

CueT: Human-Guided Fast and Accurate Network Alarm Triage

Saleema Amershi
†‡

, Bongshin Lee
†
, Ashish Kapoor

†
, Ratul Mahajan

†
, Blaine Christian

*

†
 Microsoft Research
One Microsoft Way

Redmond, WA 98052
{bongshin, akapoor, ratul}

@microsoft.com

‡
Computer Science & Engineering

DUB Group,
University of Washington

Seattle, WA 98195
samershi@cs.washington.edu

*
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
blainech@microsoft.com

ABSTRACT
Network alarm triage refers to grouping and prioritizing a
stream of low-level device health information to help
operators find and fix problems. Today, this process tends
to be largely manual because existing tools cannot easily
evolve with the network. We present CueT, a system that
uses interactive machine learning to learn from the triaging
decisions of operators. It then uses that learning in novel
visualizations to help them quickly and accurately triage
alarms. Unlike prior interactive machine learning systems,
CueT handles a highly dynamic environment where the
groups of interest are not known a-priori and evolve
constantly. A user study with real operators and data from a
large network shows that CueT significantly improves the
speed and accuracy of alarm triage compared to the
network’s current practice.

Author Keywords
Interactive Machine Learning, Visualization, Triage.

ACM Classification Keywords
H.5.2. [User Interfaces]: Graphical User Interface.

General Terms
Algorithms, Design, Human Factors.

INTRODUCTION
Triaging alarms is the first line of defense for modern
computer networks. Triage is the process by which the
multitude of low-level alarms (e.g., high link utilization, fan
failure) generated by individual devices are grouped and
prioritized. These groups are investigated by network
engineers for problems with the network. Grouping related
alarms, which likely stem from the same problem, helps
engineers by reducing the number of issues they need to
investigate and giving them a broader view of the problem
than what an individual alarm provides. It is critical that

triage is fast and accurate so engineers are not misled and
problems can be identified and resolved quickly.

Many automated systems have been developed for alarm
triage (see [9, 17] for reviews). However, despite years of
effort, these systems are never fully accurate due to the
complexity of the problem. Large networks have thousands
of diverse devices, each generating a different set of alarms.
Further, because each network is different and the set of
devices within a network changes with time, it is very
challenging to develop systems that work across networks.
Therefore, to cope with the inherent inaccuracy of
automated systems, networks invariably employ human
operators (so called “Tier 1” operators) for alarm triage.
These operators are required to sift through the thousands
of alarms per day that can be missed by automation.

We explore a fundamentally different approach for alarm
triage. Since human operators need to be involved in the
triage process anyway, we ask if we can learn from their
actions and in turn use that learning to assist them. By
learning continuously and in situ from operator actions, the
assistance provided would better fit the network and its
unique practices as well as evolve with the network.

We develop CueT (Figure 1), a system that combines novel
visualizations with interactive machine learning for fast and
accurate alarm triage. CueT maintains a constantly-
updating, machine-learning-based model for the triage
process. As alarms arrive, CueT provides an operator with
recommendations on how to group the alarms based on its
model at that instant. The operator inspects the
recommendations along with CueT’s visualization of its
confidence in them, and decides how to triage. CueT then
learns from these operator actions and updates its model.

Our evaluation of CueT demonstrates the effectiveness of
our approach. Testing with human operators and real data
from a large, global network with approximately 15,000
devices, we show that CueT significantly improves the
accuracy and reduces the time required for alarm triage.

The contributions of this paper are:

 A novel approach to alarm triage. Our approach also
applies to many other scenarios where a human needs
help with organization of a continuous data stream (e.g.,
RSS information feeds, email management, social

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

network updates). It is designed to reside in a dynamic
environment, where it learns from each human action to
help with organizing the incoming data stream.

 The design and implementation of CueT, a system that
embodies our approach in the context of triaging network
alarms. CueT tightly integrates visualization with the
underlying computation, in contrast to existing work on
network monitoring which tends to focus on one aspect
or the other. CueT is based on an interactive machine
learning technique operating in a highly dynamic
environment; existing work assumes a fixed set of groups
that are known a-prior.

