
Towards a Unified Model for Workflow Processes

Peter Y. H. Wong
Computing Laboratory, University of Oxford.

peter.wong@comlab.ox.ac.uk

References
[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[2] W. M. P. van der Aalst et al. Workflow Patterns. Distributed and Parallel Databases,
 14(3):5–51, July 2003.
[3] P. Y. H. Wong. A Case Study on the Formal Verification of Workflow
 Choreography, 2006.
[4] P. Y. H. Wong. A Process Algebraic Approach to Workflow Verification, 2006.
 Submitted for publication.

Aim
Our aim is to develop a unified model in CSP [1] for generic workflow
specification, refinement and verification

Future Work
• Examine other choreography description languages
• Develop a unified model for orchestration and choreography
• Extend our model to reason about exception and compensation
• Extend our model to reason about security and mobility
• Extend our model to reason about dataflow properties
• Develop a unified model for business and scientific workflows

Milestones
• formalised van der Aalst's twenty control-flow patterns [2]
• applied our formalism to model some business processes defined in BPEL
• formally verified these models against abstract properties [4]
• extended our CSP models to formalise workflow choreography
• examined a real-life case-study (airline ticket reservation) in WSCI [3]

START =
 start → (init.fault → SKIP
 □ (init.request → (init.fault → SKIP □ init.end → SKIP)))
REQUEST = XSP'(request,{approve,assess})
ASSESS = XSP'(assess,{approve,accept})
MESSAGE = SP'(accept,reply) FAULT = SP'(fault,errors)
APPROVE = SP'(approve,reply) REPLY = SP'(reply,end)
END = init.end → done → SKIP
 □ init.fault → init.error → cancel → SKIP

MODEL =
 let
 LOAN = (REQUEST |[{init.assess}]| ASSESS)
 |[{init.accept,init.approve}]|
 ((MESSAGE □ APPROVE) |[{init.reply}]| REPLY)
 within
 (START |[{init.request,init.fault,init.end}]| ((LOAN ∆ (FAULT □ done → SKIP))
 |[{init.end,init.fault,init.errors,done}]| END)) ; MODEL

Formal Verification of Workflow Processes

models

SPEC =
 let
 CANCEL = cancel → SKIP
 HIGH = init.approve → REPLY
 ┌┐ CANCEL
 LOW = init.assess → (HIGH ┌┐ CONF)
 ┌┐ CANCEL
 CONF = init.accept → REPLY
 ┌┐ CANCEL
 REPLY = init.reply → (END ┌┐ CANCEL)
 ┌┐ CANCEL
 END = done → SKIP
 within
 start → (HIGH ┌┐ LOW) ; SPEC

SP(a,b) = init.a → work.a → init.b → SKIP
XSP(a,X) = init.a → work.a → ┌┐ b : X • init.b → SKIP

SEQ'(a,b) = SP'(a,b) |[{init.b}]| SP'(b,acts)
XOR'(a,{b,c}) = XSP'(a,{b,c}) |[{init.b,init.c}]|
 (SP'(b,acts) □ SP'(c,acts))

XOR'(a,{b,c}) SEQ'(a,b)

Composed Of specifies

Verified against
via FDR

 SPEC MODEL

Workflow Patterns

