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ABSTRACT
Mining the most influential k-location set finds k locations, tra-
versed by the maximum number of unique trajectories, in a given
spatial region. These influential locations are valuable for resource
allocation applications, such as selecting charging stations for elec-
tric automobiles and suggesting locations for placing billboards.
This problem is NP-hard and usually calls for an interactive min-
ing processes, e.g., changing the spatial region and k, or remov-
ing some locations (from the results in the previous round) that are
not eligible for an application according to the domain knowledge.
Thus, efficiency is the major concern in addressing this problem.
In this paper, we propose a system by using greedy heuristics to
expedite the mining process. The greedy heuristic is efficient with
performance guarantee. We evaluate the performance of our pro-
posed system based on a taxi dataset of Tianjin, and provide a case
study on selecting the locations for charging stations in Beijing.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
mining, Spatial database and GIS

Keywords
Location Selection, Trajectory Data Mining, Maximum Coverage

1. INTRODUCTION
Advances in location acquisition technology have resulted in

massive trajectories, representing the mobility of a diversity of
moving objects, e.g., human, vehicles, and animals. Finding k lo-
cations traversed by the maximum number of unique trajectories in
a given spatial region is vital to many resource allocation problems:

The first application is selecting charging stations for electric ve-
hicles according to their GPS trajectories. As shown in Fig. 1(a),
the location is defined as road intersection. Intersections n1 and n3

form the most influential 2-location set by covering 5 unique tra-
jectories. n2 and n3 are not the most influential set, as they only
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Figure 1: Application Scenarios.

cover 4 unique trajectories. Though they individually cover the
most number of trajectories (i.e., 3 for each).

The second application is to select locations for placing bill-
boards based on users’ check-in histories. As shown in Fig. 1(b), a
location can be defined as a uniform grid covering a few points of
interests (POIs). g1 and g2 form a most influential 2-location set,
traversed by 4 unique trajectories, i.e., visited by 4 users.

The third application is to place observation stations for migra-
tory birds, where a location can be a cluster of birds’ stay points. As
shown in Fig. 1(c), c2 and c4 form the most influential 2-location
set that covers all birds’ trajectories.

There are three major challenges in mining the most influen-
tial location set from massive trajectories: i) this problem can be
mapped to the MAX-k-COVER problem, which is NP-hard and
computational intensive; ii) different users may be interested in
mining k locations in different spatial areas. For instance, as shown
in Fig. 2(a), two local business owners may want to place different
numbers of billboards in different areas. As a result, it is not pos-
sible to pre-compute one location set to serve all requests with dif-
ferent mining parameters; and iii) users, e.g., domain experts, may
need to interact with our system several times. For example, as de-
picted in Fig. 2(b), c4 is located in a lake where we cannot find land
to place an observation station, we need to remove it from the re-
turned set. Then, c1 and c5 become the most influential 2-location
set. Although the MAX-k-COVER problem has been studied [1,
2, 3], existing methods are off-line approaches that find a one-time
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Figure 2: Summary of Challenges.



result for a given dataset. Different from existing works, our prob-
lem setting allows users: i) to specify a spatial region R and value
k, and ii) to refine the returned result interactively and iteratively.

To this end, we propose a system to find the most influential
k-location set efficiently in this paper. Our system contains two
main modules: i) pre-processing module, which creates the spatial
networks from different types of trajectory data and builds a set of
index structures to speed up the mining process; and ii) location
set mining module, which finds k locations by taking spatial region
R, value k, and choices made during the user’s interaction as the
input. Our main contributions are summarized as follows:

• We introduce a novel problem, i.e., mining the most influen-
tial k-location set, with many potential applications.

• We propose an efficient algorithm to find the k-location set.
Even the solution is based on greedy heuristics, it can provide
the performance guarantee.

• Evaluation results on real datasets demonstrate the efficiency
of our proposed solution. We also provide a case study to
show the effectiveness of our proposed system.

2. OVERVIEW
Preliminary. We first introduce some definitions used in our paper.

DEFINITION 1 (TRAJECTORY). A trajectory tr is a sequence
of spatial points that a moving object follows through space as a
function of time. Each point consists of an object ID, latitude, lon-
gitude, and a time stamp.

DEFINITION 2 (LOCATION). A location is a spatial point or
region, which can be defined in three forms: 1) an intersection in a
road network, e.g., n1 shown in Fig. 1(a); 2) a grid cell, e.g., g1 as
depicted in Fig. 1(b); or 3) a stay point or a cluster of points from
trajectories, e.g. c2 as illustrated in Fig. 1(c).

