a suite of visualisation

tools to view aspets of the parallel exeution of the program. The GUM runtime system

produes a subset of the GranSim pro�le data and so an produe some of the pro�les.

We are urrently working on the development of a parallel pro�ler, whih enables the programmer

to onnet points in an exeution pro�le with statements in the soure ode. Currently, two

prototypes are in existene: GranCC [HLT97℄, whih merges GranSim and sequential ost

enter pro�ling; and GranSP [KHT98℄, whih is an extension of the GranSim runtime-system

for traking the evaluation history of parallel threads. GranCC already ahieved promising results

and helped in the parallelisation of Naira.
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3.1 Parallelisation Guidelines

From our experienes engineeringGpH programs we have developed some guidelines for onstrut-

ing large non-strit funtional programs (the guidelines are disussed in detail in [LT97, THLP98℄):

1. Sequential implementation. Start with a orret implementation of an inherently parallel

algorithm.

2. Parallelise and tune.

� Seek top-level parallelism. Often a program will operate over independent data items,

or the program may have a pipeline struture.

� Time Pro�le the sequential appliation to disover the `big eaters', i.e. the omputa-

tionally intensive pipeline stages.

� Parallelise Big Eaters using evaluation strategies.

� Idealised Simulation. Simulate the parallel exeution of the program on an idealised

exeution model, i.e. with an in�nite number of proessors, no ommuniation lateny,

no thread-reation osts et. This is a `proving' step: if the program is not parallel on

an idealised mahine it will not be on a real mahine.

� Realisti Simulation. GranSim an be parameterised to losely resemble the GUM

runtime system for a partiular mahine, forming a bridge between the idealised and

real mahines.

3. Real Mahine. The GUM runtime system supports some of the GranSim performane

visualisation tools. This seamless integration helps understand real parallel performane.

4 Parallel Programs

4.1 Introdution

This setion outlines �ve GpH programs, that over a range of appliations domains. The Alpha-

Beta searh is an AI searh appliation; Aident Blakspots is a data-intensive appliation; Lin-

Solv is a symboli omputation appliation; Naira is a ompiler, and Lolita is a natural language-

proessor. Detailed desriptions of these programs have already been published in separate papers.

Here we fous on ommon aspets of the programs and of the parallelisation proess.

All of the programs exept Alpha-Beta solve real problems with real data, although LinSolv

should be viewed as a omponent of a larger system. The Alpha-Beta searh program is inluded

�rst beause it is simple, and illustrates our approah.

The programs manipulate symboli, rather than numerial data, using omplex data strutures,

e.g. the forests of SGML trees found in Lolita, or arbitrary preision integers rather than oating

point numbers in LinSolv.

None of the programs have a regular parallel struture. A typial program has a number of

stages, and these an be linked in a pipeline and eah stage uses a di�erent parallel paradigm,

e.g. data-parallel or divide-and-onquer. Some programs, like Naira, exhibit even deeper levels of

nested parallelism. Beause of this omplex parallelism, neither the number of threads nor the

granularity of the threads an be determined statially.

4.2 Alpha-Beta Searh

4.2.1 Program Desription

The Alpha-Beta searh algorithm is typial of arti�ial intelligene appliations. It is mainly used

for game-playing programs to �nd the best next move. The sequential version of the algorithm

presented here has been developed by John Hughes [Hug89℄ in order to demonstrate the strengths
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bestMove depth p f g = 

  last                             .|| rwhnf $ -- list of approx
  (mise f g)                       .|| rwhnf $ -- cropped eval tree
  cropTree                         .|| rwhnf $ -- static eval tree
  (mapTree (static p))             .|| rwhnf $ -- pruned search tree
  (prune depth)                    .|| rwhnf $ -- full search tree
  repTree (newPositions p) 

          (newPositions (opposite p))

Figure 1: Parallel pipeline struture of hoosing the best next move

of lazy funtional languages. Most notably, this algorithm relies on laziness to improve the eÆ-

ieny of the naive sequential algorithm by pruning the searh tree based on intermediate results.

Therefore, the parallel version has to retain the laziness expressed in the sequential algorithm

in order to avoid redundant work. In this setion we parallelise this lazy funtional algorithm

and study the parallel runtime behaviour. We investigate the use of strategies to develop an eÆ-

ient parallel algorithm without sari�ing the advantages of the original lazy algorithm. A more

detailed disussion of two variants of this parallel algorithm is given in [LT97℄.

The Alpha-Beta algorithm examines the possible next moves and piks the best move for the

player, assuming that the opponent piks the worst move for the player. The result is either

the maximum (player's move) or the minimum (opponent's move) of the evaluations of all next

positions. Following a typial funtional programming style, this algorithm an be very naturally

desribed as a sequene of funtion ompositions performing the following tasks (see Figure 1

ignoring the bold fae parts of the ode):

1. Starting with the urrent position p, build a tree with positions as nodes and all possible

next moves as subtrees. Sine this tree is built lazily no restritions to its size apply. The

higher-order funtion repTree is used to repeatedly apply a newPosition funtion to the

nodes in the tree, alternating between the funtions for the two players.

2. Prune the tree, whih might be in�nite at this stage, to a �xed depth to bound the searh

via prune.

3. Map a stati evaluation funtion, stati, over all nodes of the tree, via mapTree.

4. Crop o� subtrees from winning or losing positions, via ropTree. If suh a position is found

it is not neessary to searh deeper in a subtree.

5. Generate a list of approximations of the value of the urrent position, via mise f g. This

is done by piking the maximum or minimum of the resulting evaluations of the subtrees.

The funtions f and g represent the ombination funtions for the two players and alternate

when traversing the tree.

6. The last element in the list of approximations returned by the mise funtion is the �nal

value of the evaluation.

One ruial optimisation of the algorithm outlined above is the pruning of subtrees inside the

mise funtion based on intermediate results. Figure 2 shows an example of the pruning proess

realised via lazy evaluation. Based on the result of the left subtree, the overall result must be

at least 1, the last element of the list of approximations. (The modi�ed min funtion yields a

dereasing list of values.) Propagating this information as an intermediate result into the right

subtree, we an prune this whole subtree after �nding the value 0: sine a minimum funtion is

used to ombine the result, it will be at most 0, whih is smaller than the value we already have.

It is not neessary to evaluate the unknown value in the rightmost subtree at all.

This dynami behaviour is enoded as follows. The algorithm returns an inreasing list (player's

move) of approximations with the exat value as last list element rather than a single value. The
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[3,1] [0,..]1

1

Figure 2: Pruning subtrees in the optimised Alpha-Beta algorithm

main pruning funtion inside mise, minleq, has to test whether the opponent's move from a

subtree, represented as a dereasing list, an be ignored. This is the ase if the worst result of the

dereasing list l, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result x.

Or more formally: min l � x ,: minleq l x. Sine minleq works on dereasing lists it an stop

examining the list as soon as it �nds a value less than x. Thus, laziness is used to ignore parts

of the list of approximations, whih amounts to pruning subtrees in the searh tree. A omplete

desription of this lazy funtional pruning algorithm an be found in [Hug89℄.

4.2.2 Parallelisation

Pipeline Parallelism. Considering the struture of the algorithm as a omposition of several

funtions, our initial attempt of parallelising this algorithm was to add pipeline parallelism to the

top level struture of the ode. This approah has the advantage of modifying only a small portion

of the overall ode and has proven suessful in parallelising large programs suh as Lolita (see

Setion 4.5). The ode in Figure 1 uses the strategi funtion omposition operator .|| to de�ne

the parallelism and the evaluation degree on the arguments of the individual funtions.

Alas, the data dependenies of the algorithm do not permit the use of aggressive strategies.

Therefore, only a strategy reduing to weak head normal form, rwhnf, is used in every stage,

amounting to a pipeline struture with extremely short stages. Most of the work has to be

performed by the �nal stage, resulting in virtually no speed up at all.

Data Parallelism. More promising than the pipeline parallel version is a data parallel approah.

Our goal is to evaluate all possible next moves in parallel. The only neessary hange to ahieve

this form of data parallelism a�ets the mise funtion in Stage 5 of the algorithm. This funtion

has to ombine the results of all subtrees into a result at the urrent node. The parallel version of

this funtion is shown in Figure 3. The only di�erene to the sequential version is the use of the

parMap rnf strategy to apture a data parallel dynami behaviour of this funtion. Depending

on whether it is the player's or the opponent's move, the binary funtion max or min is taken as

argument and folded over the list of results from the subtrees. Note that the funtions f and g

hange position in the reursive all to reord the swith in turns.

Unfortunately, this naive use of data parallelism generates a lot of redundant work beause

no pruning of subtrees is performed any more. This is indiated by the use of rnf, whih fully

evaluates the individual subtrees. Detailed measurements of variants of this algorithm in [LT97℄

reveal that the performane of this parallel algorithm is even worse than that of a naive parallel

algorithm that omits any pruning of subtrees. Although the version in Figure 3 generates a lot of
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-- This does simple minimaxing without pruning subtrees 

mise :: Player -> Player -> (Tree Evaluation) -> Evaluation

mise f g (Branch a []) = a

mise f g (Branch _ l) = foldr f (g OWin XWin) (parMap rnf (mise g f) l)

Figure 3: Data parallel ombination funtion in the Alpha-Beta searh algorithm

-- Parallel version of the pruning version

mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]

mise f g (Branch a []) = [a]

mise f g (Branch _ l) =  -- force the first n elems of the result list

  f ((map (mise g f) l) 

     ‘using‘ \ xs -> if force_len==-1  -- infinity 
                      then parList rnf xs ‘par‘ ()
                      else parList rnf (take force_len xs) ‘par‘
                           parList rwhnf (drop force_len xs) ‘par‘ () )

Figure 4: Strategy for a pruning Alpha-Beta searh with a stati fore length

parallelism, most of it is speulative and therefore potentially redundant.

Data Parallelism with Pruning. In order to ontrol the degree of speulative parallelism in

the algorithm we fore the evaluation of only an initial segment in the list of possible next positions.

We all the length of this segment the `fore length'. This parameter therefore represents a handle

to tune the degree of speulative omputation in the program. We have experimented with stati

fore lengths as well as dynami fore lengths that depend on the level in the searh tree. To

date the best results have been obtained from using a stati fore length as shown in the ode in

Figure 4. The strategy in this ode heks the value of the global variable fore len to deide

how many possible next moves to evaluate. Sine strategies are simply Haskell funtions, the

prelude funtion take for seleting an initial segment of a list an be used together with the

orresponding funtion drop, whih returns the rest of the list. Whereas rnf fores the evaluation

of the whole list of approximations orresponding to a possible next move, rwhnf only evaluates

the top level list ell, delaying any further omputation. Note that this pruning version returns a

list of evaluations and therefore does not use a foldr funtion for ombination.

Measurements. In order to demonstrate the e�et of the fore length parameter, Figure 5

ompares the dynami behaviour of Alpha-Beta searh with a simple ti-ta-toe game, using two

di�erent fore lengths. These ativity pro�les show on the x-axis time and on the y-axis the

umulative number of running, runnable, fething, and bloked threads, visualised as areas of

di�erent olour. In all test runs we used a realisti GranSim setup modelling a tightly onneted

distributed memory mahine with 32 proessors, a lateny of 64 mahine yles, and pre-fething

of data. In this ase inreasing the fore length improves the average parallelism from 10.6 to 29.9,

but the runtime only drops from 11.4 to 8.2 Myles. (Throughout the paper time is measured in

mahine yles.) This indiates a high degree of speulative omputation in the right hand graph.

More detailed measurements of this algorithm show that the largest speedup of 15.7 is obtained

from a setup with a fore length of 4. Of ourse, the optimal fore length depends on the position

to be analysed. For example if a winning position is found early on in the sequential algorithm only

a poor speedup is ahieved. However, with this additional parameter it is possible to ontrol how

muh e�ort should be invested into potentially redundant work. Conrete runtimes and speedups

for various variants of this algorithm and for di�erent fore lenghts are given in [LT97℄.
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 cycles M6.2Runtime = 

GrAnSim

Figure 5: Data parallel versions with stati fore lengths of 0 and 4

4.2.3 Disussion

The main interest in this algorithm lies in the interplay between lazy and parallel evaluation.

