
Engineering Parallel Symboli
 Programs in GpH

Hans-Wolfgang Loidl

1

, Philip W. Trinder

1

, Kevin Hammond

2

, Sahalu B. Junaidu

3

,

Ri
hard G. Morgan

4

, Simon L. Peyton Jones

5

This is a preprint of an arti
le published in Con
urren
y | Pra
ti
e and

Experien
e, 11(12):701{752, 1999, http://www.inters
ien
e.wiley.
om/

Abstra
t

We investigate the
laim that fun
tional languages o�er low-
ost parallelism in the
ontext

of symboli
 programs on modest parallel ar
hite
tures. In our investigation we present the �rst

omparative study of the
onstru
tion of large appli
ations in a parallel fun
tional language,

in our
ase in Glasgow Parallel Haskell (GpH). The appli
ations
over a range of appli
ation

areas, use several parallel programming paradigms, and are measured on two very di�erent

parallel ar
hite
tures.

On the appli
ations level the most signi�
ant result is that we are able to a
hieve modest

wall-
lo
k speedups (between fa
tors of 2 and 10) over the optimised sequential versions

for all but one of the programs. Speedups are obtained even for programs that were not

written with the intention of being parallelised. These gains are a
hieved with a relatively

small programmer-e�ort. One reason for the relative ease of parallelisation is the use of

evaluation strategies, a new parallel programming te
hnique that separates the algorithm

from the
oordination of parallel behaviour.

On the language level we show that the
ombination of lazy and parallel evaluation is

useful for a
hieving a high level of abstra
tion. In parti
ular we
an des
ribe top-level paral-

lelism, and also preserve module abstra
tion by des
ribing parallelism over the data stru
tures

provided at the module interfa
e (\data-oriented parallelism"). Furthermore, we �nd that the

determinism of the language is helpful, as is the largely-impli
it nature of parallelism in GpH.

1 Introdu
tion

Parallelism without pain is perpetually promised but seldom delivered. For appli
ations where

the parallelism is well-stru
tured, well-understood te
hniques su
h as SPMD now deliver good

performan
e [SMT

+

95℄. But for ri
hly-stru
tured symboli
 appli
ations, su
h as
ompilers and

natural-language pro
essing, the jury is still out. Su
h appli
ations are
hara
terised as follows.

� The
omputation is largely symboli
, rather than numeri
al, e.g. with arbitrary pre
ision

integers rather than
oating point numbers.

� The data stru
tures are
omplex, e.g. ri
hly
onne
ted trees or graphs, rather than arrays.

� The algorithm supports modest, rather than massive, parallelism.

� Parallelism arises from several sour
es, often nested within one another.

1

Department of Computing and Ele
tri
al Engineering, Heriot-Watt University, Ri

arton, Edinburgh EH14

4AS, S
otland; e-mail: fhwloidl,trinderg�
ee.hw.a
.uk

2

Division of Computer S
ien
e, University of St. Andrews, Fife KY16 9SS, S
otland; e-mail:

kh�d
s.st-and.a
.uk

3

Information and Computer S
ien
e Dept, King Fahd Univ. of Petroleum & Minerals, Dhahran 31261, Saudi

Arabia; e-mail: sahl�kfupm.edu.sa

4

3F Ltd, Moutjoy Resear
h Centre, Sto
kton Road, Durham DH1 3UR, England; e-mail: R.G.Morgan�3f.
o.uk

5

Mi
rosoft Resear
h Ltd, 1 Guildhall St, Cambridge CB2 3NH, England; e-mail: simonpj�mi
rosoft.
om

1

� Thread granularities are not stati
ally predi
table.

The literature on parallel appli
ations of this sort is sparse, and good results seem to demand

an unreasonable investment of e�ort, ex
ept in parti
ularly well-studied ni
hes, su
h as parallel

dis
rete event simulation and
omputer algebra [JSC96℄.

Fun
tional programming languages have long held out the possibility of addressing parallel

symboli
 appli
ations. On the one hand, their automati
 storage allo
ation, polymorphi
 typing,

and ri
h data stru
tures, make them well suited to symboli
 appli
ations. On the other hand,

their expression-oriented style exposes mu
h potential parallelism.

Despite this promise, real parallel implementations have been slow in
oming. By a `real' im-

plementation we mean one that (a) delivers wall-
lo
k speedups over the best sequential
ompiler

for the same language, and (b) is robust enough to handle multi-thousand-line appli
ation pro-

grams. The engineering
hallenge of developing a real implementation in this sense is
onsiderable.

Hammond [Ham94℄ provides a good overview of work in this area, and Se
tion 7 dis
usses related

work on appli
ations.

We have, however, developed a real implementation of the fun
tional language Haskell [PHA

+

97℄,

alled Glasgow Parallel Haskell (GpH), des
ribed in [THM

+

96℄. Using it we have begun to write

substantial parallel appli
ations, and to develop systemati
 ways of doing so. In this paper we

des
ribe our experien
es of parallelising a set of �ve parallel appli
ations of varying size. Three

are really warm-up exer
ises, serving to set the s
ene. The last two, a
ompiler for Haskell, and a

natural-language pro
essing system are substantial: 5,000 and 47,000 lines of Haskell respe
tively.

Together, these appli
ations
over a range of

� appli
ation areas

� parallel programming paradigms

� parallel
omputer systems.

So, based on this experien
e, what is the verdi
t? Our
on
lusions are these:

� With a modest investment of e�ort, it is possible to extra
t modest levels of parallelism

(a fa
tor of 2{10), and wall-
lo
k speedup, for
omplex symboli
 appli
ations that were

originally written without parallelism in mind (Se
tion 5.1). It
an be diÆ
ult to extra
t

mu
h more parallelism than this without substantial rewriting.

Viewed from the massively-parallel
omputing standpoint, this looks disappointing. Viewed

from the position of a
ompiler writer used to
onsidering a 20% improvement as a huge

win, it looks ex
iting. `Low pain, moderate gain' is our motto. Be
ause this speedup is

a
hieved with only minor
hanges in the
ode, merely exposing parallelism rather than

ontrolling it in detail, this style of parallelism should be of interest for non-spe
ialists in

parallel programming.

� Some of the long-time
laims of the fun
tional
ommunity do hold good. In parti
ular, deter-

minism is an enormous boon. On
e a program works on a uni-pro
essor, then it also works

on a multi-pro
essor, and always delivers the same results. There are no ra
e hazards,
ore

dumps, and unrepeatable errors. However, the usual problems and advantages of di�erent

resour
e usage in a multi-pro
essor setting remain, as illustrated in Se
tion 4.5.

� We have found a way to
leanly separate the algorithm that
omputes the result from the

evaluation strategy that governs its parallel behaviour. Evaluation strategies are the topi
 of

another paper [THLP98℄, and are introdu
ed in Se
tion 2.1.

Interestingly, lazy evaluation plays an essential role in supporting this modular program

de
omposition. (Lazy evaluation means that a
omponent of a data stru
ture is only eval-

uated when its value is needed.) This result dire
tly
ontradi
ts the folk-lore that laziness

and parallelism are in
on
i
t [TG95, Ken94℄. In short, lazy evaluation allows us to de�ne

parallelism over a data stru
ture produ
ed by a fun
tion without breaking the abstra
tion

2

of the fun
tion. This `data-oriented' form of parallel programming en
ourages a modular

design where sequential fun
tions
an be reused and parallelism is de�ned when
omposing

several fun
tions.

� Our te
hniques support a variety of parallel programming paradigms , in
luding farms, pipe-

lines, divide-and-
onquer, and data parallelism. Sin
e some of our appli
ations involve sev-

eral di�erent forms of parallelism, it is helpful that our programming framework is not biased

towards one parti
ular paradigm. Several of the programs nest one paradigm within another,

furthermore we exploit the fa
ility to nest paradigms to an arbitrary depth.

These are general remarks. The distin
tive
ontribution of this paper is that we justify them in

detail, based on experien
e of substantial appli
ations
overing a range of appli
ation areas.

Parallel fun
tional programming is no pana
ea. Writing parallel algorithms is still hard. For

appli
ations that demand very high utilisation of an expensive massively-parallel ma
hine the

programmer might well be better o� with existing approa
hes. However, in an age where every

desktop ma
hine will soon be a multi-pro
essor, and where under-used networks of workstations

abound, a way to extra
t modest speedups for a modest investment of e�ort is a wel
ome and

en
ouraging development. In
ontrast to super
omputing parallelism, with its spe
ialised ma
hines

and the high e�ort needed to extra
t parallelism, we therefore term our approa
h one of `desktop

parallelism'.

The stru
ture of the paper is as follows. After dis
ussing the programming language in Se
tion 2

and environment in Se
tion 3, we des
ribe the appli
ations themselves in Se
tion 4. In the rest of

the paper we then try to abstra
t the lessons we learned from that experien
e in Se
tions 5 and 6.

We in
lude a substantial survey of the �eld in Se
tion 7, before
on
luding with Se
tion 8.

2 GpH | A Parallel Fun
tional Language

The essen
e of the problem fa
ing the parallel programmer is that, in addition to spe
ifying what

value the program should
ompute, expli
itly parallel programs must also spe
ify how the ma
hine

should organise the
omputation. There are many aspe
ts to the parallel exe
ution of a program:

threads are
reated, exe
ute on a pro
essor, transfer data to and from remote pro
essors, and

syn
hronise with other threads, et
. Managing all of these aspe
ts on top of
onstru
ting a
orre
t

and eÆ
ient algorithm is what makes expli
it parallel programming so hard. The diametri
ally

opposing approa
h is to rely solely on the
ompiler and runtime system to manage the parallel

exe
ution without any programmer input. Unfortunately, this purely impli
it approa
h is not yet

fruitful for the large-s
ale fun
tional programs we are interested in.

The approa
h used in GpH is intermediate between purely impli
it and purely expli
it ap-

proa
hes. The runtime system manages most of the parallel exe
ution, only requiring the pro-

grammer to indi
ate those values that might usefully be evaluated by parallel threads and, sin
e

our basi
 exe
ution model is a lazy one, perhaps also the extent to whi
h those values should be

evaluated. We term these programmer-spe
i�ed aspe
ts the program's dynami
 behaviour.

Parallelism is introdu
ed in GpH by the par
ombinator, whi
h takes two arguments that

are to be evaluated in parallel. The expression p `par` e (here we use Haskell's in�x operator

notation) has the same value as e, and is not stri
t in its �rst argument, i.e. ? `par` e has the

value of e. (? denotes a non-terminating or failing
omputation.) Its dynami
 behaviour is to

indi
ate that p
ould be evaluated by a new parallel thread, with the parent thread
ontinuing

evaluation of e. We say that p has been sparked, and a thread may subsequently be
reated to

evaluate it if a pro
essor be
omes idle. Sin
e the thread is not ne
essarily
reated, p is similar to

a lazy future [MKH91℄.

Sin
e
ontrol of sequen
ing
an be important in a parallel language [Roe91℄, we introdu
e a

sequential
omposition operator, seq. If e1 is not ?, the expression e1 `seq` e2 also has the

value of e2; otherwise it is ?. The
orresponding dynami
 behaviour is to evaluate e1 to weak

head normal form (WHNF) before returning e2. Informally, this means that every data stru
ture

is only evaluated up to the top level
onstru
tor.

3

This se
tion gives an abridged introdu
tion to our parallel programming te
hnique
alled eval-

uation strategies. We fo
us on the language features ne
essary to a
hieve the basi
 fun
tionality

and highlight the advantages of this parallel programming te
hnique. A
omplete des
ription and

dis
ussion of evaluation strategies
an be found in [THLP98℄.

2.1 Evaluation Strategies

Even with the simple parallel programming model provided by par and seq we �nd that more

and more
ode is inserted in order to obtain better parallel performan
e. In realisti
 programs the

algorithm
an be
ome entirely obs
ured by the dynami
-behaviour
ode.

Evaluation strategies use lazy higher-order fun
tions to separate the two
on
erns of spe
ifying

the algorithm and spe
ifying the program's dynami
 behaviour. A fun
tion de�nition is split

into two parts, the algorithm and the evaluation strategy, with values de�ned in the former being

manipulated in the latter. The algorithmi

ode is
onsequently un
luttered by details relating

only to the dynami
 behaviour. In fa
t the driving philosophy behind evaluation strategies is that

it should be possible to understand the semanti
s of a fun
tion without
onsidering its dynami

behaviour.

A strategy is a fun
tion that spe
i�es the dynami
 behaviour required when
omputing a value

of a given type. A strategy makes no
ontribution towards the value being
omputed by the

algorithmi

omponent of the fun
tion: it is evaluated purely for e�e
t, and hen
e it returns just

the empty tuple ().

type Strategy a = a -> ()

2.1.1 Strategies Controlling Evaluation Degree

The simplest strategies introdu
e no parallelism: they spe
ify only the evaluation degree. The

simplest strategy is termed r0 and performs no redu
tion at all. Perhaps surprisingly, this strategy

proves very useful, e.g. when evaluating a pair we may want to evaluate only the �rst element but

not the se
ond.

r0 :: Strategy a

r0 _ = ()

Be
ause redu
tion to WHNF is the default evaluation degree in GpH, a strategy to redu
e a value

of any type to WHNF is easily de�ned:

rwhnf :: Strategy a

rwhnf x = x `seq` ()

Many expressions
an also be redu
ed to normal form (NF), i.e. a form that
ontains no redexes,

by the rnf strategy. The rnf strategy
an be de�ned over both built-in and user-de�ned types,

but not over fun
tion types or any type in
orporating a fun
tion type | few redu
tion engines

support the redu
tion of inner redexes within fun
tions. Rather than de�ning a new rnfX strategy

for ea
h data type X, it is better to have a single overloaded rnf strategy that works on any data

type. The obvious solution is to use a Haskell type
lass, NFData, to overload the rnf operation.

Be
ause NF and WHNF
oin
ide for built-in types su
h as integers and booleans, the default

method for rnf is rwhnf.

lass NFData a where

rnf :: Strategy a

rnf = rwhnf

For ea
h data type an instan
e of NFData must be de
lared that spe
i�es how to redu
e a value

of that type to normal form. Su
h an instan
e relies on its element types, if any, being in
lass

NFData. Consider lists and pairs for example.

4

instan
e NFData a => NFData [a℄ where

rnf [℄ = ()

rnf (x:xs) = rnf x `seq` rnf xs

instan
e (NFData a, NFData b) => NFData (a,b) where

rnf (x,y) = rnf x `seq` rnf y

2.1.2 Data-Oriented Parallelism

A strategy
an spe
ify parallelism and sequen
ing as well as evaluation degree. Strategies spe
i-

fying data-oriented parallelism des
ribe the dynami
 behaviour in terms of some data stru
ture.

For example parList is similar to seqList, ex
ept that it applies the strategy to every element

of a list in parallel.

parList :: Strategy a -> Strategy [a℄

parList strat [℄ = ()

parList strat (x:xs) = strat x `par` (parList strat xs)

Data-oriented strategies are applied by the using fun
tion whi
h applies the strategy to the data

stru
ture x before returning it.

using :: a -> Strategy a -> a

using x s = s x `seq` x

A parallel map is an example of data-oriented parallelism, and is used in several of the programs.

The parMap fun
tion de�ned below applies its fun
tion argument to every element of a list in

parallel. Note how the algorithmi

ode map f xs is
leanly separated from the strategy. The

strat parameter determines the dynami
 behaviour of ea
h element of the result list, and hen
e

parMap is parametri
 in some of its dynami
 behaviour.

parMap :: Strategy b -> (a -> b) -> [a℄ -> [b℄

parMap strat f xs = map f xs `using` parList strat

As an alternative to su
h a using-based design of parallel
ode we have also introdu
ed a new

onstru
t, $||,
alled strategi
 fun
tion appli
ation. As an extension to the standard fun
tion

appli
ation, $, in Haskell, the
onstru
t f $|| s $ x applies the strategy s to the argument x in

parallel with applying the fun
tion f to x. This
onstru
t is espe
ially useful for de�ning data-

oriented parallelism over
omplex data-stru
tures. This is due to the typi
al design of fun
tional

programs as
ompositions of small,
exible sub-fun
tions [Hug89℄. Compared to the above parMap

fun
tion this new
onstru
t makes it possible to de�ne data-oriented parallelism without
hanging

the de�nition of map itself. For example the expression g $ parMap rnf f xs
an also be written

as

g $|| parList rnf $ map f xs

In the latter expression the strategy is separated from the algorithmi

ode and the sequential sub-

fun
tions are un
hanged, thus des
ribing parallelism on a higher level in the program. Variants

of this idea are sequential strategi
 fun
tion appli
ation, $|, whi
h adds a syn
hronisation barrier

and thus is useful for de�ning pipelines, and strategi
 fun
tion
omposition in a parallel, .||, and

a sequential version, .|, respe
tively.

2.2 Summary

The prime motivation in the design of evaluation strategies has been the separation of algorithmi

and behavioural
ode. This separation will be dis
ussed together with the appli
ations in Se
-

tion 4. A
omparison of pre-strategy with strategi

ode, as given in [Loi97℄, shows that su
h a

5

separation aids the performan
e tuning pro
ess of parallel programs and enables the programmer

to experiment with several parallel versions of the
ode.

Be
ause evaluation strategies are written using the same language as the algorithm, they have

additional desirable properties. Strategies are powerful: simpler strategies
an be
omposed, or

passed as arguments to form more elaborate strategies. Strategies are extensible: indeed in the

parallelisation of several of the programs in Se
tion 4 we have de�ned new appli
ation-spe
i�

strategies. Strategies
an be de�ned over all types in the language, and o�er some level of type

safety be
ause the normal type system applies to strategi

ode. Strategies have a
lear semanti
s,

whi
h is pre
isely that used by the algorithmi
 language.

3 Parallel Programming Environment

GpH programs are developed with an integrated suite of software tools, based on the Glasgow

Haskell Compiler, GHC [Pey96℄. Guidelines for the use of these tools are given in the following

subse
tion. The suite in
ludes both a development environment and dynami
 analysis tools,

as outlined below (a more detailed dis
ussion of the parallel programming environment is given

in [TBD

+

98℄):

� The Hugs interpreter, for fast development, experimentation and debugging of sequential

ode. Being an interpreter, Hugs o�ers fast turn-around time for
ode
hanges and an inter-

a
tive development environment. This
omes at the expense of higher exe
ution time
om-

pared to GHC. In an ongoing proje
t these two
omponents, Hugs and GHC, are
ombined

into a single environment, whi
h we
ould reuse in our parallel programming environment.

� The GHC
ompiler and sequential runtime system for fast exe
ution of sequential
ode. GHC

is a state-of-the-art optimising
ompiler for Haskell. Thus our programs do not sa
ri�
e

sequential performan
e in order to a
hieve good parallelism. Another advantage of this

embedding of GpH into Haskell is, that all future work on sequential program analysis and

optimisation
an be automati
ally reused in the parallel system. Most importantly, the

parallel program has the same semanti
s as its sequential
ounterpart.

� The GHC
ompiler and GUM parallel runtime system for parallel exe
ution on multipro
es-

sors. GUM is eÆ
ient, robust and portable: being available on both shared- and distributed-

memory ar
hite
tures, in
luding the Sun SPARCServer shared-memory multipro
essor and

both a CM5 [Dav96℄ and networks of Sun and Alpha workstations. An IBM SP2 port is

nearing
ompletion. We dis
uss the ar
hite
ture-independent aspe
t of our parallel system

in [TBD

+

98℄. GUM is freely available and has users and developers worldwide [THM

+

96℄.

The suite also has a number of analysis tools, most of them dynami
 analysers, or pro�lers. Those

used to
onstru
t the programs in Se
tion 4 are as follows:

� Sequential time and spa
e pro�lers are supplied with GHC [SP95℄. They have proven indis-

pensable in tuning large Haskell programs su
h as GHC itself.