 Evaluation of CueT in a real-world environment with real
operators and its comparison against the current practice
of manual triage, showing that our approach leads to
faster and more accurate triage.

RELATED WORK
Most research in network monitoring and alarm correlation
has focused either on visualizations or automated solutions
in isolation. Researchers have recently proposed
visualization systems for network monitoring and diagnosis
(e.g., [7, 14]). For example, the Visual-I system [7] uses
visual grouping and scatterplots to highlight correlations
between multiple devices and problems. While these

systems leverage human visual and cognitive abilities to
process data and look for patterns, our approach combines
visualization and interactive machine learning in order to
further reduce the cognitive effort of manually identifying
patterns in large data sets. Helping automate pattern
discovery can increase operator efficiency and accuracy,
necessary for these time critical problems.

Automated alarm correlation (also related to root cause
analysis and fault localization) has long been an active area
of research because of the complexity of the problem and
the potential impact on the industry [9, 17]. Most solutions
to this problem have taken the form of expert defined rules
or models (e.g., [1, 3, 9, 12, 15]). Such approaches require
manual configuration of rules which can be difficult to
obtain, are not robust to new situations, and require
frequent maintenance [9, 17]. In contrast, our interactive
machine learning approach can handle general alarm
correlations that require alarm grouping based on similarity.

Some researchers have explored automatically learning
rules or models from data that can then be used for
automated alarm correlation and filtering (e.g., [13, 17]).
However, most of these approaches require extensive
training periods and must be retrained whenever the
network topology changes [17]. In contrast, our approach is
based on a dynamically changing model that is constantly

Figure 1. CueT’s interface. Alarms stream in from the network and are displayed on the right. CueT’s triage recommendations for

each alarm appear on the left along with a visualization of CueT’s confidence in those recommendations (far left). Device Names
and other information are blurred for security reasons.

learning from human guidance. We argue that human input
is critical during the alarm correlation process because of
the inherently inconsistent and ambiguous nature of the
problem [9], which is a contributing factor to why alarm
correlation is still an open area of research.

While today’s commercial systems employ some of these
previous techniques for alarm triage and filtering [5, 10,
18], most companies still require teams of Tier 1 operators
to manually triage the thousands of remaining alarms
unhandled by these existing systems. Furthermore, most of
these systems tend to use a tabular representation of the
data, which can make it difficult for Tier 1 operators to find
patterns and group alarms (e.g., Figure 2). Our approach
combines interactive machine learning with an appropriate
visualization in order to deal with general alarm triage that
is difficult to handle with existing approaches.

Our work is closely aligned with evolving research on
interactive machine learning [2, 4, 6, 8]. All of these works
assert the importance of human involvement and propose
interactive systems for various applications (e.g., image
segmenting [6], grouping documents [2, 4] and image
search [8]). While all of these focus on a pool-based static
environment, where the categories of interest and the pool
of unlabeled data are known a-priori, our work involves a
more challenging scenario. CueT deals with a highly
dynamic environment where data is constantly streaming in
and out and the set of labels to be assigned is constantly
changing over time. Such dynamic scenarios, to the best of
our knowledge, have not been addressed earlier in the realm
of interactive machine learning.

UNDERSTANDING THE TRIAGE PROCESS
We visited the network operations center of a large
organization on multiple occasions to understand current
triage practices. We first talked informally with center
managers to get a broad understanding of the process. We
then closely observed two Tier 1 operators (1 female) for an
hour each as they were triaging alarms using the current
tool employed at this network operations center, and asked
them questions during and after the observations.

The current tool used at this operations center is a
combination of two pieces: (1) an automated rule-based
engine that selects alarms to be shown to Tier 1 operators
and labels those alarms (e.g., alarm severity level) and (2) a
table-based UI for operators to triage alarms using labels
and other features (Figure 2).

Our investigation revealed three main failings of the current
process. First, the rule-based engine is hard to configure
and keep up-to-date as the network evolves. As a result,
thousands of alarms must still be manually triaged by
operators every day. While triaging, the operators largely
ignored the tool’s output, except for some basic information
like alarm severity that is used for prioritizing which alarm
to focus on next. Much of this information is not computed
by the tool but is directly configured by network managers.