Sine the eÆieny of this algorithm relies on the lazy traversal of the searh tree, this laziness

must be preserved in the parallel algorithm. Measurements in [LT97℄ show that in some ases a

naive parallel algorithm without pruning is faster than a parallel algorithm with pruning, beause

in the latter the data parallel strategy destroys almost all possibilities of pruning, resulting in a

signi�ant amount of redundant work.

On the other hand, Figure 5 shows that a onservative approah towards parallelism in the

pruning version yields a very poor degree of parallelism. In order to improve the eÆieny of the

parallel version we had to introdue speulative parallelism into the program. We had to add

an additional parameter to the key funtion in the program and we used strategies in order to

express the speulative omputation based on this parameter. Although the runtime-system of

GranSim and GUM does not automatially kill threads that turn out to be unneessary, thus

running the risk of wasting resoures, the resulting performane learly exeeds the onservative

parallel version. One diÆulty in the tuning of the algorithm then lies in �nding the right level

of speulation in the program. In pratie, this has to be hosen based on the onrete searh

problem that is implemented via an Alpha-Beta searh algorithm.

4.3 Aident Blakspots

4.3.1 Program Desription

The University of London Centre for Transport Studies wishes to analyse road traÆ aident

data. Given a set of polie aident reords (modi�ed to preserve privay) the task is to disover

aident blakspots: loations where two or more aidents have ourred. A number of riteria

an be used to determine whether two aident reports are for the same loation. Two aidents

may be at the same loation if they ourred at the same juntion number, at the same pair of

roads, at the same grid referene, or within a small radius of eah other. The radius is determined

by the lass of the roads, type of the juntion et. The problem is obviously data-intensive, and

too omplex for onventional database query languages like SQL.

Loating blakspots amounts to ombining several partitions of a set into a single partition.

For example if the partition on road pairs is {{2,4,5},{3},{6,7}} and on grid referenes is

{{2,5},{3},{4,6},{7}}, the ombined partition is {{2,4,5,6,7},{3}}. The problem of union-

ing disjoint sets, union �nd, has been muh studied by algorithm designers as it has an interesting

sequential omplexity. For n union and m �nd operations, an algorithm with an amortised om-

plexity of O(n + F(m,n)) an be given, where F is a very small funtion (the inverse of the
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Table 1: Idealised simulation

Parallel Variant Work Average Run Time

(Myles) Parallelism (Myles)

Pipeline only 327 1.2 273

Par. Pipeline Stages

327 2.8 124

Par. Pipeline Stages

& preonstruted Ixs 304 3.5 87

Geographially

Partitioned (Tiled) 389 3.7 105

Akermann funtion) [Tar75℄. These RAM algorithms are not diretly appliable in our applia-

tion beause not all of a large data set may be randomly aessed in memory. We have adopted

an index-, or tree-, based solution with omplexity O(n log n) if n is the number of elements in

the sets. The motivation for this hoie is that for very large data sets not all of the tree need be

memory resident at any time.

Sequential Implementations. The appliation was originally written at the Centre for Trans-

port Studies [WH96℄ in PFL and has subsequently been rewritten in Haskell. PFL is an interpreted

funtional language [PS93℄, designed spei�ally to handle large dedutive databases. Unusually

for a funtional language, PFL provides a uniform persistent framework for both data and pro-

gram. The PFL program uses seletors, a speial bulk-data manipulating onstrut, and hene an

algorithm that is slightly di�erent from that used in the Haskell program. It omprises approxi-

mately 500 lines.

The Haskell implementation onstruts a binary sameSite relation ontaining an element for

eah pair of aidents that math under one of the four onditions. The ombined partition is

formed by repeatedly �nding all of the aidents reahable in sameSite from a given aident. The

program has four major phases: reading and parsing the �le of aidents; building indies over

the aident data; onstruting sameSite, and indies over sameSite; forming the partition. The

program is a 300-line module, together with 3 speialised library modules totalling 1300 lines.

The original data set omprises 7310 aident reports, and the programs disover 1229 multiple-

aident sites where a total of 5450 aident our. The programs are run on similar, but not

idential, workstations: PFL on a Sun ELC, and Haskell on a Sun Spar Classi. The runtimes

of the programs are as follows, PFL: 1105 seonds, Haskell: 123 seonds. The faster exeution of

the Haskell program is attributed to it being both ompiled and highly optimised, where PFL is

an interpreted researh language. More measurements of the PFL and Haskell programs, together

with a more detailed disussion an be found in [THLP98℄.

4.3.2 Parallelisation

Simulated Parallel Variants. Following the guidelines, we initially investigated the applia-

tion's parallelism using an idealised simulation. One adequate parallelism was obtained, we used

a realisti simulation of our �rst 4-proessor shared-memory target mahine. Tables 1 and 2

report the results obtained from the simulators when just 1000 aidents are partitioned, runtimes

and work are in units of 10

6

GranSim mahine yles.

Pipeline only. The �rst version simply onverted the 4 phases of the program outlined in

setion 4.3.1 into a pipeline. The speedup of 1.2 is low beause the pipeline is bloked by the trees

passed between stages.

Parallel Pipeline Stages. The next version introdues parallelism within eah pipeline stage

using a variety of paradigms, as disussed below.
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Table 2: Realisti SPARCserver simulation

Parallel Variant Work Average Run Time

(Myles) Parallelism (Myles)

Par. Pipeline Stages

& preonstruted Ixs 393 2.3 171

Geographially

Partitioned (Tiled) 394 3.7 105

Table 3: Monolithi and tiled runtimes

Program Variant Work Average Run Time

(Myles) Parallelism (Myles)

Sequential

Monolithi 498 1.0 498

Sequential Tiled 394 1.0 394

Parallel Tiles 394 3.7 105

Parallel Pipeline Stages and Preonstruted Indies. Parallelism is further improved

by merging the �rst two pipeline stages. That is, the indies on the aident data were onstruted

before the program is run, and the program reads the indies from a �le rather than onstruting

them. The resulting parallelism is satisfatory on an idealised simulation of a 4-proessor mahine,

but poor under a realisti simulation. The poor realisti results are due to the �ne grain of

parallelism and the volume of data being ommuniated.

Geographially Partitioned (Tiled). A very di�erent, oarse-grained, parallel struture

an be obtained by splitting the aident data into geographial areas. Eah area, or tile, an

be partitioned in parallel before aggregating the results, using this standard tehnique [MS95℄.

Aidents ourring near the edges of a tile must be treated speially. This approah is only

feasible beause every aident has a grid referene and we assume that aidents ourring more

than 200m apart annot be at the same site. Aidents ourring within 100m of the nominal edge

between two tiles are dupliated in both tiles. Splitting the original data into 4 tiles results in a

4% inrease in data volume. As a result of the dupliated border aidents, some multiple-aident

sites may be disovered in more than one tile.

Breaking the data into tiles redues the work required to form a partition as long as the

the border is suÆiently smaller than the body of the tile. Less work is required beause eah

aident is ompared with fewer aidents: the trees onstruted during the partition are smaller.

Table 3 shows the runtimes for a sequential partition of the original (monolithi) set of aidents,

a sequential partition of the data in 4 tiles, and a parallel partition of the 4 tiles. More formally,

for the n aidents in the monolithi data, the algorithm is O(n logn), whereas if we assume that

the borders are suÆiently small, then the tiled algorithm is O(n logn=4).

Parallel Mahine Measurements. The program is measured on two very di�erent mahines,

making use of the portability of the GUM runtime system. One is a shared-memory arhiteture

and the other distributed-memory. The shared-memory mahine is a Sun SPARCserver with 4

Spar 10 proessors and 256MB of RAM. The mahine is shared with other users, but measure-

ments are performed when it is very lightly loaded. The distributed-memory mahine is a network

of up to 16 Sun 4/15 workstations eah with 24MB of RAM, and onneted on a single ethernet

segment. Both arhitetures use a shared �le system, i.e. any PE an aess any �le. On the
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Figure 6: Speedups of Blakspots on heterogeneous tiles

network of workstations the �les are stored on a single �le server and aessed via NFS.

Data. The original data set of 7310 aident reports oupies 0.3MB and is too small to obtain

good results on the parallel mahines. For the purposes of this setion, the data is repliated 6

times. The larger data set ould be kept in larger tiles, or in more tiles of the same size, and

the latter approah is taken for the following reasons. As shown in Setion 4.3.2, as long as the

tiles are large relative to the border area, many smaller tiles are more eÆient than a few large

tiles. Peak resoure usage is redued beause if there is one tile per PE then all of the �le reading

ours at the start of the program, induing intense network traÆ. With mulitple tiles per PE

the �le reading is spread through the program exeution. Multiple tiles utilise the dynami load

management provided by GUM, demonstrating that the GpH program is independent both of

the number of PEs and of the number and size of tiles. In ontrast a small number of large tiles

ould be statially alloated to PEs. However it is a tedious task to maintain the alloation as the

number of tiles and PEs hange.

The repliated data oupies 1.8 MB and is split into 40 tiles with two di�erent sizes. There

are 32 small tiles, eah ontaining approximately 1000 aidents and oupying 37KB, and 8 large

tiles eah ontaining approximately 2000 aidents and oupying 73KB.

Program. Only one hange is required to the GranSim version of the program to enable it

to run under GUM. GUM proesses don't inherit �le handles from the main thread, and hene

to permit them to read �les the program uses the `unsafe' C-interfae supported by GHC [LP95℄.

On both mahines the program is warm started, i.e. it is run at least one before measurements

are taken. Warm starts redue runtime beause the data is preloaded into RAM disk ahes in

the �le system.

Measurements. Figure 6 shows the speedups obtained when the Blakspots program is run on

both the SPARCserver multiproessor and the network of workstations. In eah graph the top

line is linear speedup. The seond line is the relative speedup, i.e. ompared to a single proessor

running the parallel program. The third line is the absolute or wall-lok speedup, i.e. ompared to

a single proessor running the optimised sequential ode. The workstation speedups are good, with

16 workstations relative speedup reahes 12 and absolute speedup reahes 10. The 4-proessor

SPARCserver runtime is signi�antly less than on the workstations, but the speedups are less

impressive, reahing 2.8 relative and 2.2 absolute.

Saling. In addition to speedups, an important measure for data-intensive appliations is saleup,

i.e. an a mahine twie the size proess twie the volume of data in the same time? Figure 7

shows the saleup for the two mahines. There are as many large tiles as there are proessors. The
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Figure 7: Appliation saleup

saleup of the workstations is satisfatory: a 44% inrease in runtime between 1 and 16 proessors.

Also note that muh of the inrease ours as soon as a seond proessor is added. Saleup on the

SPARCserver is not nearly so impressive: a 32% inrease in runtime with just 4 proessors.

4.3.3 Disussion

The GpH Blakspots program solves a real problem using real data and exhibits good wall-

lok speedups and aeptable saleup on two very di�erent parallel arhitetures. The sequential

Haskell implementation is an order of magnitude faster than the (interpreted) PFL implementa-

tion, and on 16 workstations the GpH program is an order of magnitude faster still.

The simulator and strategies have allowed us to arry out low-ost experiments with several

possible parallel variants of the program. The tiled variant is seleted for exeution on the parallel

arhitetures beause it delivers good oarse-grained parallelism under both idealised and realisti

simulation. In some ways the parallelism exhibited by this variant is insuÆiently irregular to

exhibit the strengths of GpH.

The parallelism exploited by the variants of the program is very di�erent. For simpliity we

ontrast two extremes, by omparing the parallel-pipeline-stages variant with the tiled variant.

The parallel-pipeline-stages variant introdues parallelism within eah pipeline stage using a

variety of paradigms. The �le reading and parsing stage is made data parallel by partitioning

the data and reading from n �les. Control parallelism is used to onstrut the aident indies.

The stages onstruting the same-site relation and the partition both use benign speulative

parallelism. A total of 8 strategies are used in the parallel-pipeline-stages variant, some of whih

are hand rafted. The strategy that speulatively evaluates the �rst n elements of a list is used

twie within the program, is similar in struture to the strategy in Alpha-Beta and may be useful

in other programs.

The tiled variant has very simple top-level data parallelism. Essentially the partition funtion is

mapped in parallel over a list of tiles, prior to being aggregated to produe the result. The parallel

map funtion is a standard parallel higher-order funtion. In all the variants parallelisation entails

minimal restruturing of the algorithm.

