
Diagrammatic Reasoning in Separation Logic
Matt Ridsdale1 Mateja Jamnik1 Nick Benton2 Josh Berdine2

1Computer Laboratory, University of Cambridge

2Microsoft Research Cambridge

1. Diagrammatic Reasoning

The majority of work in automated theorem proving is based on symbolic logic.
Diagrams are seen not as rigorous mathematical tools, but as informal aids to understanding.
Aim:
• Formalise a diagrammatic system for a particular problem domain (e.g. program verification using separation

logic).
• Implement an automated theorem prover making use of this formalism.

2. Separation Logic

Logic for verifying low-level imperative programs.
Proofs consist of lists of Hoare triples (annotated program statements: see box 3).
Diagrams are used informally. Boxes represent memory cells; they may contain values and
have pointers to other boxes. Program variables are drawn pointing to the corresponding
memory cell.
Operations can re-draw pointers, overwrite values in boxes, etc. Figure on the right shows a
make pointers explicit operation.

x x

nil. . .
xα βα

1

y

α
n

α
1

α

α’

xx βα

y

α

y

βy

3. Diagrammatic vs Separation Logic Proof

Diagrammatic Symbolic

x

x

x
nil

nil

nilnil

nil

x

x
nil nil

nilnil

nil

y:=nil; while x!=nil do
 (k:=[x+1]; [x+1]:=y; y:=x; x:=k)

k := [x+1]
[x+1]:= y

y := x
x := k

2.

3.

1. Initial state

k

k
y

1 2 3 4

1 2 3 4

4321

α

α α α α

ααα

α α α α

k := [x+1]
[x+1]:= y

y 1α 2α k
3α

y := x
x := k1α

y

2α k
3α

. . .

5. 4α

1α

4. 4α

2α 3α y4α Final state

{list α0 i}
{list α0 i ∗ (emp ∧ nil = nil)}
j := nil;
{list α0 i ∗ (emp ∧ j = nil)}
{list α0 i ∗ list ǫ j}
{∃ α, β. (list α i ∗ list β j ∧α

†
0 = α†.β)}

while i 6= nil do
{∃ a, α, β. (list (a·α) i ∗ list β j) ∧ α

†
0 = (a · α)† · β }

{∃ a, α, β, k. (i 7→ a,k ∗ list α k ∗ list β j)
∧ α

†
0 = (a · α)† · β }

k := [i + 1];
{∃ a, α, β. (i 7→ a,k ∗ list α k ∗ list β j)
∧ α

†
0 = (a · α)† · β }

[i + 1] := j;
{∃ a, α, β. (i 7→ a,j ∗ list α k ∗ list β j)
∧ α

†
0 = (a · α)† · β }

{∃ a, α, β. (list α k ∗ list (a·β) i) ∧ α
†
0 = α† · a · β}

{∃ α, β. (list α k ∗ list β i) ∧ α
†
0 = α† · β}

j := i; i := k;
{∃ α, β. (list α i ∗ list β j) ∧ α

†
0 = α† · β}

{∃ α, β. list β j ∧ α
†
0 = α† · β ∧ α = ǫ}

{list α
†
0 j}

By tracing execution of program for a couple of iterations of the while loop, a human can see
that the program reverses a linked list.
Aim to make a formal system of syntax, semantics, operations and inference rules modelling
this kind of reasoning.
Aim to generalise specific proofs like the one above (which is about lists of length 4 only) using
schematic proofs.

4. Syntax and Semantics

Can be formally defined for diagrams, just as for symbolic sentences.
Syntax specifies shapes that can appear in diagrams and the spatial relations which are
allowed.
Semantics given by an interpretive function mapping diagrams to sets of program states.
Operations: draw or erase operations for pointers, program variables and values.

5. Schematic Proofs

Formalised notion of a general proof derived from specific instances.
A schematic proof is a program for generating a specific proof for any given problem instance.
Relevance: diagrams are a way of using the concrete to reason about the general.
A schematic proof of the theorem in box 3:

sch-pf (d1, d2):
(recursive function on pairs of diagrams. d1 shows a right-to-left list; on its right
is d2, showing a left-to-right list. See slide 3)

1: move var (k , head(tail(d2)))
2: erase val(head(d2))
3: draw pointer (head(d2), last element(d1))
4: move var (y, head(d2))
5: move var (x, head(tail(d2)))
6: sch-pf ([d1, head(d2)], tail(d2)).

6. Reasoning About Static Program States

Initially we are investigating how to reason about static program states. This kind of reasoning is
necessary at intermediate stages of making proofs about programs.
Example below: the left-hand diagram entails a nil-terminated list beginning at x.
The diagrammatic proof proceeds by application of a single operation, make pointers explicit, 2
times. The symbolic proof is shown on the right.
The simplicity comes from the similar structure of the problem domain and the diagrammatic
system.

x

. . .

nil. . .

. . .

. . . nil

x γ
1

α γ
m

α

1
β

n
β

m1

y 1 n
β

αα

β

t

t y

t 6= nil | ls(y, nil) ⊢ ls(y, nil)

t 6= nil | t 7→ [n :y] ∗ ls(y, nil) ⊢ t 7→ [n :y] ∗ ls(y, nil)

t 6= nil | t 7→ [n :y] ∗ ls(y, nil) ⊢ ls(t, nil)

t 6= nil | ls(x, t) ∗ t 7→ [n :y] ∗ ls(y, nil) ⊢ ls(x, nil)

ls(x, t) ∗ t 7→ [n :y] ∗ ls(y, nil) ⊢ ls(x, nil)

7. Conclusions and Future Work

Diagrammatic logic can be formalised, and automated reasoning performed, just as for
traditional symbolic logic.
Diagrammatic proofs in separation logic appear to be more human-readable and “natural” than
the corresponding separation logic proofs.
Diagrammatic reasoning systems are highly tailored to specific problem domains. Future work
will look at further case studies and investigate general principles of diagrammatic reasoning.