Second, the triage process is highly manual partly because
network managers often have specific instructions on how
operators should temporarily handle certain types of alarms.
These instructions are based on how managers expect the
network to behave as they are making changes behind the
scenes. They are typically conveyed in a formal document
known as a whiteboard, updated daily and that operators are
instructed to review before beginning a workday. Such
special case instructions make it hard to develop tools for
assisting with alarm triage. This difficulty applies not only
to the traditional methods, but also to our approach as short-
term special cases create noise in our learning model.

Third, the table-based visualization for the current triage
process is rudimentary and inefficient. The alarms are
presented as rows in a table that can be ordered by alarm
attributes (e.g., severity). Another table in a different
window shows the recently created alarm groups. The
operators need to switch between these two windows to
handle an alarm.

In addition, we learned that some alarm attributes are more
important than others for the triage process. Understanding
the importance of alarm attributes helps us not only choose
the right features for the machine learning algorithm but
also design appropriate visual representations.

While we studied only one network in detail, based on
conversations with the network managers (who have a
broader view of the industry and have also worked at other
networks), we understand that the processes at this network
are similar to those of many others. Next, we describe how
CueT addresses these problems by interleaving human
interaction with machine learning and visualization.

CUET
CueT consists of two interacting components: (1) a stream-
based interactive machine learning engine for making triage
recommendations and (2) an interface to assist operators in
inspecting and interpreting those recommendations and
feeding operator actions back into the learning engine. We
will refer to the alarm currently being triaged as the
“incoming alarm,” a group of one or more related alarms
that have already been triaged as a “ticket,” and the current
set of tickets that are being used for recommendations (and
have not been discarded yet) as the “working set of tickets.”

Figure 2. Current tool for displaying alarms in the network

operations center we observed. A separate tool with a similar
interface is used for displaying tickets.

Stream-Based Interactive Machine Learning
One key aspect of our problem scenario is that it resides in
a dynamic environment, where both the alarms and tickets
being generated are constantly changing. Thus, our scenario
is fairly different than the classical machine learning
setting, where the classes are fixed and known a-priori, and
the classifier operates in an assumed static environment.
We tackle the challenges due to the dynamic environment
and ever evolving set of classes (i.e., the working set of
tickets and the alarms within those tickets).

Our approach builds on nearest neighbor classification. In
particular, CueT provides triage recommendations for an
incoming alarm via a nearest-neighbor strategy that orders
the working set of tickets by their similarity to that alarm.
Similarity is measured using a distance function that can
adapt based on operator actions.

While the nearest neighbor strategy can help match
incoming alarms with existing tickets, there is no easy way
to identify that a new ticket needs to be spawned. We
extend the classification module to include a mechanism for
recommending when an incoming alarm should spawn a
new ticket and include this recommendation in CueT’s
ordered list of recommendations. New tickets are
interactively spawned and added to the working set when a
human operator judges that an incoming alarm is unrelated
to any existing ticket (i.e., part of a new problem).
Additionally, old tickets are dynamically discarded from the
working set over time, simulating the effect of problems
represented by those tickets as being resolved (and reducing
interference among existing tickets in the working set).

Recommending Existing Tickets
CueT measures similarity between the incoming alarm and
a ticket in the working set of tickets by computing the
average distance between the incoming alarm and each
alarm in the ticket. CueT then orders the tickets by their
average distance to the incoming alarm and uses this
ordering of tickets as its triage recommendations.

Distance between alarms is measured using 17 individual
distance metrics, each of which represents alarm similarity
along a feature attribute. These 17 distance metrics were
found to be relevant and important for triage during our
initial observations of Tier 1 operators. The operators
typically inspect the following alarm attributes:

 Device Name (e.g., ab1-cd2-ef3-gh4)

 Device Type (e.g., Router, Switch)

 Element Type (device part needing attention, e.g., Port)

 Name (includes Device Name and additional information
such as the Element that needs attention, e.g., Port-ab1-
cd2-ef3-gh4)

 Severity (an integer ranging from 1 to 5 representing
highest to lowest priority, respectively)

 Event Name (e.g., Fan-3-Failed, High Utilization)

From these attributes, CueT computes 17 string-based
distance metrics described below. Our simulations in the
following section show that these string-based distance
metrics effectively capture operators’ practice of visually
comparing the attribute values of alarms. Further, because
large organizations often follow standard device naming
conventions [16] (e.g., the “ab1” in ab1-cd2-ef3-gh4
typically indicates the location of the device), some of our
string-based metrics implicitly encode topological
information about the underlying network structure (e.g.,
device ab1* is likely to be near device ab2*). If
organizations do not include topological information in
device names, such information is typically available in
network configuration data, from where it can be easily
extracted and used to compute the following metrics.