� The GranSim parameterisable parallel simulator [HLP95, Loi98℄ is
losely integrated with

the GUM runtime system giving a

urate results. It is parameterisable to emulate di�erent

target ar
hite
tures, in
luding an idealised ma
hine, and provides a suite of visualisation

tools to view aspe
ts of the parallel exe
ution of the program. The GUM runtime system

produ
es a subset of the GranSim pro�le data and so
an produ
e some of the pro�les.

We are
urrently working on the development of a parallel pro�ler, whi
h enables the programmer

to
onne
t points in an exe
ution pro�le with statements in the sour
e
ode. Currently, two

prototypes are in existen
e: GranCC [HLT97℄, whi
h merges GranSim and sequential
ost

enter pro�ling; and GranSP [KHT98℄, whi
h is an extension of the GranSim runtime-system

for tra
king the evaluation history of parallel threads. GranCC already a
hieved promising results

and helped in the parallelisation of Naira.

6

3.1 Parallelisation Guidelines

From our experien
es engineeringGpH programs we have developed some guidelines for
onstru
t-

ing large non-stri
t fun
tional programs (the guidelines are dis
ussed in detail in [LT97, THLP98℄):

1. Sequential implementation. Start with a
orre
t implementation of an inherently parallel

algorithm.

2. Parallelise and tune.

� Seek top-level parallelism. Often a program will operate over independent data items,

or the program may have a pipeline stru
ture.

� Time Pro�le the sequential appli
ation to dis
over the `big eaters', i.e. the
omputa-

tionally intensive pipeline stages.

� Parallelise Big Eaters using evaluation strategies.

� Idealised Simulation. Simulate the parallel exe
ution of the program on an idealised

exe
ution model, i.e. with an in�nite number of pro
essors, no
ommuni
ation laten
y,

no thread-
reation
osts et
. This is a `proving' step: if the program is not parallel on

an idealised ma
hine it will not be on a real ma
hine.

� Realisti
 Simulation. GranSim
an be parameterised to
losely resemble the GUM

runtime system for a parti
ular ma
hine, forming a bridge between the idealised and

real ma
hines.

3. Real Ma
hine. The GUM runtime system supports some of the GranSim performan
e

visualisation tools. This seamless integration helps understand real parallel performan
e.

4 Parallel Programs

4.1 Introdu
tion

This se
tion outlines �ve GpH programs, that
over a range of appli
ations domains. The Alpha-

Beta sear
h is an AI sear
h appli
ation; A

ident Bla
kspots is a data-intensive appli
ation; Lin-

Solv is a symboli

omputation appli
ation; Naira is a
ompiler, and Lolita is a natural language-

pro
essor. Detailed des
riptions of these programs have already been published in separate papers.

Here we fo
us on
ommon aspe
ts of the programs and of the parallelisation pro
ess.

All of the programs ex
ept Alpha-Beta solve real problems with real data, although LinSolv

should be viewed as a
omponent of a larger system. The Alpha-Beta sear
h program is in
luded

�rst be
ause it is simple, and illustrates our approa
h.

The programs manipulate symboli
, rather than numeri
al data, using
omplex data stru
tures,

e.g. the forests of SGML trees found in Lolita, or arbitrary pre
ision integers rather than
oating

point numbers in LinSolv.

None of the programs have a regular parallel stru
ture. A typi
al program has a number of

stages, and these
an be linked in a pipeline and ea
h stage uses a di�erent parallel paradigm,

e.g. data-parallel or divide-and-
onquer. Some programs, like Naira, exhibit even deeper levels of

nested parallelism. Be
ause of this
omplex parallelism, neither the number of threads nor the

granularity of the threads
an be determined stati
ally.

4.2 Alpha-Beta Sear
h

4.2.1 Program Des
ription

The Alpha-Beta sear
h algorithm is typi
al of arti�
ial intelligen
e appli
ations. It is mainly used

for game-playing programs to �nd the best next move. The sequential version of the algorithm

presented here has been developed by John Hughes [Hug89℄ in order to demonstrate the strengths

7

bestMove depth p f g =

 last .|| rwhnf $ -- list of approx
 (mise f g) .|| rwhnf $ -- cropped eval tree
 cropTree .|| rwhnf $ -- static eval tree
 (mapTree (static p)) .|| rwhnf $ -- pruned search tree
 (prune depth) .|| rwhnf $ -- full search tree
 repTree (newPositions p)

 (newPositions (opposite p))

Figure 1: Parallel pipeline stru
ture of
hoosing the best next move

of lazy fun
tional languages. Most notably, this algorithm relies on laziness to improve the eÆ-

ien
y of the naive sequential algorithm by pruning the sear
h tree based on intermediate results.

Therefore, the parallel version has to retain the laziness expressed in the sequential algorithm

in order to avoid redundant work. In this se
tion we parallelise this lazy fun
tional algorithm

and study the parallel runtime behaviour. We investigate the use of strategies to develop an eÆ-

ient parallel algorithm without sa
ri�
ing the advantages of the original lazy algorithm. A more

detailed dis
ussion of two variants of this parallel algorithm is given in [LT97℄.

The Alpha-Beta algorithm examines the possible next moves and pi
ks the best move for the

player, assuming that the opponent pi
ks the worst move for the player. The result is either

the maximum (player's move) or the minimum (opponent's move) of the evaluations of all next

positions. Following a typi
al fun
tional programming style, this algorithm
an be very naturally

des
ribed as a sequen
e of fun
tion
ompositions performing the following tasks (see Figure 1

ignoring the bold fa
e parts of the
ode):

1. Starting with the
urrent position p, build a tree with positions as nodes and all possible

next moves as subtrees. Sin
e this tree is built lazily no restri
tions to its size apply. The

higher-order fun
tion repTree is used to repeatedly apply a newPosition fun
tion to the

nodes in the tree, alternating between the fun
tions for the two players.

2. Prune the tree, whi
h might be in�nite at this stage, to a �xed depth to bound the sear
h

via prune.

3. Map a stati
 evaluation fun
tion, stati
, over all nodes of the tree, via mapTree.

4. Crop o� subtrees from winning or losing positions, via
ropTree. If su
h a position is found

it is not ne
essary to sear
h deeper in a subtree.

5. Generate a list of approximations of the value of the
urrent position, via mise f g. This

is done by pi
king the maximum or minimum of the resulting evaluations of the subtrees.

The fun
tions f and g represent the
ombination fun
tions for the two players and alternate

when traversing the tree.

6. The last element in the list of approximations returned by the mise fun
tion is the �nal

value of the evaluation.

One
ru
ial optimisation of the algorithm outlined above is the pruning of subtrees inside the

mise fun
tion based on intermediate results. Figure 2 shows an example of the pruning pro
ess

realised via lazy evaluation. Based on the result of the left subtree, the overall result must be

at least 1, the last element of the list of approximations. (The modi�ed min fun
tion yields a

de
reasing list of values.) Propagating this information as an intermediate result into the right

subtree, we
an prune this whole subtree after �nding the value 0: sin
e a minimum fun
tion is

used to
ombine the result, it will be at most 0, whi
h is smaller than the value we already have.

It is not ne
essary to evaluate the unknown value in the rightmost subtree at all.

This dynami
 behaviour is en
oded as follows. The algorithm returns an in
reasing list (player's

move) of approximations with the exa
t value as last list element rather than a single value. The

8

0 ?

min min

max

3 1

[3,1] [0,..]1

1

Figure 2: Pruning subtrees in the optimised Alpha-Beta algorithm

main pruning fun
tion inside mise, minleq, has to test whether the opponent's move from a

subtree, represented as a de
reasing list,
an be ignored. This is the
ase if the worst result of the

de
reasing list l, i.e. its minimum, is no better, i.e. less than or equal to, the intermediate result x.

Or more formally: min l � x ,: minleq l x. Sin
e minleq works on de
reasing lists it
an stop

examining the list as soon as it �nds a value less than x. Thus, laziness is used to ignore parts

of the list of approximations, whi
h amounts to pruning subtrees in the sear
h tree. A
omplete

des
ription of this lazy fun
tional pruning algorithm
an be found in [Hug89℄.

4.2.2 Parallelisation

Pipeline Parallelism. Considering the stru
ture of the algorithm as a
omposition of several

fun
tions, our initial attempt of parallelising this algorithm was to add pipeline parallelism to the

top level stru
ture of the
ode. This approa
h has the advantage of modifying only a small portion

of the overall
ode and has proven su

essful in parallelising large programs su
h as Lolita (see

Se
tion 4.5). The
ode in Figure 1 uses the strategi
 fun
tion
omposition operator .|| to de�ne

the parallelism and the evaluation degree on the arguments of the individual fun
tions.

Alas, the data dependen
ies of the algorithm do not permit the use of aggressive strategies.

Therefore, only a strategy redu
ing to weak head normal form, rwhnf, is used in every stage,

amounting to a pipeline stru
ture with extremely short stages. Most of the work has to be

performed by the �nal stage, resulting in virtually no speed up at all.

Data Parallelism. More promising than the pipeline parallel version is a data parallel approa
h.

Our goal is to evaluate all possible next moves in parallel. The only ne
essary
hange to a
hieve

this form of data parallelism a�e
ts the mise fun
tion in Stage 5 of the algorithm. This fun
tion

has to
ombine the results of all subtrees into a result at the
urrent node. The parallel version of

this fun
tion is shown in Figure 3. The only di�eren
e to the sequential version is the use of the

parMap rnf strategy to
apture a data parallel dynami
 behaviour of this fun
tion. Depending

on whether it is the player's or the opponent's move, the binary fun
tion max or min is taken as

argument and folded over the list of results from the subtrees. Note that the fun
tions f and g

hange position in the re
ursive
all to re
ord the swit
h in turns.

Unfortunately, this naive use of data parallelism generates a lot of redundant work be
ause

no pruning of subtrees is performed any more. This is indi
ated by the use of rnf, whi
h fully

evaluates the individual subtrees. Detailed measurements of variants of this algorithm in [LT97℄

reveal that the performan
e of this parallel algorithm is even worse than that of a naive parallel

algorithm that omits any pruning of subtrees. Although the version in Figure 3 generates a lot of

9

-- This does simple minimaxing without pruning subtrees

mise :: Player -> Player -> (Tree Evaluation) -> Evaluation

mise f g (Branch a []) = a

mise f g (Branch _ l) = foldr f (g OWin XWin) (parMap rnf (mise g f) l)

Figure 3: Data parallel
ombination fun
tion in the Alpha-Beta sear
h algorithm

-- Parallel version of the pruning version

mise :: Player -> Player -> (Tree Evaluation) -> [Evaluation]

mise f g (Branch a []) = [a]

mise f g (Branch _ l) = -- force the first n elems of the result list

 f ((map (mise g f) l)

 ‘using‘ \ xs -> if force_len==-1 -- infinity
 then parList rnf xs ‘par‘ ()
 else parList rnf (take force_len xs) ‘par‘
 parList rwhnf (drop force_len xs) ‘par‘ ())

Figure 4: Strategy for a pruning Alpha-Beta sear
h with a stati
 for
e length

parallelism, most of it is spe
ulative and therefore potentially redundant.

Data Parallelism with Pruning. In order to
ontrol the degree of spe
ulative parallelism in

the algorithm we for
e the evaluation of only an initial segment in the list of possible next positions.

We
all the length of this segment the `for
e length'. This parameter therefore represents a handle

to tune the degree of spe
ulative
omputation in the program. We have experimented with stati

for
e lengths as well as dynami
 for
e lengths that depend on the level in the sear
h tree. To

date the best results have been obtained from using a stati
 for
e length as shown in the
ode in

Figure 4. The strategy in this
ode
he
ks the value of the global variable for
e len to de
ide

how many possible next moves to evaluate. Sin
e strategies are simply Haskell fun
tions, the

prelude fun
tion take for sele
ting an initial segment of a list
an be used together with the

orresponding fun
tion drop, whi
h returns the rest of the list. Whereas rnf for
es the evaluation

of the whole list of approximations
orresponding to a possible next move, rwhnf only evaluates

the top level list
ell, delaying any further
omputation. Note that this pruning version returns a

list of evaluations and therefore does not use a foldr fun
tion for
ombination.

Measurements. In order to demonstrate the e�e
t of the for
e length parameter, Figure 5

ompares the dynami
 behaviour of Alpha-Beta sear
h with a simple ti
-ta
-toe game, using two

di�erent for
e lengths. These a
tivity pro�les show on the x-axis time and on the y-axis the

umulative number of running, runnable, fet
hing, and blo
ked threads, visualised as areas of

di�erent
olour. In all test runs we used a realisti
 GranSim setup modelling a tightly
onne
ted

distributed memory ma
hine with 32 pro
essors, a laten
y of 64 ma
hine
y
les, and pre-fet
hing

of data. In this
ase in
reasing the for
e length improves the average parallelism from 10.6 to 29.9,

but the runtime only drops from 11.4 to 8.2 M
y
les. (Throughout the paper time is measured in

ma
hine
y
les.) This indi
ates a high degree of spe
ulative
omputation in the right hand graph.

More detailed measurements of this algorithm show that the largest speedup of 15.7 is obtained

from a setup with a for
e length of 4. Of
ourse, the optimal for
e length depends on the position

to be analysed. For example if a winning position is found early on in the sequential algorithm only

a poor speedup is a
hieved. However, with this additional parameter it is possible to
ontrol how

mu
h e�ort should be invested into potentially redundant work. Con
rete runtimes and speedups

for various variants of this algorithm and for di�erent for
e lenghts are given in [LT97℄.

10

minimax_mg 3 +RTS -bP -bp32 -bl64 -b-G -by2 -be -H10M

running runnable fetching blocked
0 2.0 M 4.0 M 6.0 M 8.0 M 10.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

55

60

65
Average Parallelism = 10.6

 cycles M11.4Runtime =

GrAnSim minimax_mg 3 +RTS -bP -bp32 -bl64 -b-G -by2 -be -H10M

running runnable fetching blocked
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Average Parallelism = 29.9

 cycles M6.2Runtime =

GrAnSim

Figure 5: Data parallel versions with stati
 for
e lengths of 0 and 4

4.2.3 Dis
ussion

The main interest in this algorithm lies in the interplay between lazy and parallel evaluation.

Sin
e the eÆ
ien
y of this algorithm relies on the lazy traversal of the sear
h tree, this laziness

must be preserved in the parallel algorithm. Measurements in [LT97℄ show that in some
ases a

naive parallel algorithm without pruning is faster than a parallel algorithm with pruning, be
ause

in the latter the data parallel strategy destroys almost all possibilities of pruning, resulting in a

signi�
ant amount of redundant work.

On the other hand, Figure 5 shows that a
onservative approa
h towards parallelism in the

pruning version yields a very poor degree of parallelism. In order to improve the eÆ
ien
y of the

parallel version we had to introdu
e spe
ulative parallelism into the program. We had to add

an additional parameter to the key fun
tion in the program and we used strategies in order to

express the spe
ulative
omputation based on this parameter. Although the runtime-system of

GranSim and GUM does not automati
ally kill threads that turn out to be unne
essary, thus

running the risk of wasting resour
es, the resulting performan
e
learly ex
eeds the
onservative

parallel version. One diÆ
ulty in the tuning of the algorithm then lies in �nding the right level

of spe
ulation in the program. In pra
ti
e, this has to be
hosen based on the
on
rete sear
h

problem that is implemented via an Alpha-Beta sear
h algorithm.

4.3 A

ident Bla
kspots

4.3.1 Program Des
ription

The University of London Centre for Transport Studies wishes to analyse road traÆ
 a

ident

data. Given a set of poli
e a

ident re
ords (modi�ed to preserve priva
y) the task is to dis
over

a

ident bla
kspots: lo
ations where two or more a

idents have o

urred. A number of
riteria

an be used to determine whether two a

ident reports are for the same lo
ation. Two a

idents

may be at the same lo
ation if they o

urred at the same jun
tion number, at the same pair of

roads, at the same grid referen
e, or within a small radius of ea
h other. The radius is determined

by the
lass of the roads, type of the jun
tion et
. The problem is obviously data-intensive, and

too
omplex for
onventional database query languages like SQL.

Lo
ating bla
kspots amounts to
ombining several partitions of a set into a single partition.

For example if the partition on road pairs is {{2,4,5},{3},{6,7}} and on grid referen
es is

{{2,5},{3},{4,6},{7}}, the
ombined partition is {{2,4,5,6,7},{3}}. The problem of union-

ing disjoint sets, union �nd, has been mu
h studied by algorithm designers as it has an interesting

sequential
omplexity. For n union and m �nd operations, an algorithm with an amortised
om-

plexity of O(n + F(m,n))
an be given, where F is a very small fun
tion (the inverse of the

11

Table 1: Idealised simulation

Parallel Variant Work Average Run Time

(M
y
les) Parallelism (M
y
les)

Pipeline only 327 1.2 273

Par. Pipeline Stages

327 2.8 124

Par. Pipeline Stages

& pre
onstru
ted Ixs 304 3.5 87

Geographi
ally

Partitioned (Tiled) 389 3.7 105

A
kermann fun
tion) [Tar75℄. These RAM algorithms are not dire
tly appli
able in our appli
a-

tion be
ause not all of a large data set may be randomly a

essed in memory. We have adopted

an index-, or tree-, based solution with
omplexity O(n log n) if n is the number of elements in

the sets. The motivation for this
hoi
e is that for very large data sets not all of the tree need be

memory resident at any time.

Sequential Implementations. The appli
ation was originally written at the Centre for Trans-

port Studies [WH96℄ in PFL and has subsequently been rewritten in Haskell. PFL is an interpreted

fun
tional language [PS93℄, designed spe
i�
ally to handle large dedu
tive databases. Unusually

for a fun
tional language, PFL provides a uniform persistent framework for both data and pro-

gram. The PFL program uses sele
tors, a spe
ial bulk-data manipulating
onstru
t, and hen
e an

algorithm that is slightly di�erent from that used in the Haskell program. It
omprises approxi-

mately 500 lines.

The Haskell implementation
onstru
ts a binary sameSite relation
ontaining an element for

ea
h pair of a

idents that mat
h under one of the four
onditions. The
ombined partition is

formed by repeatedly �nding all of the a

idents rea
hable in sameSite from a given a

ident. The

program has four major phases: reading and parsing the �le of a

idents; building indi
es over

the a

ident data;
onstru
ting sameSite, and indi
es over sameSite; forming the partition. The

program is a 300-line module, together with 3 spe
ialised library modules totalling 1300 lines.

The original data set
omprises 7310 a

ident reports, and the programs dis
over 1229 multiple-

a

ident sites where a total of 5450 a

ident o

ur. The programs are run on similar, but not

identi
al, workstations: PFL on a Sun ELC, and Haskell on a Sun Spar
 Classi
. The runtimes

of the programs are as follows, PFL: 1105 se
onds, Haskell: 123 se
onds. The faster exe
ution of

the Haskell program is attributed to it being both
ompiled and highly optimised, where PFL is

an interpreted resear
h language. More measurements of the PFL and Haskell programs, together

with a more detailed dis
ussion
an be found in [THLP98℄.

4.3.2 Parallelisation

Simulated Parallel Variants. Following the guidelines, we initially investigated the appli
a-

tion's parallelism using an idealised simulation. On
e adequate parallelism was obtained, we used

a realisti
 simulation of our �rst 4-pro
essor shared-memory target ma
hine. Tables 1 and 2

report the results obtained from the simulators when just 1000 a

idents are partitioned, runtimes

and work are in units of 10

6

GranSim ma
hine
y
les.

Pipeline only. The �rst version simply
onverted the 4 phases of the program outlined in

se
tion 4.3.1 into a pipeline. The speedup of 1.2 is low be
ause the pipeline is blo
ked by the trees

passed between stages.

Parallel Pipeline Stages. The next version introdu
es parallelism within ea
h pipeline stage

using a variety of paradigms, as dis
ussed below.

