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The idle cycles of  the world’s desktop computers comprise a formi-
dable computational resource. Attempts to harness these have hith-
erto been limited to embarrassingly-parallel algorithms, which involve 
the processing of  independent tasks. We note that there are a wide 
range of  data-parallel algorithms, and introduce Spread-Spectrum 
Computation as a technique for executing these in a distributed 
manner.

Data-parallel algorithms are usually targeted at supercomputers, 
which have hundreds or thousands of  processors, and provide either 
a shared memory, or message passing through a fast interconnect. 
The distributed environment differs in three crucial respects:
● The processing nodes and network links are heterogeneous
● A processing node may fail at any time, either because it crashes, 

or because its owner withdraws it from the computation
● The network link to/from and between the processing nodes has 

much longer latency and smaller bandwidth (than a supercom-
puter interconnect), and it may fail at any time

Embarrassingly-parallel algorithms can cope with these problems 
using a simple task-farming approach. Heterogeneity is addressed by 
implicit load-balancing: each processing node requests a task when it 
is ready to accept one. Failure is addressed by assigning tasks to more 
than one processing node. These techniques only work when the 
tasks are independent.

Data-parallel algorithms introduce at least one dependency: all 
processing nodes must synchronise before the final result may be 
computed. There may also be intermediate exchanges of  data be-
tween processing nodes (e.g. halo swaps or systolic flows). Therefore 
the various sub-tasks of  a data-parallel job must be coscheduled. 
Spread-spectrum computation introduces techniques that enable effi-
cient coscheduling in the distributed environment, where jobs can be 
affected by heterogeneity and node failures.

Why “Spread Spectrum”?
Spread-spectrum techniques are typically used in radio communica-
tions to provide security, and robustness to interference and jamming. 
To do this, the original signal is modulated to “hop” between 
pseudo-randomly selected carrier frequencies: if  the sender and 
receiver share the same seed, they can communicate. Of  course, some 
redundancy is required in the event that two senders hop on to the 
same carrier frequency at the same time.

Spread-spectrum computation involves pseudo-randomly selecting 
computational resources (below), and redundantly encoding algorith-
mic inputs (right), in order to provide robustness against delays and 
node failure.

Distributed Random Scheduling
In an internet-scale distributed system, it is infeasible to track cen-
trally the state of  each processing node. More importantly, it is diffi-
cult to make a coscheduling decision when there are (i) multiple jobs 
under submission, and (ii) the processing nodes are heterogeneous. 
Therefore, we take a very simple approach: the job submitter chooses 
n processing nodes at random, and distributes one piece of  input to 
each node.
Of  course, this approach is vulnerable to scheduling clashes. A 
processing node can take one of  three possible actions: run the jobs 
concurrently (e.g. on an idle core), queue the newly-arrived job, or 
reject the newly-arrived job. In the latter two cases, this appears to the 

submitter as additional latency or a failure, respectively. Fortunately, 
the use of  a CDA ensures that the job will still succeed, as long as the 
number of  failures does not exceed the number of  redundant nodes.
The CDA also ameliorates the heterogeneity in the processing nodes. 
If  the algorithm were straightforwardly distributed, the execution 
time would be limited by the slowest node. However, because the 
algorithm can complete after receiving m partial results, the perform-
ance is limited by the (n − m + 1)th slowest node (assuming no fail-
ures). The interplay between heterogeneity, efficiency, failure toler-
ance and redundancy will be the subject of  further investigation.

At present, we are conducting a pilot study using PlanetLab node fail-
ure data to establish the need for spread-spectrum computation. We 
have obtained node liveness and performance information covering a 
period of  one month, and we are running simulations of  various job 
submission patterns. The key metrics are success rate, speed and 
system capacity.
We have started to implement spread-spectrum versions of  several 
matrix algorithms. At present, we are concentrating on the algorithms 
that calculate the singular value decomposition and eigendecomposi-
tion of  large, sparse matrices. These algorithms are particularly inter-
esting, because they have applications in large-scale information 
retrieval [1, 2], where the use of  distributed processing has become 
necessary.
Beyond this, we intend to look into signal processing algorithms, such 
as the Fast Fourier Transform, which also have applications in mo-
lecular dynamics.
Ultimately, we intend to build, deploy and measure a large-scale im-
plementation of  our spread-spectrum algorithms, and compare them 
with the best existing algorithms.
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Computation Dispersal Algorithms
We introduce Computation Dispersal Algorithms (CDAs) by analogy 
with Rabin’s Information Dispersal Algorithm (IDA) [4]. The IDA 
encodes a file containing m blocks into n > m blocks such that any m 
encoded blocks are sufficient to reconstruct the original file. A CDA 
encodes the input to a data-parallel algorithm comprising m pieces 
into n > m pieces, such that executing the algorithm on any m encoded 
pieces is sufficient to reconstruct the result of  applying the algorithm 
to the original input.

Consider the dataflow in a data-parallel algorithm. First, the coordina-
tor decomposes the input, and distributes it to the processing nodes. 
The processing nodes operate on their respective pieces of  input, 
before sending their results back to the coordinator. Finally, the coor-
dinator reduces the results into a combined result, and returns that as 
output.

The spread-spectrum dataflow (right) is obtained by adding encoding 
and decoding steps to the above process. After the input has been de-
composed into pieces, these pieces are encoded to create redundant 
pieces, which are also distributed to processing nodes. Since some of  
the nodes may fail (the green and blue paths in the diagram), the de-
coding step combines the successful partial results to generate the 
partial results that would have been obtained by running the algo-
rithm on the original decomposition.

For many algorithms, these additional steps are sufficient to add fail-
ure and latency tolerance. Neither the kernel of  the processing step 
nor the reduction step need be modified. Therefore it is possible to 
use the same highly optimised routines that form the basis of  existing 
parallel algorithms, such as LAPACK and FFTW.

CDAs, like Rabin’s IDA, are an example of  erasure coding. Therefore, 
we can exploit the wide range of  existing codes to create new CDAs. 
The simplest code is probably parity checking. In communication, 
this involves adding an additional bit to ensure that the number of  1’s 
in a data word is either even or odd. Thus a missing bit can be calcu-
lated from the parity, as only one option can satisfy the parity condi-
tion. This notion can, for example, extend to matrices as follows:

Matrix A' is the parity-enhanced version of  matrix A, as it contains an 
additional row that is the sum of  all rows in A. If  A' is distributed to 
m + 1 processing nodes to compute a matrix-vector multiplication, and 
one node fails, the missing value in the result can be computed from 
the other values. This approach generalises to other linearly-separable 
functions, including many other matrix operations and signal process-
ing algorithms.

Obviously, the single parity check gives resilience to only a single fail-
ure. However, this technique works with more sophisticated codes, 
such as low-density parity-check (LDPC) codes [3], Tornado codes, 
Online codes, etc. These codes make it possible to vary the rate (i.e. 
m/n) of  the encoding, and adapt the CDA to the observed failure dis-
tribution of  the processing nodes.