For alarm attributes Device Name, Name, and Event Name,
as well as the four standard component parts of the Device
Name (e.g., ab1-cd2-ef3-gh4 is divided into ab1, cd2, ef3,
and gh4), CueT computes two string-based distance metrics
(amounting to fourteen metrics in total): the edit distance
and the longest common substring (LCS) converted to a
distance according to:

di,j = maxlength (i, j) − si,j

where si,j is the length of the longest common substring
between strings i and j. We include both edit distance and
LCS because they have complementary strengths. For
example, LCS is a good measure for strings that encode
location. Devices “ab1*” and “ac1*” are likely in different
locations. For these, LCS distance (which is 2) better
captures that these are different than edit distance (which is
1). As described below, our method of learning the
combination of these individual metrics will reduce the
effect of any irrelevant metric (edit distance in this case).

For alarm attributes Device Type, Element Type, and
Severity, CueT computes one string matching distance
metric each (amounting to three metrics in total). This
distance metric returns 0 if the attribute values are the same
or 1 if they are different.

We combine these 17 distance metrics using Mahalanobis
distance, which parameterizes distance between any alarms
u and v, represented as d dimensional feature vectors, by a
d×d positive definite covariance matrix A:

Distance (u, v) = (u - v)T A (u - v)

This function effectively weights the 17 distances by the
matrix A, which encodes their relative importance for alarm
classification and the correlations between them.

We learn the parameters of the matrix A from operators
using an online metric learning algorithm [11], originally
derived for nearest neighbor classification in static
environments. We extend the procedure to dynamic
scenarios where both the number and type of classes are
varying. In particular, given a stream of alarms, each
labeled with the ticket that it was triaged into, we
incrementally update the matrix A by encoding the labels as

constraints indicating that the incoming alarm and each
alarm in the target ticket should be near each other. When
an alarm spawns a new ticket, no update is made to the
matrix A (however, this does change the working set of
tickets). To learn the parameters of A, we initialize it to the
identity matrix (and set the regularization parameter η to
.001) and then update the parameters as we observe triage
actions. We continue this process for N alarms, where N is
determined empirically from our simulation experiments
described below, and then fix the distance function. The
final covariance matrix AN is used in making
recommendations for the remaining data.

Intuitively, the parameters learned for the matrix A reflect
the importance and correlations among the individual
distance metrics, to best explain the human operator’s
actions. The advantage of learning the matrix A from data is
that it does not require expert tuning, which can be difficult
to obtain and does not evolve with the network [9, 17].

Recommending Starting a New Ticket
CueT maintains a threshold distance for starting a new
ticket based on information about when operators spawn
new tickets. When an operator spawns a new ticket for an
incoming alarm, the distance between this alarm and the
nearest ticket in the working set is stored. We experimented
with several strategies for computing the threshold distance
from these stored distances. They include taking the
minimum and average over various window sizes of the
most recently stored distances (including a window of all
the distances). We found that taking the minimum within a
window of the five most recent stored distances performs
best. That a small window size performs better than larger
sizes likely stems from the fact that thresholds need to
reflect the dynamically changing distribution of tickets in
the metric space.

For each incoming alarm, CueT computes the latest
threshold distance using the strategy above and inserts a
“start new ticket” recommendation into its ordered list of
recommendations according to this distance.

Spawning New Tickets and Discarding Old Tickets
When an operator determines that an incoming alarm is part
of a new problem, a new ticket is created and added to the
working set. CueT also automatically discards old tickets,
simulating the resolution of problems. We use a windowing
mechanism to discard old tickets. In particular, we fix the
window size to N, which is the number of alarms used for
learning our covariance matrix. Any time the number of
unique alarms in the working set of tickets exceeds N we
remove the oldest ticket in the set. Spawning new tickets
and discarding old ones means that the working set of
tickets used for machine learning based recommendations is
continually evolving as an operator interacts with CueT.