12

Table 2: Realisti
 SPARCserver simulation

Parallel Variant Work Average Run Time

(M
y
les) Parallelism (M
y
les)

Par. Pipeline Stages

& pre
onstru
ted Ixs 393 2.3 171

Geographi
ally

Partitioned (Tiled) 394 3.7 105

Table 3: Monolithi
 and tiled runtimes

Program Variant Work Average Run Time

(M
y
les) Parallelism (M
y
les)

Sequential

Monolithi
 498 1.0 498

Sequential Tiled 394 1.0 394

Parallel Tiles 394 3.7 105

Parallel Pipeline Stages and Pre
onstru
ted Indi
es. Parallelism is further improved

by merging the �rst two pipeline stages. That is, the indi
es on the a

ident data were
onstru
ted

before the program is run, and the program reads the indi
es from a �le rather than
onstru
ting

them. The resulting parallelism is satisfa
tory on an idealised simulation of a 4-pro
essor ma
hine,

but poor under a realisti
 simulation. The poor realisti
 results are due to the �ne grain of

parallelism and the volume of data being
ommuni
ated.

Geographi
ally Partitioned (Tiled). A very di�erent,
oarse-grained, parallel stru
ture

an be obtained by splitting the a

ident data into geographi
al areas. Ea
h area, or tile,
an

be partitioned in parallel before aggregating the results, using this standard te
hnique [MS95℄.

A

idents o

urring near the edges of a tile must be treated spe
ially. This approa
h is only

feasible be
ause every a

ident has a grid referen
e and we assume that a

idents o

urring more

than 200m apart
annot be at the same site. A

idents o

urring within 100m of the nominal edge

between two tiles are dupli
ated in both tiles. Splitting the original data into 4 tiles results in a

4% in
rease in data volume. As a result of the dupli
ated border a

idents, some multiple-a

ident

sites may be dis
overed in more than one tile.

Breaking the data into tiles redu
es the work required to form a partition as long as the

the border is suÆ
iently smaller than the body of the tile. Less work is required be
ause ea
h

a

ident is
ompared with fewer a

idents: the trees
onstru
ted during the partition are smaller.

Table 3 shows the runtimes for a sequential partition of the original (monolithi
) set of a

idents,

a sequential partition of the data in 4 tiles, and a parallel partition of the 4 tiles. More formally,

for the n a

idents in the monolithi
 data, the algorithm is O(n logn), whereas if we assume that

the borders are suÆ
iently small, then the tiled algorithm is O(n logn=4).

Parallel Ma
hine Measurements. The program is measured on two very di�erent ma
hines,

making use of the portability of the GUM runtime system. One is a shared-memory ar
hite
ture

and the other distributed-memory. The shared-memory ma
hine is a Sun SPARCserver with 4

Spar
 10 pro
essors and 256MB of RAM. The ma
hine is shared with other users, but measure-

ments are performed when it is very lightly loaded. The distributed-memory ma
hine is a network

of up to 16 Sun 4/15 workstations ea
h with 24MB of RAM, and
onne
ted on a single ethernet

segment. Both ar
hite
tures use a shared �le system, i.e. any PE
an a

ess any �le. On the

13

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p
ee

d
u
p

No. Processors

Sun Workstation Network, 40 Heterogeneous Tiles

Absolute Speedups
Relative Speedups

Ideal Speedups

0

1

2

3

4

5

0 1 2 3 4

S
p
ee

d
u
p

No. Processors

Sun SPARCserver, 40 Heterogeneous Tiles

Absolute Speedups
Relative Speedups

Ideal Speedups

Figure 6: Speedups of Bla
kspots on heterogeneous tiles

network of workstations the �les are stored on a single �le server and a

essed via NFS.

Data. The original data set of 7310 a

ident reports o

upies 0.3MB and is too small to obtain

good results on the parallel ma
hines. For the purposes of this se
tion, the data is repli
ated 6

times. The larger data set
ould be kept in larger tiles, or in more tiles of the same size, and

the latter approa
h is taken for the following reasons. As shown in Se
tion 4.3.2, as long as the

tiles are large relative to the border area, many smaller tiles are more eÆ
ient than a few large

tiles. Peak resour
e usage is redu
ed be
ause if there is one tile per PE then all of the �le reading

o

urs at the start of the program, indu
ing intense network traÆ
. With mulitple tiles per PE

the �le reading is spread through the program exe
ution. Multiple tiles utilise the dynami
 load

management provided by GUM, demonstrating that the GpH program is independent both of

the number of PEs and of the number and size of tiles. In
ontrast a small number of large tiles

ould be stati
ally allo
ated to PEs. However it is a tedious task to maintain the allo
ation as the

number of tiles and PEs
hange.

The repli
ated data o

upies 1.8 MB and is split into 40 tiles with two di�erent sizes. There

are 32 small tiles, ea
h
ontaining approximately 1000 a

idents and o

upying 37KB, and 8 large

tiles ea
h
ontaining approximately 2000 a

idents and o

upying 73KB.

Program. Only one
hange is required to the GranSim version of the program to enable it

to run under GUM. GUM pro
esses don't inherit �le handles from the main thread, and hen
e

to permit them to read �les the program uses the `unsafe' C-interfa
e supported by GHC [LP95℄.

On both ma
hines the program is warm started, i.e. it is run at least on
e before measurements

are taken. Warm starts redu
e runtime be
ause the data is preloaded into RAM disk
a
hes in

the �le system.

Measurements. Figure 6 shows the speedups obtained when the Bla
kspots program is run on

both the SPARCserver multipro
essor and the network of workstations. In ea
h graph the top

line is linear speedup. The se
ond line is the relative speedup, i.e.
ompared to a single pro
essor

running the parallel program. The third line is the absolute or wall-
lo
k speedup, i.e.
ompared to

a single pro
essor running the optimised sequential
ode. The workstation speedups are good, with

16 workstations relative speedup rea
hes 12 and absolute speedup rea
hes 10. The 4-pro
essor

SPARCserver runtime is signi�
antly less than on the workstations, but the speedups are less

impressive, rea
hing 2.8 relative and 2.2 absolute.

S
aling. In addition to speedups, an important measure for data-intensive appli
ations is s
aleup,

i.e.
an a ma
hine twi
e the size pro
ess twi
e the volume of data in the same time? Figure 7

shows the s
aleup for the two ma
hines. There are as many large tiles as there are pro
essors. The

14

6

8

10

12

14

0 1 2 3 4 5

R
u
n
ti

m
e

(S
ec

s)

No. Processors & Data-set Size

Sun SPARCserver

User Time
User+System

Elapsed

Sequential

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14 16

R
u
n
ti

m
e

(S
ec

s)

No. Processors & Data-set Size

Sun WorkStation Network

User Time
User+System

Elapsed

Sequential

Figure 7: Appli
ation s
aleup

s
aleup of the workstations is satisfa
tory: a 44% in
rease in runtime between 1 and 16 pro
essors.

Also note that mu
h of the in
rease o

urs as soon as a se
ond pro
essor is added. S
aleup on the

SPARCserver is not nearly so impressive: a 32% in
rease in runtime with just 4 pro
essors.

4.3.3 Dis
ussion

The GpH Bla
kspots program solves a real problem using real data and exhibits good wall-

lo
k speedups and a

eptable s
aleup on two very di�erent parallel ar
hite
tures. The sequential

Haskell implementation is an order of magnitude faster than the (interpreted) PFL implementa-

tion, and on 16 workstations the GpH program is an order of magnitude faster still.

The simulator and strategies have allowed us to
arry out low-
ost experiments with several

possible parallel variants of the program. The tiled variant is sele
ted for exe
ution on the parallel

ar
hite
tures be
ause it delivers good
oarse-grained parallelism under both idealised and realisti

simulation. In some ways the parallelism exhibited by this variant is insuÆ
iently irregular to

exhibit the strengths of GpH.

The parallelism exploited by the variants of the program is very di�erent. For simpli
ity we

ontrast two extremes, by
omparing the parallel-pipeline-stages variant with the tiled variant.

The parallel-pipeline-stages variant introdu
es parallelism within ea
h pipeline stage using a

variety of paradigms. The �le reading and parsing stage is made data parallel by partitioning

the data and reading from n �les. Control parallelism is used to
onstru
t the a

ident indi
es.

The stages
onstru
ting the same-site relation and the partition both use benign spe
ulative

parallelism. A total of 8 strategies are used in the parallel-pipeline-stages variant, some of whi
h

are hand
rafted. The strategy that spe
ulatively evaluates the �rst n elements of a list is used

twi
e within the program, is similar in stru
ture to the strategy in Alpha-Beta and may be useful

in other programs.

The tiled variant has very simple top-level data parallelism. Essentially the partition fun
tion is

mapped in parallel over a list of tiles, prior to being aggregated to produ
e the result. The parallel

map fun
tion is a standard parallel higher-order fun
tion. In all the variants parallelisation entails

minimal restru
turing of the algorithm.

4.4 Naira

4.4.1 Program Des
ription

Naira is a parallel, parallelising
ompiler for a ri
h, purely fun
tional programming language. It

pro
esses, and its front-end is written in, a subset of the standard Haskell 1.2 language with

type
lasses as the main feature omitted. The front-end
omprises about 5,000 lines of Haskell

15

ode organised in 18 modules. The ba
k-end is written, following popular tradition, in the C

programming language.

The main motivation for writing Naira is to explore the prospe
ts and problems of parallelising

a modern fun
tional language
ompiler [Jun98℄. Another aspe
t is to make the
ompiler a

ept

parallelised program inputs and to generate multithreaded parallel
ode so that we
an assess the

eÆ
ien
y of the resulting parallel
ode. These two aspe
ts of Naira | that it is itself parallel

and that it generates parallel
ode | makes it, to our knowledge, the �rst fun
tional language

ompiler of its kind. It is also the se
ond largest parallelised Haskell program, following the Lolita

natural language pro
essor des
ribed in Se
tion 4.5.

The front-end of Naira, whi
h we parallelise,
ompiles to a graph-redu
ing parallel abstra
t

ma
hine with a strong data
ow in
uen
e. In this se
tion we highlight the stru
ture, parallelisation

and performan
e analysis of the
ompiler on the GranSim simulator as well as on a network of

Sun workstations. A more detailed exposition of the various aspe
ts of the
ompiler is given

in [JDH97℄ and in the PhD Thesis [Jun98℄.

The top-level stru
ture of the
ompiler in terms of the pipeline of its main phases is shown

in Figure 8. The �rst, analysis, pass
onsists of the lexi
al analyser and the parser. The next

four passes implement the pattern mat
hing
ompiler, the lambda lifter, the type
he
ker and the

intermediate language optimiser, respe
tively. The detailed organisation and implementation of

these passes is des
ribed elsewhere [Jun98℄.

Lexer and
Parser

Pattern
matcher

lambda
lifter

Type
checker

Lambda
lifter Back end

OptimisermkDefs lLift

optimiseParseTree

tcModule

showModule

parseModule

Figure 8: The pipeline stru
ture of Naira's main phases

The two-way split after the lambda lifting pass indi
ates that the result of the lambda lifter

an be piped simultaneously to both the type
he
ker and the optimiser. These latter two phases

an pro
eed in parallel
ombining their results, using showModule, to produ
e the intermediate

ode whi
h is input to the
ode generator.

4.4.2 Parallelising Naira

The
ompiler is parallelised using evaluation strategies [THLP98℄ and an allied parallel name-

server, whi
h is used to minimise data-dependen
ies and thus expose more parallelism [JDH97℄.

The parallelisation pro
eeded top-down, starting with the top-level pipeline, then pro
eeding to

the lower-levels to parallelise four main passes of the
ompiler | the pattern mat
her, lambda

lifter, type
he
ker, and the optimiser | as summarised below.

Top-level Parallelisation. The top-level pipeline is parallelised in a data-oriented fashion by

annotating (with evaluation strategies) the intermediate data stru
tures used to
ommuni
ate

analyses results between the
ompiler phases. The laziness of the language is
ru
ial here to

ensure that the output of one phase is made available in
rementally to the next phase(s) so that

the analyses in the phases
an pro
eed in parallel.

Figure 9 shows the fun
tion, analyseModule, that implements the top-level pipeline. We use

strategi
 fun
tion appli
ation, $||, to
ombine the individual passes into a
omplete program and

at the same time de�ne parallelism over the intermediate data stru
tures.

16

analyseModule fileName modName imports exports symbTabs defs =

 showModule modName impVals dats exports $||
 parPair parForceList parForceList $
 fork (optimiseParseTree fileName exports stOpt aInfo,

 tcModule fileName stTE exports tInfo syns) $|| parForceList $
 lLift fileName stPM $|| parForceList $
 mkDefs fileName stPM $|| parForceList $
 funs

 where (stPM,stTE,stOpt) = symbTabs

 (dats,syns,funs) = defs

 (aInfo,tInfo,impVals) = imports

fork (f, g) inp = (f inp, g inp)

parForceList = parList rnf

Figure 9: analyseModule rewritten using pipeline strategies

Parallelising Individual Passes. The pattern mat
her, lambda lifter and the intermediate

language optimiser are parallelised, generally, in a data-parallel manner by ensuring that the

respe
tive analyses in ea
h phase are applied to all fun
tion de�nitions in a module in parallel.

Results of parallelising ea
h of these phases gave only modest speedups of up 2.4 under an idealised

GranSim simulation. A more detailed dis
ussion of the parallelisation of these phases is reported

in [Jun98℄.

Cost-
entre pro�ling [SP97℄ reveals that, as is often the
ase, the type
he
ker is the most

expensive part of the
ompiler, both in terms of spa
e usage and runtime. Therefore, in order to

get good overall parallel performan
e, more attention was paid to the parallelisation of the type

inferen
e phase than to the other
ompiler phases.

The type
he
ker is parallelised using a parallel name server to minimise data dependen
ies

and thus avoid sequentialising the inferen
e pro
ess. For instan
e, to type-
he
k two quantities d

1

and d

2

, we analyse them simultaneously in the
urrent type environment, ea
h returning a type

and a substitution re
ord. If a variable v
ommon to both d

1

and d

2

is assigned (possibly di�erent)

types t

1

and t

2

from these two independent operations, t

1

and t

2

will be uni�ed in the presen
e

of the resulting substitutions and the uni�ed type asso
iated with v.

Table 4: Performan
e of Naira with idealised and realisti
 8-pro
essor GranSim simulations

Idealised Simulation Realisti
 Simulation

SMP DMP

Avg. Par. Speedup Avg. Par. Speedup Avg. Par. Speedup

Best 8.4 8.13 4.9 4.68 5.6 5.32

Worst 1.9 1.40 1.8 1.39 1.8 1.35

Mean 5.5 4.36 4.0 3.95 3.5 3.55

Parallelism has been exploited at four di�erent stages in the type
he
ker:

� in a data-parallel fashion when type-
he
king de�nitions in a module;

� in type-
he
king lo
al de�nitions in parallel with the top-level ones;

� on
alls to frequently used fun
tions; and

� in type-
he
king aggregate expressions.

The �rst stage of the parallelisation yields signi�
ant parallelism and speedup with the paralleli-

sation of the other stages also leading to modest improvements. Most notably, the overall perfor-

17

man
e obtained for parallelising the type
he
ker is higher than that obtained after parallelising

the top-level pipeline (the latter a
hieved a mean speedup of 2.4 in an idealised simulation).

Measurements. The
ompiler has been measured on both idealised and standard setups of

GranSim simulating both shared-memory (SMP) and distributed memory (DMP) ar
hite
tures.

The results are summarised in Table 4. The idealised simulation a
hieved a speedup of up to

8.13, with 4.36 as the mean value for all inputs. The results of realisti
 simulations on a 8

pro
essor ma
hine show a mean speedup of 3.95 in a shared-memory setup and of 3.55 in a

distributed-memory setup. The input programs used in the experiments are the
ompiler's own

sour
e modules, 18 in total with 5,000 lines of
ode. The �gures in the table summarise the best,

worst and mean results for all modules using idealised, shared-memory and distributed-memory

simulations.

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

S
p

ee
d

u
p

No. of Processors

Naira’s Speedups on a Network of Sun Workstations

Absolute Speedups
Relative Speedups

Ideal Speedups

Figure 10: Speedup summary of Naira on GUM

Naira has also been measured on a network of Sun workstations (SPARCstations 4/20), running

Solaris 2 and
onne
ted to a
ommon Ethernet segment. Figure 10 shows the result of measuring

Naira on GUM. Overall this �gure shows a wall-
lo
k speedup of 2.46, and a relative speedup

of 2.73 on a network of �ve workstations. These results are in agreement with those obtained

using GranSim whi
h predi
ted a speedup of 3.01 simulating su
h a high laten
y network (this

GranSim estimate is based on a simulated distributed-memory ma
hine with a laten
y of 50

K
y
les).

4.4.3 Dis
ussion

At the overall parallelisation stage, where we a
tivated parallelisation
ode in all the stages, we

found that the parallelism measured fell short of the sum of the parallelism �gures obtained in

the individual stages. This indi
ates that the evaluation strategies in the di�erent pla
es interfere

with one another. Without a more detailed parallel pro�ler it is quite hard to understand and

predi
t the performan
e of this rather large program: small
hanges in the parallelisation
ode

an lead to signi�
ant
hanges in parallel behaviour for some inputs.

18

Further experimentation with di�erent evaluation strategies
ould not a
hieve signi�
ant over-

all performan
e improvements. This led us to re-examine more
losely the algorithms on whi
h

the individual phases of the
ompiler were based. We found that
omposition of substitutions,

whi
h is performed quite often in Naira, forms the main bottlene
k in the parallel performan
e of

the
ompiler. We revised our implementation of this algorithm and �ne-tuned our strategi

ode

resulting in substantial performan
e improvements (see [Jun98℄ for details).

We have experimented with lists and sorted (unbalan
ed) binary trees to represent the data

stru
tures used in the
ompiler. Although a tree stru
ture exposes parallelism faster than a list

(for the data-parallel pro
essing of the
omponents), the
omputations needed to maintain the

sorting of the trees
an be more expensive. Consequently, our experimental results using these

representations were, by and large, the same.

Careful study of the parallelism pro�les, using the tools of [SP97, HLT97℄, reveals that �le

I/O and parsing a

ount for a signi�
ant part of the remaining sequential
omponent of the

omputation and therefore by Amdahl's law represent a major limitation on further optimisation.

Parallelising I/O
an be quite diÆ
ult, and is beyond the s
ope of the work reported here.

4.5 Lolita

4.5.1 Program Des
ription

This se
tion dis
usses the Lolita natural language engineering system [MSS94℄, whi
h has been

developed at Durham University. A more detailed presentation of the parallelisation together

with measurements of the parallel runtime behaviour
an be found in [LMT

+

97℄. The goal of

parallelising this appli
ation is mainly to redu
e runtime but also to in
rease fun
tionality within

an a

eptable response-time. The overall stru
ture of the program bears some resemblan
e to that

of a
ompiler, being formed from the following large stages:

� Morphology (
ombining symbols into tokens; similar to lexi
al analysis);

� Synta
ti
 Parsing (similar to parsing in a
ompiler);

� Normalisation (to bring senten
es into some kind of normal form);

� Semanti
 Analysis (
ompositional analysis of meaning);

� Pragmati
 Analysis (using
ontextual information from previous senten
es).

Depending on how Lolita is to be used, a �nal additional stage may perform a dis
ourse analysis,

the generation of text (e.g. in a translation system), or it may perform inferen
e on the text to

extra
t the required information.

Central to Lolita's
exibility is the semanti
 network,
alled SemNet, a graph based knowledge

representation used in the
ore of Lolita. In SemNet
on
epts and relationships are represented

by nodes and ar
s respe
tively, with knowledge being eli
ited by graph traversal. The task of the

analysis stages is to transform the possibly ambiguous input into a pie
e of SemNet. Appli
ation-

dependent ba
kend stages
an then extra
t pie
es of the SemNet and present it in the required

form. Currently, SemNet
omprises approximately 100,000 nodes or 12MB.

Sin
e every text has to be translated into a pie
e of SemNet the parallelisation of this pro
ess

o�ers the largest payo� in redu
ed runtime. Therefore, most of our e�ort has gone into the

parallelisation of this part of the system.

4.5.2 Parallelisation

Pipeline Parallelism. Our immediate goal in parallelising this system is to expose suÆ
ient

parallelism to fully utilise a 4-pro
essor shared-memory Sun SPARCserver, our target ma
hine.