4.4 Naira

4.4.1 Program Desription

Naira is a parallel, parallelising ompiler for a rih, purely funtional programming language. It

proesses, and its front-end is written in, a subset of the standard Haskell 1.2 language with

type lasses as the main feature omitted. The front-end omprises about 5,000 lines of Haskell

15



ode organised in 18 modules. The bak-end is written, following popular tradition, in the C

programming language.

The main motivation for writing Naira is to explore the prospets and problems of parallelising

a modern funtional language ompiler [Jun98℄. Another aspet is to make the ompiler aept

parallelised program inputs and to generate multithreaded parallel ode so that we an assess the

eÆieny of the resulting parallel ode. These two aspets of Naira | that it is itself parallel

and that it generates parallel ode | makes it, to our knowledge, the �rst funtional language

ompiler of its kind. It is also the seond largest parallelised Haskell program, following the Lolita

natural language proessor desribed in Setion 4.5.

The front-end of Naira, whih we parallelise, ompiles to a graph-reduing parallel abstrat

mahine with a strong dataow inuene. In this setion we highlight the struture, parallelisation

and performane analysis of the ompiler on the GranSim simulator as well as on a network of

Sun workstations. A more detailed exposition of the various aspets of the ompiler is given

in [JDH97℄ and in the PhD Thesis [Jun98℄.

The top-level struture of the ompiler in terms of the pipeline of its main phases is shown

in Figure 8. The �rst, analysis, pass onsists of the lexial analyser and the parser. The next

four passes implement the pattern mathing ompiler, the lambda lifter, the type heker and the

intermediate language optimiser, respetively. The detailed organisation and implementation of

these passes is desribed elsewhere [Jun98℄.

Lexer and
Parser

Pattern
matcher

lambda
lifter

Type
checker

Lambda
lifter Back end

OptimisermkDefs lLift

optimiseParseTree

tcModule

showModule

parseModule

Figure 8: The pipeline struture of Naira's main phases

The two-way split after the lambda lifting pass indiates that the result of the lambda lifter

an be piped simultaneously to both the type heker and the optimiser. These latter two phases

an proeed in parallel ombining their results, using showModule, to produe the intermediate

ode whih is input to the ode generator.

4.4.2 Parallelising Naira

The ompiler is parallelised using evaluation strategies [THLP98℄ and an allied parallel name-

server, whih is used to minimise data-dependenies and thus expose more parallelism [JDH97℄.

The parallelisation proeeded top-down, starting with the top-level pipeline, then proeeding to

the lower-levels to parallelise four main passes of the ompiler | the pattern mather, lambda

lifter, type heker, and the optimiser | as summarised below.

Top-level Parallelisation. The top-level pipeline is parallelised in a data-oriented fashion by

annotating (with evaluation strategies) the intermediate data strutures used to ommuniate

analyses results between the ompiler phases. The laziness of the language is ruial here to

ensure that the output of one phase is made available inrementally to the next phase(s) so that

the analyses in the phases an proeed in parallel.

Figure 9 shows the funtion, analyseModule, that implements the top-level pipeline. We use

strategi funtion appliation, $||, to ombine the individual passes into a omplete program and

at the same time de�ne parallelism over the intermediate data strutures.
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analyseModule fileName modName imports exports symbTabs defs  =

  showModule modName impVals dats exports           $||
                                parPair parForceList parForceList $
  fork (optimiseParseTree fileName exports stOpt  aInfo,

        tcModule fileName stTE exports tInfo  syns) $|| parForceList $
  lLift fileName stPM                               $|| parForceList $
  mkDefs fileName stPM                              $|| parForceList $ 
  funs

  where (stPM,stTE,stOpt)      = symbTabs

        (dats,syns,funs)       = defs   

        (aInfo,tInfo,impVals)  = imports

fork (f, g) inp = (f inp, g inp)

parForceList = parList rnf

Figure 9: analyseModule rewritten using pipeline strategies

Parallelising Individual Passes. The pattern mather, lambda lifter and the intermediate

language optimiser are parallelised, generally, in a data-parallel manner by ensuring that the

respetive analyses in eah phase are applied to all funtion de�nitions in a module in parallel.

Results of parallelising eah of these phases gave only modest speedups of up 2.4 under an idealised

GranSim simulation. A more detailed disussion of the parallelisation of these phases is reported

in [Jun98℄.

Cost-entre pro�ling [SP97℄ reveals that, as is often the ase, the type heker is the most

expensive part of the ompiler, both in terms of spae usage and runtime. Therefore, in order to

get good overall parallel performane, more attention was paid to the parallelisation of the type

inferene phase than to the other ompiler phases.

The type heker is parallelised using a parallel name server to minimise data dependenies

and thus avoid sequentialising the inferene proess. For instane, to type-hek two quantities d

1

and d

2

, we analyse them simultaneously in the urrent type environment, eah returning a type

and a substitution reord. If a variable v ommon to both d

1

and d

2

is assigned (possibly di�erent)

types t

1

and t

2

from these two independent operations, t

1

and t

2

will be uni�ed in the presene

of the resulting substitutions and the uni�ed type assoiated with v.

Table 4: Performane of Naira with idealised and realisti 8-proessor GranSim simulations

Idealised Simulation Realisti Simulation

SMP DMP

Avg. Par. Speedup Avg. Par. Speedup Avg. Par. Speedup

Best 8.4 8.13 4.9 4.68 5.6 5.32

Worst 1.9 1.40 1.8 1.39 1.8 1.35

Mean 5.5 4.36 4.0 3.95 3.5 3.55

Parallelism has been exploited at four di�erent stages in the type heker:

� in a data-parallel fashion when type-heking de�nitions in a module;

� in type-heking loal de�nitions in parallel with the top-level ones;

� on alls to frequently used funtions; and

� in type-heking aggregate expressions.

The �rst stage of the parallelisation yields signi�ant parallelism and speedup with the paralleli-

sation of the other stages also leading to modest improvements. Most notably, the overall perfor-
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mane obtained for parallelising the type heker is higher than that obtained after parallelising

the top-level pipeline (the latter ahieved a mean speedup of 2.4 in an idealised simulation).

Measurements. The ompiler has been measured on both idealised and standard setups of

GranSim simulating both shared-memory (SMP) and distributed memory (DMP) arhitetures.

The results are summarised in Table 4. The idealised simulation ahieved a speedup of up to

8.13, with 4.36 as the mean value for all inputs. The results of realisti simulations on a 8

proessor mahine show a mean speedup of 3.95 in a shared-memory setup and of 3.55 in a

distributed-memory setup. The input programs used in the experiments are the ompiler's own

soure modules, 18 in total with 5,000 lines of ode. The �gures in the table summarise the best,

worst and mean results for all modules using idealised, shared-memory and distributed-memory

simulations.
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Figure 10: Speedup summary of Naira on GUM

Naira has also been measured on a network of Sun workstations (SPARCstations 4/20), running

Solaris 2 and onneted to a ommon Ethernet segment. Figure 10 shows the result of measuring

Naira on GUM. Overall this �gure shows a wall-lok speedup of 2.46, and a relative speedup

of 2.73 on a network of �ve workstations. These results are in agreement with those obtained

using GranSim whih predited a speedup of 3.01 simulating suh a high lateny network (this

GranSim estimate is based on a simulated distributed-memory mahine with a lateny of 50

Kyles).

4.4.3 Disussion

At the overall parallelisation stage, where we ativated parallelisation ode in all the stages, we

found that the parallelism measured fell short of the sum of the parallelism �gures obtained in

the individual stages. This indiates that the evaluation strategies in the di�erent plaes interfere

with one another. Without a more detailed parallel pro�ler it is quite hard to understand and

predit the performane of this rather large program: small hanges in the parallelisation ode

an lead to signi�ant hanges in parallel behaviour for some inputs.
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Further experimentation with di�erent evaluation strategies ould not ahieve signi�ant over-

all performane improvements. This led us to re-examine more losely the algorithms on whih

the individual phases of the ompiler were based. We found that omposition of substitutions,

whih is performed quite often in Naira, forms the main bottlenek in the parallel performane of

the ompiler. We revised our implementation of this algorithm and �ne-tuned our strategi ode

resulting in substantial performane improvements (see [Jun98℄ for details).

We have experimented with lists and sorted (unbalaned) binary trees to represent the data

strutures used in the ompiler. Although a tree struture exposes parallelism faster than a list

(for the data-parallel proessing of the omponents), the omputations needed to maintain the

sorting of the trees an be more expensive. Consequently, our experimental results using these

representations were, by and large, the same.

Careful study of the parallelism pro�les, using the tools of [SP97, HLT97℄, reveals that �le

I/O and parsing aount for a signi�ant part of the remaining sequential omponent of the

omputation and therefore by Amdahl's law represent a major limitation on further optimisation.

Parallelising I/O an be quite diÆult, and is beyond the sope of the work reported here.

4.5 Lolita

4.5.1 Program Desription

This setion disusses the Lolita natural language engineering system [MSS94℄, whih has been

developed at Durham University. A more detailed presentation of the parallelisation together

with measurements of the parallel runtime behaviour an be found in [LMT

+

97℄. The goal of

parallelising this appliation is mainly to redue runtime but also to inrease funtionality within

an aeptable response-time. The overall struture of the program bears some resemblane to that

of a ompiler, being formed from the following large stages:

� Morphology (ombining symbols into tokens; similar to lexial analysis);

� Syntati Parsing (similar to parsing in a ompiler);

� Normalisation (to bring sentenes into some kind of normal form);

� Semanti Analysis (ompositional analysis of meaning);

� Pragmati Analysis (using ontextual information from previous sentenes).

Depending on how Lolita is to be used, a �nal additional stage may perform a disourse analysis,

the generation of text (e.g. in a translation system), or it may perform inferene on the text to

extrat the required information.

Central to Lolita's exibility is the semanti network, alled SemNet, a graph based knowledge

representation used in the ore of Lolita. In SemNet onepts and relationships are represented

by nodes and ars respetively, with knowledge being eliited by graph traversal. The task of the

analysis stages is to transform the possibly ambiguous input into a piee of SemNet. Appliation-

dependent bakend stages an then extrat piees of the SemNet and present it in the required

form. Currently, SemNet omprises approximately 100,000 nodes or 12MB.

Sine every text has to be translated into a piee of SemNet the parallelisation of this proess

o�ers the largest payo� in redued runtime. Therefore, most of our e�ort has gone into the

parallelisation of this part of the system.

4.5.2 Parallelisation

Pipeline Parallelism. Our immediate goal in parallelising this system is to expose suÆient

parallelism to fully utilise a 4-proessor shared-memory Sun SPARCserver, our target mahine.

Following our guidelines for developing parallel programs, we use a pipeline approah to ahieve

this relatively small degree of parallelism. Eah stage listed above is exeuted by a separate thread.
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These threads are linked to form a pipeline. In ontrast to lassial pipelines, whih require a large

input set to ahieve good parallelism, the lazy evaluation mehanism makes it possible to overlap

stages of the pipeline operating on the same piee of data.

In order to analyse the parallelism generated by this version it is ruial to understand how

this algorithm depends on a lazy evaluation mehanism. The parsing stage generates a forest of

possible parse trees. The analysis stages then examine individual trees and pik the most likely

tree as the result. Sine the analyses in general do not require the full parse tree, it is often

possible to avoid generating all of an unlikely tree in the parsing stage, although its probability is

determined no earlier than in the analyses stages.

This dynami behaviour requires speial are in the design of the parallel algorithm. It must

be guaranteed that no unneessary parse trees are generated, beause sequential pro�ling indiates

that parsing amounts to up to 20% of the overall exeution time.

Data-Oriented Parallelism. In order to add data-oriented parallelism to the above program

we de�ne strategies on the omplex intermediate data strutures (e.g. parse trees) whih are used

to ommuniate between these stages. This approah simpli�es the top-down parallelisation of

this very large system, sine it is possible to de�ne the parts of the data struture that should be

evaluated in parallel without onsidering the algorithms that produe the data strutures. It is

not neessary to break the abstration provided by the sub-funtions.

Parallel Stages. Finally, we introdue parallelism in the most time onsuming stage, the syn-

tati parsing stage. Again we have used ost-entre pro�ling to determine the most expensive

stage in the program. The parallelism in this module has the overall struture of a parallel tree

traversal. To avoid an exess of parallelism in this stage it is neessary to use a thresholding

strategy, whih improves the granularity of the parallel threads. This strategy is applied to a

system parameter, whih reets the depth in the tree. In fat the same polymorphi thresholding

strategy an be applied to two lists of di�erent types.