Simulation Experiments
In this section, we present the results of experiments that
simulate human interaction with CueT’s interactive

machine learning component. For our experiments, we
obtained alarm triage data from a network operations center
at a large organization that monitors a network with
approximately 15,000 devices. This data was labeled by
Tier 1 operators through their manual triage process. To
evaluate CueT’s interactive machine learning component
over a long period, we use data spread across several
months. In particular, we use data from the first day of each
month between January and August 2010 (inclusive) except
for May and July when the network had recording
problems. This data set contains 338,218 alarms of which
8,719 are unique and are mapped to 1,281 unique tickets.

To simulate human interaction and compute the accuracy of
CueT’s learning, we processed alarms in the data in the
order in which they occurred. For each alarm, we first
compute an ordered list of recommendations that we use to
measure accuracy. Then, we obtain the actual label for the
alarm and either add the alarm to an existing ticket or create
a new ticket. If we add the incoming alarm to an existing
ticket and we have observed fewer than N alarms, we
update AN as described previously. If we start a new ticket,
we update the threshold distance for starting new tickets
and update the working set of tickets. Finally, if we
determine that the working set has exceeded the window
size of N alarms, we discard the oldest ticket in the set.

We measure recommendation accuracy for each incoming
alarm by comparing the recommendations to the ground
truth (all of the alarm triage data observed before reaching
the current incoming alarm, without discarding any tickets).
There are two types of correct recommendations:

 Correct New Ticket. CueT recommends a new ticket be
created and the alarm’s label shows that a human
operator actually created a new ticket for that alarm.

 Correct Existing Ticket. CueT recommends an existing
ticket and that ticket is the alarm’s actual label.

If neither of these is true, we record the recommendation as
incorrect. Note that because the nature of the problem we
are dealing with requires that we operate in a moving
window, some of our errors may be the result of discarding
tickets (e.g., recommending a new ticket when the correct
ticket is in the ground truth but no longer exists in the
working set of tickets).

Because multiple tickets may be the same distance away
from an incoming alarm, we compute recommendation
accuracy as whether or not the alarm’s actual label
appeared within the set of ticket recommendations a given
distance away from the alarm or closer. For example, if
CueT predicts two different ticket recommendations as
being equally closest to the incoming alarm (“Top 1
distance” away) and if the correct label is one of the two
tickets then we consider this a correct recommendation at
the Top 1 distance. Similarly, a recommendation is correct
at the Top 2 distance if the correct label is within the set of
tickets recommended at the Top 2 distance away from the
incoming alarm or less (e.g., at the Top 1 distance). We

experimented with accuracy within the Top 1, 2, 3 and 4
distances from the incoming alarm.

We ran ten simulations over our data, varying the number
of alarms N used in both learning the distance function
parameters AN as well as in the window size for discarding
old tickets. Figure 3 (left) illustrates CueT’s accuracy
within the set of tickets recommended at the Top 1, 2, 3,
and 4 distances from incoming alarms averaged over all the
simulation trials. Figure 3 (middle and right) shows the
average number and percentage of tickets (out of N)
presented at each of the Top 1 to 4 distances. From these
results it appears that presenting tickets in the Top 3
distances achieves a good balance between relatively high
accuracy and a small number of tickets being presented.
Therefore, for our user study described later, we fix CueT
to recommend tickets for an incoming alarm within the Top
3 distances from that alarm.

CueT’s accuracy at the Top 3 distances over the various
values of N that we experimented with (10, 20, 30, 40, 50,
100, 150, 200, 250, and 300) appears to peak at an N value
of 30 alarms (Figure 4). Therefore, for our user study, we
set N=30 in our interactive machine learning engine.

CueT Interface
CueT’s interface (Figure 1) consists of two main views: the
Alarm View on the right displays alarms as they stream in
from the network and the Ticket View on the left displays
CueT’s ticket recommendations.

