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Abstract— The need for efficient computation of approx- e Internet routingGlobal state is needed at every router
imate global state lies at the heart of a wide range of prob- for Internet routing, because it has to forward incoming
lems in distributed systems. Examples include routing inthe npackets to the interface that provides the best path to the
Internet, sensor fusion, search in peer-to-peer networks, co- destination based on the current global topology. In Link

ordinated intrusion detection, and Top-K queries in stream- . . . .
oriented databases. Efficient algorithms that determine State routing, the flooding of Link State Packets results in

approximate global state could enable near-optimal local € global knowledge of this state.
decision-making with little overhead. In this position paper, * Network securityIntrusion detection systems detect

we model this problem and summarize recent work on ran- anomalies in network usage, such as port scanning. Recent

domized algorithms that navigate a four-way tradeoff be- work suggests that collating anomaly information across

tween accuracy, robustness, performance and overhead. De-multiple detectors, a form of global state, may greatly in-

spite th.ese recent successes, many open problems remairbrease the accuracy of the system [18].

We believe that solving these problems can radically im- 0 o stemdn a distributed file system, each node needs

prove the design of robust, efficient and self-managed dis- . :

tributed systems. to know the seF of nodes that store a a given disk block
(or file), and this set needs to be updated in response to

changes in load, availability guarantees, and node failures

[5].

The need for approximate global state arises in a wideThe thread that unites these varied areas is the need
range of settings: to compute approximate global state in a system with a
« Sensor network§onsider a system & sensors. Exam- |arge number of nodes, where computation may be mas-
ples of global state that one may want to compute are #jgely distributed, and where the values stored at each node
average sensor value; extremal sensor values, such as¢hiihge over time. In this position paper, we model this
or max; or quantile values, such as the median [2]. problem, survey recent work, and outline some open prob-
« Distributed system&lobal state is necessary to impletems. We believe that the solution to these problems can
ment distributed system primitives such as barrier synchiggically improve the design of robust, efficient and self-
nization, voting, leader election, and consensus [17].  managed distributed systems. We note that this intuition
« Peer to Peer networkin a hybrid peer-to-peer searchs also the basis for the Astrolabe system at Cornell [17];
system, that combines an unstructured flooding netwajklike Astrolabe, we wish to address a much broader set
with a distributed hash table (DHT) [12], an example aff application areas, and seek to move beyond strict hier-

global state is the set of items that are popular, i.e., ite@ghies to more general network topologies.
whose copies exist on many peers. If this information

can be efficiently computed, a queries for known-popular 1. MODEL

items can be flooded instead of bglng sentto the DHT [19].We use the following simple abstraction to model the
« Stream databasdsa a stream-oriented database, such %fobal computation. Consider a distributed system with

a distributed database that records the number of hits '

. : o n 0des where, at time theit* node has local state informa-
an item in a content distribution network, an example %on o and knows onlv of links o its netahbors. In orob-
global state is a Top-K query, i.e., the set of K docume ‘ y g -Inp

S
that have the most hits.

I. INTRODUCTION

ems of interest)NV is very large and nodes arrive, depatrt,
and fail over time. Moreover, communications between

Position paper presented at the Workshop on Self-Organizing Nglodes may be lost.

works, Seattle, Washington, June 1-2 200Bhis research was sUp- _,r g is to have the nodes self-organize to compute
ported by grants from the National Science and Engineering Council

- t to_ gt ot t
of Canada, the Canada Research Chair Program, Nortel Networks, ufinction f(S*) where S = {51,589, s 87} .Theorem
Microsystems Canada, Intel Corporation, and Sprint Corporation. 1 shows that, due to unreliable nodes and links, although



f(S?) is well-defined, it may not be computable. and can be used as a basis for distributed voting, consen-

Theorem 1:f(S*) cannot be computed in a distributedus, and leader election.
system that suffer from node failures and message losss Histogramsof the number of nodes with a particular

Proof : The proof is by construction. Consider a tworange of state values. This is a generalization of a count
node system where node 1 and node 2 collaborate to cajuery, with count being done for each histogram bin. Be-
pute f(S*). This requires that either node 1, or node Zause histograms approximate distributions, this allows us
or some third node needs to obtaif and s}, and com- to compute attributes of distributions such as the mean,
pute f(S?). Without loss of generality, suppose node 1 ismiedian, or mode, the cumulative distributions, and higher
chosen to act as the coordinator. Now, if node 2's stateder moments.
changes just beforg the communication of this changed Membership:Maintaining membership in the system or
state from node 2 to node 1 is lost, and immediately after a user-defined group as a distributed query allows sev-
communication node 2 also dies, then there is no way feral powerful algorithms such as publish-subscribe, broad-
node 1 to computg (S?) o cast, and content-aware multicast ('SelectCast’) [17].