Following our guidelines for developing parallel programs, we use a pipeline approa
h to a
hieve

this relatively small degree of parallelism. Ea
h stage listed above is exe
uted by a separate thread.

19

These threads are linked to form a pipeline. In
ontrast to
lassi
al pipelines, whi
h require a large

input set to a
hieve good parallelism, the lazy evaluation me
hanism makes it possible to overlap

stages of the pipeline operating on the same pie
e of data.

In order to analyse the parallelism generated by this version it is
ru
ial to understand how

this algorithm depends on a lazy evaluation me
hanism. The parsing stage generates a forest of

possible parse trees. The analysis stages then examine individual trees and pi
k the most likely

tree as the result. Sin
e the analyses in general do not require the full parse tree, it is often

possible to avoid generating all of an unlikely tree in the parsing stage, although its probability is

determined no earlier than in the analyses stages.

This dynami
 behaviour requires spe
ial
are in the design of the parallel algorithm. It must

be guaranteed that no unne
essary parse trees are generated, be
ause sequential pro�ling indi
ates

that parsing amounts to up to 20% of the overall exe
ution time.

Data-Oriented Parallelism. In order to add data-oriented parallelism to the above program

we de�ne strategies on the
omplex intermediate data stru
tures (e.g. parse trees) whi
h are used

to
ommuni
ate between these stages. This approa
h simpli�es the top-down parallelisation of

this very large system, sin
e it is possible to de�ne the parts of the data stru
ture that should be

evaluated in parallel without
onsidering the algorithms that produ
e the data stru
tures. It is

not ne
essary to break the abstra
tion provided by the sub-fun
tions.

Parallel Stages. Finally, we introdu
e parallelism in the most time
onsuming stage, the syn-

ta
ti
 parsing stage. Again we have used
ost-
entre pro�ling to determine the most expensive

stage in the program. The parallelism in this module has the overall stru
ture of a parallel tree

traversal. To avoid an ex
ess of parallelism in this stage it is ne
essary to use a thresholding

strategy, whi
h improves the granularity of the parallel threads. This strategy is applied to a

system parameter, whi
h re
e
ts the depth in the tree. In fa
t the same polymorphi
 thresholding

strategy
an be applied to two lists of di�erent types.

Spe
ulative Parallelism. Spe
ulative parallelism
an be used to improve the quality of the

analysis by applying the semanti
 and pragmati
 analyses in a data-parallel fashion on di�erent

possible parse trees for the same senten
e. Be
ause of the
omplexity of these analyses the se-

quential system always pi
ks the �rst parse tree, whi
h may
ause the analysis to fail, although it

would su

eed for a di�erent parse tree.

Combined Parallelism. Figure 11 shows the parallel stru
ture arising when all of the sour
es

of parallelism des
ribed above are used. Note that the analyses also produ
e information that is

put into a `global
ontext'
ontaining information about the semanti
s of the text. This
reates

an additional dependen
e between di�erent instan
es of the analysis (indi
ated as verti
al ar
s).

Lazy evaluation ensures that this does not
ompletely sequentialise the analyses, however.

The
ode of the top level fun
tion wholeTextAnalysis in Figure 12
learly shows how the al-

gorithm is separated from the dynami
 behaviour in ea
h stage. The only
hanges in the algorithm

are

1. the use of parList in the de�nition of rawParseForest to des
ribe the data parallelism in

the parsing stage;

2. the evalS
ores strategy whi
h de�nes spe
ulative data parallelism in the analysis stages

over possible parse trees; and

3. the use of strategi
 fun
tion appli
ations to des
ribe the overall pipeline stru
ture.

The strategies used in parse2prag are of spe
ial interest. The parse forest rawParseForest

ontains all possible parses of a senten
e. The semanti
 and pragmati
 analyses are then applied

to a prede�ned number (spe
i�ed in global) of these parses. The strategy that is applied to the

20

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Back End

Morpholgy Synt. Parsing

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

stream

Text

SGML Tree Parse Forest Parse Tree

Normalisation

Sentence 1

Sentence 3

Sentence 2

Figure 11: Detailed Stru
ture of Lolita

list of these results (parList (parPair ...)) demands only the s
ore of ea
h analysis (the �rst

element in the triple), and not the
omplete parse tree. This s
ore is used in pi
kBestAnalysis

to de
ide whi
h of the parses to
hoose as the result of the whole text analysis. Sin
e Lolita

makes heavy use of laziness it is very important that the strategies are not too stri
t. Otherwise

redundant
omputations are performed, whi
h yield no further improvements in runtime.

Measurements. Realisti
 simulations of the pipeline parallel version of Lolita show an average

parallelism of 1.6, whi
h is rather satisfa
tory for only a few top-level
hanges in the program. The

parallelised parsing stage
an easily produ
e several hundred threads. Therefore it is important

to tune the thresholding parameter in this stage to avoid ex
ess parallelism. We have not system-

ati
ally measured the possible improvements in the quality of the result that should be possible

by the spe
ulative parallelism des
ribed above. A more detailed dis
ussion of the parallel variants

of Lolita is given in [LMT

+

97℄.

A realisti
 simulation of Lolita showed an average parallelism between 2.5 and 3.1, using just

the pipeline parallelism and parallel parsing. Sin
e Lolita was originally written without any

onsideration for parallel exe
ution and
ontains a sequential front end (written in C) of about

10{15%, we are pleased with this amount of parallelism. In parti
ular the gain for a set of rather

small
hanges is quite remarkable.

In
ontrast, under GUM with two pro
essors and small inputs we only obtain an average par-

allelism of 1.4 (see Figure 13). With more pro
essors the available physi
al memory is insuÆ
ient

and heavy swapping
auses a drasti
 degradation in performan
e, whi
h prohibits any wall-
lo
k

speedup. The reason for this behaviour is that GUM, whi
h is designed to support distributed-

memory ar
hite
tures uniformly, loads a
opy of the entire
ode, and a separate lo
al heap, onto

ea
h pro
essor. Lolita is a very large program, in
orporating large stati
 data segments (totaling

16MB), and requires 100MB of virtual memory in total in its sequential in
arnation.

Figure 13 shows the a
tivity pro�le of running Lolita under GUM with 2 pro
essors. The

sequential front end in Figure 13 is
aused by the sequential part of the parsing pro
ess. The

middle third of the graph shows a high degree of parallelism generated by the parallelised parsing

stage. In this setup we have tuned the thresholding parameter to produ
e only a small amount of

parallelism to avoid high memory
onsumption, whi
h is the main reason for not a
hieving further

redu
tions in runtime when using a 3 or 4 pro
essor setup. In the �nal third of the exe
ution the

pipeline parallelism of the analysis stages generates a good utilisation of the ma
hine.

21

wholeTextAnalysis opts inp global =

 result

 where

 -- (1) Morphology

 (g2, sgml) = prepareSGML inp global

 sentences = selectEntitiesToAnalyse global sgml

 -- (2) Parsing

 rawParseForest = map (heuristic_parse global) sentences ‘using‘ parList rnf

 -- (3)-(5) Analysis

 anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

 -- (6) Back End

 result = back_end anlys opts

-- Pick the parse tree with the best score from the results of

-- the semantic and pragmatic analysis. This is done speculatively!

parse2prag opts parse_forest global =

 pickBestAnalysis global $|| evalScores $
 take (getParsesToAnalyse global) $

 map analyse parse_forest

 where

 analyse pt = mergePragSentences opts $ evalAnalysis

 evalAnalysis = stateMap_TimeOut analyseSemPrag pt global

 evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses

analyseSemPrag parse global =

 prag_transform $|| rnf $
 pragm $|| rnf $
 sem_transform $|| rnf $
 sem (g,[]) $|| rnf $
 addTextrefs global $| rwhnf $
 subtrTrace global parse

back_end inp opts =

 mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $
 optQueryResponse opts $|| rnf $
 traceSemWhole $|| rnf $
 addTitleTextrefs $|| rnf $
 unifyBySurfaceString $|| rnf $
 storeCategoriseInf $|| rnf $
 unifySameEvents opts $| parPair rwhnf (parList (parPair rwhnf rwhnf)) $
 unpackTrees $| parPair rwhnf (parList rwhnf) $
 inp

Figure 12: The top level fun
tion of Lolita

4.5.3 Dis
ussion

The most intriguing aspe
t in the parallelisation of Lolita is that the parallelism is a
hieved using

a very small number of
hanges to the Haskell parts of the appli
ation. We have been able to

use a top-down approa
h of the parallelisation to an extent, whi
h would be very diÆ
ult in

a stri
t language. All of the parallelism has been spe
i�ed by evaluation strategies a
ting on

the data stru
tures passed between modules. As a result, the parallelism has been introdu
ed

without
hanging, and indeed without understanding most of the program. This abstra
tion is

ru
ial when working on an appli
ation of this size. For example, introdu
ing top-level parallelism

entailed
hanging just one out of around three hundred modules.

We have used spe
ulative parallelism in order to improve the quality of the results. This

underlines the importan
e of spe
ulative parallelism, whi
h we have already seen in parallelising

the Alpha-Beta algorithm. The integration of the C
ode into the parallel version
ompli
ated the

parallel algorithm be
ause foreign language
alls impli
itly fully evaluate their results, bypassing

22

lolita.exec +RTS -N2 -q -H48M -I48M

running runnable fetching blocked
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

55

60

64
Average Parallelism = 1.4

 ms101123Runtime =

GUM

Figure 13: A
tivity pro�le of Lolita run under GUM with 2 pro
essors

the strategi
 des
ription of the dynami
 behaviour. Finally, we have found a need for limited

support of persisten
e. The SemNet is a
on
eptually persistent data stru
ture, be
ause it is

required by every invo
ation of Lolita. In the absen
e of support for persisten
e the
urrent
ode

uses foreign language
alls to a
hieve eÆ
ient I/O. Again, these
alls interfere with the strategies

de�ned in the program.

The a
hieved average parallelism of Lolita lies between 2.5 and 3.1 under GranSim emulating

a 4-pro
essor shared-memory ma
hine. The
orresponding speedup, however, does not ex
eed

2.4. This is partly due to overhead
aused by very �ne-grained parallelism and partly due to

strategies that perform spe
ulative
omputations (although we avoided spe
ulation on potentially

expensive
omponents). The GUM version does not a
hieve signi�
ant wall-
lo
k speedups, yet.

This, however, is not due to a la
k of parallelism but due to the very high memory
onsumption

of the appli
ation, whi
h ex
eeds the available main memory in the
urrent setting.

4.6 LinSolv

4.6.1 Program Des
ription

The linear system solver that is dis
ussed in this se
tion, and in more detail in [Loi97℄, is an

appli
ation from the area of symboli

omputation and uses an approa
h that is very
ommon for

omputer algebra algorithms: a multiple homomorphi
 images approa
h [Lau82℄. The main idea

of this approa
h is to solve a problem in a set of simpler domains,
alled homomorphi
 images,

and then to re
onstru
t the overall solution from the solutions in the individual domains.

In the
ase of the LinSolv algorithm the original domain is Z, the set of all integer values,

and the homomorphi
 images are the domains Z

p

, the set of integers modulo p with p being a

prime number. The advantage of this approa
h be
omes
lear when the input numbers are very

big and ea
h prime number is small enough to �t into one ma
hine word. In this
ase the basi

arithmeti
 in the homomorphi
 images is ordinary �xed pre
ision arithmeti
 with the results never

ex
eeding one ma
hine word. No additional
ost for handling arbitrary pre
ision integers has to

be paid. Only in the
ombination phase will the big numbers appear again. In the
ase of Z as

original domain the well-studied Chinese Remainder Algorithm (CRA)
an be used in the
ombine

step [Lip71℄. This overall stru
ture of the algorithm is shown in Figure 14.

23

.. .

.. .

CRA

Zp1

Zp1

Zp1 pk
Zpk

pk

.. .

.. .

1pa 1pb

p1
x px

k

ba

s
tt

x

s
t

Z

Zpk

Z

p1

Z

Z

s

pa pb
k k

xList =

Cramer’s Rule

Forward Mapping

Lifting

Figure 14: Stru
ture of the LinSolv algorithm

In the solution phase we use an algorithm based on Cramer's rule, whi
h des
ribes how the

omponents of the result ve
tor
an be
omputed as the ratio of two determinants. Although

this algorithm is less eÆ
ient than alternatives like Gaussian elimination in the sequential
ase,

it is very attra
tive be
ause of its high potential of parallelism, yielding good s
alability. In this

algorithm the result is
omputed by evaluating n + 1 independent determinants, with n being

the size of the input matrix. The determinant
omputation itself
an be parallelised using a

divide-and-
onquer stru
ture.

Figure 15 shows the top level of the LinSolv algorithm. Note that xList is an in�nite list of

solutions in homomorphi
 images
orresponding to prime numbers in the in�nite list primes. The

CRA
omputation itself is hidden in list
ra, whi
h basi
ally performs a left asso
iative fold

operation, a

umulating the produ
t of all prime numbers met so far until this produ
t be
omes

larger than s

n

n! (n is the size of the matrix a and s is the maximal element in a and b). The

gen xList fun
tion has to
he
k whether the determinant in the homomorphi
 image generated

by the prime p is 0. In this
ase the result
annot be used in the lifting stage in order to
ompute

the overall solution. The
orresponding prime number is termed unlu
ky.

The strategy strat in the body of the let
onstru
t des
ribes the dynami
 behaviour of the

ode separately from the algorithmi

ode. For the sequential version the default strategy rwhnf is

used. The following se
tion dis
usses a strategy that des
ribes a parallel version of this algorithm.

4.6.2 Parallelisation

Algorithm. In the parallelisation of this algorithm it is important to de�ne evaluation degree

and parallelism over the in�nite list xList. Without
ontrolling the parallelism on this data

stru
ture the CRA will demand ea
h solution sequentially, be
ause the most eÆ
ient version of

the CRA uses a list fold operation.

The de�nition of strat in Figure 16 represents the �nal strategy in the performan
e tuning

of the algorithm. In order to avoid a dependen
y between the solution phases, this strategy

guesses the number of primes needed to
ompute the overall result and uses a parListN strategy

to generate data parallelism over an initial segment of the in�nite list xList of the solutions in all

homomorphi
 images. Using parList inside the par sol strat strategy
auses ea
h
omponent of

the result to be evaluated in parallel. However, it is ne
essary to
he
k whether the homomorphi

image of the original matrix is zero to avoid redundant
omputation if the prime is unlu
ky. In

24

linSolv a b =

 let

 {- forward mapping and solution via Cramer’s rule -}

 ...

 xList :: [[Integer]] -- infinite list of solutions in hom images

 xList = gen_xList primes

 gen_xList (p:ps) =

 let

 modDet = toHom p (determinant (toHom p a))

 pmx = [toHom p (determinant (replaceColumn j (toHom p a) (toHom p b)))

 | j <- [jLo..jHi]]

 ((iLo,jLo),(iHi,jHi)) = bounds a

 in

 if modDet /= 0

 then (p : modDet : pmx) : gen_xList ps

 else gen_xList ps

 {- combination via CRA -}

 ...

 detList = projection 1 xList

 det = list_cra pBound primes detList detList

 x_i i = list_cra pBound primes x_i_List detList

 where x_i_List = projection (i+2) xList

 x = map x_i [0..n-1]

 in

 x ‘using‘ strat

Figure 15: Top level
ode of the LinSolv algorithm

strat =

 rnf noOfPrimes ‘seq‘
 parListN noOfPrimes par_sol_strat xList ‘par‘
 parList rnf xs
 where

 par_sol_strat :: Strategy [Integer]

 par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘
 if modDet /= 0

 then parList rnf pmx
 else ()

Figure 16: Strategy strat of the parallel LinSolv algorithm

order to minimise data dependen
ies in the algorithm we do not already
he
k the determinant

when
omputing noOfPrimes. If some primes turn out to be unlu
ky the list
ra will evaluate

more results by demanding a so far unevaluated list element. The �nal strategy appli
ation

parList rnf xs spe
i�es that all elements of the result should be
ombined in parallel. Without

this
omponent there would be a sequen
e of
ombination steps at the end of the exe
ution, one

for ea
h element in the result ve
tor.

Measurements. In developing this parallel algorithm we have used GranSim in a realisti

setup, simulating a
losely-
onne
ted 32 pro
essor ma
hine. Whereas earlier versions showed

bottlene
ks at some points during the
omputation, the a
tivity pro�le for this �nal version in

Figure 17 shows a
onsistently high degree of parallelism.

Our measurements of LinSolv under GUM on a 3 pro
essor shared-memory ma
hine
orre-

spond to the behaviour predi
ted by the GranSim simulator. We a
hieved relative speedups of

up to 2.1 and absolute speedups of up to 1.7. More details of these measurements
an be found

in [Loi97℄.

In the performan
e tuning of this algorithm the visualisation tools have been
ru
ially im-

portant. Early parallel versions of the algorithm showed bottlene
ks
aused by the sequential

25

testLS_mg 2 +RTS -bP -bp32 -bl100 -bG -bQ0 -by2 -be -H32M

running runnable fetching blocked
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M

ta
sk

s

0

20

40

60

80

100

120

140

160

180

200

Average Parallelism = 25.6

 cycles M4.323Runtime =

GrAnSim

Figure 17: A
tivity pro�le of �nal LinSolv

demand on the solutions generated by the list-stru
tured lifting phase. This behaviour resulted

in a sequen
e of parallel exe
utions with regular drops in between. The
ode in Figure 16 avoids

this bottlene
k by guessing the number of primes that are needed and by using data parallelism

via a parListN strategy. A more detailed dis
ussion of the performan
e tuning of the parallel

algorithm is given in [Loi97℄.

4.6.3 Dis
ussion

Several properties of evaluation strategies have been important in parallelising the algorithm.

We made use of strategies being higher-order to des
ribe nested parallelism: an outer strategy

de�nes the parallelism over xList with a strategy par sol strat as argument that de�nes the

parallelism over the elements of this list. Thereby the strategy re
e
ts the nested data-stru
ture

over whi
h the parallelism is de�ned. The separation between algorithmi
 and behavioural
ode

made it possible to experiment with di�erent versions of the parallel
ode, without
hanging the

algorithm. This was very important during the performan
e tuning of the algorithm. It is worth

noting that all parallelism
an be des
ribed on top level, unlike in the pre-strategy
ode where a

lot of the parallelism was de�ned in sub-fun
tions.

The strategy in Figure 16 also demonstrates how
onservative parallelism
an be de�ned over

an in�nite data stru
ture. There is no need to rewrite the algorithmi

ode that generates the

data stru
ture in order to express a degree of parallelism that does not generate any spe
ulative

omputation.

The development and performan
e tuning of LinSolv predated the design of evaluation strate-

gies. This gives us the possibility to dire
tly
ompare the pre-strategy with a strategi
 version

of the
ode. The pre-strategy version of the
ode
ombined the
omputation of the result with a

spe
i�
 dynami
 behaviour suitable for parallelism. For example a tree-stru
tured CRA algorithm

has been used in order to for
e the
omputation of the individual solutions independently. Be
ause

some homomorphi
 images may turn out to be not suitable for
omputing the overall result, a

separate `fail handler' had to be used in order to
ompute more results if ne
essary. The result-

ing
ontrol parallelism yielded rather opaque
ode with parallelism de�ned in one sub-fun
tion,

namely the CRA. In
ontrast, the strategy version only uses data parallelism and
leanly separates

the parallelism from the algorithmi

ode.

The multiple homomorphi
 images approa
h is used in many
omputer algebra algorithms su
h

as resultant
omputation [HL94℄ and p-adi

omputation [LL93℄. It should be possible to use the

26

Table 5: Results summary

Program Lines of
ode Wall-
lo
k Simulated Best wall-
lo
k

speedup on speedup speedup

few pro
s (no. pro
s) (ar
h:no. pro
s)

(ar
h:no. pro
s)

Bla
kspots 1,300 3.14 (WkStn:4) 3.7 (4) 10.00 (WkStn:16)

Bla
kspots 1,300 2.16 (SMP:4) 3.7 (4) 2.16 (SMP:4)

Naira 5,000 2.33 (WkStn:4) 3.0 (4) 2.46 (WkStn:5)

Lolita 47,000 0.90 (SMP:2) 2.4 (4) 0.90 (SMP:2)

LinSolv 800 1.66 (SMP:3) 2.3 (4) 1.66 (SMP:3)

same overall stru
ture of parallelism for these versions, only repla
ing the fun
tion that guesses the

number of primes and the strategy de�ning the inner parallelism. In this
ase the polymorphism

of strategies enables a
ode reuse for de�ning parallelism.