Speulative Parallelism. Speulative parallelism an be used to improve the quality of the

analysis by applying the semanti and pragmati analyses in a data-parallel fashion on di�erent

possible parse trees for the same sentene. Beause of the omplexity of these analyses the se-

quential system always piks the �rst parse tree, whih may ause the analysis to fail, although it

would sueed for a di�erent parse tree.

Combined Parallelism. Figure 11 shows the parallel struture arising when all of the soures

of parallelism desribed above are used. Note that the analyses also produe information that is

put into a `global ontext' ontaining information about the semantis of the text. This reates

an additional dependene between di�erent instanes of the analysis (indiated as vertial ars).

Lazy evaluation ensures that this does not ompletely sequentialise the analyses, however.

The ode of the top level funtion wholeTextAnalysis in Figure 12 learly shows how the al-

gorithm is separated from the dynami behaviour in eah stage. The only hanges in the algorithm

are

1. the use of parList in the de�nition of rawParseForest to desribe the data parallelism in

the parsing stage;

2. the evalSores strategy whih de�nes speulative data parallelism in the analysis stages

over possible parse trees; and

3. the use of strategi funtion appliations to desribe the overall pipeline struture.

The strategies used in parse2prag are of speial interest. The parse forest rawParseForest

ontains all possible parses of a sentene. The semanti and pragmati analyses are then applied

to a prede�ned number (spei�ed in global) of these parses. The strategy that is applied to the
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Figure 11: Detailed Struture of Lolita

list of these results (parList (parPair ...)) demands only the sore of eah analysis (the �rst

element in the triple), and not the omplete parse tree. This sore is used in pikBestAnalysis

to deide whih of the parses to hoose as the result of the whole text analysis. Sine Lolita

makes heavy use of laziness it is very important that the strategies are not too strit. Otherwise

redundant omputations are performed, whih yield no further improvements in runtime.

Measurements. Realisti simulations of the pipeline parallel version of Lolita show an average

parallelism of 1.6, whih is rather satisfatory for only a few top-level hanges in the program. The

parallelised parsing stage an easily produe several hundred threads. Therefore it is important

to tune the thresholding parameter in this stage to avoid exess parallelism. We have not system-

atially measured the possible improvements in the quality of the result that should be possible

by the speulative parallelism desribed above. A more detailed disussion of the parallel variants

of Lolita is given in [LMT

+

97℄.

A realisti simulation of Lolita showed an average parallelism between 2.5 and 3.1, using just

the pipeline parallelism and parallel parsing. Sine Lolita was originally written without any

onsideration for parallel exeution and ontains a sequential front end (written in C) of about

10{15%, we are pleased with this amount of parallelism. In partiular the gain for a set of rather

small hanges is quite remarkable.

In ontrast, under GUM with two proessors and small inputs we only obtain an average par-

allelism of 1.4 (see Figure 13). With more proessors the available physial memory is insuÆient

and heavy swapping auses a drasti degradation in performane, whih prohibits any wall-lok

speedup. The reason for this behaviour is that GUM, whih is designed to support distributed-

memory arhitetures uniformly, loads a opy of the entire ode, and a separate loal heap, onto

eah proessor. Lolita is a very large program, inorporating large stati data segments (totaling

16MB), and requires 100MB of virtual memory in total in its sequential inarnation.

Figure 13 shows the ativity pro�le of running Lolita under GUM with 2 proessors. The

sequential front end in Figure 13 is aused by the sequential part of the parsing proess. The

middle third of the graph shows a high degree of parallelism generated by the parallelised parsing

stage. In this setup we have tuned the thresholding parameter to produe only a small amount of

parallelism to avoid high memory onsumption, whih is the main reason for not ahieving further

redutions in runtime when using a 3 or 4 proessor setup. In the �nal third of the exeution the

pipeline parallelism of the analysis stages generates a good utilisation of the mahine.
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wholeTextAnalysis opts inp global =

  result

  where

    -- (1) Morphology

    (g2, sgml) = prepareSGML inp global

    sentences  = selectEntitiesToAnalyse global sgml

    -- (2) Parsing

    rawParseForest = map (heuristic_parse global) sentences ‘using‘ parList rnf

    -- (3)-(5) Analysis

    anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

    -- (6) Back End

    result = back_end anlys opts

-- Pick the parse tree with the best score from the results of

-- the semantic and pragmatic analysis.  This is done speculatively!

parse2prag opts parse_forest global =

 pickBestAnalysis global  $|| evalScores  $
 take (getParsesToAnalyse global)         $

 map analyse parse_forest

 where

   analyse pt =   mergePragSentences opts $ evalAnalysis

   evalAnalysis = stateMap_TimeOut analyseSemPrag pt global

   evalScores =   parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses

analyseSemPrag parse global =

 prag_transform             $|| rnf   $
 pragm                      $|| rnf   $
 sem_transform              $|| rnf   $
 sem (g,[])                 $|| rnf   $
 addTextrefs global         $|  rwhnf $ 
 subtrTrace global parse

back_end inp opts =

 mkWholeTextAnalysis     $|  parTriple rwhnf (parList rwhnf) rwhnf $
 optQueryResponse opts   $|| rnf $
 traceSemWhole           $|| rnf $
 addTitleTextrefs        $|| rnf $
 unifyBySurfaceString    $|| rnf $
 storeCategoriseInf      $|| rnf $
 unifySameEvents opts    $|  parPair rwhnf (parList (parPair rwhnf rwhnf)) $
 unpackTrees             $|  parPair rwhnf (parList rwhnf)  $
 inp

Figure 12: The top level funtion of Lolita

4.5.3 Disussion

The most intriguing aspet in the parallelisation of Lolita is that the parallelism is ahieved using

a very small number of hanges to the Haskell parts of the appliation. We have been able to

use a top-down approah of the parallelisation to an extent, whih would be very diÆult in

a strit language. All of the parallelism has been spei�ed by evaluation strategies ating on

the data strutures passed between modules. As a result, the parallelism has been introdued

without hanging, and indeed without understanding most of the program. This abstration is

ruial when working on an appliation of this size. For example, introduing top-level parallelism

entailed hanging just one out of around three hundred modules.

We have used speulative parallelism in order to improve the quality of the results. This

underlines the importane of speulative parallelism, whih we have already seen in parallelising

the Alpha-Beta algorithm. The integration of the C ode into the parallel version ompliated the

parallel algorithm beause foreign language alls impliitly fully evaluate their results, bypassing
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Figure 13: Ativity pro�le of Lolita run under GUM with 2 proessors

the strategi desription of the dynami behaviour. Finally, we have found a need for limited

support of persistene. The SemNet is a oneptually persistent data struture, beause it is

required by every invoation of Lolita. In the absene of support for persistene the urrent ode

uses foreign language alls to ahieve eÆient I/O. Again, these alls interfere with the strategies

de�ned in the program.

The ahieved average parallelism of Lolita lies between 2.5 and 3.1 under GranSim emulating

a 4-proessor shared-memory mahine. The orresponding speedup, however, does not exeed

2.4. This is partly due to overhead aused by very �ne-grained parallelism and partly due to

strategies that perform speulative omputations (although we avoided speulation on potentially

expensive omponents). The GUM version does not ahieve signi�ant wall-lok speedups, yet.

This, however, is not due to a lak of parallelism but due to the very high memory onsumption

of the appliation, whih exeeds the available main memory in the urrent setting.

4.6 LinSolv

4.6.1 Program Desription

The linear system solver that is disussed in this setion, and in more detail in [Loi97℄, is an

appliation from the area of symboli omputation and uses an approah that is very ommon for

omputer algebra algorithms: a multiple homomorphi images approah [Lau82℄. The main idea

of this approah is to solve a problem in a set of simpler domains, alled homomorphi images,

and then to reonstrut the overall solution from the solutions in the individual domains.

In the ase of the LinSolv algorithm the original domain is Z, the set of all integer values,

and the homomorphi images are the domains Z

p

, the set of integers modulo p with p being a

prime number. The advantage of this approah beomes lear when the input numbers are very

big and eah prime number is small enough to �t into one mahine word. In this ase the basi

arithmeti in the homomorphi images is ordinary �xed preision arithmeti with the results never

exeeding one mahine word. No additional ost for handling arbitrary preision integers has to

be paid. Only in the ombination phase will the big numbers appear again. In the ase of Z as

original domain the well-studied Chinese Remainder Algorithm (CRA) an be used in the ombine

step [Lip71℄. This overall struture of the algorithm is shown in Figure 14.
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In the solution phase we use an algorithm based on Cramer's rule, whih desribes how the

omponents of the result vetor an be omputed as the ratio of two determinants. Although

this algorithm is less eÆient than alternatives like Gaussian elimination in the sequential ase,

it is very attrative beause of its high potential of parallelism, yielding good salability. In this

algorithm the result is omputed by evaluating n + 1 independent determinants, with n being

the size of the input matrix. The determinant omputation itself an be parallelised using a

divide-and-onquer struture.

Figure 15 shows the top level of the LinSolv algorithm. Note that xList is an in�nite list of

solutions in homomorphi images orresponding to prime numbers in the in�nite list primes. The

CRA omputation itself is hidden in list ra, whih basially performs a left assoiative fold

operation, aumulating the produt of all prime numbers met so far until this produt beomes

larger than s

n

n! (n is the size of the matrix a and s is the maximal element in a and b). The

gen xList funtion has to hek whether the determinant in the homomorphi image generated

by the prime p is 0. In this ase the result annot be used in the lifting stage in order to ompute

the overall solution. The orresponding prime number is termed unluky.

The strategy strat in the body of the let onstrut desribes the dynami behaviour of the

ode separately from the algorithmi ode. For the sequential version the default strategy rwhnf is

used. The following setion disusses a strategy that desribes a parallel version of this algorithm.

4.6.2 Parallelisation

Algorithm. In the parallelisation of this algorithm it is important to de�ne evaluation degree

and parallelism over the in�nite list xList. Without ontrolling the parallelism on this data

struture the CRA will demand eah solution sequentially, beause the most eÆient version of

the CRA uses a list fold operation.

The de�nition of strat in Figure 16 represents the �nal strategy in the performane tuning

of the algorithm. In order to avoid a dependeny between the solution phases, this strategy

guesses the number of primes needed to ompute the overall result and uses a parListN strategy

to generate data parallelism over an initial segment of the in�nite list xList of the solutions in all

homomorphi images. Using parList inside the par sol strat strategy auses eah omponent of

the result to be evaluated in parallel. However, it is neessary to hek whether the homomorphi

image of the original matrix is zero to avoid redundant omputation if the prime is unluky. In
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linSolv a b = 

  let 

    {- forward mapping and solution via Cramer’s rule -}

    ...

    xList :: [[Integer]]  -- infinite list of solutions in hom images

    xList = gen_xList primes

    gen_xList (p:ps) = 

       let 

          modDet = toHom p (determinant (toHom p a))

          pmx = [ toHom p (determinant (replaceColumn j (toHom p a) (toHom p b) ))

                | j <- [jLo..jHi] ]

          ((iLo,jLo),(iHi,jHi)) = bounds a

       in

       if modDet /= 0

         then (p : modDet : pmx)  : gen_xList ps

         else gen_xList ps

   {- combination via CRA -}

    ...   

    detList = projection 1 xList

    det = list_cra pBound primes detList detList

    x_i i = list_cra pBound primes x_i_List detList

            where x_i_List = projection (i+2) xList   

    x = map x_i [0..n-1]

  in

  x ‘using‘ strat
  

Figure 15: Top level ode of the LinSolv algorithm

strat =

  rnf noOfPrimes                               ‘seq‘
  parListN noOfPrimes par_sol_strat xList      ‘par‘
  parList rnf xs
  where

    par_sol_strat :: Strategy [Integer]

    par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘ 
                                        if modDet /= 0

                                          then parList rnf pmx 
                                          else ()

Figure 16: Strategy strat of the parallel LinSolv algorithm

order to minimise data dependenies in the algorithm we do not already hek the determinant

when omputing noOfPrimes. If some primes turn out to be unluky the list ra will evaluate

more results by demanding a so far unevaluated list element. The �nal strategy appliation

parList rnf xs spei�es that all elements of the result should be ombined in parallel. Without

this omponent there would be a sequene of ombination steps at the end of the exeution, one

for eah element in the result vetor.