We conjecture thaf’ can be correctly computed if ei- These examples serve to illustrate the power of decen-
ther of these two conditions does not hold. For instancetiélized global state discovery. However, this approach has
up to K nodes can fail, but messages are not lost, themat been applied to some of the areas outlined in the in-
node can updat& + 1 other nodes with its new state eviroduction, such as routing, intrusion detection, and BGP
ery time its state changes. This allows the system to copwlicy coordination. Modeling such known problems as
pute f(S*) despite node failures. Similarly, if messagefinctions of approximate global state is an open area of
can be lost but no nodes fail, then peer nodes can use eagearch.
standard reliable transmission protocol with acknowledg-
ments, timeouts, and retransmissions, to eventually delifer Network topology

any message, and therefore allow computatiofi(sf). The cost and performance of a solution depends on the
Theorem 1 shows that, in generdlis not computable. agssumed underlying network topology. For instance, with
However, for most interesting real-world problems, a clique, every neighbor can be reached at unit cost; with
when computed over a sufficiently large fraction of nodeg.unbalanced tree, the cost can be as large(a§). In the
approximates its true value. More formally, [t be the |iterature, the computation of approximate global state has
set of nodes whose node statésan be gathered at a coysually been studied in the context of overlay networks,
ordinator node. For these functiongo®) — f(S*) < ¢, whose topology can be made as regular as desired: the
wheree is the desired error bound. In the rest of this pap@fadeoff then is between the mean path length,the robust-
we will only consider such functions. ness of the topology, and the size of the routing table [9].
The following network topologies are relevant:
¢ Clique: In a clique, every node is one hop away from
We now proceed from this abstract model to a taxoevery other node, so all communication has unit cost. In
omy of the problem according to type of function beingarticular, a node can communicate its statelfoother
computed, underlying network topology, and state changedes in one time step. However, the size of a routing ta-
model. ble isO(IN) which automatically limits scalability. Much
of the literature in this area implicitly assumes that the net-
work is a clique.
Although the function being computed, such as the oméRandom graph of degrée Here, every node hdsran-
for Internet routing, can be complicated, in the literaturdom neighbors. A random graph of degéeenly needs a
the functions studied can be categorized into one of a feauting table of sizé:, but path lengths will be longer than
simple types: with a clique.
e Extremal valuesithese include the minimum and maxe Tree of degreé: In a k-ary tree, every node haschil-
imum values and Top-K queries. Although conceptuallyren and one parent. A tree with degredas a routing
simple, these queries can be powerful: for instance, it turtable of sizek + 1, but, unlike a random graph, it is frag-
out computing the min can implement distributed barride with respect to failures. On the other hand, computa-
synchronization. [17]. tions the propagate values from leaves to the root finish in
e Counts, such as of the total number of nodes, or of th@(log; N) time.
number of nodes that have a particular property. A countHypercube:This is a topology where nodes are arranged
query is a first step for many other distributed algorithmen the vertices of a hypercube, so that a node is connected

[Il. TAXONOMY OF THE PROBLEM SPACE

A. Function type



to every other node such that the binary representationvafue of f(S*)? Note that this metric can only be com-
their IDs differ in one bit position (if such a node exists)yuted in a synthetic setting.
In a hypercube, both the routing table and the mean patkCost The cost of a solution has three components: the
length isO(logi V). computation cost at each node, theemory cost for stor-
e Power-law random graphsThese are approximate modage required by the state discovery algorithm as well as
els for Internet topology, where the node degree is powdne overlay routing table, and themmunication cost,
law distributed. which is the number of bytes exchanged by the nodes to
e Hierarchical power-law graphsThese graphs, createccomputef.
by tools, such as BRITE [14], are meant to closely ap-PerformanceThe performance of a scheme has two as-
proximate Internet topology. pects. First, how much time does it take to compfite
e Measured Internet topologyTools such as RocketfuelState discovery usually involvesunds of computation,
[16] map the actual Internet topology, so it is possibkend this is therefore expressed in terms of the number of
to evaluate the relative performance of various solutionsunds. Delay can be measured either as the average or
on this graph. Note that all the other topologies can liee worst case time for the computation to complete. Sec-
thought of as regular overlays on Hierarchical PLRGs ond, what fraction of the nodes present in the system at the
measured Internet topologies. time the computation ends computecorrectly (or, to be
The literature on graph topologies is deep and this ligtecise, within a small error bound of the true valug/§t
leaves out many interesting topologies such as de BrugjfiRobustnessow sensitive is the computation to node
graphs, rings with ‘finger pointers’, and butterflies. At thignd link failure and message loss? This quantifies the er-
point, it is not clear which topology is 'best’ in terms offor in the computed function as a function of the fraction
a tradeoff between routing cost, memory cost, and robust-nodes that fail, or the fraction of messages that are lost.
ness to failure. The problem is made more complex by Some tradeoffs are straightforward: for instance, accu-
realizing that regular overlay topologies, when overlaid dacy for speed, or robustness for cost. Others are not so
a irregular network, can often result in the same real liflovious, for instance, trading accuracy for robustness, by
being part of many overlay links, causing both congesti¢tsing randomized gossip. Our goal is to compare some