5 Program Comparison

Where the previous se
tion des
ribed the implementation and measurement of individual pro-

grams, this se
tion dis
usses
ommon aspe
ts of the programs. We fo
us on the parallel paradigms

used in the programs, and the large-s
ale issues en
ountered. We also summarise the results al-

lowing approximate
omparison.

5.1 Comparative Measurements

The most signi�
ant result of this paper is that we are able to a
hieve modest wall-
lo
k speedups

for all of the programs, ex
ept Lolita. The simulated speedup for Lolita is good, and we believe

that it is only limitations on physi
al memory that prevent a wall-
lo
k speedup of Lolita.

It is also important to emphasise that the programs have been measured on several parallel

systems, utilising di�erent ports of the GUM runtime-system. In a separate paper [TBD

+

98℄

we fo
us on this aspe
t of ar
hite
ture-independent parallelism, and its pra
ti
al impa
t on the

development of parallel GpH programs. The following measurements are based on networks of

workstations and shared-memory multipro
essors, as detailed in Se
tion 4. The systems represent

two very di�erent
lasses of parallel ar
hite
tures: shared- and distributed memory ma
hines. The

wall-
lo
k speedups on both ar
hite
tures underline the
exibility of our parallel programming

system.

Table 5 summarises the results for ea
h program, and the
olumns are interpreted as follows.

The �rst
olumn gives the program name. The se
ond
olumn gives the approximate number of

lines of sour
e-
ode, in
luding libraries. The third
olumn is the wall-
lo
k speedup of the pro-

gram on a small number of pro
essors, together with the number of pro
essors and the parallel

ar
hite
ture | a network of workstations (WkStn) or a shared-memory multipro
essor (SMP).

Wall-
lo
k speedup is measured by dividing the elapsed time for the program
ompiled and opti-

mised for sequential exe
ution by the elapsed time for the same program under parallel exe
ution.

The fourth
olumn gives the simulated speedup a
hieved under GranSim emulating the target ar-

hite
ture. The last
olumn gives the best wall-
lo
k speedup a
hieved, together with the number

of pro
essors used and the ar
hite
ture.

The Bla
kspots program a
hieves the greatest wall-
lo
k speedup, but although it uses some

omplex algorithms, it has a simple data parallel stru
ture, and only a small amount of irregular-

ity in the thread sizes. Although the speedups for the Naira
ompiler are smaller, it more truly

represents the
lass of programs that we expe
t GpH to be used for, that is Naira as a
omplex

27

symboli

omputation with an elaborate parallel stru
ture. Lolita is similar in being symboli

and having an irregular parallel stru
ture. It is also very large and multi-lingual (Haskell and

C). Unfortunately, while a realisti
 simulation of Lolita delivers good speedups, exhibiting a large

amount of inherent parallelism, the wall-
lo
k �gures are poor be
ause of the high resour
e utili-

sation. LinSolv is symboli
, and has irregular parallelism de�ned over a potentially-in�nite data

stru
ture. It delivers modest wall-
lo
k speedups on a shared-memory ma
hine.

5.2 Parallel Paradigms

The programs use a number of parallel paradigms, often nesting one paradigm inside another. For

example both Naira and Lolita nest a pipeline within a data-parallel paradigm. Version II of the

Bla
kspots program is still more elaborate having a pipeline with stages using data-parallelism,

ontrol-parallelism, and benign spe
ulation. The following parallel paradigms have been used in

the development of the parallel algorithms dis
ussed in this paper.

� Data parallelism: Naira, Lolita, Alpha-Beta.

In the data parallel paradigm every element of a data-stru
ture is evaluated in parallel. Naira

is data parallel over the fun
tion de�nitions in a module. Lolita is data parallel over the

senten
es in the text. Alpha-Beta is data parallel over all next moves, but has to
ombine

this paradigm with spe
ulative parallelism.

� Pipeline parallelism: Naira, Lolita.

In the pipeline parallel paradigm a sequen
e of stream-pro
essing fun
tions is
omposed

together, ea
h
onsuming the stream of values
onstru
ted by the previous stage and pro-

du
ing new values for the next stage. Pipelines in a non-stri
t language are very
exible

over the data type they operate on and have �ne-grained parallelism. That is, a pipeline
an

be de�ned over any data-stru
ture passed between stages, e.g. both Naira and Lolita pass

forests of trees between pipeline stages. The �ne granularity means that the produ
er and

onsumer may syn
hronise on every node of a data stru
ture, or the produ
er may
onstru
t

all of the stru
ture before any of it is
onsumed or, more likely, something in-between. As a

result of this �ne granularity, pipelines in a non-stri
t language
an be e�e
tive even for small

input data sets. Both Naira and Lolita a
hieve modest speedups via pipeline parallelism.

� Task Farm: Bla
kspots (Version III).

In the task farm paradigm a `farmer' pro
ess has a
olle
tion of tasks, and `worker' pro
esses

obtain a task from the farmer, and on
ompleting it, obtain another. In Bla
kspots the task

farm has a spe
ial form be
ause ea
h task is to evaluate some data stru
ture, and su
h a

farm is more a

urately termed a data farm [MS95℄.

� Divide-and-
onquer: LinSolv, Lolita.

In the divide-and-
onquer paradigm the problem to be solved is de
omposed into smaller

problems that are solved in parallel and the solutions are re
ombined to produ
e the result.

It is easy to generate a great deal of parallelism with this paradigm: the number of tasks is

exponential in the number of division steps. The unfortunate
orollary is that there may be

a large number of very �ne-grained tasks generated. We maintain a good thread granularity

by in
luding a threshold in the strategy that ensures that small tasks are not sub-divided but

evaluated sequentially. Both LinSolv and Lolita require thresholding in order to be eÆ
ient.

� Spe
ulation: Alpha-Beta, Bla
kspots (Version II), Lolita.

GpH does not support general spe
ulation, e.g. spe
ulative and mandatory threads are not

distinguished, and there is no me
hanism for killing unwanted spe
ulative threads. We do,

however, use a restri
ted form of spe
ulation, whi
h we term benign. The restri
tion is that

the spe
ulative threads must perform only a small amount of work and
reate no new threads.

Often spe
ulation is
ontrolled by a parameter of the spe
ulative strategy, and sele
ting an

appropriate value is
ru
ial to avoid wasting resour
es, as shown in Alpha-Beta, Bla
kspots,

28

and Lolita [LMT

+

97℄. It is interesting that several of the programs use spe
ulation be
ause

it is a te
hnique that
annot easily be introdu
ed by automati
 parallelisation methods.

Some parallel paradigms not explored in these programs in
lude bran
h and bound, SPMD,

bounded bu�er and general spe
ulation. We have strategies, and some toy examples, for bounded

bu�ers and SPMD. It appears that general spe
ulation and bran
h and bound are more problem-

ati
 within GpH.

Another important aspe
t of the parallel runtime-system is dynami
 load management. It has

previously proven to be essential for obtaining good speedups on some programs exe
uted on the

GRIP ar
hite
ture [HP92℄. In the
ontext of GUM the importan
e of dynami
 load management

is best re
e
ted by the �nal version of the Bla
kspots program. This version uses dynami
 load

management to obtain an even load when evaluating the tiles of a geographi
ally partitioned data

set.

5.3 Large-S
ale Issues

In the implementation of the programs we en
ounter a number of aspe
ts of parallel programming

in-the-large.

� Appli
ation-spe
i�
 strategies
an be rather easily reused in large appli
ations. One example

is the merging of lists of a polymorphi
 type in Lolita, whi
h is used in two pla
es. Clearly,

the polymorphi
 nature of the language aids
ode reuse in this
ase.

� Some of the programs were made parallel by someone other than the original author, most

notably Lolita. In these
ir
umstan
es the largely-impli
it parallel programming model

is
ru
ially important, be
ause parallelisation does not require the expli
it introdu
tion,

and syn
hronisation, of threads. Instead parallelisation is similar to sequential performan
e

tuning in that it entails understanding time and spa
e
onsumption, data dependen
ies,

and often
ontrolling evaluation degree. In that sense parallelisation does not add a new

dimension of
omplexity to the program design, it merely
ompli
ates the existing pro
ess

of performan
e tuning. We believe that it would be mu
h harder to parallelise a se
ond

author's program using an expli
itly parallel programming model.

� Parallelism
an be des
ribed at a high-level, and this means that only a small part of a large

system needs to be understood,
hanged, and re
ompiled. For example adding parallelism

entails
hanging just two out of three hundred modules in Lolita, and one out of �ve in

Bla
kspots.

� The parallel version of a large programmay have very large resour
e utilisation. This is likely

to be a problem on shared-resour
e ma
hines, e.g. multi-pro
essors with shared memory or

disks. For example the sequential variant of Lolita uses 100MB of heap, and the parallel

variant needs approximately 64MB per pro
essor. Similarly, in Bla
kspots every pro
essor

initially reads a �le, generating intense network and disk traÆ
.

� A major task in parallelising a large program is to de�ne basi
 strategies over the data types,

in parti
ular a strategy to redu
e values of the type to normal form (rnf). Fortunately the

rnf fun
tion
an be derived automati
ally from the type, and we have
onstru
ted a tool that

allows us, inter alia to automati
ally add basi
 strategi
 de�nitions to a module [Win97℄.

� Strategies may also be required over library data types, e.g. parSet. Unfortunately this

entails using a private
opy of the library module.

� A GpH program
an be used to prototype alternative parallelisations of an imperative pro-

gram. Experimenting with alternative parallelisations is easier in GpH than in imperative

languages. Parallel prototyping has been used in LinSolv to tune the algorithm.

29

� Many of the programs had been written without the intention of making them parallel, e.g.

Naira and Lolita. It is still possible to obtain parallelism, albeit modest, without restru
tur-

ing these programs.

6 Evaluation of GpH Programming

In this se
tion we re
e
t on our experien
es programming in GpH, i.e. in a fun
tional language

with largely impli
it parallelism. We both analyse and
onsider future dire
tions for the language,

the
o-ordination me
hanism (evaluation strategies) and the programming environment.

The most important language result is that despite the apparent tension between parallel an

lazy
omputation, they
an be usefully
ombined to produ
e a programming model with a high

degree of modularity. This modularity is due to the data-oriented style of programming o�ered

by a lazy parallel programming model. This means that it is suÆ
ient to de�ne the parallelism

only on a few
ru
ial data stru
tures, whi
h typi
ally are passed between sub-fun
tions at the

top level of the program. Be
ause lazy evaluation delays the generation of the result until it is

needed, strategies
an be used to de�ne evaluation degree and parallelism outside the fun
tion

generating the data stru
ture. This a
hieves a level of modularity not en
ountered in languages

with a stri
t evaluation me
hanism. Most importantly, the programmer
an de�ne the parallelism

without breaking the abstra
tion of individual fun
tions, whi
h is an important property for large

programs where the parallelisation is probably not performed by the author of the program.

Furthermore, the experien
e with large lazy fun
tional programs shows that the optimisation

of sequential programs sometimes requires to expli
itly
ontrol the evaluation order and degree in

order to minimise resour
e utilisation. Thus, evaluation strategies
an be used for both sequential

and parallel performan
e tuning. In this sense, parallelisation is just a re�nement of the perfor-

man
e tuning pro
ess, whi
h o�ers even faster
omputation. Most notably, however, there is no

need to extend the underlying programming language by e.g. introdu
ing an expli
it notion of

threads. Our experien
es with the use of evaluation strategies on large lazy fun
tional programs

indi
ate that a lazy parallel programming model o�ers the prospe
t of
heap, modular parallelism

with only a minimal
oding e�ort.

6.1 Language

The parallel language we are using, GpH, is only expli
it in exposing parallelism in the sour
e

ode. The management of the parallel threads is
ompletely hidden by the runtime-system. In

this approa
h many
lassi
al problems of
on
urrent programming su
h as generating deadlo
ks or

ra
e
onditions between threads do not arise. However, it is still possible to tune the parallelism

by spe
ifying the size of the parallel
omputation and the evaluation order.

The features of the language that we found to be most important are as follows.

� Determinism makes parallel program development easier be
ause the algorithmi
 part of

the program
an be developed in a sequential
ontext. Inserting strategies to introdu
e par-

allelism does not
hange the value
omputed, and will not
hange the termination
onditions

as long as the strategies are not more stri
t than the original fun
tion, i.e. the parallelism is

onservative.

� Largely impli
it parallelism ensures that only a small amount of additional
ode is

required to introdu
e parallelism. In parti
ular, it is only ne
essary to expose parallelism,

by marking expressions.

6.2 Evaluation Strategies

For any program, the primary bene�ts of the evaluation strategy approa
h are similar to those that

are obtained by using laziness to separate the di�erent parts of a sequential algorithm [Hug89℄: the

30

separation of
on
erns makes both the algorithm and the dynami
 behaviour easier to
omprehend

and modify [THLP98℄.

In large programs, strategies allow us to raise the level of abstra
tion be
ause the programmer

introdu
ing parallelism need not understand the low-level details of the whole program. Strategies

allow us to

� des
ribe top-level parallelism. Often some initial parallelism
an be obtained by par-

allelising the top-level of the program with a very shallow understanding of the algorithms

used in the program.

� preserve module abstra
tion. Parallelism
an often be spe
i�ed on the data stru
tures

passed between modules. The programmer need only know whi
h items of the data stru
ture

an be
omputed independently, whi
h is often simpler than understanding the algorithm

used to
ompute them. Indeed the type of the data stru
ture may even give a hint on whi
h

strategy to use for parallelising the program.

This style of programming o�ers a level of abstra
tion to the programmer that does not exist

in parallel imperative languages. However, if it is ne
essary, the evaluation
an be
ontrolled

in more detail, yielding parallelism des
ribed on a similar level as in more
onventional parallel

programming models.

The presented programs use the power of strategies. In most of the programs strategies are

de�ned over many types, program-spe
i�
 strategies are
onstru
ted, and some of the new strate-

gies are
reated by
omposing existing strategies. The spe
i�
 features that proved most useful

are mainly the high-level
onstru
ts. Many of the strategies are

� polymorphi
. Strategies that
an be used at many types are easier to re-use, for example

the polymorphi
 mergeStrategy strategy is re-used in Lolita.

� parametri
. The behaviour of a strategy
an be modi�ed by parameters. For example the

number of elements of a list to evaluate in parallel is a parameter in the Bla
kspots program,

and the similar for
e-length parameter in Alpha-Beta.

� higher-order. This is parti
ularly useful when a strategy takes another strategy as a

parameter, thus
apturing a
lass of behaviours as determined by the argument strategy. In

LinSolv, for example, a list strategy is passed to another list strategy to des
ribe parallelism

over a list of lists. Nesting strategies in this way is a natural means of a
hieving nested

parallelism.

Finally it should be noted that evaluation strategies must be used with
are to avoid
on
i
t and

malignant spe
ulative
omputations. The latter
an yield higher parallelism be
ause of the extra

spe
ulative
omputations but
an also adversely a�e
t a program's
ompletion time. For example

generating more possible synta
ti
 parses in Lolita would produ
e more spe
ulative parallelism,

be
ause ea
h of the parse
an be analysed in parallel, but it would not redu
e the total runtime,

be
ause only the best result will be
hosen at the end.

6.3 Programming Environment

It has proved essential to develop the programs in a ri
h programming environment. Several

programs were initially developed using the Hugs interpreter, where the intera
tive mode fa
ilitates

debugging. All programs were run under GHC's sequential runtime system. Almost all of the

programs used time and heap pro�ling to identify
omputationally-intensive
omponents.

To develop the parallelism the programs are �rst run under GranSim to produ
e idealised,

and then realisti
 simulations. We �nd that visualising the parallel exe
ution in several ways is

essential to the programmer's understanding, and hen
e improving, the parallelism. The most

useful means of visualising the exe
ution are a
tivity pro�les like Figure 17 and thread granularity

pro�les, whi
h show the total runtimes of the individual threads as a histogram.

31

Using GUM the parallel performan
e of the programs is measured on a number of platforms.

Some of the programs are measured on a network of workstations, e.g. Naira. Other programs

are measured on a shared-memory SUNserver, e.g. Lolita. Bla
kspots has been measured on

both workstations and SUNserver. It is unusual to have both shared- and distributed-memory

measurements for a single program. We dis
uss the ar
hite
ture-independent nature of GpH

programming in detail in [TBD

+

98℄.

7 Related Work

In his 1993 thesis [Cla93℄
on
erning the implementation of a large parallel rule-based interpreter

written in Haskell, Clayman observed with some
hagrin that

\the
urrent fa
ilities for exe
uting fun
tional programs in parallel environments are

not e�e
tive for large appli
ations. The use of hand-
oded annotations may be �ne for

small programs but it is unsuitable for large programs. Furthermore, there is a la
k of

parallel systems on whi
h programs
an be exe
uted."

Clearly, in the last 5 years some
onsiderable progress has been made towards addressing the

riti
isms raised in Clayman's thesis. In our own setting we have:

� demonstrated that it is possible to write large parallel appli
ations in Haskell;

� introdu
ed evaluation strategies [THLP98℄ to allow simple and
exible
ontrol of parallel

programs, so addressing Clayman's
riti
ism of hand-
oded annotations; and

� produ
ed an implementation based on standard portable message passing libraries, so vastly

extending the number of parallel systems on whi
h our programs may be run.

Although our work is not isolated, and other groups have produ
ed systems that possess similar

hara
teristi
s to those we espouse (e.g. Sisal [Ske91℄, NESL [Ble96℄, Con
urrent Clean [NSvP91℄,

Id [Nik91℄, or Paralation Lisp [DGF97℄), Clayman's
riti
isms do still apply to some extent in

a general setting, however. Despite the fa
t that many parallel implementations of fun
tional

languages have been produ
ed, there are relatively few systems that have been developed beyond

the prototype stage, and fewer that
an also
laim to demonstrate ar
hite
ture independen
e.

Those that
an make this
laim have been surveyed in an independent paper [TBD

+

98℄.

This se
tion surveys existing large parallel fun
tional programs whi
h, like those introdu
ed

in this paper, either form
omplete real end-user appli
ations or are realisti
 in being taken from

a real appli
ation domain rather than arti�
ially designed to demonstrate some ben
hmarking

issue. We have therefore ex
luded su
h ben
hmarks, unless they form part of some larger, more

interesting appli
ation.

The term `large' is not pre
isely de�ned, of
ourse; we have taken it to mean over about 500

lines of fun
tional
ode (whi
h
orresponds to an imperative program of some 1500-5000 lines).

For
omparison, all the appli
ations des
ribed in this paper apart from the Alpha-Beta sear
h

algorithm
omprise more than 800 lines of
ode. Unlike the Lolita program whi
h was des
ribed

earlier, however, the majority of the appli
ations presented here are not large in a stri
t software

engineering sense, sin
e they have been written by single users rather than as large
ollaborative

proje
ts.

The appli
ations des
ribed in this se
tion
over a wide variety of problem domains, from

numeri
al appli
ations written in Sisal [Ske91, Can92℄ or NESL [Ble95℄ to theorem provers [RW95℄

and real-time
ommer
ial telephony systems [Arm96℄. We have not, however, attempted to
over

individual implementations or language
onstru
ts in depth. The interested reader is referred to

the more general literature on parallel fun
tional programming for
overage of these and other

signi�
ant issues (e.g. [Ham94, TLH99℄). The most
losely related approa
hes to parallelisation,

our earlier work on the FLARE appli
ations [RW95℄ and the Dut
h Parallel Redu
tion Ma
hine

proje
t [BvH

+

87℄, are brie
y surveyed in Se
tion 7.8.