Measurements. In developing this parallel algorithm we have used GranSim in a realisti

setup, simulating a losely-onneted 32 proessor mahine. Whereas earlier versions showed

bottleneks at some points during the omputation, the ativity pro�le for this �nal version in

Figure 17 shows a onsistently high degree of parallelism.

Our measurements of LinSolv under GUM on a 3 proessor shared-memory mahine orre-

spond to the behaviour predited by the GranSim simulator. We ahieved relative speedups of

up to 2.1 and absolute speedups of up to 1.7. More details of these measurements an be found

in [Loi97℄.

In the performane tuning of this algorithm the visualisation tools have been ruially im-

portant. Early parallel versions of the algorithm showed bottleneks aused by the sequential
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Figure 17: Ativity pro�le of �nal LinSolv

demand on the solutions generated by the list-strutured lifting phase. This behaviour resulted

in a sequene of parallel exeutions with regular drops in between. The ode in Figure 16 avoids

this bottlenek by guessing the number of primes that are needed and by using data parallelism

via a parListN strategy. A more detailed disussion of the performane tuning of the parallel

algorithm is given in [Loi97℄.

4.6.3 Disussion

Several properties of evaluation strategies have been important in parallelising the algorithm.

We made use of strategies being higher-order to desribe nested parallelism: an outer strategy

de�nes the parallelism over xList with a strategy par sol strat as argument that de�nes the

parallelism over the elements of this list. Thereby the strategy reets the nested data-struture

over whih the parallelism is de�ned. The separation between algorithmi and behavioural ode

made it possible to experiment with di�erent versions of the parallel ode, without hanging the

algorithm. This was very important during the performane tuning of the algorithm. It is worth

noting that all parallelism an be desribed on top level, unlike in the pre-strategy ode where a

lot of the parallelism was de�ned in sub-funtions.

The strategy in Figure 16 also demonstrates how onservative parallelism an be de�ned over

an in�nite data struture. There is no need to rewrite the algorithmi ode that generates the

data struture in order to express a degree of parallelism that does not generate any speulative

omputation.

The development and performane tuning of LinSolv predated the design of evaluation strate-

gies. This gives us the possibility to diretly ompare the pre-strategy with a strategi version

of the ode. The pre-strategy version of the ode ombined the omputation of the result with a

spei� dynami behaviour suitable for parallelism. For example a tree-strutured CRA algorithm

has been used in order to fore the omputation of the individual solutions independently. Beause

some homomorphi images may turn out to be not suitable for omputing the overall result, a

separate `fail handler' had to be used in order to ompute more results if neessary. The result-

ing ontrol parallelism yielded rather opaque ode with parallelism de�ned in one sub-funtion,

namely the CRA. In ontrast, the strategy version only uses data parallelism and leanly separates

the parallelism from the algorithmi ode.

The multiple homomorphi images approah is used in many omputer algebra algorithms suh

as resultant omputation [HL94℄ and p-adi omputation [LL93℄. It should be possible to use the
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Table 5: Results summary

Program Lines of ode Wall-lok Simulated Best wall-lok

speedup on speedup speedup

few pros (no. pros) (arh:no. pros)

(arh:no. pros)

Blakspots 1,300 3.14 (WkStn:4) 3.7 (4) 10.00 (WkStn:16)

Blakspots 1,300 2.16 (SMP:4) 3.7 (4) 2.16 (SMP:4)

Naira 5,000 2.33 (WkStn:4) 3.0 (4) 2.46 (WkStn:5)

Lolita 47,000 0.90 (SMP:2) 2.4 (4) 0.90 (SMP:2)

LinSolv 800 1.66 (SMP:3) 2.3 (4) 1.66 (SMP:3)

same overall struture of parallelism for these versions, only replaing the funtion that guesses the

number of primes and the strategy de�ning the inner parallelism. In this ase the polymorphism

of strategies enables a ode reuse for de�ning parallelism.

5 Program Comparison

Where the previous setion desribed the implementation and measurement of individual pro-

grams, this setion disusses ommon aspets of the programs. We fous on the parallel paradigms

used in the programs, and the large-sale issues enountered. We also summarise the results al-

lowing approximate omparison.

5.1 Comparative Measurements

The most signi�ant result of this paper is that we are able to ahieve modest wall-lok speedups

for all of the programs, exept Lolita. The simulated speedup for Lolita is good, and we believe

that it is only limitations on physial memory that prevent a wall-lok speedup of Lolita.

It is also important to emphasise that the programs have been measured on several parallel

systems, utilising di�erent ports of the GUM runtime-system. In a separate paper [TBD

+

98℄

we fous on this aspet of arhiteture-independent parallelism, and its pratial impat on the

development of parallel GpH programs. The following measurements are based on networks of

workstations and shared-memory multiproessors, as detailed in Setion 4. The systems represent

two very di�erent lasses of parallel arhitetures: shared- and distributed memory mahines. The

wall-lok speedups on both arhitetures underline the exibility of our parallel programming

system.

Table 5 summarises the results for eah program, and the olumns are interpreted as follows.

The �rst olumn gives the program name. The seond olumn gives the approximate number of

lines of soure-ode, inluding libraries. The third olumn is the wall-lok speedup of the pro-

gram on a small number of proessors, together with the number of proessors and the parallel

arhiteture | a network of workstations (WkStn) or a shared-memory multiproessor (SMP).

Wall-lok speedup is measured by dividing the elapsed time for the program ompiled and opti-

mised for sequential exeution by the elapsed time for the same program under parallel exeution.

The fourth olumn gives the simulated speedup ahieved under GranSim emulating the target ar-

hiteture. The last olumn gives the best wall-lok speedup ahieved, together with the number

of proessors used and the arhiteture.

The Blakspots program ahieves the greatest wall-lok speedup, but although it uses some

omplex algorithms, it has a simple data parallel struture, and only a small amount of irregular-

ity in the thread sizes. Although the speedups for the Naira ompiler are smaller, it more truly

represents the lass of programs that we expet GpH to be used for, that is Naira as a omplex
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symboli omputation with an elaborate parallel struture. Lolita is similar in being symboli

and having an irregular parallel struture. It is also very large and multi-lingual (Haskell and

C). Unfortunately, while a realisti simulation of Lolita delivers good speedups, exhibiting a large

amount of inherent parallelism, the wall-lok �gures are poor beause of the high resoure utili-

sation. LinSolv is symboli, and has irregular parallelism de�ned over a potentially-in�nite data

struture. It delivers modest wall-lok speedups on a shared-memory mahine.

5.2 Parallel Paradigms

The programs use a number of parallel paradigms, often nesting one paradigm inside another. For

example both Naira and Lolita nest a pipeline within a data-parallel paradigm. Version II of the

Blakspots program is still more elaborate having a pipeline with stages using data-parallelism,

ontrol-parallelism, and benign speulation. The following parallel paradigms have been used in

the development of the parallel algorithms disussed in this paper.

� Data parallelism: Naira, Lolita, Alpha-Beta.

In the data parallel paradigm every element of a data-struture is evaluated in parallel. Naira

is data parallel over the funtion de�nitions in a module. Lolita is data parallel over the

sentenes in the text. Alpha-Beta is data parallel over all next moves, but has to ombine

this paradigm with speulative parallelism.

� Pipeline parallelism: Naira, Lolita.

In the pipeline parallel paradigm a sequene of stream-proessing funtions is omposed

together, eah onsuming the stream of values onstruted by the previous stage and pro-

duing new values for the next stage. Pipelines in a non-strit language are very exible

over the data type they operate on and have �ne-grained parallelism. That is, a pipeline an

be de�ned over any data-struture passed between stages, e.g. both Naira and Lolita pass

forests of trees between pipeline stages. The �ne granularity means that the produer and

onsumer may synhronise on every node of a data struture, or the produer may onstrut

all of the struture before any of it is onsumed or, more likely, something in-between. As a

result of this �ne granularity, pipelines in a non-strit language an be e�etive even for small

input data sets. Both Naira and Lolita ahieve modest speedups via pipeline parallelism.

� Task Farm: Blakspots (Version III).

In the task farm paradigm a `farmer' proess has a olletion of tasks, and `worker' proesses

obtain a task from the farmer, and on ompleting it, obtain another. In Blakspots the task

farm has a speial form beause eah task is to evaluate some data struture, and suh a

farm is more aurately termed a data farm [MS95℄.

� Divide-and-onquer: LinSolv, Lolita.

In the divide-and-onquer paradigm the problem to be solved is deomposed into smaller

problems that are solved in parallel and the solutions are reombined to produe the result.

It is easy to generate a great deal of parallelism with this paradigm: the number of tasks is

exponential in the number of division steps. The unfortunate orollary is that there may be

a large number of very �ne-grained tasks generated. We maintain a good thread granularity

by inluding a threshold in the strategy that ensures that small tasks are not sub-divided but

evaluated sequentially. Both LinSolv and Lolita require thresholding in order to be eÆient.

� Speulation: Alpha-Beta, Blakspots (Version II), Lolita.

GpH does not support general speulation, e.g. speulative and mandatory threads are not

distinguished, and there is no mehanism for killing unwanted speulative threads. We do,

however, use a restrited form of speulation, whih we term benign. The restrition is that

the speulative threads must perform only a small amount of work and reate no new threads.

Often speulation is ontrolled by a parameter of the speulative strategy, and seleting an

appropriate value is ruial to avoid wasting resoures, as shown in Alpha-Beta, Blakspots,
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and Lolita [LMT

+

97℄. It is interesting that several of the programs use speulation beause

it is a tehnique that annot easily be introdued by automati parallelisation methods.

Some parallel paradigms not explored in these programs inlude branh and bound, SPMD,

bounded bu�er and general speulation. We have strategies, and some toy examples, for bounded

bu�ers and SPMD. It appears that general speulation and branh and bound are more problem-

ati within GpH.

Another important aspet of the parallel runtime-system is dynami load management. It has

previously proven to be essential for obtaining good speedups on some programs exeuted on the

GRIP arhiteture [HP92℄. In the ontext of GUM the importane of dynami load management

is best reeted by the �nal version of the Blakspots program. This version uses dynami load

management to obtain an even load when evaluating the tiles of a geographially partitioned data

set.

5.3 Large-Sale Issues

In the implementation of the programs we enounter a number of aspets of parallel programming

in-the-large.

� Appliation-spei� strategies an be rather easily reused in large appliations. One example

is the merging of lists of a polymorphi type in Lolita, whih is used in two plaes. Clearly,

the polymorphi nature of the language aids ode reuse in this ase.

� Some of the programs were made parallel by someone other than the original author, most

notably Lolita. In these irumstanes the largely-impliit parallel programming model

is ruially important, beause parallelisation does not require the expliit introdution,

and synhronisation, of threads. Instead parallelisation is similar to sequential performane

tuning in that it entails understanding time and spae onsumption, data dependenies,

and often ontrolling evaluation degree. In that sense parallelisation does not add a new

dimension of omplexity to the program design, it merely ompliates the existing proess

of performane tuning. We believe that it would be muh harder to parallelise a seond

author's program using an expliitly parallel programming model.

� Parallelism an be desribed at a high-level, and this means that only a small part of a large

system needs to be understood, hanged, and reompiled. For example adding parallelism

entails hanging just two out of three hundred modules in Lolita, and one out of �ve in

Blakspots.

� The parallel version of a large programmay have very large resoure utilisation. This is likely

to be a problem on shared-resoure mahines, e.g. multi-proessors with shared memory or

disks. For example the sequential variant of Lolita uses 100MB of heap, and the parallel

variant needs approximately 64MB per proessor. Similarly, in Blakspots every proessor

initially reads a �le, generating intense network and disk traÆ.

� A major task in parallelising a large program is to de�ne basi strategies over the data types,

in partiular a strategy to redue values of the type to normal form (rnf). Fortunately the

rnf funtion an be derived automatially from the type, and we have onstruted a tool that

allows us, inter alia to automatially add basi strategi de�nitions to a module [Win97℄.

� Strategies may also be required over library data types, e.g. parSet. Unfortunately this

entails using a private opy of the library module.

� A GpH program an be used to prototype alternative parallelisations of an imperative pro-

gram. Experimenting with alternative parallelisations is easier in GpH than in imperative

languages. Parallel prototyping has been used in LinSolv to tune the algorithm.
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� Many of the programs had been written without the intention of making them parallel, e.g.