DEFINITION 3 (SPATIAL NETWORK). A spatial network can
be denoted as a directed graph G = (V,E), where the vertex set
V represents the locations and the directed edge set E represents
the set of edges where each has two terminal locations.

DEFINITION 4 (COVERAGE). A location vi covers a trajec-
tory trj , if and only if the trajectory trj passes the location vi.
Thus, given a location on a spatial network (e.g., an intersection
vi on a road network), its coverage set Tr(vi) represents the set of
trajectories passing through the location vi.

Problem Definition. Given a user-specified spatial region R, a k
value and a set of trajectories Tr, we denote the spatial network in
R as Gs = (Vs, Es). The most influential k-location set in R finds
k1 locations in Vs, such that the total number of unique trajectories
being covered by the k locations is maximized.

To be precise, we use the following integer linear programming
(ILP) formulation to captures the problem exactly. We denote vi.s
and trj .s indicate the solution of the problem, namely, for each
location vi ∈ Vs, vi.s = 1 if vi is selected in the result set, and
vi.s = 0 otherwise; for each trajectory trj ∈ Tr, trj .s = 1 if trj
is covered by the selected locations, and trj .s = 0, otherwise.

max :
∑

trj∈Tr

trj .s, s.t. :
∑

vi∈Vs

vi.s ≤ k,
∑

trj∈Tr(vi)

vi.s ≥ trj .s

(1)

1Here k ≤ |Vs|.
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Figure 3: System Overview.

The objective of Eq. 1 is to maximize the total number of trajec-
tories being covered by the selected locations. The first constraint
guarantees that the total number of selected locations is no more
than k; the second constraint ensures that if a location vi is se-
lected, all trajectories that traverse vi are covered. This problem is
equal to the MAX-k-COVER problem and is NP-hard as in [1, 4].

Moreover, to take the domain knowledge into the mining task,
the system needs to support the interactive process with multiple
iterations to find the qualified k locations. Specificity, at the initial
step, the system returns k locations that maximize the number of
covered trajectories based on the parameters. Then, the expert in-
volves and marks 0 ≤ � ≤ k disqualified locations from these k
(selected) locations, based on his domain knowledge. In the follow-
ing steps, the system needs to remove these � marked locations and
re-selects k locations, covering the maximum number of unique
trajectories. This process iterates, until the expert accepts all the
returned k locations 2. This kind of mining process motivates our
proposed system to achieve two objectives: 1) maximizing the cov-
erage; and 2) minimizing response time.

System Overview. Fig. 3 gives the overview of our proposed sys-
tem. It contains two main modules:
Pre-processing Module: This takes the trajectory dataset as the in-
put and performs three major procedures: i) Spatial Network Map-
ping; ii) Inverted Trajectory Indexing; and iii) Spatial Indexing.
Their details are presented in Sect. 3.
Location Set Mining Module: This takes a user’s query parameters,
i.e., a spatial range R, a value k and a set of marked locations (e.g.,
by the expert) as the input, and returns k locations as the result.
The process goes multiple iterations until the user satisfies the final
result. In this paper, we propose utilizing the greedy heuristics to
choose the candidate locations efficiently (detailed in Sect. 4).

3. PRE-PROCESSING
Spatial Network Mapping. This step contains two tasks: 1) spa-
tial network construction, the system first identifies the locations
based on different scenarios, e.g., the intersections, spatial cells, or
the stay points, and then constructs the spatial network; 2) trajec-
tory mapping, the system then maps the raw trajectories onto the
corresponding spatial network, e.g., using a map matching algo-
rithm [5]. The output of the procedure is a trajectory-vertex index,
where each trajectory is represented by a set of vertexes (locations).
Inverted Trajectory Index Building. This step builds the vertex-
trajectory index, which stores trajectory IDs for each vertex.
Spatial Index Building. The spatial index is used to speed up the
spatial selection. In this step, we take the vertexes V as the input
and use R+-tree [6] to index these spatial locations.

4. LOCATION SET MINING
The optimal solution to find the most influential k-location set

is computing infeasible for large k due to its NP-hardness. An ef-
ficient approximate solution becomes more promising. In the lit-

2Pre-estimating the quality of all locations for different applica-
tions maybe infeasible.



Algorithm 1 Framework of Greedy Heuristics

Input: Vertex-trajectory index Ivt, spatial index Ispatial, spatial
range R, and k value.
Output: k vertices Vgdy

1: Vs := SpatialRangeSearch(Ispatial, R)
2: for i = 1 to k do
3: Vgdy ← Vgdy

⋃
vcur , vcur ∈ Vs \ Vgdy with max coverage.

4: Update the coverage values in the vertex coverage table.