When operators click on an alarm in the Alarm View, CueT
displays its recommendations for that alarm in the Ticket
View and illustrates its confidence in those
recommendations with the Ticket Distance Overview.
Operators can then inspect the recommendations and
visualizations to determine how to triage the alarm (that is,
either add it to an existing ticket or start a new one).

Operators triage the alarm by dragging and dropping it onto
the appropriate ticket in the Ticket View. CueT’s interface
also contains a Search View (bottom left in Figure 1)
through which operators can search for existing tickets by
entering a search string as they do with their current system
for triaging alarms. Operators can add alarms to tickets
appearing in the Search View just as in the Ticket View.

Alarms and Alarm View
Our initial observations of operators helped us determine
the importance of certain alarm attributes. Severity and
Notification Time, most viewed by operators when
determining which alarm to triage next, are displayed
prominently. As shown in Figure 1 (right), Severity (on a
scale of 1-5) is encoded on the left of an alarm by color: red
(most severe), orange-red, orange, yellow, and white (least
severe). The Notification Time attribute is emphasized in
bold and displayed at the top right-hand side of the alarm.

Operators often work under a service level agreement
(SLA) that defines the time limit within which an alarm
must be triaged. CueT highlights when an alarm has passed
this limit by overlaying a pattern on the Severity display as
in the alarms at the top of the Alarm View in Figure 1.

Operators also sometimes use the Count attribute of an
alarm to determine which alarm to deal with next. The
Count attribute represents the number of duplicate alarms
observed and many duplicates sometimes signal a severe
problem. CueT represents Count by the length of the
horizontal bar (color coded by Severity of the alarm) at the
bottom of the alarm. In addition, if duplicates are observed,
the time when the last duplicate was observed is displayed
in gray at the bottom right of the alarm.

Alarm Name is also emphasized in the alarm in bold as this
attribute is used most often when comparing alarms to
existing tickets and deciding how to triage. The rest of the
alarm information, including Device Type, Event Name, and
a description of the event is displayed less saliently in the
alarm in gray. This layout allows operators to visually scan
and compare alarms by Severity, Time, and Count while
still being able to digest the rest of the alarm information in
a compact representation.

Alarms are displayed in the Alarm View as they stream in
from the network. Since operators often miss important
alarms that appear off of the screen, the Alarm View
includes an Alarm Overview (far right in Figure 1) that
provides awareness of all alarms still requiring triage even
if they are off the screen. This overview displays one
rectangle per alarm, color coded by that alarm’s Severity
and possibly the pattern if that alarm has passed its SLA.
The heights of the rectangles automatically adjust so as to
always display all of the alarms currently available for
triage. The rectangles are presented in the order that alarms
are displayed in the Alarm View, where alarms can be
sorted by any attribute of the alarm. This allows the
overview to act as a scroll bar for easy alarm navigation.

Figure 3. CueT’s accuracy (left), number (middle), and % of
tickets presented (right) within Top 1, 2, 3, 4 distances from

each incoming alarm, averaged over all simulation trials.

Figure 4. CueT’s accuracy at the Top 3 distances for various
window sizes N. N=30 achieves peak performance.

Tickets, Ticket View, and Ticket Distance Overview
Tickets are a collection of related alarms (Figure 1 left).
Each ticket has a parent alarm, which is manually
determined by a human operator and typically represents
either the most severe or the first alarm in the ticket. The
label at the top of the ticket is color coded by Severity of
the ticket’s parent alarm. The ticket label also includes the
ticket’s unique ID, automatically generated by the system at
the time of creation, and two numbers in parenthesis; the
number of unique alarms within that ticket followed by the
total number of duplicates across those alarms. Unique
alarms and duplicates are dually represented in the ticket as
a series of horizontal bars (similar to the Count display in
the alarm representation), one for each unique alarm, and
again color coded by Severity of the alarm and reflecting
the number of duplicates for that alarm by its length.

Immediately below the ticket label is information about the
ticket’s parent alarm along with the ticket description.
Below the parent alarm is the best matching alarm within
the ticket to the incoming alarm (next to the star icons in
Figure 1). This serves as an explanation for why CueT is
recommending that an operator triage an alarm into a given
ticket. Thus, ticket representations displayed in the Ticket
View are tailored for each alarm. Operators can also click
on a ticket to display all the alarms currently grouped
within the ticket. New ticket recommendations are
displayed as empty ticket stubs with a gray label and text
within the ticket displaying “Start New Ticket.”

