

- The majority of work in automated theorem proving is based on symbolic logic. • Diagrams are seen not as rigorous mathematical tools, but as informal aids to understanding. • Aim:
- Formalise a diagrammatic system for a particular problem domain (e.g. program verification using separation logic).
- Implement an automated theorem prover making use of this formalism.

2. Separation Logic

- Logic for verifying low-level imperative programs.
- Proofs consist of lists of Hoare triples (annotated program statements: see box 3).
- Diagrams are used informally. Boxes represent memory cells; they may contain values and have pointers to other boxes. Program variables are drawn pointing to the corresponding memory cell.
- Operations can re-draw pointers, overwrite values in boxes, etc. Figure on the right shows a *make_pointers_explicit* operation.

3. Diagrammatic vs Separation Logic Pro

Diagrammatic

y:=nil; while x!=nil do
(k:=[x+1]; [x+1]:=y; y:=x; x:=k)

- By tracing execution of program for a couple of iterations of the while loop, a human can see that the program reverses a linked list.
- Aim to make a formal system of syntax, semantics, operations and inference rules modelling this kind of reasoning.
- Aim to generalise specific proofs like the one above (which is about lists of length 4 only) using schematic proofs.

Diagrammatic Reasoning in Separation Logic

Matt Ridsdale¹ Mateja Jamnik¹ Nick Benton² Josh Berdine²

¹Computer Laboratory, University of Cambridge

²Microsoft Research Cambridge

Symbolic

	$\{\text{list } \alpha_0 i\}$
	{list α_0 i * (emp \wedge nil = nil)}
	j := nil;
	{list α_0 i * (emp \wedge j = nil)}
	$\{\text{list } \alpha_0 \text{ i } * \text{ list } \epsilon \text{ j}\}$
	$\{\exists \alpha, \beta. \text{ (list } \alpha \text{ i } * \text{ list } \beta \text{ j } \land \alpha_0^{\dagger} = \alpha^{\dagger}.\beta)\}$
	while i ≠ nil do
= [x+1]	$\{\exists a, \alpha, \beta. (\text{list } (a \cdot \alpha) \text{ i } * \text{ list } \beta \text{ j}) \land \alpha_0^{\dagger} = (a \cdot \alpha)^{\dagger} \cdot \beta \}$
T]:= Å	$\{\exists a, \alpha, \beta, k. (i \mapsto a, k * list \alpha k * list \beta j)$
	$\wedge \alpha_0^{\dagger} = (\mathbf{a} \cdot \alpha)^{\dagger} \cdot \beta$
	k := [i + 1];
x	$\{\exists a, lpha, eta. (i \mapsto a, k * list \ lpha \ k * list \ eta \ j)$
k	$\wedge \alpha_0^{\dagger} = (\mathbf{a} \cdot \alpha)^{\dagger} \cdot \beta$
	[i + 1] := j;
	$\{\exists a, \alpha, \beta. (i \mapsto a, j * list \alpha k * list \beta j)$
	$\wedge \alpha_{0}^{\dagger} = (\mathbf{a} \cdot \alpha)^{\dagger} \cdot \beta$
Final state	$\{\exists a, \alpha, \beta. (\text{list } \alpha \text{ k} * \text{list } (a \cdot \beta) \text{ i}) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot a \cdot \beta\}$
	$\{\exists \alpha, \beta. (\text{list } \alpha \text{ k} * \text{list } \beta \text{ i}) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta\}$
	j := i; i := k;
	$\{\exists \alpha, \beta. \text{ (list } \alpha \text{ i } * \text{ list } \beta \text{ j}) \land \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta\}$
	$\{\exists \alpha, \beta, \text{ list } \beta \mid \land \alpha_{\alpha}^{\dagger} = \alpha^{\dagger} \cdot \beta \land \alpha = \epsilon\}$
	$\{\text{list } \alpha^{\dagger}, i\}$

4. Syntax and Semantics

Can be formally defined for diagrams, just as for symbolic sentences. • Syntax specifies shapes that can appear in diagrams and the spatial relations which are allowed.

• Semantics given by an interpretive function mapping diagrams to sets of program states. • Operations: draw or erase operations for pointers, program variables and values.

5. Schematic Proofs

Formalised notion of a general proof derived from specific instances. • A schematic proof is a program for generating a specific proof for any given problem instance. Relevance: diagrams are a way of using the concrete to reason about the general. A schematic proof of the theorem in box 3:

 $sch-pf(\mathbf{d}_1, \mathbf{d}_2)$: (recursive function on pairs of diagrams. d_1 shows a right-to-left list; on its right

- is d_2 , showing a left-to-right list. See slide 3)
- 1: $move_var(\mathbf{k}, head(tail(\mathbf{d}_2)))$ 2: $erase_val(head(d_2))$
- 3: $draw_pointer(head(d_2), last_element(d_1))$
- 4: $move_var(y, head(d_2))$ 5: $move_var(\mathbf{x}, head(tail(d_2)))$
- 6: $sch-pf([d_1, head(d_2)], tail(d_2))$.

6. Reasoning About Static Program States

Initially we are investigating how to reason about static program states. This kind of reasoning is necessary at intermediate stages of making proofs about programs. • Example below: the left-hand diagram entails a nil-terminated list beginning at x. • The diagrammatic proof proceeds by application of a single operation, make_pointers_explicit, 2 times. The symbolic proof is shown on the right.

• The simplicity comes from the similar structure of the problem domain and the diagrammatic system.

 $t \neq \text{nil} \mid \text{ls}(y, \text{nil}) \vdash \text{ls}(y, \text{nil})$ $\frac{t \neq \mathsf{nil} \mid t \mapsto [n:y] * \mathsf{ls}(y,\mathsf{nil}) \vdash t \mapsto [n:y] * \mathsf{ls}(y,\mathsf{nil})}{t \neq \mathsf{nil} \mid t \mapsto [n:y] * \mathsf{ls}(y,\mathsf{nil}) \vdash \mathsf{ls}(t,\mathsf{nil})}$ $t \neq \operatorname{nil} | \operatorname{ls}(x, t) * t \mapsto [n:y] * \operatorname{ls}(y, \operatorname{nil}) \vdash \operatorname{ls}(x, \operatorname{nil})$ $ls(x, t) * t \mapsto [n:y] * ls(y, nil) \vdash ls(x, nil)$

7. Conclusions and Future Work

• Diagrammatic logic can be formalised, and automated reasoning performed, just as for traditional symbolic logic.

• Diagrammatic proofs in separation logic appear to be more human-readable and "natural" than the corresponding separation logic proofs.

• Diagrammatic reasoning systems are highly tailored to specific problem domains. Future work will look at further case studies and investigate general principles of diagrammatic reasoning.