32

7.1 Compilers and Rule-Based Systems

While Naira is unique, as far as we know, in being the �rst
omplete fun
tional language
ompiler to

have been parallelised [Jun98℄, there have been a few parallel systems with similar
hara
teristi
s.

Clayman's thesis des
ribed one su
h appli
ation: a fun
tional version of the OPS5 rule-based

system that is often used to implement expert systems [Cla93℄. This appli
ation has a similar

stru
ture to Naira,
omprising a rule
ompiler plus produ
tion mat
her and evaluator. The rule

ompiler in
ludes pattern-mat
hing and other
omponents. The produ
tion mat
her and evaluator

are best regarded as being analogous to Naira's runtime-system.

Unfortunately, as hinted above, despite mapping out the parallelisation pro
ess that he in-

tended to pursue, Clayman was ultimately frustrated by the state of the
ompiler and implemen-

tation te
hnology in 1993, and therefore never a
hieved his goal of su

essfully parallelising his

program. We are therefore deprived of a potentially interesting
omparison between two similar

appli
ations. We hope that we are now in a position where Clayman's work
ould be
ompleted

in order to allow a good
omparison between these systems.

While not dire
tly usable as part of the
ompilation pro
ess itself, Bou
her and Feeley have

onstru
ted a parallel implementation of an LR(0) parser generator in MultiLisp [BF94℄. The

parallelisation pro
ess involves the
reation of all rea
hable states in parallel. Simple lo
ks are

used in pla
e of the sequential hash table to prevent several tasks working on the same state

simultaneously, and to ensure atomi
 update for ea
h state.

Overall, the parser generator a
hieves an absolute speedup of 10.4 on 32 pro
essors. The

parallel overhead was parti
ularly serious for this system, generating a slowdown of a fa
tor of 3

on one parallel pro
essor, so this represents an impressive superlinear relative speedup (a fa
tor

of 33.6 on 32 pro
essors). Given that the overhead exists in the one-pro
essor
ase, and that

the algorithm exhibits super-linear speedup, it seems unlikely that this overhead is simply a

onsequen
e of poor lo
ality, as the authors suggest. The super-linearity is
laimed to re
e
t

de
reased garbage
olle
tion
osts in the parallel implementation.

Finally, although it has not yet been exe
uted on a parallel ma
hine as far as we are aware, the

Id in Id
ompiler from MIT is, of
ourse, parallel in prin
iple. Id is untyped so the parallel type

inferen
e algorithm that gave e�e
tive performan
e improvements in the Naira
ompiler would be

of no dire
t use (it might
on
eivably be exploited for e.g.
ode generation, however). Work we

have done in relieving dependen
ies in the Naira symbol table and pipeline stages seems likely to

�nd a
ounterpart in any parallel version of the Id
ompiler, however.

Theorem Provers

There have been several attempts to parallelise fun
tional theorem-provers. As part of the FLARE

proje
t [RW95℄, Hanna and Howell parallelised the 8500 line tautology
he
ker that forms the
ore

of the Veritas theorem prover. This parallelisation was a
hieved using only the basi
 par and

seq
ombinators des
ribed earlier. Granularity
ontrol was introdu
ed using thresholding based

on the size of the propositions to be
he
ked. Performan
e results for the GRIP multi-pro
essor

showed that an absolute speedup of a fa
tor of 18
ould be a
hieved on 20 pro
essors. Work on

this appli
ation and others from the FLARE proje
t motivated the design of evaluation strategies

to help simplify the parallelisation pro
ess.

There have also been several implementations of the Boyer-Moore theorem prover. For exam-

ple, Sodan and Bo
k's automati
ally parallelising Lisp system, ParLisp, has a
hieved a simulated

speedup of between 5.1 and 29.5 on an idealised
on�guration of the MANNA ma
hine
ontaining

an in�nite number of pro
essors [SB95℄. In
ondu
ting these experiments Sodan and Bo
k observe

that it is important to
he
k the potential parallelism of the appli
ation before pro
eeding along an

expensive implementation route. This is in a

ordan
e with the methodology we have propounded

both in this paper and elsewhere [THLP98℄, of using �rst an ideal simulation to demonstrate par-

allel feasibility and then re�ning the simulation to deliver more a

urate information for parti
ular

lasses of target ar
hite
ture.

The Boyer-Moore theorem prover has also be implemented in Id as part of the Impala ben
h-

33

mark suite [Sha98℄, but we are not aware of any parallel performan
e results that
an be used for

omparison.

7.2 Image Pro
essing

Graphi
al appli
ations are obvious
andidates for parallelisation. While imperative parallel graph-

i
s appli
ations generally depend on partitioning (updatable) arrays, more sophisti
ated data

stru
tures may simplify the partitioning pro
ess and o�er better long-term opportunities for par-

allelism. Several appli
ations have been produ
ed that perform
omplex graphi
al manipulations,

in
luding ray tra
ing to determine the intensity of light that falls on an obje
t, and the
omputer

vision appli
ations prototyped by Mi
haelson and S
aife in Standard ML.

Ray Tra
ing

The simple ray tra
er that was originally developed in Kelly's thesis for the Caliban
o-ordination

language [Kel89℄ has formed the basis for a number of subsequent studies, in
luding as one of

the FLARE appli
ations des
ribed above. In the latter
ase we were able to demonstrate good

speedup for this appli
ation running on GRIP under a variety of
onditions, a
hieving an absolute

speedup of 10.5 on 17 pro
essors, with no eviden
e of a software performan
e bound [HMP94℄.

Relative speedup for the same
on�guration was a fa
tor of 14.

In his thesis [Tay97℄, Taylor studies this same ray tra
er in the
ontext of Advan
ed Caliban.

Advan
ed Caliban extends the Caliban
o-ordination language in a number of new and interest-

ing ways that parallel the development of evaluation strategies (for example, the use of nested

moreover
lauses to
ontrol pla
ement is similar to our use of strategies to des
ribe pro
ess stru
-

tures). Unlike evaluation strategies, however, Caliban remains �rmly rooted in a stati
 model

of pro
ess pla
ement, and the target ar
hite
ture is restri
ted to a distributed,
losely-
oupled

parallel ma
hine (in Taylor's
ase, the 48-node AP1000 at the Imperial College Parallel Cen-

tre, London). Using a stati
 pro
ess farm, with limited spe
ulative evaluation, Taylor a
hieves

a relative speedup of 17 on 35 pro
essors for this implementation of the ray tra
er. With the

introdu
tion of manual granularity
ontrol, performan
e
an be boosted to a relative speedup of

24 on 35 pro
essors. This is broadly in line with the GRIP results
ited above, though speedup is

slightly lower.

Bratvold also studied the performan
e of the ray tra
er appli
ation [Bra94℄ using his automat-

i
ally parallelising skeleton-based
ompiler for SML, SkelML. Bratvold's thesis results show that

a speedup of 9.5 on 22 Transputers
ould be a
hieved for the largest example that was tried. In

ontrast to the dynami
 approa
h we have used in our implementation and in a

ordan
e with

the Caliban philosophy adopted by Taylor, Bratvold's approa
h uses a stati

ost-modeling step

to guide the
hoi
e of skeleton from a �xed library.

Kesseler also used the ray tra
er as a ben
hmark for Con
urrent Clean [Kes95, Kes96℄. Kesseler's

system adopts a similar skeleton approa
h to that taken by Bratvold, and also targets a Transputer

system. Kesseler reports a speedup of 10.0 on 16 pro
essors, rising to 33.5 on 64 pro
essors, where

he is
learly en
ountering some performan
e bound. From our own experien
e, we
onje
ture that

this may be due to poor distribution as a
onsequen
e of stati
 pro
ess allo
ation.

While it is hazardous to
ompare only speedup and not look at absolute performan
e, it is

interesting that the systems using stati
 pla
ement do not exhibit better speedup results than the

system of dynami
 pla
ement used in GRIP. This is, of
ourse, partly due to the lower
ommuni-

ation laten
ies that apply in GRIP hardware. However, we feel it is a strong indi
ator that our

model of dynami
 pro
ess pla
ement
an yield good parallel performan
e whilst requiring rather

less programmer e�ort than pre
ise stati
 pla
ement, despite the greater overheads of dynami

ontrol.

34

Parallel Vision

Mi
haelson and S
aife [MS95℄ des
ribe the implementation of several
omponents of a parallel

vision system. The overall purpose of the system is to re
ognise 3D obje
ts in a 2D s
ene by using

information about the relative intensity of light throughout the s
ene. The parallel algorithms are

prototyped using a skeleton-based SML implementation, before being translated to O

am and

exe
uted on a distributed-memory Meiko ma
hine (based on Transputers). The SML prototype

required 1700 lines against the 3000 lines of the �nal O

am implementation. It was used to verify

the general line of parallelism to be taken in the �nal implementation, in a similar way to our own

simulator-based proo�ng steps.

The primary algorithm used in this appli
ation is the Hough transform for solving sets of

underdetermined equations. This is parallelised in a data-oriented fashion using a farm skeleton to

realise a parallel map over a nested list. Performan
e was optimised by splitting the data into more

sets of equations, so introdu
ing more small tasks whi
h
an be managed more eÆ
iently to improve

the overall load balan
e. This
on�rms our own observations
on
erning task granularity [LH95℄ as

well as theoreti
al analyses [BR94℄: �ner-grained programs are mu
h easier to manage dynami
ally,

and result in mu
h better balan
ed
omputation. Overall, Mi
haelson and S
aife a
hieve an

absolute speedup of 10.5 on the 30-pro
essor Meiko. This performan
e was less than hoped for,

possibly as a
onsequen
e of poor load-balan
ing and/or high
ommuni
ation
osts that may arise

from the nature of the farm skeleton, whi
h will tend to introdu
e
ommuni
ation bottlene
ks to

the farming pro
essor.

Mitrovi
 and Trobina have implemented some
omponents of a
omputer vision system in

Sisal [MT93℄: spe
i�
ally the Gaussian smoothing and Canny edge dete
tor algorithms that are

also used by Mi
haelson and S
aife. The Sisal program was about 300 lines,
ompared with 600 for

the C version, and took 2 days to write,
ompared with about a week for the C program. The �nal

stage of the vision system (image
ompilation) was however slightly larger than the
orresponding

C program (600 lines versus 500). Overall the Sisal program ran 10% faster than the C program

when run sequentially and a
hieved a relative speedup of 3.1 on a 4-pro
essor shared-memory SGI

ma
hine, without requiring further
oding e�ort. This is
learly a very
reditable performan
e

gain for su
h modest programmer e�ort. Similar performan
e results have been veri�ed by other

Sisal appli
ations [Can92℄, some of whi
h are des
ribed below (Se
tion 7.4).

7.3 Data Intensive Appli
ations

There have been relatively few attempts to produ
e large-s
ale data-intensive fun
tional appli-

ations, and even fewer that have been su

essfully parallelised. One of the most interesting is

the AGNA system, whi
h implements read-only sele
tions (lookups) over a parallel fun
tional

database [HN91℄.

AGNA

The AGNA system uses list
omprehensions to stru
ture read-only queries over an on-disk database.

Sin
e ea
h lookup is independent of the results of any other lookup, parallelisation is straightfor-

ward and very high parallelism
an be a
hieved with a good prospe
t of s
alability. Heytens and

Nikhil [HN91℄ report a speedup of 31 on a 32 pro
essor distributed-memory ma
hine for non-

indexed lookup. Indexed lookup is mu
h faster, but speedup is limited to a fa
tor of 8, due to

task
reation and result
onstru
tion
osts in the implementation that was adopted.

Parade

As part of the EPSRC Parade proje
t we have investigated parallel fun
tional database transa
tion

pro
essing where the transa
tions involve not simply queries, as with AGNA, but also update op-

erations that may introdu
e dependen
ies with subsequent database transa
tions [AHPT93℄. Our

results show that a

eptable parallel performan
e
an be a
hieved through the use of te
hniques

to redu
e the `hot-spot' that arises from
ontention on the root of the B-tree data stru
ture that

35

forms the index to the on-disk database. Overall, we a
hieved an absolute speedup of 12.6 on 15

GRIP pro
essors. Larger data sets gave better performan
e than smaller ones, so it seems likely

that these results
ould be s
aled to larger systems with higher throughput. Unlike AGNA, our

results apply only to in-memory
opies of the database, however, with simulated disk a

esses.

The same proje
t also studied the A

ident Bla
kspots program, whose performan
e results

are presented in Se
tion 4.3.

7.4 Numeri
al Appli
ations

Perhaps surprisingly, some of the most su

essful parallel fun
tional appli
ations have been nu-

meri
al programs. In addition to the bene�ts of mu
h higher-level
oding, whi
h in
lude shorter,

simpler (and hopefully more maintainable)
ode, several Sisal appli
ations not only approa
h the

speed of slow imperative implementations su
h as C, but ex
eed the performan
e produ
ed by the

fastest Fortran
ompilers. For parallel
ode, this is usually a
hieved without requiring any
hanges

to the sour
e
ode. Similar, though slightly less spe
ta
ular, results have been a
hieved for the

NESL language [Ble95℄, mainly for generi
 problems su
h as the n-body problem [BN97℄. Other

generi
 numeri
al problems that have been studied in a parallel fun
tional
ontext in
lude
onju-

gate gradient algorithms [YA93, GMZ94℄ and various Eigen-Solver implementations [SB94, BH95℄.

This se
tion surveys the most signi�
ant parallel numeri
al appli
ations that have been written

in these and other languages.

The Australian weather system

The Australian weather predi
tion model is a 10000 line Fortran program for short-term (36 h)

weather fore
asting [Les85℄. Egan has re-implemented the kernel of this appli
ation as a 500-

line Sisal program [Ega93℄ that
an be
alled from the original Fortran shell. No signi�
ant

restru
turing of the
ode was performed, however. The parallelising Fortran
ompiler for the

Cray-90 was unable to lo
ate any parallelism within this subroutine.

For the Sisal version, Egan a
hieved a speedup of 3.7 on a 4-pro
essor Cray-90. This repre-

sented a performan
e improvement of 34% over the sequential Fortran
ode. Subsequent work

on the
ompiler has improved the performan
e of Sisal relative to Fortran, to the extent that it

is now possible to a
hieve a relative speedup of 6.1 on an 8-pro
essor Cray Y-MP/864 (20 iter-

ations), representing a speedup of 5.8 over the equivalent Fortran program running on a single

pro
essor [LAN98℄. The �nal Sisal program
omprises 33 sour
e modules { a signi�
antly large

program by most standards.

Photon Transport

The 750-line Id program Gamtebwas written by resear
hers from Los Alamos National Laboratories

to simulate the traje
tory of photons through a
arbon rod that has been divided into a number

of
ells of a given geometry. Ea
h photon
an be tested independently exploiting data parallelism.

On the 8-pro
essor prototype Monsoon data
ow ma
hine, this highly-parallel appli
ation a
hieved

a speedup of 7.4 for a problem
ontaining 40,000 parti
les [HCAA93℄.

The same appli
ation has been written in Sisal [HLB95, HB97℄, but the speedups a
hieved

on a 4-pro
essor shared-memory Sun were not signi�
ant (1.9 relative, 1.3 absolute for 50,000

parti
les). The overall performan
e was also signi�
antly less than for C { sequential C was 8.8

times faster than the one-pro
essor parallel Sisal program. The poor performan
e is perhaps due

to ineÆ
ien
ies
reating large intermediate data stru
tures.

Fluid Dynami
s

A se
ond large appli
ation that was developed as part of the FLARE proje
t was the Swansea

omputational
uid dynami
s program [RW95, GSWZ95℄. In its sequential in
arnation, this 2000-

line program made heavy use of arrays. In order to produ
e a parallel implementation, quadtree

36

and trie data stru
tures were used instead to yield a straightforward parallel de
omposition of the

problem domain.

Overall, the absolute speedup a
hieved by this appli
ation was 2.3 on a 4-pro
essor GRIP.

Additional pro
essors gave slight performan
e improvements, up to a fa
tor of 3 on 17 pro
essors,

but gave mu
h worse pro
essor utilisation. This was in sharp
ontrast to idealised simulated

results, whi
h showed available parallelism of up to 100 simultaneous tasks. The dis
repan
y is

probably best explained by tight data dependen
ies introdu
ing signi�
ant
ommuni
ation
osts in

the real implementation. This highlights the importan
e of providing a

urate as well as idealised

simulation, as we have done in the parallel workben
h des
ribed above.

A further lesson obtained from this appli
ation was the importan
e of providing good support

for large data stru
tures, for example distributed appli
ative arrays [KG91℄. We have not yet

implemented support for su
h stru
tures, so would not expe
t good performan
e for programs

that made heavy use of array stru
tures in our system.

A similar appli
ation to the Swansea program is the 1000-line Id program simple whose pur-

pose is to simulate hydrodynami
s and heat-
ondu
tion. On an 8-pro
essor Monsoon, Hi
ks et

al. [HCAA93℄ report a speedup of 6.3 for 100 iterations of a 100�100 grid of nodes
ontaining

information about position and velo
ity, over a series of zones with di�erent
uid
hara
teristi
s.

This appli
ation has also been implemented in Sisal, where resear
hers a
hieved relative speedups

of 4.3 on an 8-pro
essor Cray Y-MP/864 and 13.9 on a 20-pro
essor Sequent Symmetry for 62 it-

erations [LAN98℄. In both
ases the Sisal version was signi�
antly faster than the single-pro
essor

Fortran
ode, representing speedups over Fortran of 4.1 and 13.7 respe
tively.

Tidal Predi
tion

Hartel et al. have used Miranda to produ
e a 560 line tidal predi
tion program, using skeletons

to expose the parallelism in this program [HHL

+

95℄. A `
ommuni
ation lifting' transformation is

applied in order to exploit wavefront parallelism in a grid performing
omputational
uid dynam-

i
s operations that involve solving partial di�erential equations in a data-parallel fashion. The

program uses a tile-based partitioning approa
h similar to that we have used for the A

ident

Bla
kspots program.

The relative speedup a
hieved for this appli
ation is 2.5 on a 4-pro
essor shared-memory ma-

hine, though the appli
ation would presumably s
ale to larger shared-memory systems if these

were available, by simply introdu
ing additional tiles. Unfortunately, this is still 58% slower

than sequential C, however, and therefore
onsiderably slower than
ould be expe
ted for a Sisal

implementation of this appli
ation.

Global O
ean Cir
ulation

A similar appli
ation to the tidal predi
tion problem is the global o
ean
ir
ulation model that

has been
onverted to Id from the Fortran original [SAC

+

98℄. This program has a regular
ontrol

stru
ture (the
entral part is a triply nested loop) but an irregular data stru
ture. The appli
ation

was tuned for parallel exe
ution on Monsoon using loop unrolling and the introdu
tion of k-

bounded loops [AN90℄ for throttling ex
ess parallelism. Performan
e results for realisti
 data-sets,

measured in ma
hine independent
y
les per required
oating point operations, showed that the

8-pro
essor Id/Monsoon appli
ation was between 2 times slower and 2 times faster than the

equivalent 128-pro
essor CM Fortran/CM-5 version.

7.5 Symboli
 Computation

Computer Algebra

S
hreiner has applied his small stri
t para-fun
tional language pD to a number of problems taken

from
omputer algebra: a linear equation solver that is similar to the one presented in Se
tion 4.6;

two programs to
ompute multivariate polynomial resultants; and part of a polynomial fa
torisa-

tion algorithm.

37

Highly signi�
antly, S
hreiner's performan
e results show that good absolute speedup
an be

a
hieved using his approa
h [S
h95℄. Compared with sequential C, S
hreiner a
hieved performan
e

of 14 on a 16-pro
essor shared-memory system for the linear equation solver (his best result).

Sequential performan
e is also broadly in line with that obtained for the
orresponding C programs.

Although these appli
ations are small, they do suggest that parallel symboli

omputation is

amenable to exploitation by fun
tional programming te
hniques.