5: return Vgdy

Algorithm 2 Updating Algorithm

Input: vertex-trajectory index Ivt, trajectory-vertex index Itv , candi-
date vertices Vs, selected vertex vcur , vertex coverage table vct.
Output: Updated vertex coverage table

1: Trnew ← newly covered trajectories from vcur
2: for each tr ∈ Trnew do
3: for each v ∈ Itv [tr] do
4: if v ∈ Vs \ Vgdy then
5: Update coverage value of v in vct.

erature, greedy heuristics have been proven [7] as the best poly-
nomial time solution with 1 − 1

e
approximation guarantee to the

optimal solution. In this section, we first present the framework
of the greedy heuristic algorithm. Then, we introduce an updating
algorithm to reduce the response time by taking the advantage of
trajectory-vertex index.

4.1 Framework of Greedy Heuristic
In the greedy heuristic algorithm, we maintain a vertex coverage

table, where each entry is identified by the vertex id vi, and is asso-
ciated with a coverage value. The coverage value is the number of
unselected trajectories of this vertex. The framework of the greedy
heuristic algorithm is very simple, as shown in Alg. 1. It first se-
lects a set of candidate vertices in the spatial region R (i.e., Line 1).
Then a k-iterative process is executed with two phases:

• Selection Phase. In this phase, the algorithm selects the vertex
with the maximum trajectory coverage at the current iteration and
put it in the result set (i.e., Line 3).

• Updating Phase. In this phase, the algorithm updates the cov-
erage values for all the unselected vertices by removing the newly
covered trajectories from their coverage (i.e., Line 4).

In Alg. 1, the spatial range query and selection operations can be
processed very efficiently. However, the updating step is hideous
and time consuming, especially when the trajectory dataset is huge,
e.g., millions of entries, as the updating process needs to remove all
the newly covered trajectories in the vertex coverage table. Thus,
we focus on improving the efficiency of the updating phase.

4.2 Updating Algorithm
After each selection phase, a set of new trajectories are covered

by the newly selected vertex. Thus, the coverage values of the re-
maining vertices in the vertex coverage table need to be updated,
i.e., removing trajectories covered by the newly selected vertex.
The updating algorithm scans the newly covered trajectories and
find the vertices to be updated using the trajectory-vertex index Itv .

Alg. 2 shows the updating algorithm of the greedy heuristic al-
gorithm. After the current vertex with maximum coverage vcur is
selected, the algorithm gets the newly covered trajectories Trnew

by adding the vcur to Vgdy (i.e., Line 1). Specifically, Trnew is
calculated as Trnew = Ivt[vcur] \ Trgdy , where Ivt[vcur] and
Trgdy are the covered trajectories of vcur and Vgdy respectivially.
Finally, the algorithm goes through the trajectory-vertex index for
each newly added trajectory to update the values (i.e., minus one)

vgdy = {v1}
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Figure 4: Running Example of Updating Algorithm.

in vertex coverage table vct (Line 2-5). This process stops after
getting k vertices.

Example. Fig. 4 gives a running example of the updating algorithm
to extract the most influential 2-location set using greedy heuristics.
In this example, there are 6 vertices within the query spatial region,
i.e., {v1, v2, v3, v4, v5, v6}. The corresponding vertex-trajectory
index is shown in Fig. 4(a), and the trajectory-vertex index is shown
in Fig. 4(c). The updating details of the vertex coverage table are
demonstrated in Fig. 4(b), where each row indicates the updated
coverage values after removing each trajectory in Trnew. Initially,
the coverage value of each vertex is their original covered trajecto-
ries, i.e., {5, 4, 4, 3, 2, 2} for {v1, v2, v3, v4, v5, v6} respectively.

At the first iteration, v1 is selected and added to the result
set Vgdy , and all trajectories covered by vi, i.e., Trnew =
{tr1, tr2, tr3, tr4, tr5}, should be removed from the trajectory sets
of other locations. The algorithm then utilizes the trajectory-vertex
index of each trajectory in Trnew to update the coverage values of
the remaining vertices, i.e., v2 to v6. As shown in the first row of
Fig. 4(b), the algorithm notices that the trajectory tr1 passes the
vertices v1, v2 and v5 from the trajectory-vertex index. Thus, the
coverage values of v2 and v5 should be updated, i.e., decreasing by
1, as tr1 has been covered. The updating process continues until it
checks all the newly added trajectories, i.e., tr1 to tr5. After the
updating phase, the coverage values of the remaining vertices are
{1, 2, 3, 0, 0}.

Based on the updated vertex coverage table, the greedy heuristic
algorithm continues to select the second vertex. In this case, it will
select v3, as v3 covers the most trajectories, i.e., 3. Finally, the
location mining module stops as it has enough candidates.