Each time the operator clicks on an alarm to triage in the
Alarm View, CueT generates its ticket recommendations
for the selected alarm and displays them in the Ticket View.
They are shown in order of increasing distance from the
alarm as per the distance function described previously. By
default, and as determined by our simulation results, the
Ticket View initially displays only the tickets within the
Top 3 distances from the alarm being triaged as this helps
to balance operator load and the probability of these tickets
containing the correct recommendation. CueT allows
operators to reveal more tickets to inspect using the Ticket
Distance Overview visualization.

The Ticket Distance Overview (far left in Figure 1) is
designed to provide operators with an estimate of its
confidence in its recommendations so that operators can
determine the necessity of inspecting more tickets. Each
bubble in the Ticket Distance Overview corresponds to a
ticket. The vertical position of the bubbles relative to the
top of the overview reflects the distance between the alarm
being triaged and each ticket within the working set. That
is, the closer the bubble is to the top, the better a match the
corresponding ticket is for the alarm with respect to our
distance function. Also vertical positions of the bubbles
correspond to the ordered list of recommendations in the
Ticket View. Vertical distances are normalized so as to fit
all of the existing tickets within the display. Thus, the
positions of the bubbles display relative distances between
tickets rather than absolute distances. Horizontal

positioning is only used to minimize overlap of bubbles that
are of equal or near equal distance to the incoming alarm.

Bubbles that are positioned near each other are comparable
in terms of their similarity to the alarm currently being
triaged. In this case, the overview should encourage
operators to inspect all of the comparable tickets. To enable
operators to inspect more tickets when necessary, CueT
provides a horizontal green bar allowing them to set the
distance threshold for the tickets to be displayed in the
Ticket View. It divides the bubbles into a visible region
(above the bar and corresponding to visible tickets in the
Ticket View) and the invisible region (faded bubbles below
the bar and corresponding to tickets not currently visible in
the Ticket View). Operators can drag this bar vertically to
reveal and inspect other tickets within the Ticket View.

USER STUDY
We conducted a user study to examine the effectiveness of
CueT for alarm triage as compared to the traditional method
of manually ticketing alarms. For the Traditional condition,
we replicated the commercial system used by our network
operators (Figure 2). As in the commercial system,
participants could keyword search the tabular view of
existing tickets to add incoming alarms or create new
tickets. Adding alarms to existing tickets or creating new
tickets is achieved by right clicking on a row in the table of
alarms and selecting the corresponding action from a popup
menu. The commercial system has separate windows for
displaying alarms and searchable tickets, both using a
tabular format. To avoid the overhead of switching between
windows (a problem we observed during our initial
observations), our version of the Traditional interface
combines both of these views in one window as in CueT.
This combination provides a fairer evaluation of the current
practice, as the two-window issue is easy to fix.

Data, Study Design, and Equipment
For our study we used part of the data that we used for our
simulation experiments (January 1, 2010 data). To compare
two interfaces, we created two data sets from this data. To
ensure that each set includes comparable numbers,
distributions and types of alarms and tickets, we extracted
alternating unique alarms. We also simulated the correct
assignment of alarms to tickets for alarms not being shown
as CueT relies on a dynamically changing working set of
tickets. Therefore, Data Set 1 included odd alarms (while
we simulated the correct assignment for even alarms) and
Data Set 2 included even alarms (where we simulated the
correct assignment for odd alarms). Each data set contained
80 unique alarms to be triaged by our participants as our
pilot study showed that was a manageable number of
alarms to triage in about 20 minutes. For demonstration and
practice in each condition, we also created two additional
data sets (Demo Sets 1 and 2) from the April 1, 2010 data
using this same approach.

We conducted a within-subjects study, with each participant
performing alarm triage using both CueT and the
Traditional method. We compared CueT to the Traditional
method in terms of accuracy, speed, and user preference. To
avoid a learning effect, we counterbalanced the presentation
order of the two interfaces.

