@ The majority of work in automated theorem proving is based on symbolic logic.

@ Diagrams are seen not as rigorous mathematical tools, but as informal aids to understanding.
@ Aim:
e Formalise a diagrammatic system for a particular problem domain (e.g. program verification using separation

ogic).
mplement an automated theorem prover making use of this formalism.

@ Logic for verifying low-level imperative programs.
@ Proofs consist of lists of Hoare triples (annotated program statements: see box 3).

@ Diagrams are used informally. Boxes represent memory cells; they may contain values and
have pointers to other boxes. Program variables are drawn pointing to the corresponding
memory cell.

@ Operations can re-draw pointers, overwrite values in boxes, etc. Figure on the right shows a
make pointers_explicit operation.

y
V
B

1/ VTR

S

Diagrammatic Symbolic

fistagi})
{list cg i = (emp A nil = nil)}
j = nil;
C—pmi | - - — i {list aig i * (emp A j = nil)}
Y- _m(l(’ = xll-llf; X[)_(-rll-l:]_ : g?/, y: =X; X:=k) {Iistag | * list € j}
{Fa, 8. (istaixlist3jAa) =al.g)
while i #£ nil do
4. y- = | {Fa,a, 8. (ist(@a)ixlist3)) Ao =(a-a)f -8}

j j Initial state - - ' {Fa, a, B,k. (i — a,k * list a k * list 3)
ni /\aé:(a-a)T-B}

K:= [i + l];
{a,a,B. (i+— ak *lista k * list 3])

|
j j n a; | ni - fi\—fgl]z:iaj; a)t -8}

{Fa,a,B. (i— a,j = list a k = list 3 j)

: S Nab=(a-a)t -8}
f f | : =Y Final state {Ja,a, 8. (istak=xlist@pB)i) Ao =al-a- 8}
’ ni {Fa, 3. (listak = list 3 i) /\ag =al.3}

ji=lji:=k;

{Fa, 8. (istaixlist3)) Aa) =al-3}
{(Fa,B. listBj Aol =al - B A a=e
{list o] j}

@ By tracing execution of program for a couple of iterations of the while loop, a human can see
that the program reverses a linked list.

@ Aim to make a formal system of syntax, semantics, operations and inference rules modelling
this kind of reasoning.

@ Aim to generalise specific proofs like the one above (which is about lists of length 4 only) using

schematic proofs.

@ Can be formally defined for diagrams, just as for symbolic sentences.

@ Syntax specifies shapes that can appear in diagrams and the spatial relations which are
allowed.

@ Semantics given by an interpretive function mapping diagrams to sets of program states.
@ Operations: draw or erase operations for pointers, program variables and values.

@ Formalised notion of a general proof derived from specific instances.

@ A schematic proof is a program for generating a specific proof for any given problem instance.
@ Relevance: diagrams are a way of using the concrete to reason about the general.

@ A schematic proof of the theorem In box 3:

sch-pf(dq, d»):
(recursive function on pairs of diagrams. d; shows a right-to-left list; on its right
is d», showing a left-to-right list. See slide 3)

1: move var (k , head(tail(d2)))

2: erase val(head(d,))

3: draw_pointer (head(d;), last_element(d1))
4: move var(y , head(d,))

5: move var(x, head(tail(dz)))

6: sch-pf([d1, head(d,)], tail(d>)).

@ Initially we are investigating how to reason about static program states. This kind of reasoning Is
necessary at intermediate stages of making proofs about programs.

@ Example below: the left-hand diagram entails a nil-terminated list beginning at Xx.

@ The diagrammatic proof proceeds by application of a single operation, make_pointers_explicit, 2
times. The symbolic proof is shown on the right.

@ The simplicity comes from the similar structure of the problem domain and the diagrammatic
system.

t # nil | Is(y,nil) F Is(y,nil)

f j 1 t Znil |t — [n:y] *Is(y,nil) = t —[n:y] * Is(y,nil)
t Znil |t — [n:y] * Is(y,nil) F Is(t,nil)
S TR S T CZnil [1s(x,1) * t — [n:y] = Is(y,nil) F Is(x,nil)
Is(X,t) * t — [n:y] * Is(y,nil) + Is(x,nil)

@ Diagrammatic logic can be formalised, and automated reasoning performed, just as for
traditional symbolic logic.

@ Diagrammatic proofs in separation logic appear to be more human-readable and “natural” than
the corresponding separation logic proofs.

@ Diagrammatic reasoning systems are highly tailored to specific problem domains. Future work
will look at further case studies and investigate general principles of diagrammatic reasoning.