and correlated link failures! well known algorithms with respect to these metrics, and
potentially come up with a class of algorithms that are able
C. State change model to achieve every solution in the Pareto frontier.
The global state being computed may change over time V. SOLUTION APPROACHES

for several reasons. These include;:

e Change in node stat@he state value at each node may,
change over time. - ing communities. These approaches fall into the following
e Change in number of nodddodes may join, leave, Or | road cateqories

abruptly fail. Moreover, the failure may be permanent or g '
transient. A. Centralization
e Change in linksLinks may be added, deleted, or fail.

Message failure can be modeled as transient link failure. A centtrallzed approach, where a designated root node
collectss; from all other nodes and computgs has the

Clearly, if the rate of change of network state is to . .
. - . st speed and accuracy. In the database community, this
rapid, global statistics are stale by the time they can be cgol- . . :
proach has been extensively studied for maintenance of

lected, making them less useful as hints for optimal IOC%Paterialized views [8]; the emphasis here is on techniques
decisions. On the other hand, if the network is essentiam/ ’ P d

. ﬁlt minimize the cost of incremental view maintenance by
static, global state needs to be computed only once, which . . . :
exploiting properties of the query as well as the underlying

allows the use of comple>.< or tlme-consummg algomhmaata. The communication cost of this approach depends
whose cost can be amortized over long durations. .
on the number of updates needed for computation of the
global state, and whether the root is reachable by one-hop
paths from all other nodes. If so, then it also has the least
Any solution for computation of approximate globatost. If not, state values need to be transferred on multiple
state must navigate a tradeoff among the following foubps, which adds to the cost.
quantities: Centralization is not scalable because the root node be-
e Accuracy How close is the computed result to the trueomes a bottleneck. The solution is not robust, because the

Several solutions to global state computation have been
udied in the database, distributed systems, and network-

IV. METRICS



loss of the root node causes total failure. However, noteNote that with a random walk, a node’s state may be
that the solution is immune to failures in every node otheempled more than once. Therefore, it is necessary to
than the root node. Therefore, in practice, this solutiongemehow prevent 'double counting’ [15]. A second issue
commonly employed, with resources devoted to adequiehat the global statistics can only be computed proba-

protection of the root node. bilistically. Typically, we can only make statements such
as with probability 14 the error in the computed value is
B. Tree-based solutions less thare.

A generalization of the centralized approach consists ofThe ad\:jan;[a_glje ofa ralndom walk IS thaL't relatively ro-
inducing a multi-level hierarchy or tree on the underlyin usttono € failures (as ong as care I taken to regenerate
alk thatis lost due to a failing node). In a stable network

graph and having each node send its state to its par h sufficiently | I h and sufficiently |
which performs local aggregation and, in turn, sends (fth sufficiently long message length and sufficiently long

aggregated results upwards, eventually reaching the rd%?lks’ one can computeny function of global state, but
This approach was used by the TAG system [13] and in AD.a class of networks called expander graphs, even short
trolabe [17]. Similar to a centralized solution, this solutiofy@!ks are ‘good’ random samples of local states [6].

is fragile, in that the loss of a single node can disrupt the 5ndomized gossip based solutions
tree. Therefore, care must be taken to maintain backups

for tree nodes, and to switch from a tree node to its backup!" €achround of computation of random gossip, every
(or re-elect a new tree node) in case of a failure. witide talks to one or more randomly selected neighbors and
in-network aggregation at each node, the communicati%ﬁchanges some infprmation.with_it qrthem (this is called
costs are lower than with a centralized solution. Assumir@'ti-entropy’ or ‘a simple epidemic” in [3]). It tumns out

a balanced tree, the computation timé&igog V). that, after approximatelgog]\f_r_ounds of computation, all
nodes can, with high probability, compute the global state
C. Flooding and Randomized flooding [1,10]. Just like a random walk, we need to prevent double

o _ ) counting, and we can only make probabilistic statements
Flooding is, in a sense, diametrically opposed to a cetyyo .t the computed values.

