
Spread-Spectrum Computation
Derek Murray
University of Cambridge Computer Laboratory

Email: Derek.Murray@cl.cam.ac.uk Web: http://www.cl.cam.ac.uk/~dgm36/

The idle cycles of the world’s desktop computers comprise a formi-
dable computational resource. Attempts to harness these have hith-
erto been limited to embarrassingly-parallel algorithms, which involve
the processing of independent tasks. We note that there are a wide
range of data-parallel algorithms, and introduce Spread-Spectrum
Computation as a technique for executing these in a distributed
manner.

Data-parallel algorithms are usually targeted at supercomputers,
which have hundreds or thousands of processors, and provide either
a shared memory, or message passing through a fast interconnect.
The distributed environment differs in three crucial respects:
● The processing nodes and network links are heterogeneous
● A processing node may fail at any time, either because it crashes,

or because its owner withdraws it from the computation
● The network link to/from and between the processing nodes has

much longer latency and smaller bandwidth (than a supercom-
puter interconnect), and it may fail at any time

Embarrassingly-parallel algorithms can cope with these problems
using a simple task-farming approach. Heterogeneity is addressed by
implicit load-balancing: each processing node requests a task when it
is ready to accept one. Failure is addressed by assigning tasks to more
than one processing node. These techniques only work when the
tasks are independent.

Data-parallel algorithms introduce at least one dependency: all
processing nodes must synchronise before the final result may be
computed. There may also be intermediate exchanges of data be-
tween processing nodes (e.g. halo swaps or systolic flows). Therefore
the various sub-tasks of a data-parallel job must be coscheduled.
Spread-spectrum computation introduces techniques that enable effi-
cient coscheduling in the distributed environment, where jobs can be
affected by heterogeneity and node failures.

Why “Spread Spectrum”?
Spread-spectrum techniques are typically used in radio communica-
tions to provide security, and robustness to interference and jamming.
To do this, the original signal is modulated to “hop” between
pseudo-randomly selected carrier frequencies: if the sender and
receiver share the same seed, they can communicate. Of course, some
redundancy is required in the event that two senders hop on to the
same carrier frequency at the same time.

Spread-spectrum computation involves pseudo-randomly selecting
computational resources (below), and redundantly encoding algorith-
mic inputs (right), in order to provide robustness against delays and
node failure.

Distributed Random Scheduling
In an internet-scale distributed system, it is infeasible to track cen-
trally the state of each processing node. More importantly, it is diffi-
cult to make a coscheduling decision when there are (i) multiple jobs
under submission, and (ii) the processing nodes are heterogeneous.
Therefore, we take a very simple approach: the job submitter chooses
n processing nodes at random, and distributes one piece of input to
each node.
Of course, this approach is vulnerable to scheduling clashes. A
processing node can take one of three possible actions: run the jobs
concurrently (e.g. on an idle core), queue the newly-arrived job, or
reject the newly-arrived job. In the latter two cases, this appears to the

submitter as additional latency or a failure, respectively. Fortunately,
the use of a CDA ensures that the job will still succeed, as long as the
number of failures does not exceed the number of redundant nodes.
The CDA also ameliorates the heterogeneity in the processing nodes.
If the algorithm were straightforwardly distributed, the execution
time would be limited by the slowest node. However, because the
algorithm can complete after receiving m partial results, the perform-
ance is limited by the (n − m + 1)th slowest node (assuming no fail-
ures). The interplay between heterogeneity, efficiency, failure toler-
ance and redundancy will be the subject of further investigation.

At present, we are conducting a pilot study using PlanetLab node fail-
ure data to establish the need for spread-spectrum computation. We
have obtained node liveness and performance information covering a
period of one month, and we are running simulations of various job
submission patterns. The key metrics are success rate, speed and
system capacity.
We have started to implement spread-spectrum versions of several
matrix algorithms. At present, we are concentrating on the algorithms
that calculate the singular value decomposition and eigendecomposi-
tion of large, sparse matrices. These algorithms are particularly inter-
esting, because they have applications in large-scale information
retrieval [1, 2], where the use of distributed processing has become
necessary.
Beyond this, we intend to look into signal processing algorithms, such
as the Fast Fourier Transform, which also have applications in mo-
lecular dynamics.
Ultimately, we intend to build, deploy and measure a large-scale im-
plementation of our spread-spectrum algorithms, and compare them
with the best existing algorithms.

References
1. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Search Engine. In

Proceedings of the seventh international conference on the World Wide Web, pages 107-117,
1998.

2. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman.
Indexing by latent semantic analysis. Journal of the American Society of Information Science,
41(6):391–407, 1990.

3. R. G. Gallagher. Low-Density Parity-Check Codes. MIT Press, 1963.

4. M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. J. ACM, 36(2):335–348, 1989.

Decompose

Input

Output

Process

Decode

Reduce

Encode

Computation Dispersal Algorithms
We introduce Computation Dispersal Algorithms (CDAs) by analogy
with Rabin’s Information Dispersal Algorithm (IDA) [4]. The IDA
encodes a file containing m blocks into n > m blocks such that any m
encoded blocks are sufficient to reconstruct the original file. A CDA
encodes the input to a data-parallel algorithm comprising m pieces
into n > m pieces, such that executing the algorithm on any m encoded
pieces is sufficient to reconstruct the result of applying the algorithm
to the original input.

Consider the dataflow in a data-parallel algorithm. First, the coordina-
tor decomposes the input, and distributes it to the processing nodes.
The processing nodes operate on their respective pieces of input,
before sending their results back to the coordinator. Finally, the coor-
dinator reduces the results into a combined result, and returns that as
output.

The spread-spectrum dataflow (right) is obtained by adding encoding
and decoding steps to the above process. After the input has been de-
composed into pieces, these pieces are encoded to create redundant
pieces, which are also distributed to processing nodes. Since some of
the nodes may fail (the green and blue paths in the diagram), the de-
coding step combines the successful partial results to generate the
partial results that would have been obtained by running the algo-
rithm on the original decomposition.

For many algorithms, these additional steps are sufficient to add fail-
ure and latency tolerance. Neither the kernel of the processing step
nor the reduction step need be modified. Therefore it is possible to
use the same highly optimised routines that form the basis of existing
parallel algorithms, such as LAPACK and FFTW.

CDAs, like Rabin’s IDA, are an example of erasure coding. Therefore,
we can exploit the wide range of existing codes to create new CDAs.
The simplest code is probably parity checking. In communication,
this involves adding an additional bit to ensure that the number of 1’s
in a data word is either even or odd. Thus a missing bit can be calcu-
lated from the parity, as only one option can satisfy the parity condi-
tion. This notion can, for example, extend to matrices as follows:

Matrix A' is the parity-enhanced version of matrix A, as it contains an
additional row that is the sum of all rows in A. If A' is distributed to
m + 1 processing nodes to compute a matrix-vector multiplication, and
one node fails, the missing value in the result can be computed from
the other values. This approach generalises to other linearly-separable
functions, including many other matrix operations and signal process-
ing algorithms.

Obviously, the single parity check gives resilience to only a single fail-
ure. However, this technique works with more sophisticated codes,
such as low-density parity-check (LDPC) codes [3], Tornado codes,
Online codes, etc. These codes make it possible to vary the rate (i.e.
m/n) of the encoding, and adapt the CDA to the observed failure dis-
tribution of the processing nodes.