Naira and Lolita. It is still possible to obtain parallelism, albeit modest, without restrutur-

ing these programs.

6 Evaluation of GpH Programming

In this setion we reet on our experienes programming in GpH, i.e. in a funtional language

with largely impliit parallelism. We both analyse and onsider future diretions for the language,

the o-ordination mehanism (evaluation strategies) and the programming environment.

The most important language result is that despite the apparent tension between parallel an

lazy omputation, they an be usefully ombined to produe a programming model with a high

degree of modularity. This modularity is due to the data-oriented style of programming o�ered

by a lazy parallel programming model. This means that it is suÆient to de�ne the parallelism

only on a few ruial data strutures, whih typially are passed between sub-funtions at the

top level of the program. Beause lazy evaluation delays the generation of the result until it is

needed, strategies an be used to de�ne evaluation degree and parallelism outside the funtion

generating the data struture. This ahieves a level of modularity not enountered in languages

with a strit evaluation mehanism. Most importantly, the programmer an de�ne the parallelism

without breaking the abstration of individual funtions, whih is an important property for large

programs where the parallelisation is probably not performed by the author of the program.

Furthermore, the experiene with large lazy funtional programs shows that the optimisation

of sequential programs sometimes requires to expliitly ontrol the evaluation order and degree in

order to minimise resoure utilisation. Thus, evaluation strategies an be used for both sequential

and parallel performane tuning. In this sense, parallelisation is just a re�nement of the perfor-

mane tuning proess, whih o�ers even faster omputation. Most notably, however, there is no

need to extend the underlying programming language by e.g. introduing an expliit notion of

threads. Our experienes with the use of evaluation strategies on large lazy funtional programs

indiate that a lazy parallel programming model o�ers the prospet of heap, modular parallelism

with only a minimal oding e�ort.

6.1 Language

The parallel language we are using, GpH, is only expliit in exposing parallelism in the soure

ode. The management of the parallel threads is ompletely hidden by the runtime-system. In

this approah many lassial problems of onurrent programming suh as generating deadloks or

rae onditions between threads do not arise. However, it is still possible to tune the parallelism

by speifying the size of the parallel omputation and the evaluation order.

The features of the language that we found to be most important are as follows.

� Determinism makes parallel program development easier beause the algorithmi part of

the program an be developed in a sequential ontext. Inserting strategies to introdue par-

allelism does not hange the value omputed, and will not hange the termination onditions

as long as the strategies are not more strit than the original funtion, i.e. the parallelism is

onservative.

� Largely impliit parallelism ensures that only a small amount of additional ode is

required to introdue parallelism. In partiular, it is only neessary to expose parallelism,

by marking expressions.

6.2 Evaluation Strategies

For any program, the primary bene�ts of the evaluation strategy approah are similar to those that

are obtained by using laziness to separate the di�erent parts of a sequential algorithm [Hug89℄: the

30



separation of onerns makes both the algorithm and the dynami behaviour easier to omprehend

and modify [THLP98℄.

In large programs, strategies allow us to raise the level of abstration beause the programmer

introduing parallelism need not understand the low-level details of the whole program. Strategies

allow us to

� desribe top-level parallelism. Often some initial parallelism an be obtained by par-

allelising the top-level of the program with a very shallow understanding of the algorithms

used in the program.

� preserve module abstration. Parallelism an often be spei�ed on the data strutures

passed between modules. The programmer need only know whih items of the data struture

an be omputed independently, whih is often simpler than understanding the algorithm

used to ompute them. Indeed the type of the data struture may even give a hint on whih

strategy to use for parallelising the program.

This style of programming o�ers a level of abstration to the programmer that does not exist

in parallel imperative languages. However, if it is neessary, the evaluation an be ontrolled

in more detail, yielding parallelism desribed on a similar level as in more onventional parallel

programming models.

The presented programs use the power of strategies. In most of the programs strategies are

de�ned over many types, program-spei� strategies are onstruted, and some of the new strate-

gies are reated by omposing existing strategies. The spei� features that proved most useful

are mainly the high-level onstruts. Many of the strategies are

� polymorphi. Strategies that an be used at many types are easier to re-use, for example

the polymorphi mergeStrategy strategy is re-used in Lolita.

� parametri. The behaviour of a strategy an be modi�ed by parameters. For example the

number of elements of a list to evaluate in parallel is a parameter in the Blakspots program,

and the similar fore-length parameter in Alpha-Beta.

� higher-order. This is partiularly useful when a strategy takes another strategy as a

parameter, thus apturing a lass of behaviours as determined by the argument strategy. In

LinSolv, for example, a list strategy is passed to another list strategy to desribe parallelism

over a list of lists. Nesting strategies in this way is a natural means of ahieving nested

parallelism.

Finally it should be noted that evaluation strategies must be used with are to avoid onit and

malignant speulative omputations. The latter an yield higher parallelism beause of the extra

speulative omputations but an also adversely a�et a program's ompletion time. For example

generating more possible syntati parses in Lolita would produe more speulative parallelism,

beause eah of the parse an be analysed in parallel, but it would not redue the total runtime,

beause only the best result will be hosen at the end.

6.3 Programming Environment

It has proved essential to develop the programs in a rih programming environment. Several

programs were initially developed using the Hugs interpreter, where the interative mode failitates

debugging. All programs were run under GHC's sequential runtime system. Almost all of the

programs used time and heap pro�ling to identify omputationally-intensive omponents.

To develop the parallelism the programs are �rst run under GranSim to produe idealised,

and then realisti simulations. We �nd that visualising the parallel exeution in several ways is

essential to the programmer's understanding, and hene improving, the parallelism. The most

useful means of visualising the exeution are ativity pro�les like Figure 17 and thread granularity

pro�les, whih show the total runtimes of the individual threads as a histogram.
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Using GUM the parallel performane of the programs is measured on a number of platforms.

Some of the programs are measured on a network of workstations, e.g. Naira. Other programs

are measured on a shared-memory SUNserver, e.g. Lolita. Blakspots has been measured on

both workstations and SUNserver. It is unusual to have both shared- and distributed-memory

measurements for a single program. We disuss the arhiteture-independent nature of GpH

programming in detail in [TBD

+

98℄.

7 Related Work

In his 1993 thesis [Cla93℄ onerning the implementation of a large parallel rule-based interpreter

written in Haskell, Clayman observed with some hagrin that

\the urrent failities for exeuting funtional programs in parallel environments are

not e�etive for large appliations. The use of hand-oded annotations may be �ne for

small programs but it is unsuitable for large programs. Furthermore, there is a lak of

parallel systems on whih programs an be exeuted."

Clearly, in the last 5 years some onsiderable progress has been made towards addressing the

ritiisms raised in Clayman's thesis. In our own setting we have:

� demonstrated that it is possible to write large parallel appliations in Haskell;

� introdued evaluation strategies [THLP98℄ to allow simple and exible ontrol of parallel

programs, so addressing Clayman's ritiism of hand-oded annotations; and

� produed an implementation based on standard portable message passing libraries, so vastly

extending the number of parallel systems on whih our programs may be run.

Although our work is not isolated, and other groups have produed systems that possess similar

harateristis to those we espouse (e.g. Sisal [Ske91℄, NESL [Ble96℄, Conurrent Clean [NSvP91℄,

Id [Nik91℄, or Paralation Lisp [DGF97℄), Clayman's ritiisms do still apply to some extent in

a general setting, however. Despite the fat that many parallel implementations of funtional

languages have been produed, there are relatively few systems that have been developed beyond

the prototype stage, and fewer that an also laim to demonstrate arhiteture independene.

Those that an make this laim have been surveyed in an independent paper [TBD

+

98℄.

This setion surveys existing large parallel funtional programs whih, like those introdued

in this paper, either form omplete real end-user appliations or are realisti in being taken from

a real appliation domain rather than arti�ially designed to demonstrate some benhmarking

issue. We have therefore exluded suh benhmarks, unless they form part of some larger, more

interesting appliation.

The term `large' is not preisely de�ned, of ourse; we have taken it to mean over about 500

lines of funtional ode (whih orresponds to an imperative program of some 1500-5000 lines).

For omparison, all the appliations desribed in this paper apart from the Alpha-Beta searh

algorithm omprise more than 800 lines of ode. Unlike the Lolita program whih was desribed

earlier, however, the majority of the appliations presented here are not large in a strit software

engineering sense, sine they have been written by single users rather than as large ollaborative

projets.

The appliations desribed in this setion over a wide variety of problem domains, from

numerial appliations written in Sisal [Ske91, Can92℄ or NESL [Ble95℄ to theorem provers [RW95℄

and real-time ommerial telephony systems [Arm96℄. We have not, however, attempted to over

individual implementations or language onstruts in depth. The interested reader is referred to

the more general literature on parallel funtional programming for overage of these and other

signi�ant issues (e.g. [Ham94, TLH99℄). The most losely related approahes to parallelisation,

our earlier work on the FLARE appliations [RW95℄ and the Duth Parallel Redution Mahine

projet [BvH

+

87℄, are briey surveyed in Setion 7.8.
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7.1 Compilers and Rule-Based Systems

While Naira is unique, as far as we know, in being the �rst omplete funtional language ompiler to

have been parallelised [Jun98℄, there have been a few parallel systems with similar harateristis.

Clayman's thesis desribed one suh appliation: a funtional version of the OPS5 rule-based

system that is often used to implement expert systems [Cla93℄. This appliation has a similar

struture to Naira, omprising a rule ompiler plus prodution mather and evaluator. The rule

ompiler inludes pattern-mathing and other omponents. The prodution mather and evaluator

are best regarded as being analogous to Naira's runtime-system.

Unfortunately, as hinted above, despite mapping out the parallelisation proess that he in-

tended to pursue, Clayman was ultimately frustrated by the state of the ompiler and implemen-

tation tehnology in 1993, and therefore never ahieved his goal of suessfully parallelising his

program. We are therefore deprived of a potentially interesting omparison between two similar

appliations. We hope that we are now in a position where Clayman's work ould be ompleted

in order to allow a good omparison between these systems.

While not diretly usable as part of the ompilation proess itself, Bouher and Feeley have

onstruted a parallel implementation of an LR(0) parser generator in MultiLisp [BF94℄. The

parallelisation proess involves the reation of all reahable states in parallel. Simple loks are

used in plae of the sequential hash table to prevent several tasks working on the same state

simultaneously, and to ensure atomi update for eah state.

Overall, the parser generator ahieves an absolute speedup of 10.4 on 32 proessors. The

parallel overhead was partiularly serious for this system, generating a slowdown of a fator of 3

on one parallel proessor, so this represents an impressive superlinear relative speedup (a fator

of 33.6 on 32 proessors). Given that the overhead exists in the one-proessor ase, and that

the algorithm exhibits super-linear speedup, it seems unlikely that this overhead is simply a

onsequene of poor loality, as the authors suggest. The super-linearity is laimed to reet

dereased garbage olletion osts in the parallel implementation.

Finally, although it has not yet been exeuted on a parallel mahine as far as we are aware, the

Id in Id ompiler from MIT is, of ourse, parallel in priniple. Id is untyped so the parallel type

inferene algorithm that gave e�etive performane improvements in the Naira ompiler would be

of no diret use (it might oneivably be exploited for e.g. ode generation, however). Work we

have done in relieving dependenies in the Naira symbol table and pipeline stages seems likely to

�nd a ounterpart in any parallel version of the Id ompiler, however.

Theorem Provers

There have been several attempts to parallelise funtional theorem-provers. As part of the FLARE

projet [RW95℄, Hanna and Howell parallelised the 8500 line tautology heker that forms the ore

of the Veritas theorem prover. This parallelisation was ahieved using only the basi par and

seq ombinators desribed earlier. Granularity ontrol was introdued using thresholding based

on the size of the propositions to be heked. Performane results for the GRIP multi-proessor

showed that an absolute speedup of a fator of 18 ould be ahieved on 20 proessors. Work on

this appliation and others from the FLARE projet motivated the design of evaluation strategies

to help simplify the parallelisation proess.