Performance Analysis. The cost of the vertex selection process
is relatively small, i.e., a linear scan of the coverage values of the
remaining vertices, with the time complexity of O(|Vs|). The dom-
inant cost of the algorithm lays in the updating phase as it needs to
scan the trajectory-vertex index one by one. The time complexity
of updating phase by using Alg. 2 is O(Trgdy×γ), where Trgdy is
the total number of trajectories covered by the final selected results,
i.e., Vgdy , and γ is the average length of these trajectories.

5. EXPERIMENTS
In this section, we first show the efficiency of our proposed sys-

tem (Sect. 5.1). After that, we provide a case studies to demonstrate
the utilization of our system (Sect. 5.2).

5.1 Efficiency Study
The performance are evaluated on a machine running Ubuntu

12.04 with Intel Core 6-Cores (12-Threads) i7-3930K 3.2GHz and
16GBytes of main memory. The processing time of our proposed
system are reported by averaging 100 randomly selected queries.

Dataset. We use the GPS trajectories of 3,501 taxicabs from Tian-
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Figure 5: Efficiency study.

jin in 61 days. We perform a map-matching algorithm to map the
trajectories on the road network of Tianjin, which contains 99,007
vertices and 133,726 segments. The road network covers an area of
123 × 187 km2 with a total length of 32,487 km. Fig. 5(a) shows
the spatial distribution of trajectories using a heat map3. Most of
the trajectories are crowded within the downtown area.

Result. Fig 5(b) shows the processing time (by lines) and the total
number of scanned trajectories (by bars) for our proposed system
(denoted as BU), with different k values. The processing time and
number of scanned trajectories increase linearly with k. Our pro-
posed system can find the k-location set in 13.9 seconds even when
k = 40. The efficiency of the proposed system make it possible to
attract users to pursue interactions in the mining process.

5.2 Case Study
The government wants to deploy three charging stations for elec-

tric vehicles in the Wangjing Area (a district in Beijing) to promote
green-energy. As the charging station is a public service, we need to
cover as many users’ travels as possible. Moreover, the placement
of EV charging stations also need to consider the following three
domain constraints: 1) the selected locations should have space for
parking; 2) the nearby area needs a diverse array of POI categories;
and 3) the selected locations should not be very close to each other.

Dataset. We use the GPS trajectories of 33,619 taxicabs in Beijing
as a sample of vehicles’ movements. We perform a map-matching
algorithm to map the trajectories on the road network of Beijing,
which contains 186,266 vertices and 249,080 segments. The target
area is demonstrated as the shaded polygons in Fig 6(a) and 6(c) .

Results. Fig. 6 demonstrates the results using our technique with
multiple iterations from the field experts.
• Fig. 6(a) gives the selection results in the first iteration, where
three intersections are selected on the map (marked as red, orange
and green). The three selected locations cover a total of 11,558
trajectories in the area. However, when we closely examine each
location, we find that: 1) Node 2 and Node 3 do not have enough
places for parking, as demonstrated in the street map view; and
2) the nearby POI distributions of Node 2 and Node 3 do not sat-
isfy the diversity requirement (i.e., without any medical services),
illustrated in the POI distribution view 4. As a result, we only keep
Node 1 in the result and perform a new selection iteration.
• Fig. 6(b) gives the selection results for the next two iterations. In
the second iteration, we find a new set of three locations, where we
keep Node 1 and Node 2 in the result and remove Node 3, as it does
not have enough space for parking. On the third iteration, we find
a new Node 3. However, it still does not satisfy our requirement,
as it is very close to Node 1. Thus, we need to remove Node 3 and
perform our algorithm continuously.

3A full version can be found at http://goo.gl/QUiIpZ.
4The POI distribution is calculated by aggregating the POIs within
a 1 km range of the target location.

Figure 6: Placing Charging Stations in Wangjing Area, Beijing.

• Fig. 6(c) gives the final result in the Wangjing Area. All selected
locations fulfill our requirement, where each of them has enough
space for parking (demonstrated in the street view) and satisfies
the POI diversity (shown in the bar chart). Most importantly, the
3-location set covers a total of 10,993 trajectories, which is very
close to the total number of the first iteration, i.e., 11,558.

6. CONCLUSION
This work presents a system on mining most influential k-

location set over massive trajectory data. It has many potential
applications in resource allocation applications. We propose uti-
lizing a greedy heuristic algorithm to support interactive queries.
Extensive experiments on real datasets demonstrate that our pro-
posed solution is efficient. We also demonstrate how to best place
EV charging stations in Beijing using our proposed system.
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