Nu
lei
 A
ids

Feeley et al. have worked on a parallel appli
ation for determining the three-dimensional stru
ture

of nu
lei
 a
ids [FTL94℄. This appli
ation involves solving a set of
onstraints that
olle
tively

de�ne all legal 3D stru
tures that
an be built from the input set of nu
leotides.

Ea
h nu
leotide
ontains one free variable des
ribing its three-dimensional position relative to

other nu
leotides. This position
onstrains the pla
ement of other nu
leotides in the stru
ture. The

parallel implementation of the algorithm involves
he
king ea
h possible solution for a nu
leotide's

position in parallel. The appli
ation is written as a 3500-line MultiLisp program and uses lazy

task
reation [MKH91, Ito96℄ to introdu
e parallel tasks.

This appli
ation has been tested on two interesting data sets. For the larger of the two data

sets, pseudoknot, it is possible to a
hieve a maximum absolute speedup of 13.7 on 24 pro
essors.

This represents the limit of parallelism | additional pro
essors result in lower speedups due to

added
ontention. While the parallel overhead is a quite reasonable 21%, the single-pro
essor

parallel
ase is still 2.4 times slower than sequential C. The smaller data set, anti
odon displays

good absolute speedup of 49 on 64 pro
essors.

7.6 Digital Signal Pro
essing

In his thesis, Reekie des
ribes the design of a parallel digital signal pro
essing system written

using a visual diale
t of Haskell [Ree95℄. While no performan
e �gures are available, the thesis

is interesting in introdu
ing a number of laws
on
erning fun
tional pro
ess networks that
ould

perhaps apply to behavioural
ode written using evaluation strategies, su
h as the appli
ations

des
ribed in this paper.

Dennis has studied a similar appli
ation in a stati
 data
ow
ontext [Den95℄, as an exer
ise

in parallelisation. This Sisal program is the
ore of a system that
ould be used to pro
ess

information obtained from a sky-s
anning opti
al surveillan
e devi
e. A series of �lters work as a

parallel pipeline over several input stream of values, representing data obtained by the surveillan
e

sensors. The appli
ation is highly parallel to the extent that throttling and other load management

strategies would probably be required in a real implementation. Unfortunately, the appli
ation

has not yet been implemented on real parallel hardware so no performan
e results are available

for this appli
ation either.

7.7 Telephony

Finally, while not a purely fun
tional implementation, and di�ering from the goals of our resear
h

in representing a distributed implementation of a
on
urrent language with expli
it pro
ess
ontrol

for semanti
 modeling, Erlang [AWWV96℄ has produ
ed the �rst
ommer
ial distributed fun
tional

appli
ations of whi
h we are aware [Arm96℄. The Erlang appli
ations are both `fast enough' for

real
ommer
ial use and use less memory than their
ounterparts in C. The largest appli
ation

that has so far been programmed in Erlang is the 230,000 line Mobility Server, whi
h a
ts as an

intelligent
all routing system linked to an internal telephone ex
hange, and whi
h is in widespread

use. Clearly, taken with the Lolita appli
ation whi
h we have des
ribed here, there is a strong

body of eviden
e to show that fun
tional languages
an be used for real,
omplex appli
ations.

38

7.8 Related Approa
hes to Parallelism

The FLARE Appli
ations

The appli
ations produ
ed by the FLARE proje
t [RW95℄ formed a dire
t pre
ursor to those de-

s
ribed here, representing the �rst real attempt to write a number of reasonably large appli
ations

in a purely fun
tional language and to produ
e parallel implementations of those programs. Like

the appli
ations des
ribed in this paper, the appli
ations
onsidered in the FLARE proje
t were

drawn from a wide variety of appli
ation areas: notably a
omputational
uid dynami
s problem,

a proof assistant, text
ompression and a geometri
 modeling system. The
uid dynami
s program

and the proof assistant (Veritas) are des
ribed above.

The attempts to parallelise the FLARE appli
ations motivated the use of simulation (in this

ase using an idealised simulator, hb
-pp [RW93℄) as well as real-ma
hine exe
ution, and spurred

the long-term development of evaluation strategies for more pre
ise ma
hine
ontrol (the FLARE

appli
ations used only the primitive par and seq annotations). They also demonstrated the limi-

tations of the GRIP prototype in exe
uting su
h large programs, and highlighted the desirability

of using sto
k parallel ma
hines that
ould be made more generally available.

Overall parallel performan
e results were, however, quite promising. Depending on the appli-

ation type, absolute speedups of between 4 and 15 were a
hieved on a 16-pro
essor GRIP.

The Dut
h Parallel Programming Toolkit

The toolkit developed as part of the Dut
h Parallel Redu
tion Ma
hine Proje
t [BvH

+

87, HHL

+

95℄

takes an approa
h to parallel program development that is similar to the one we have des
ribed

in this paper. As in our approa
h, the Dut
h system provides both an interpreter and a
ompiler

for sequential algorithmi
 debugging and initial overall performan
e optimisation, together with

both simulated and real parallel ma
hine implementations for parallel performan
e optimisation.

The simulator supports three levels of detail: task-level, instru
tion-level and bus-
y
le simulation.

Like the GranSim simulator, the instru
tion-level simulation is a

eptably a

urate, delivering

predi
tions that are 15%{23% too optimisti
, though. The system has been used to develop the

560 line tidal predi
tion program dis
ussed earlier.

Finally, it is worth noting that the
ompiler used in this proje
t, FAST/FCG, has limited

support for
ode optimisation. GHC provides many more optimisations, as well as sour
e-level

pro�ling (both sequential and parallel) through the use of
ost-
entre pro�les [SP97℄. These

bene�ts are of great signi�
an
e for large parallel programs.

7.9 Summary

This se
tion has surveyed a variety of large-s
ale parallel fun
tional appli
ations written in many

languages and often exhibiting irregular parallelism. These appli
ations
over a wide range of

programming domains from data-intensive appli
ations su
h as database transa
tion managers

to high-performan
e numeri
al
al
ulations su
h as weather predi
tion systems or
omputational

uid dynami
s appli
ations. Many appli
ations have demonstrated that good relative speedups

an be a
hieved, and several, notably those written in stri
t languages su
h as Sisal, MultiLisp

and pD, have shown that the performan
e of
onventional imperative languages su
h as C or

Fortran
an be ex
eeded with minimal programmer e�ort. The distributed language Erlang has

shown that distributed fun
tional appli
ations
an a
hieve
ommer
ial su

ess, e
lipsing their

imperative
ounterparts through ease of
onstru
tion and overall performan
e. These are positive

and en
ouraging results for the work that we are undertaking.

39

8 Con
lusions

8.1 Summary

We have des
ribed the development of several parallel symboli
 programs in Glasgow Parallel

Haskell (GpH). The programs are large,
over a range of appli
ation areas, and have been measured

on networks of workstations, and a shared-memory multipro
essor. From our experien
es with

developing these appli
ations we draw
on
lusions on the appli
ations, the programming language,

and the programming environment.

On the appli
ations level the most signi�
ant result is that we are able to a
hieve modest

wall-
lo
k speedups over the optimised sequential versions for all but one of the programs, despite

the fa
t that some of the programs were not written with the intention of being parallelised (see

Table 5 in Se
tion 5.1). We �nd that it is easy to use di�erent parallel programming paradigms

in GpH, and even to
ombine the paradigms within a single program.

On the language level we have been able to evaluate some long-standing
laims about parallel

fun
tional programming. Both the determinism of the language proves helpful, as does the largely

impli
it nature of the parallelism. Our new parallel programming te
hnique, evaluation strategies,

has been proven su

essful on a large s
ale. Parti
ularly important for large programs we �nd

that strategies allow a high level of abstra
tion to be maintained. There are two aspe
ts to

this abstra
tion: we
an des
ribe top-level parallelism, and also preserve module abstra
tion by

des
ribing parallelism over the data stru
tures provided at the module interfa
e (`data-oriented

parallelism'). The bene�ts of this approa
h are elaborated in more detail via developing several

versions of parallel programs in the PhD thesis [Loi98℄[Chapter 4℄.

On the programming environment level we have shown the importan
e of an integrated parallel

programming environment, with fa
ilities for prototyping parallel
ode, optimising the program,

and visualising parallel behaviour. Although not the fo
us of this paper, the GpH programming

environment has been developed alongside the programs, and is still being extended as detailed

below.

Overall, our motto in exploiting parallelism in large appli
ations is `low pain, moderate gain.'

The goal of this approa
h is to bring the power of parallel pro
essing, in
reasingly o�ered by

the latest generation of desktop ma
hines, to non-spe
ialists in parallel programming. To a
hieve

su
h `desktop parallelism', as we
all it, we use a programming model o�ering largely impli
it

parallelism, namely parallel fun
tional programming. However, our model is not restri
ted to

ma
hines with modest parallelism, and indeed it is possible to spe
ify more details of the parallel

omputation if ne
essary. These aspe
ts are in
ontrast to
lassi
al `super
omputer parallelism',

where it is feasible to spend a lot of e�ort in parallelising a program and the parallelisation is

usually done by a spe
ialist in parallel pro
essing. With the appli
ations presented in this paper

we also hope to have demonstrated the merit of su
h a `desktop parallelism' approa
h in order to

make the power of parallel pro
essing more easily available to programmers.

8.2 Future Work

We are extending the work in several dire
tions. Even with the existing suite of pro�ling and

visualisation tools available it is hard to fully understand the parallel behaviour, of large irregularly

parallel programs. Additional tools are under
onstru
tion and the most signi�
ant of these are

as follows. The GranCC pro�ler attributes the work done by a thread to a
ost
entre, i.e. an

expression in the program [HLT97℄. The strategi
 pro�ler, GranSP, attributes a thread to the

strategy that indu
ed it [KHT98℄. A standard format for pro�ling data is being designed, and

the tools may be o�ered in a user-friendly environment [JMPW98℄. We have experimented with

a number of di�erent ways of visualising the exe
ution of parallel fun
tional programs. We intend

to des
ribe our experien
es with the pro�lers and visualisations in a separate paper.

It would be useful to reason more formally about the strategies used in our programs. For

example to demonstrate that two strategies are equivalent w.r.t. the amount of parallelism they

generate, or that one generates more parallelism than another. So far, most of this reasoning has

40

been done informally. However, we are
urrently working on an operational semanti
s for GpH,

in order to prove identities about strategies [HBTK98℄. The strategi
 identities
an then be used

to prove equalities and inequalities between strategi
 fun
tions.

We intend to improve and extend the GUM runtime system, and to port it to new plat-

forms. The goal of these improvements is to make the management of parallelism more eÆ
ient

without sa
ri�
ing the ar
hite
ture-independen
e of GUM. Among the aspe
ts of GUM that

ould be improved are the bookkeeping of potential parallelism via lazy threads as developed in

[GSC96℄, the work-stealing algorithm and the message-pro
essing as suggested by measurements

in [LH96b℄. Furthermore, there are a number of obvious extensions to GUM, e.g. to introdu
e

thread migration, i.e. the relo
ation of a running thread from one pro
essor to another, or support

for spe
ulative parallelism. A number of GUM ports are under way or planned, in
luding to a

Fujitsu AP1000, a Fujitsu AP3000, and a Beowulf platform.

In the longer-term, we would like to develop an even more impli
itly parallel language. One

means of doing so would be to automati
ally insert strategies into a program, guided by stati

analyses of the program text. Stri
tness analysis [BHA86℄ indi
ates when it is safe to introdu
e

parallelism, and granularity analysis [LH96a℄ indi
ates when it is worthwhile to do so. Be
ause

strategies are part of GpH it is then possible for the programmer to tune the parallel performan
e

by re�ning the automati
ally generated strategies.

Referen
es

[AHPT93℄ G. Akerholt, K. Hammond, S.L. Peyton Jones, and P.W. Trinder. Pro
essing

Transa
tions on GRIP. In PARLE'93 | Parallel Languages and Ar
hite
tures Eu-

rope, Muni
h, Germany, June 14{18, 1993. URL: ftp://ftp.d
s.gla.a
.uk/pub/glasgow-

fp/papers/grip-transa
tions.ps.Z.

[Arm96℄ J. Armstrong. Erlang { a Survey of the Language and its Industrial Appli
ations.

In INAP'96 | Exhibitions and Symposium on Industrial Appli
ations of Prolog, pp.

16{18, Hino, Tokyo, Japan, O
tober 1996.

[AWWV96℄ J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Con
urrent Programming

in Erlang. Prenti
e-Hall, 1996.

[AN90℄ Arvind and R.S. Nikhil. Exe
uting a Program on the MIT Tagged-Token Data
ow

Ar
hite
ture. IEEE Transa
tions on Computers, 39(3), Mar
h 1990.

[BvH

+

87℄ H.P. Barendregt, M.C.J.D. van Eekelen, P.H. Hartel, L.O. Hertzberger, M.J.

Plasmeijer, and W.G. Vree. The Dut
h Parallel Redu
tion Ma
hine Proje
t.

Future Generation Computer Systems, 3:261{270, De
ember 1987. URL:

ftp://ftp.
s.kun.nl/pub/CSI/SoftwEng.Fun
tLang/papers/barh87-PRMprojekt.ps.gz.

[Ble95℄ G.E. Blello
h. NESL: A Nested Data-Parallel Language (Version 3.1). Te
hni
al

Report CMU-CS-95-170, Carnegie-Mellon University, September 1995. URL:

http://www.
s.
mu.edu/afs/
s.
mu.edu/proje
t/s
andal/publi
/papers/CMU-CS-95-

170.ps.gz.

[Ble96℄ G.E. Blello
h. Programming Parallel Algorithms. Communi
ations of the ACM,

39(3):85{97, Mar
h 1996. URL: http://www.
s.
mu.edu/~s
andal/
a
m.html.

[BN97℄ G. Blello
h and G. Narlikar. A Pra
ti
al Comparison of N -Body Algo-

rithms. In Parallel Algorithms, Series in Dis
rete Mathemati
s and The-

oreti
al Computer S
ien
e. Ameri
an Mathemati
al So
iety, 1997. URL:

http://www.
s.
mu.edu/afs/
s.
mu.edu/proje
t/s
andal/publi
/papers/dima
s-

nbody.ps.gz.

41

[BF94℄ D. Bou
her and M. Feeley. Constru
tion Parall�ele de l'Automate LR(0):

Une Appli
ation de MultiLisp �a la Compilation. In 6i�eme Ren
ontres

Fran
ophones du Parall�elisme, Universit�e de Montr�eal, June 1994. URL:

http://www.iro.umontreal.
a/~feeley/papers/renpar6.ps.gz.

[BH95℄ W. B�ohm and B. Hiromoto. Fun
tional Implementations of the Ja
obi Eigen-Solver.

In HPFC'95 | High Performan
e Fun
tional Computing, Denver, CO, USA, April

10{12, 1995. URL: http://www.
s.
olostate.edu/~data
ow/papers/sp95.ps.gz.

[Bra94℄ T.A. Bratvold. Skeleton-Based Parallelisation of Fun
tional Programs. PhD the-

sis, Department of Computing and Ele
tri
al Engineering, Heriot-Watt University,

Edinburgh, November 1994. URL: ftp://ftp.
ee.hw.a
.uk/pub/fun
prog/tab.phd.ps.Z.

[BHA86℄ G.L. Burn, C. Hankin, and S. Abramsky. Stri
tness Analysis for Higher Order Fun
-

tions. S
ien
e of Computer Programming, 7:249{278, November 1986.

[BR94℄ F.W. Burton and V.J. Rayward Smith. Worst Case S
heduling for Parallel Fun
tional

Programming. Journal of Fun
tional Programming, 4(1):65{75, January 1994.

[Can92℄ D. Cann. Retire Fortran? A Debate Rekindled. Com-

muni
ations of the ACM, 35(8):81{89, August 1992. URL:

ftp://sisal.llnl.gov/pub/sisal/publi
ations.dir/retire.ps.Z.

[Cla93℄ S. Clayman. Developing and Measuring Parallel Rule-Based Systems in a Fun
tional

Programming Environment. PhD thesis, Department of Computer S
ien
e, University

College London, 1993.

[Dav96℄ K. Davis. MPP Parallel Haskell. In IFL'96 | International Workshop on the Imple-

mentation of Fun
tional Languages, pp. 49{54, Bad Godesberg, Germany, September

1996. Draft Pro
eedings.

[Den95℄ J. Dennis. Stati
 Mapping of Fun
tional Programs: an Example in Signal Pro
essing.

In HPFC'95 | High Performan
e Fun
tional Computing, pp. 149{163, Denver, CO,

USA, April 10{12, 1995.

[DGF97℄ D. Dinapoli, M. Giordano, and M.M. Furnari. A PVM-Based Distributed Parallel

Symboli
 System. Journal of Advan
es in Engineering Software, 28(5):303{312, 1997.

[Ega93℄ G. Egan. Implementing the Kernel of the Australian Weather Predi
tion Model in

Sisal. In SISAL'93, pp. 11{17, San Diego, CA, USA, O
tober 1993.

[FTL94℄ M. Feeley, M. Tur
otte, and G. LaPalme. Using MultiLisp for Solving Con-

straint Satisfa
tion Problems: an Appli
ation to Nu
lei
 A
id 3D Stru
ture

Determination. Lisp and Symboli
 Computation, 7:231{247, 1994. URL:

http://www.iro.umontreal.
a/~feeley/papers/nu
lei
.ps.gz.

[GSC96℄ S.C. Goldstein, K.E. S
hauser, D.E. Culler. Lazy Threads: Implementing a Fast

Parallel Call. Journal of Parallel and Distributed Computing, 37(1):5{20, 1996. URL:

http://http.
s.berkeley.edu/~sethg/papers/jpd
.ps.Z

[GSWZ95℄ P.W. Grant, J.A. Sharp, M.F. Webster, and X. Zhang. Experien
es of Parallelizing

Finite-Element Problems in a Fun
tional Style. Software { Pra
ti
e and Experien
e,

25(9):947{974, September 1995.

[GMZ94℄ K.D. Gremban, G.L. Miller, and M. Zagha. Performan
e Evaluation of a

New Parallel Pre
onditioner. Te
hni
al Report CMU-CS-94-205, S
hool

of Computer S
ien
e, Carnegie Mellon University, O
tober 1994. URL:

http://www.
s.
mu.edu/afs/
s.
mu.edu/proje
t/s
andal/publi
/papers/CMU-CS-94-

205.ps.gz.

42

[HBTK98℄ J.G. Hall, C. Baker-Fin
h, P.W. Trinder, and D.J. King. Towards an Operational

Semanti
s for a Parallel Non-Stri
t Fun
tional Language. In IFL'98 | International

Workshop on the Implementation of Fun
tional Languages, LNCS 1595, pp. 55{

72, September, University College London, England, 1998. Springer-Verlag. URL:

http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/semanti
s.ps.gz.

[HB97℄ J. Hammes and W. B�ohm. On the Performan
e of Fun
tional Program-

ming Languages on Realisti
 Ben
hmarks. In PDPTA'97 | International

Conferen
e on Parallel and Distributed Pro
essing Te
hniques, 1997. URL:

http://www.
s.
olostate.edu/~hammes/do
uments/PDPTA.ps.Z.

[HLB95℄ J. Hammes, O. Lube
k, and W. B�ohm. Comparing Id and Haskell in a Monte Carlo

photon transport
ode. Journal of Fun
tional Programming, 5(3):283{316, July 1995.

URL: http://www.
s.
olostate.edu/~hammes/do
uments/�nal1.ps.Z.

[Ham94℄ K. Hammond. Parallel Fun
tional Programming: An Introdu
tion. In

PASCO'94 | International Symposium on Parallel Symboli
 Computation, vol-

ume 5 of Le
ture Notes Series on Computing, pp. 181{193, Hagenberg/Linz,

Austria, 26{28 September, 1994. World S
ienti�
. URL: http://www.d
s.st-

and.a
.uk/~kh/papers/pas
o94/pas
o94.html.

[HLP95℄ K. Hammond, H-W. Loidl, and A. Partridge. Visualising Granularity in Parallel

Programs: A Graphi
al Winnowing System for Haskell. In HPFC'95 | High Per-

forman
e Fun
tional Computing, pp. 208{221, Denver, CO, USA, April 10{12, 1995.