There have also been several implementations of the Boyer-Moore theorem prover. For exam-

ple, Sodan and Bok's automatially parallelising Lisp system, ParLisp, has ahieved a simulated

speedup of between 5.1 and 29.5 on an idealised on�guration of the MANNA mahine ontaining

an in�nite number of proessors [SB95℄. In onduting these experiments Sodan and Bok observe

that it is important to hek the potential parallelism of the appliation before proeeding along an

expensive implementation route. This is in aordane with the methodology we have propounded

both in this paper and elsewhere [THLP98℄, of using �rst an ideal simulation to demonstrate par-

allel feasibility and then re�ning the simulation to deliver more aurate information for partiular

lasses of target arhiteture.

The Boyer-Moore theorem prover has also be implemented in Id as part of the Impala benh-
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mark suite [Sha98℄, but we are not aware of any parallel performane results that an be used for

omparison.

7.2 Image Proessing

Graphial appliations are obvious andidates for parallelisation. While imperative parallel graph-

is appliations generally depend on partitioning (updatable) arrays, more sophistiated data

strutures may simplify the partitioning proess and o�er better long-term opportunities for par-

allelism. Several appliations have been produed that perform omplex graphial manipulations,

inluding ray traing to determine the intensity of light that falls on an objet, and the omputer

vision appliations prototyped by Mihaelson and Saife in Standard ML.

Ray Traing

The simple ray traer that was originally developed in Kelly's thesis for the Caliban o-ordination

language [Kel89℄ has formed the basis for a number of subsequent studies, inluding as one of

the FLARE appliations desribed above. In the latter ase we were able to demonstrate good

speedup for this appliation running on GRIP under a variety of onditions, ahieving an absolute

speedup of 10.5 on 17 proessors, with no evidene of a software performane bound [HMP94℄.

Relative speedup for the same on�guration was a fator of 14.

In his thesis [Tay97℄, Taylor studies this same ray traer in the ontext of Advaned Caliban.

Advaned Caliban extends the Caliban o-ordination language in a number of new and interest-

ing ways that parallel the development of evaluation strategies (for example, the use of nested

moreover lauses to ontrol plaement is similar to our use of strategies to desribe proess stru-

tures). Unlike evaluation strategies, however, Caliban remains �rmly rooted in a stati model

of proess plaement, and the target arhiteture is restrited to a distributed, losely-oupled

parallel mahine (in Taylor's ase, the 48-node AP1000 at the Imperial College Parallel Cen-

tre, London). Using a stati proess farm, with limited speulative evaluation, Taylor ahieves

a relative speedup of 17 on 35 proessors for this implementation of the ray traer. With the

introdution of manual granularity ontrol, performane an be boosted to a relative speedup of

24 on 35 proessors. This is broadly in line with the GRIP results ited above, though speedup is

slightly lower.

Bratvold also studied the performane of the ray traer appliation [Bra94℄ using his automat-

ially parallelising skeleton-based ompiler for SML, SkelML. Bratvold's thesis results show that

a speedup of 9.5 on 22 Transputers ould be ahieved for the largest example that was tried. In

ontrast to the dynami approah we have used in our implementation and in aordane with

the Caliban philosophy adopted by Taylor, Bratvold's approah uses a stati ost-modeling step

to guide the hoie of skeleton from a �xed library.

Kesseler also used the ray traer as a benhmark for Conurrent Clean [Kes95, Kes96℄. Kesseler's

system adopts a similar skeleton approah to that taken by Bratvold, and also targets a Transputer

system. Kesseler reports a speedup of 10.0 on 16 proessors, rising to 33.5 on 64 proessors, where

he is learly enountering some performane bound. From our own experiene, we onjeture that

this may be due to poor distribution as a onsequene of stati proess alloation.

While it is hazardous to ompare only speedup and not look at absolute performane, it is

interesting that the systems using stati plaement do not exhibit better speedup results than the

system of dynami plaement used in GRIP. This is, of ourse, partly due to the lower ommuni-

ation latenies that apply in GRIP hardware. However, we feel it is a strong indiator that our

model of dynami proess plaement an yield good parallel performane whilst requiring rather

less programmer e�ort than preise stati plaement, despite the greater overheads of dynami

ontrol.
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Parallel Vision

Mihaelson and Saife [MS95℄ desribe the implementation of several omponents of a parallel

vision system. The overall purpose of the system is to reognise 3D objets in a 2D sene by using

information about the relative intensity of light throughout the sene. The parallel algorithms are

prototyped using a skeleton-based SML implementation, before being translated to Oam and

exeuted on a distributed-memory Meiko mahine (based on Transputers). The SML prototype

required 1700 lines against the 3000 lines of the �nal Oam implementation. It was used to verify

the general line of parallelism to be taken in the �nal implementation, in a similar way to our own

simulator-based proo�ng steps.

The primary algorithm used in this appliation is the Hough transform for solving sets of

underdetermined equations. This is parallelised in a data-oriented fashion using a farm skeleton to

realise a parallel map over a nested list. Performane was optimised by splitting the data into more

sets of equations, so introduing more small tasks whih an be managed more eÆiently to improve

the overall load balane. This on�rms our own observations onerning task granularity [LH95℄ as

well as theoretial analyses [BR94℄: �ner-grained programs are muh easier to manage dynamially,

and result in muh better balaned omputation. Overall, Mihaelson and Saife ahieve an

absolute speedup of 10.5 on the 30-proessor Meiko. This performane was less than hoped for,

possibly as a onsequene of poor load-balaning and/or high ommuniation osts that may arise

from the nature of the farm skeleton, whih will tend to introdue ommuniation bottleneks to

the farming proessor.

Mitrovi and Trobina have implemented some omponents of a omputer vision system in

Sisal [MT93℄: spei�ally the Gaussian smoothing and Canny edge detetor algorithms that are

also used by Mihaelson and Saife. The Sisal program was about 300 lines, ompared with 600 for

the C version, and took 2 days to write, ompared with about a week for the C program. The �nal

stage of the vision system (image ompilation) was however slightly larger than the orresponding

C program (600 lines versus 500). Overall the Sisal program ran 10% faster than the C program

when run sequentially and ahieved a relative speedup of 3.1 on a 4-proessor shared-memory SGI

mahine, without requiring further oding e�ort. This is learly a very reditable performane

gain for suh modest programmer e�ort. Similar performane results have been veri�ed by other

Sisal appliations [Can92℄, some of whih are desribed below (Setion 7.4).

7.3 Data Intensive Appliations

There have been relatively few attempts to produe large-sale data-intensive funtional appli-

ations, and even fewer that have been suessfully parallelised. One of the most interesting is

the AGNA system, whih implements read-only seletions (lookups) over a parallel funtional

database [HN91℄.

AGNA

The AGNA system uses list omprehensions to struture read-only queries over an on-disk database.

Sine eah lookup is independent of the results of any other lookup, parallelisation is straightfor-

ward and very high parallelism an be ahieved with a good prospet of salability. Heytens and

Nikhil [HN91℄ report a speedup of 31 on a 32 proessor distributed-memory mahine for non-

indexed lookup. Indexed lookup is muh faster, but speedup is limited to a fator of 8, due to

task reation and result onstrution osts in the implementation that was adopted.

Parade

As part of the EPSRC Parade projet we have investigated parallel funtional database transation

proessing where the transations involve not simply queries, as with AGNA, but also update op-

erations that may introdue dependenies with subsequent database transations [AHPT93℄. Our

results show that aeptable parallel performane an be ahieved through the use of tehniques

to redue the `hot-spot' that arises from ontention on the root of the B-tree data struture that
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forms the index to the on-disk database. Overall, we ahieved an absolute speedup of 12.6 on 15

GRIP proessors. Larger data sets gave better performane than smaller ones, so it seems likely

that these results ould be saled to larger systems with higher throughput. Unlike AGNA, our

results apply only to in-memory opies of the database, however, with simulated disk aesses.

The same projet also studied the Aident Blakspots program, whose performane results

are presented in Setion 4.3.

7.4 Numerial Appliations

Perhaps surprisingly, some of the most suessful parallel funtional appliations have been nu-

merial programs. In addition to the bene�ts of muh higher-level oding, whih inlude shorter,

simpler (and hopefully more maintainable) ode, several Sisal appliations not only approah the

speed of slow imperative implementations suh as C, but exeed the performane produed by the

fastest Fortran ompilers. For parallel ode, this is usually ahieved without requiring any hanges

to the soure ode. Similar, though slightly less spetaular, results have been ahieved for the

NESL language [Ble95℄, mainly for generi problems suh as the n-body problem [BN97℄. Other

generi numerial problems that have been studied in a parallel funtional ontext inlude onju-

gate gradient algorithms [YA93, GMZ94℄ and various Eigen-Solver implementations [SB94, BH95℄.

This setion surveys the most signi�ant parallel numerial appliations that have been written

in these and other languages.

The Australian weather system

The Australian weather predition model is a 10000 line Fortran program for short-term (36 h)

weather foreasting [Les85℄. Egan has re-implemented the kernel of this appliation as a 500-

line Sisal program [Ega93℄ that an be alled from the original Fortran shell. No signi�ant

restruturing of the ode was performed, however. The parallelising Fortran ompiler for the

Cray-90 was unable to loate any parallelism within this subroutine.

For the Sisal version, Egan ahieved a speedup of 3.7 on a 4-proessor Cray-90. This repre-

sented a performane improvement of 34% over the sequential Fortran ode. Subsequent work

on the ompiler has improved the performane of Sisal relative to Fortran, to the extent that it

is now possible to ahieve a relative speedup of 6.1 on an 8-proessor Cray Y-MP/864 (20 iter-

ations), representing a speedup of 5.8 over the equivalent Fortran program running on a single

proessor [LAN98℄. The �nal Sisal program omprises 33 soure modules { a signi�antly large

program by most standards.

Photon Transport

The 750-line Id program Gamtebwas written by researhers from Los Alamos National Laboratories

to simulate the trajetory of photons through a arbon rod that has been divided into a number

of ells of a given geometry. Eah photon an be tested independently exploiting data parallelism.

On the 8-proessor prototype Monsoon dataow mahine, this highly-parallel appliation ahieved

a speedup of 7.4 for a problem ontaining 40,000 partiles [HCAA93℄.

The same appliation has been written in Sisal [HLB95, HB97℄, but the speedups ahieved

on a 4-proessor shared-memory Sun were not signi�ant (1.9 relative, 1.3 absolute for 50,000

partiles). The overall performane was also signi�antly less than for C { sequential C was 8.8

times faster than the one-proessor parallel Sisal program. The poor performane is perhaps due

to ineÆienies reating large intermediate data strutures.

Fluid Dynamis

A seond large appliation that was developed as part of the FLARE projet was the Swansea

omputational uid dynamis program [RW95, GSWZ95℄. In its sequential inarnation, this 2000-

line program made heavy use of arrays. In order to produe a parallel implementation, quadtree
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and trie data strutures were used instead to yield a straightforward parallel deomposition of the

problem domain.

Overall, the absolute speedup ahieved by this appliation was 2.3 on a 4-proessor GRIP.

Additional proessors gave slight performane improvements, up to a fator of 3 on 17 proessors,

but gave muh worse proessor utilisation. This was in sharp ontrast to idealised simulated

results, whih showed available parallelism of up to 100 simultaneous tasks. The disrepany is

probably best explained by tight data dependenies introduing signi�ant ommuniation osts in

the real implementation. This highlights the importane of providing aurate as well as idealised

simulation, as we have done in the parallel workbenh desribed above.

A further lesson obtained from this appliation was the importane of providing good support

for large data strutures, for example distributed appliative arrays [KG91℄. We have not yet

implemented support for suh strutures, so would not expet good performane for programs

that made heavy use of array strutures in our system.

A similar appliation to the Swansea program is the 1000-line Id program simple whose pur-

pose is to simulate hydrodynamis and heat-ondution. On an 8-proessor Monsoon, Hiks et

al. [HCAA93℄ report a speedup of 6.3 for 100 iterations of a 100�100 grid of nodes ontaining

information about position and veloity, over a series of zones with di�erent uid harateristis.

This appliation has also been implemented in Sisal, where researhers ahieved relative speedups

of 4.3 on an 8-proessor Cray Y-MP/864 and 13.9 on a 20-proessor Sequent Symmetry for 62 it-

erations [LAN98℄. In both ases the Sisal version was signi�antly faster than the single-proessor

Fortran ode, representing speedups over Fortran of 4.1 and 13.7 respetively.

