@ The majority of work in automated theorem proving is based on symbolic logic.

@ Diagrams are seen not as rigorous mathematical tools, but as informal aids to understanding.
@ Aim:
e Formalise a diagrammatic system for a particular problem domain (e.g. program verification using separation

ogic).
mplement an automated theorem prover making use of this formalism.

@ Logic for verifying low-level imperative programs.
@ Proofs consist of lists of Hoare triples (annotated program statements: see box 3).

@ Diagrams are used informally. Boxes represent memory cells; they may contain values and
have pointers to other boxes. Program variables are drawn pointing to the corresponding
memory cell.

@ Operations can re-draw pointers, overwrite values in boxes, etc. Figure on the right shows a
make pointers_explicit operation.
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@ By tracing execution of program for a couple of iterations of the while loop, a human can see
that the program reverses a linked list.

@ Aim to make a formal system of syntax, semantics, operations and inference rules modelling
this kind of reasoning.

@ Aim to generalise specific proofs like the one above (which is about lists of length 4 only) using

schematic proofs.

@ Can be formally defined for diagrams, just as for symbolic sentences.

@ Syntax specifies shapes that can appear in diagrams and the spatial relations which are
allowed.

@ Semantics given by an interpretive function mapping diagrams to sets of program states.
@ Operations: draw or erase operations for pointers, program variables and values.

@ Formalised notion of a general proof derived from specific instances.

@ A schematic proof is a program for generating a specific proof for any given problem instance.
@ Relevance: diagrams are a way of using the concrete to reason about the general.

@ A schematic proof of the theorem In box 3:

sch-pf(dq, d»):
(recursive function on pairs of diagrams. d; shows a right-to-left list; on its right
is d», showing a left-to-right list. See slide 3)

1: move var (k , head(tail(d2)))

2: erase val(head(d,))

3: draw_pointer (head(d;), last_element(d1))
4: move var(y , head(d,))

5: move var(x, head(tail(dz)))

6: sch-pf([d1, head(d,)], tail(d>)).

@ Initially we are investigating how to reason about static program states. This kind of reasoning Is
necessary at intermediate stages of making proofs about programs.

@ Example below: the left-hand diagram entails a nil-terminated list beginning at Xx.

@ The diagrammatic proof proceeds by application of a single operation, make_pointers_explicit, 2
times. The symbolic proof is shown on the right.

@ The simplicity comes from the similar structure of the problem domain and the diagrammatic
system.
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@ Diagrammatic logic can be formalised, and automated reasoning performed, just as for
traditional symbolic logic.

@ Diagrammatic proofs in separation logic appear to be more human-readable and “natural” than
the corresponding separation logic proofs.

@ Diagrammatic reasoning systems are highly tailored to specific problem domains. Future work
will look at further case studies and investigate general principles of diagrammatic reasoning.