URL: http://www.d
s.st-and.a
.uk/~kh/papers/hpf
95/hpf
95.html.

[HLT97℄ K. Hammond, H-W. Loidl, and P.W. Trinder. Parallel Cost Centre Pro�ling. In

Glasgow Workshop on Fun
tional Programming, Ullapool, S
otland, September 15{

17, 1997. URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/gran

.ps.gz.

[HMP94℄ K. Hammond, J.S. Mattson Jr., and S.L. Peyton Jones. Automati
 Spark Strate-

gies and Granularity for a Parallel Fun
tional Language Redu
er. In CON-

PAR'94 | Conferen
e on Algorithms and Hardware for Parallel Pro
essing, LNCS

854, pp. 521{532, Linz, Austria, September 6{8, 1994. Springer-Verlag. URL:

ftp://ftp.d
s.glasgow.a
.uk/pub/glasgow-fp/papers/spark-strategies-and-granularity.ps.Z.

[HP92℄ K. Hammond and S.L. Peyton Jones. Pro�ling S
heduling Strategies on the GRIP

Multipro
essor. In IFL'92 | International Workshop on the Parallel Implementa-

tion of Fun
tional Languages, pp. 73{98, RWTH Aa
hen, Germany, September 1992.

URL: ftp://ftp.d
s.gla.a
.uk/pub/glasgow-fp/papers/grip-s
heduling.ps.gz.

[HHL

+

95℄ P.H. Hartel, R.F.H. Hofman, K.G. Langendoen, H.L. Muller, W.G. Vree, and

L.O. Hertzberger. A Toolkit for Parallel Fun
tional Programming. Con-

urren
y | Pra
ti
e and Experien
e, 7(8):765{793, De
ember 1995. URL:

ftp://ftp.fwi.uva.nl/pub/
omputer-systems/fun
tional/reports/CPE toolkit.ps.Z.

[HN91℄ M. Heytens and R.S. Nikhil. List Comprehensions in Agna, a Parallel, Persistent

Obje
t System. In FPCA'91 | Conferen
e on Fun
tional Programming Languages

and Computer Ar
hite
tures, LNCS 523, pp. 569{591, Harvard, MA, USA, 1991.

Springer-Verlag.

[HCAA93℄ J. Hi
ks, D. Chiou, B.S. Ang, and Arvind. Performan
e Studies of the Monsoon

Data
ow Pro
essor. Journal of Parallel and Distributed Computing, July 1993. URL:

http://www.
sg.l
s.mit.edu/monsoon/monsoon-performan
e/monsoon-performan
e.html.

[HL94℄ H. Hong and H-W. Loidl. Parallel Computation of Modular Multivariate Polynomial

Resultants on a Shared Memory Ma
hine. In CONPAR'94 | Conferen
e on Parallel

and Ve
tor Pro
essing, LNCS 854, pp. 325{336, Linz, Austria, September 6{8, 1994.

Springer-Verlag. URL: http://www.d
s.gla.a
.uk/~hwloidl/publi
ations/resultant.ps.gz.

43

[Hug89℄ R.J.M. Hughes. Why Fun
tional Programming Matters. The Computer Journal,

32(2):98{107, April 1989. URL: http://www.
s.
halmers.se/~rjmh/Papers/whyfp.ps.

[Ito96℄ T. Ito. EÆ
ient Evaluation Strategies for Stru
tured Con
urren
y Constru
ts in

Parallel S
heme Systems. LNCS 1068, pp. 22{52. Springer-Verlag, 1996.

[JMPW98℄ S. Jarvis, S. Marlow, S.L. Peyton Jones, E. Wil
ox. Standardising Compiler/Pro�ler

Log Files. In IFL'98 | International Workshop on the Implementation of Fun
tional

Languages, September, University College London, England, 1998. Springer-Verlag.

Draft Pro
eedings.

[JSC96℄ Spe
ial Issue on Parallel Symboli
 Computation of the Journal of Symboli
 Compu-

tation, 21(4/6), April/June 1996. A
ademi
 Press.

[JDH97℄ S. Junaidu, A. Davie, and K. Hammond. Naira: A Parallel

2

Haskell Compiler. In

IFL'97 | International Workshop on the Implementation of Fun
tional Languages,

LNCS 1467, pp. 215{231, September 10{12, St. Andrews, S
otland, 1997. Springer-

Verlag. URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/naira.ps.gz.

[Jun98℄ S. Junaidu. A Parallel Fun
tional Language Compiler for Message Passing

Multi
omputers. PhD thesis, S
hool of Mathemati
al and Computational S
i-

en
es, University of St. Andrews, Mar
h 1998. URL: http://www-fp.d
s.st-

and.a
.uk/publi
ations/1998/junaidu-thesis.ps.gz.

[Kel89℄ P.H.J. Kelly. Fun
tional Programming for Loosely-Coupled Multipro
essors. Resear
h

Monographs in Parallel and Distributed Computing. MIT Press, 1989.

[Ken94℄ J.R. Kennaway. A Con
i
t Between Call-by-Need Computation and Par-

allelism. In Workshop on Conditional Term Rewriting Systems, LNCS

968, pp. 247{261, Jerusalem, Israel, 1994. Springer-Verlag. URL:

ftp://ftp.sys.uea.a
.uk/pub/kennaway/publi
ations/rootseq.ps.Z.

[Kes95℄ Mar
o Kesseler. Constru
ting Skeletons in Clean: The Bare Bones. In HPFC'95

| High Performan
e Fun
tional Computing, pp. 182{192, Denver, CO, USA, April

10{12, 1995. URL: ftp://ftp.
s.kun.nl/pub/CSI/SoftwEng.Fun
tLang/papers/kesm95-

skeletons.ps.gz.

[Kes96℄ M. Kesseler. The Implementation of Fun
tional Languages on Parallel Ma
hines with

Distributed Memory. PhD thesis, University of Nijmegen, 1996.

[KHT98℄ D.J. King, J.G. Hall, and P.W. Trinder. A Strategi
 Pro�ler for Glas-

gow Parallel Haskell. In IFL'98 | International Workshop on the Im-

plementation of Fun
tional Languages, LNCS 1595, pp. 90{104, Septem-

ber, University College London, England, 1998. Springer-Verlag. URL:

http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/gransp.ps.gz.

[KG91℄ H. Ku
hen and G. Geiler. Distributed Appli
ative Arrays. Te
hni
al Report AIB

91-5, RWTH Aa
hen, 1991.

[LAN98℄ Sisal Performan
e Data. WWW page, June 1998. URL:

http://www.llnl.gov/sisal/Performan
eData.html.

[Lau82℄ M. Lauer. Computing by Homomorphi
 Images, in B. Bu
hberger, G. Collins, R. Loos

and R. Albre
ht, editors, Computer Algebra | Symboli
 and Algebrai
 Computation,

pp. 139{168. Springer-Verlag, 1982.

[Les85℄ L.M. Leslie et al. A High Resolution Primitive Equations NWP Model for Operations

and Resear
h. Australian Metereologi
al Magazine, 33:11{35, 1985.

44

[Loi98℄ H-W. Loidl. Granularity in Large-S
ale Parallel Fun
tional Programming. PhD the-

sis, Department of Computing S
ien
e, University of Glasgow, Mar
h 1998. URL:

http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/loidl-thesis.ps.gz.

[Loi97℄ H-W. Loidl. LinSolv: a Case Study in Strategi
 Parallelism. In Glasgow Work-

shop on Fun
tional Programming, Ullapool, S
otland, September 15{17, 1997. URL:

http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/linsolv.ps.gz.

[LH95℄ H-W. Loidl and K. Hammond. On the Granularity of Divide-and-Conquer

Parallelism. In Glasgow Workshop on Fun
tional Programming, Workshops

in Computing, Ullapool, S
otland, July 8{10, 1995. Springer-Verlag. URL:

http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/div-
on
.ps.gz.

[LH96a℄ H-W. Loidl and K. Hammond. A Sized Time System for a Parallel Fun
tional Lan-

guage. In Glasgow Workshop on Fun
tional Programming, Ullapool, S
otland, July

8{10, 1996. URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/sized.ps.gz.

[LH96b℄ H-W. Loidl and K. Hammond. Making a Pa
ket: Cost-E�e
tive Commu-

ni
ation for a Parallel Graph Redu
er. In IFL'96 | International Work-

shop on the Implementation of Fun
tional Languages, LNCS 1268, pp. 184{

199, Bad Godesberg, Germany, September 1996. Springer-Verlag. URL:

http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/pa
ket.ps.gz.

[LT97℄ H-W. Loidl and P.W. Trinder. Engineering Large Parallel Fun
tional Programs. In

IFL'97 | International Workshop on the Implementation of Fun
tional Languages,

LNCS 1467, pp. 179{198, University of St. Andrews, S
otland, September 10{12,

1997. Springer-Verlag. URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/eng.ps.gz.

[LMT

+

97℄ H-W. Loidl, R.G. Morgan, P.W. Trinder, S. Poria, C. Cooper, S.L. Peyton Jones, and

R. Garigliano. Parallelising a Large Fun
tional Program; Or: Keeping LOLITA Busy.

In IFL'97 | International Workshop on the Implementation of Fun
tional Languages,

LNCS 1467, pp. 199{214, University of St. Andrews, S
otland, September 10{12,

1997. Springer-Verlag. URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/lolita.ps.gz.

[LL93℄ C. Limongelli and H-W. Loidl. Rational Number Arithmeti
 by Parallel P-adi
 Algo-

rithms. In ACPC'93 | Parallel Computation | Se
ond International ACPC Confer-

en
e, LNCS 734, pp. 72{86, Gmunden, Austria, O
tober 4{6, 1993. Springer-Verlag.

URL: http://www.d
s.gla.a
.uk/~hwloidl/publi
ations/p-adi
.ps.gz.

[Lip71℄ J. D. Lipson. Chinese Remainder and Interpolation Algorithms. In SYMSAM'71 |

Symposium on Symboli
 and Algebrai
 Manipulation, pp. 372{391. A
ademi
 Press,

1971.

[LP95℄ J. Laun
hbury and S.L. Peyton Jones. State in Haskell. Lisp

and Symboli
 Computation, 8(4):293{342, De
ember 1995. URL:

http://resear
h.mi
rosoft.
om/Users/simonpj/Papers/state-las
.ps.gz.

[MKH91℄ E. Mohr, D.A. Kranz, and R.H. Halstead Jr. Lazy Task Creation: A Te
h-

nique for In
reasing the Granularity of Parallel Programs. IEEE Transa
-

tions on Parallel and Distributed Systems, 2(3):264{280, July 1991. URL:

ftp://
ag.l
s.mit.edu/pub/papers/futures.ps.Z.

[MS95℄ G. Mi
haelson and N. S
aife. Prototyping a Parallel Vision System in Stan-

dard ML. Journal of Fun
tional Programming, 5(3):345{382, July 1995. URL:

ftp://ftp.
ee.hw.a
.uk/pub/fun
prog/ms.jfp95.ps.Z.

[MT93℄ S. Mitrovi
 and M. Trobina. Computer Vision Algorithms in Sisal. In SISAL'93, pp.

114{119, San Diego, CA, USA, O
tober 1993.

45

[MSS94℄ R.G. Morgan, M.H. Smith, and S. Short. Translation by Meaning and Style in Lolita.

In International BCS Conferen
e | Ma
hine Translation Ten Years On, Cran�eld

University, November 1994.

[Nik91℄ R.S. Nikhil. ID Referen
e Manual. Te
hni
al Report CSG Memo 284-

2, Laboratory for Computer S
ien
e, M.I.T., July 1991. URL: ftp://
sg-

ftp.l
s.mit.edu/pub/papers/
sgmemo/memo-284-2.ps.gz.

[NSvP91℄ E.G.J.M.H. N�o
ker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer.

Con
urrent Clean. In PARLE'91 | Parallel Ar
hite
tures and Languages Europe,

LNCS 505, pp. 202{219, Veldhoven, The Netherlands, June 1991. Springer-

Verlag. URL: ftp://ftp.
s.kun.nl/pub/CSI/SoftwEng.Fun
tLang/papers/no
e91-

on
urrent
lean.ps.gz.

[Pey96℄ S.L. Peyton Jones. Compiling Haskell by Program Transformation: a Report

from the Tren
hes. In ESOP'96 | European Symposium on Programming, LNCS

1058, pp. 18{44, Link�oping, Sweden, April 22{24, 1996. Springer-Verlag. URL:

http://www.d
s.gla.a
.uk/fp/authors/Simon Peyton Jones/
omp-by-trans.ps.gz.

[PHA

+

97℄ J.C. Peterson, K. Hammond, L. Augustsson, B. Boutel, F.W. Burton, J.H. Fasel,

A.D. Gordon, R.J.M. Hughes, P. Hudak, T. Johnsson, M.P. Jones, S.L. Peyton Jones,

A. Reid, and P.L. Wadler. Report on the Non-Stri
t Fun
tional Language, Haskell,

Version 1.4, 1997. URL: http://www.haskell.org/de�nition/haskell-report-1.4.ps.gz.

[PS93℄ A.P. Poulovassilis and C. Small. A Domain-Theoreti
 Approa
h to Logi
 and Fun
-

tional Databases. In VLDB'93 | International Conferen
e on Very Large Databases,

pp. 415{426, 1993.

[Ree95℄ H.J. Reekie. Realtime Signal Pro
essing: Data
ow, Visual and Fun
tional Program-

ming. PhD thesis, S
hool of Ele
tri
al Engineering, University of Te
hnology at

Sydney, 1995.

[Roe91℄ P. Roe. Parallel Programming using Fun
tional Languages. PhD thesis, De-

partment of Computing S
ien
e, University of Glasgow, February 1991. URL:

http://www.�t.qut.edu.au/~proe/papers/thesis.ps.gz.

[RW93℄ C. Run
iman and D. Wakeling. Pro�ling Parallel Fun
tional Computations (without

Parallel Ma
hines). In Glasgow Workshop on Fun
tional Programming, Workshops

in Computing, pp. 236{251, Ayr, S
otland, July 5{7, 1993. Springer-Verlag.

[RW95℄ C. Run
iman and D. Wakeling. Appli
ations of Fun
tional Programming. UCL Press,

1995.

[SP95℄ P.M. Sansom and S.L. Peyton Jones. Time and Spa
e Pro�ling for Non-Stri
t Higher-

Order Fun
tional Languages. In POPL'95 | Symposium on Prin
iples of Pro-

gramming Languages, San Fran
is
o, CA, USA, January 1995. ACM Press. URL:

ftp://ftp.d
s.glasgow.a
.uk/pub/glasgow-fp/papers/pro�ling.ps.Z.

[SP97℄ P.M. Sansom and S.L. Peyton Jones. Formally Based Pro�ling for

Higher-Order Fun
tional Languages. ACM Transa
tions on Program-

ming Languages and Systems, 19(2):334{385, Mar
h 1997. URL:

http://www.d
s.gla.a
.uk/fp/authors/Patri
k Sansom/1997 pro�ling TOPLAS.ps.gz.

[S
h95℄ W. S
hreiner. Appli
ation of a Para-Fun
tional Language to Problems in

Computer Algebra. In HPFC'95 | High Performan
e Fun
tional Com-

puting, pp. 182{192, Denver, CO, USA, April 10{12, 1995. URL:

ftp://sisal.llnl.gov/pub/hpf
/papers95/paper1.ps.

46

[Sha98℄ A. Shaw. Impala Appli
ation Suite. WWW page, January 1998. URL:

http://www.
sg.l
s.mit.edu:8001/impala/.

[SAC

+

98℄ A. Shaw, Arvind, K.-C. Cho, C. Hill, R.P. Johnson, and J. Marshall. A Comparison

of Impli
itly Parallel Multithreaded and Data Parallel Implementations of an O
ean

Model. Journal of Parallel and Distributed Computing, 48(1):1{51, January 1998.

URL: ftp://
sg-ftp.l
s.mit.edu/pub/papers/
sgmemo/memo-364.ps.Z.

[SMT

+

95℄ E. Smirni and E. Rosti. Modeling Speedup of SPMD Appli
ations on the Intel

Paragon: a Case Study. In HPCN'95 | High Performan
e Computing and Net-

working, LNCS 919, pp. 94{101, Milan, Italy, May 1995. Springer-Verlag.

[SB95℄ A.C. Sodan and H. Bo
k. Extra
ting Chara
teristi
s from Fun
tional Programs

for Mapping to Massively Parallel Ma
hines. In HPFC'95 | High Performan
e

Fun
tional Computing, pp. 134{148, Denver, CO, USA, April 10{12, 1995. URL:

ftp://sisal.llnl.gov/pub/hpf
/papers95/paper14.ps.

[Ske91℄ S. Skedzielewski. Sisal. Parallel Fun
tional Languages and Compilers. Frontier Series.

ACM Press, 1991.

[SB94℄ S. Sur and W. B�ohm. Analysis of Non-Stri
t Fun
tional Implementa-

tions of the Dongarra-Sorensen Eigensolver. In ICS'94 | International

Conferen
e on Super
omputing, Man
hester, England, June 1994. URL:

http://www.
s.
olostate.edu/~data
ow/papers/i
s94b.ps.gz.

[Tar75℄ R.E. Tarjan. EÆ
ien
y of a Good, but not Linear Set Union Algorithm. Journal of

the ACM, 22:215{225, 1975.

[Tay97℄ F.S. Taylor. Parallel Fun
tional Programming by Partitioning. PhD the-

sis, Department of Computing, Imperial College, London, 1997. URL:

http://www.lieder.demon.
o.uk/thesis/thesis.ps.gz.

[TG95℄ G. Tremblay and G.R. Gao. The impa
t of laziness on parallelism and

the limits of stri
tness analysis. In HPFC'95 | High Performan
e Fun
-

tional Computing, pp. 119{133, Denver, CO, USA, April 10{12, 1995. URL:

ftp://sisal.llnl.gov/pub/hpf
/papers95/paper11.ps.

[TBD

+

98℄ P.W. Trinder, E. Barry Jr., M.K. Davis, K. Hammond, S.B. Junaidu, U. Klusik,

H-W. Loidl, and S.L. Peyton Jones. GPH: An Ar
hite
ture-Independent Fun
tional

Language. IEEE Transa
tions on Software Engineering, 1999. Submitted for publi-

ation.

[TLH99℄ P.W. Trinder, H-W. Loidl, and K. Hammond. Large-S
ale Fun
tional Appli
ations.

K. Hammond and G. Mi
haelson, editors, Resear
h Dire
tions in Parallel Fun
tional

Programming. Springer-Verlag, 1999.

[THLP98℄ P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm + Strat-

egy = Parallelism. Journal of Fun
tional Programming, 8(1):23{60, January 1998.

URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/strategies.ps.gz.

[THM

+

96℄ P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S Partridge, and S.L. Peyton Jones.

GUM: a Portable Parallel Implementation of Haskell. In PLDI'96 | Programming

Languages Design and Implementation, pp. 79{88, Philadelphia, PA, USA, May 1996.

URL: http://www.
ee.hw.a
.uk/~dsg/gph/papers/ps/gum.ps.gz.

[Win97℄ N. Winstanley. A Type-Sensitive Prepro
essor for Haskell. In Glasgow Workshop

on Fun
tional Programming, Ullapool, S
otland, September 15{17, 1997. URL:

http://www.d
s.gla.a
.uk/~nww/Papers/GlaFP-draft.ps.Z.

47

[WH96℄ J. Wu and L. Harbird. A Fun
tional Database System for Road A

ident Analysis.

Advan
es in Engineering Software, 26(1):29{43, 1996.

[YA93℄ D. Yeung and A. Agarwal. Experien
e with Fine-Grain Syn
hronization in

MIMD Ma
hines for Pre
onditioned Conjugate Gradient. In PPoPP'93 | Sym-

posium on Prin
iples and Pra
ti
e of Parallel Programming, May 1993. URL:

ftp://
ag.l
s.mit.edu/pub/papers/�ne-grain.ps.Z.

48