Tidal Predition

Hartel et al. have used Miranda to produe a 560 line tidal predition program, using skeletons

to expose the parallelism in this program [HHL

+

95℄. A `ommuniation lifting' transformation is

applied in order to exploit wavefront parallelism in a grid performing omputational uid dynam-

is operations that involve solving partial di�erential equations in a data-parallel fashion. The

program uses a tile-based partitioning approah similar to that we have used for the Aident

Blakspots program.

The relative speedup ahieved for this appliation is 2.5 on a 4-proessor shared-memory ma-

hine, though the appliation would presumably sale to larger shared-memory systems if these

were available, by simply introduing additional tiles. Unfortunately, this is still 58% slower

than sequential C, however, and therefore onsiderably slower than ould be expeted for a Sisal

implementation of this appliation.

Global Oean Cirulation

A similar appliation to the tidal predition problem is the global oean irulation model that

has been onverted to Id from the Fortran original [SAC

+

98℄. This program has a regular ontrol

struture (the entral part is a triply nested loop) but an irregular data struture. The appliation

was tuned for parallel exeution on Monsoon using loop unrolling and the introdution of k-

bounded loops [AN90℄ for throttling exess parallelism. Performane results for realisti data-sets,

measured in mahine independent yles per required oating point operations, showed that the

8-proessor Id/Monsoon appliation was between 2 times slower and 2 times faster than the

equivalent 128-proessor CM Fortran/CM-5 version.

7.5 Symboli Computation

Computer Algebra

Shreiner has applied his small strit para-funtional language pD to a number of problems taken

from omputer algebra: a linear equation solver that is similar to the one presented in Setion 4.6;

two programs to ompute multivariate polynomial resultants; and part of a polynomial fatorisa-

tion algorithm.
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Highly signi�antly, Shreiner's performane results show that good absolute speedup an be

ahieved using his approah [Sh95℄. Compared with sequential C, Shreiner ahieved performane

of 14 on a 16-proessor shared-memory system for the linear equation solver (his best result).

Sequential performane is also broadly in line with that obtained for the orresponding C programs.

Although these appliations are small, they do suggest that parallel symboli omputation is

amenable to exploitation by funtional programming tehniques.

Nulei Aids

Feeley et al. have worked on a parallel appliation for determining the three-dimensional struture

of nulei aids [FTL94℄. This appliation involves solving a set of onstraints that olletively

de�ne all legal 3D strutures that an be built from the input set of nuleotides.

Eah nuleotide ontains one free variable desribing its three-dimensional position relative to

other nuleotides. This position onstrains the plaement of other nuleotides in the struture. The

parallel implementation of the algorithm involves heking eah possible solution for a nuleotide's

position in parallel. The appliation is written as a 3500-line MultiLisp program and uses lazy

task reation [MKH91, Ito96℄ to introdue parallel tasks.

This appliation has been tested on two interesting data sets. For the larger of the two data

sets, pseudoknot, it is possible to ahieve a maximum absolute speedup of 13.7 on 24 proessors.

This represents the limit of parallelism | additional proessors result in lower speedups due to

added ontention. While the parallel overhead is a quite reasonable 21%, the single-proessor

parallel ase is still 2.4 times slower than sequential C. The smaller data set, antiodon displays

good absolute speedup of 49 on 64 proessors.

7.6 Digital Signal Proessing

In his thesis, Reekie desribes the design of a parallel digital signal proessing system written

using a visual dialet of Haskell [Ree95℄. While no performane �gures are available, the thesis

is interesting in introduing a number of laws onerning funtional proess networks that ould

perhaps apply to behavioural ode written using evaluation strategies, suh as the appliations

desribed in this paper.

Dennis has studied a similar appliation in a stati dataow ontext [Den95℄, as an exerise

in parallelisation. This Sisal program is the ore of a system that ould be used to proess

information obtained from a sky-sanning optial surveillane devie. A series of �lters work as a

parallel pipeline over several input stream of values, representing data obtained by the surveillane

sensors. The appliation is highly parallel to the extent that throttling and other load management

strategies would probably be required in a real implementation. Unfortunately, the appliation

has not yet been implemented on real parallel hardware so no performane results are available

for this appliation either.

7.7 Telephony

Finally, while not a purely funtional implementation, and di�ering from the goals of our researh

in representing a distributed implementation of a onurrent language with expliit proess ontrol

for semanti modeling, Erlang [AWWV96℄ has produed the �rst ommerial distributed funtional

appliations of whih we are aware [Arm96℄. The Erlang appliations are both `fast enough' for

real ommerial use and use less memory than their ounterparts in C. The largest appliation

that has so far been programmed in Erlang is the 230,000 line Mobility Server, whih ats as an

intelligent all routing system linked to an internal telephone exhange, and whih is in widespread

use. Clearly, taken with the Lolita appliation whih we have desribed here, there is a strong

body of evidene to show that funtional languages an be used for real, omplex appliations.
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7.8 Related Approahes to Parallelism

The FLARE Appliations

The appliations produed by the FLARE projet [RW95℄ formed a diret preursor to those de-

sribed here, representing the �rst real attempt to write a number of reasonably large appliations

in a purely funtional language and to produe parallel implementations of those programs. Like

the appliations desribed in this paper, the appliations onsidered in the FLARE projet were

drawn from a wide variety of appliation areas: notably a omputational uid dynamis problem,

a proof assistant, text ompression and a geometri modeling system. The uid dynamis program

and the proof assistant (Veritas) are desribed above.

The attempts to parallelise the FLARE appliations motivated the use of simulation (in this

ase using an idealised simulator, hb-pp [RW93℄) as well as real-mahine exeution, and spurred

the long-term development of evaluation strategies for more preise mahine ontrol (the FLARE

appliations used only the primitive par and seq annotations). They also demonstrated the limi-

tations of the GRIP prototype in exeuting suh large programs, and highlighted the desirability

of using stok parallel mahines that ould be made more generally available.

Overall parallel performane results were, however, quite promising. Depending on the appli-

ation type, absolute speedups of between 4 and 15 were ahieved on a 16-proessor GRIP.

The Duth Parallel Programming Toolkit

The toolkit developed as part of the Duth Parallel Redution Mahine Projet [BvH

+

87, HHL

+

95℄

takes an approah to parallel program development that is similar to the one we have desribed

in this paper. As in our approah, the Duth system provides both an interpreter and a ompiler

for sequential algorithmi debugging and initial overall performane optimisation, together with

both simulated and real parallel mahine implementations for parallel performane optimisation.

The simulator supports three levels of detail: task-level, instrution-level and bus-yle simulation.

Like the GranSim simulator, the instrution-level simulation is aeptably aurate, delivering

preditions that are 15%{23% too optimisti, though. The system has been used to develop the

560 line tidal predition program disussed earlier.

Finally, it is worth noting that the ompiler used in this projet, FAST/FCG, has limited

support for ode optimisation. GHC provides many more optimisations, as well as soure-level

pro�ling (both sequential and parallel) through the use of ost-entre pro�les [SP97℄. These

bene�ts are of great signi�ane for large parallel programs.

7.9 Summary

This setion has surveyed a variety of large-sale parallel funtional appliations written in many

languages and often exhibiting irregular parallelism. These appliations over a wide range of

programming domains from data-intensive appliations suh as database transation managers

to high-performane numerial alulations suh as weather predition systems or omputational

uid dynamis appliations. Many appliations have demonstrated that good relative speedups

an be ahieved, and several, notably those written in strit languages suh as Sisal, MultiLisp

and pD, have shown that the performane of onventional imperative languages suh as C or

Fortran an be exeeded with minimal programmer e�ort. The distributed language Erlang has

shown that distributed funtional appliations an ahieve ommerial suess, elipsing their

imperative ounterparts through ease of onstrution and overall performane. These are positive

and enouraging results for the work that we are undertaking.
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8 Conlusions

8.1 Summary

We have desribed the development of several parallel symboli programs in Glasgow Parallel

Haskell (GpH). The programs are large, over a range of appliation areas, and have been measured

on networks of workstations, and a shared-memory multiproessor. From our experienes with

developing these appliations we draw onlusions on the appliations, the programming language,

and the programming environment.

On the appliations level the most signi�ant result is that we are able to ahieve modest

wall-lok speedups over the optimised sequential versions for all but one of the programs, despite

the fat that some of the programs were not written with the intention of being parallelised (see

Table 5 in Setion 5.1). We �nd that it is easy to use di�erent parallel programming paradigms

in GpH, and even to ombine the paradigms within a single program.

On the language level we have been able to evaluate some long-standing laims about parallel

funtional programming. Both the determinism of the language proves helpful, as does the largely

impliit nature of the parallelism. Our new parallel programming tehnique, evaluation strategies,

has been proven suessful on a large sale. Partiularly important for large programs we �nd

that strategies allow a high level of abstration to be maintained. There are two aspets to

this abstration: we an desribe top-level parallelism, and also preserve module abstration by

desribing parallelism over the data strutures provided at the module interfae (`data-oriented

parallelism'). The bene�ts of this approah are elaborated in more detail via developing several

versions of parallel programs in the PhD thesis [Loi98℄[Chapter 4℄.

On the programming environment level we have shown the importane of an integrated parallel

programming environment, with failities for prototyping parallel ode, optimising the program,

and visualising parallel behaviour. Although not the fous of this paper, the GpH programming

environment has been developed alongside the programs, and is still being extended as detailed

below.

Overall, our motto in exploiting parallelism in large appliations is `low pain, moderate gain.'

The goal of this approah is to bring the power of parallel proessing, inreasingly o�ered by

the latest generation of desktop mahines, to non-speialists in parallel programming. To ahieve

suh `desktop parallelism', as we all it, we use a programming model o�ering largely impliit

parallelism, namely parallel funtional programming. However, our model is not restrited to

mahines with modest parallelism, and indeed it is possible to speify more details of the parallel

omputation if neessary. These aspets are in ontrast to lassial `superomputer parallelism',

where it is feasible to spend a lot of e�ort in parallelising a program and the parallelisation is

usually done by a speialist in parallel proessing. With the appliations presented in this paper

we also hope to have demonstrated the merit of suh a `desktop parallelism' approah in order to

make the power of parallel proessing more easily available to programmers.

8.2 Future Work

We are extending the work in several diretions. Even with the existing suite of pro�ling and

visualisation tools available it is hard to fully understand the parallel behaviour, of large irregularly

parallel programs. Additional tools are under onstrution and the most signi�ant of these are

as follows. The GranCC pro�ler attributes the work done by a thread to a ost entre, i.e. an

expression in the program [HLT97℄. The strategi pro�ler, GranSP, attributes a thread to the

strategy that indued it [KHT98℄. A standard format for pro�ling data is being designed, and

the tools may be o�ered in a user-friendly environment [JMPW98℄. We have experimented with

a number of di�erent ways of visualising the exeution of parallel funtional programs. We intend

to desribe our experienes with the pro�lers and visualisations in a separate paper.

It would be useful to reason more formally about the strategies used in our programs. For

example to demonstrate that two strategies are equivalent w.r.t. the amount of parallelism they

generate, or that one generates more parallelism than another. So far, most of this reasoning has
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been done informally. However, we are urrently working on an operational semantis for GpH,

in order to prove identities about strategies [HBTK98℄. The strategi identities an then be used

to prove equalities and inequalities between strategi funtions.

We intend to improve and extend the GUM runtime system, and to port it to new plat-

forms. The goal of these improvements is to make the management of parallelism more eÆient

without sari�ing the arhiteture-independene of GUM. Among the aspets of GUM that

ould be improved are the bookkeeping of potential parallelism via lazy threads as developed in

[GSC96℄, the work-stealing algorithm and the message-proessing as suggested by measurements

in [LH96b℄. Furthermore, there are a number of obvious extensions to GUM, e.g. to introdue

thread migration, i.e. the reloation of a running thread from one proessor to another, or support

for speulative parallelism. A number of GUM ports are under way or planned, inluding to a

Fujitsu AP1000, a Fujitsu AP3000, and a Beowulf platform.

In the longer-term, we would like to develop an even more impliitly parallel language. One

means of doing so would be to automatially insert strategies into a program, guided by stati

analyses of the program text. Stritness analysis [BHA86℄ indiates when it is safe to introdue

parallelism, and granularity analysis [LH96a℄ indiates when it is worthwhile to do so. Beause

strategies are part of GpH it is then possible for the programmer to tune the parallel performane

by re�ning the automatially generated strategies.
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