tralized solution.  Instead of having a single nqdel a  There are two subtle differences between a random walk
single copy of data from every other node, with floodsng randomized gossip. First, with standard random-
ing, a node whose state has changedifafective node) izeq gossip, every node participates in message exchange,
pushes its data to all or a ran_dom subset of its _ne'ghivhereas with a random walk, i walks are ongoing, only
bors, who then become infective, and forward this meg- nodes participate in message exchange. Of course, it
sage to some or all their un_mf?cted ‘nelghbors and so S"bossible to device a randomized gossip protocol where
(this is called ‘rumor spreading’ or a ‘complex epidemicyny i of N nodes participate in gossiping. Second, two
in [3]). If care is taken not to forward the same data tWic&yydes A and B may both choose the same node C as a node
accomplished, for instance, by using source-Specific $g which to exchange state in either algorithm. With
quence numbers—flooding requires at MO8E) mes- angom gossip, C's value will be propagated only once
sages, wherd’ is the number of edges in the network, some other node. However, with a random walk, two
For reasonable networks, = O(NlogN), so on surface, yqiks leave C, so C's value will propagate oo other
flooding appears to be a good idea. However, with naiygges. When the number of random walks is much smaller
flooding, there is nan — network aggregation, SO, IN than | this is unlikely to happen, and in that situation an
practice, _|t is quite |nef_f|(_:|ent. Combining flooding withyatwork with & random walks look much like network
aggregation is more efficient. where, in each round of computatioft, of N nodes par-

, ticipate in random gossip.
D. Random walk-based solutions

A random walk is a style of computation where a node VI. SKETCHES

sends its state in a message to a randomly selected neigfi-he four mechanisms described in the previous section
bor, which uses this message to update its local state, adals be characterized asinsport mechanisms that move
its local value to the message’s state, and forwards thérmation around in the network. In this section, we fo-
message to the next randomly chosen neighbor. A ramus onwhat is being moved instead é&fow it is moved.

dom walk message samples and updates state values at théhen using a centralized approach, there is no in-
subset of the nodes that it touches. More than one randoetwork aggregation. However, with the other approaches
walk may be in progress in parallel. (tree, flood, random walk, and randomized gossip), par-



tial state is aggregated intgetches to prevent the size  Second, can we map real problems such as network

of message scaling linearly witlh. For instance, if the routing and Top-K queries to these theoretically well-

function that is being computedigin, then the sketch is studied algorithms? How about distributed intrusion de-

the smallest of the values being aggregated. Sketchestartion, or coordination of BGP policies? We think this is

essentially functions computed over partial state that, ovesn-trivial.

time, converge to the final solution. Third, how should we actually implement a global state
It is important to ensure that when a node receivesd&covery in a real system? This requires solutions to prob-

sketch, if the sketch already includes that node’s value, tleens such as:

node should not add the its value to the sketch again (kechoosing the right transport and aggregation mechanism

it should avoiddouble counting). This problem does note. matching the overlay topology with the underlay topol-

arise in centralized and tree-based solutions. For floodigy

random walk, and randomized gossip-based solutions, weemoving stale data

can avoid double counting in one of three ways. « interfacing the new algorithms with legacy systems

e Carry node IDs in the sketclA sketch can carry the sete distributed determination of convergence

of node IDs that contributed to it. This prevents double punching holes through firewalls and NATs using tech-

counting. However, this makes the sketch giéV). One niques such as STUNT [7]

can possibly restrict messages to a smaller region, suctaking advantage of heterogeneity in node connectivity

as an Astrolabe zone [17], but this requires the distributadd lifetime

construction of zones, and some mechanism for inter-zaneoping with message and node loss and

communication. « preventing corruption in the computation due to mali-

e Use order and duplicate insensitive sketchiédss approadious nodes [17].

uses a special form of sketch (such as a Flajolet-Martinwe believe that finding answers to these issues will go a

sketch [4]) that is insensitive to duplicates [15]. Essetbng way towards creating robust, scaleable, and efficient

tially, this transforms a measure of central tendency intadistributed systems.

measure of extremal values, which is inherently order and

duplicate insensitive. However, this conversion often re- VIII. A CKNOWLEDGMENTS
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