We ran participants individually or in pairs depending on
their schedule (two pairs). Each participant worked on a 2.7
GHz dual-core Windows 7 laptop with 4 GB RAM. We
attached a 20.1’’ Samsung monitor at a resolution of
1200x1600 (i.e., in a portrait orientation) to each laptop, as
well as a mouse and keyboard. We turned the laptop away
from participants so they could only look at the attached
monitor and use the attached mouse and keyboard. When
we ran pairs, we faced their desks away from each other to
minimize disturbance.

Procedure and Participants
Before each condition, the experimenter demonstrated each
interface using Demo Set 1. Then the participants were
allowed to practice triaging alarms using Demo Set 2 until
they were comfortable with the interface and had practiced
triaging several alarms, for a maximum of 5 minutes.

In each condition, participants were asked to triage all 80
alarms presented as accurately and quickly as possible and
in the order that they normally would (i.e., they could triage
the alarms in any order, but are encouraged to triage high
severity alarms and alarms that have passed their SLA
first). All interface actions were time-stamped and logged.

After each condition, participants were given a short
questionnaire about the interface they just used. The
questionnaire included 7-point Likert scale questions asking
for the participants’ level of agreement with statements
about the interface (e.g., “Overall, I am satisfied with this
system.”) and specific questions about the CueT interface if
they had just used that interface (e.g., “The ticket
recommendations were useful.”). It also asked participants
to list three things that they liked and three that they would
like improved about the interface. At the end of the session,
a final questionnaire asked participants to select which
interface they preferred and explain why.

The experiment lasted about 90 minutes and participants
were given a gratuity of $20 worth of dining coupons. To
encourage participants to triage alarms quickly and
accurately, we also offered a prize of an additional $20
worth of dining coupons for the person who performed the
best in terms speed and accuracy in each condition.

We recruited eleven people (two female, ages 28 to 44) plus
one male pilot from the network operations team. Our
participants were not currently working as Tier 1 operators,
though six of them were self-proclaimed experts at the
alarm triage process and four said they were proficient. One
said he was a beginner. We could not recruit active Tier 1
operators because of their tight work schedule and because
many work outside of the country.

Results

Performance: Accuracy and Speed
We analyze our logged data in terms of accuracy and speed.
Accuracy is computed as the percentage of alarms correctly
triaged out of the total presented. Correctness of participant
labels is measured against the ground truth labels.

We compute two measures for speed: Time on Screen and
Time to Ticket. The former is the time between when an
alarm appeared on screen and when the participant
completed the triage operation for that alarm. Along with
Accuracy, it is a key measure of triage performance and is
used to formulate service level agreements (SLAs) that the
monitoring team offers. For instance, a possible guarantee
may be that for 95% of alarms Time on Screen would be
under 5 minutes. Note that both CueT and Traditional
present multiple alarms on screen simultaneously and
operators need not triage alarms in the order in which they
appear on screen. Therefore, Time on Screen is affected by
the order in which an operator decides to triage an alarm.
Thus, for a detailed view of triage behavior, we also study
Time to Ticket, which is time between successive triage
actions regardless of order.

For Accuracy, Time on Screen, and Time to Ticket, we
perform paired-samples t tests. We report means and
standard deviations throughout.

Our analyses showed that participants were able to triage
alarms faster with CueT than with the Traditional interface
while maintaining the same level of accuracy. Participants
were significantly faster with CueT than Traditional in
terms of Time on Screen (M=107.7s, SD=127.7s vs.
M=277.8s, SD=168.5s, t(10)=4.43, p=.001) and in terms of
Time to Ticket (M=10.1s, SD=2.69s vs. M=12.9s, SD=3.79s,
t(10)=3.26, p=.009). There was no significant difference in
terms of accuracy between the CueT and Traditional
conditions (M=71.8%, SD=17% vs. M=76.4%, SD=8%).

Our data included a type of alarm that required special
handling. Operators are usually instructed to always create
a new ticket for each such alarm, regardless of similarity to
other alarms. Only a few participants asked us how to triage
such alarms, to which we responded that they should triage
as normal. The logged data shows that such alarms were
handled unevenly by participants. Some rapidly created
new tickets without inspecting recommendations (in CueT)
or searching related tickets (in the CueT or Traditional
condition), while others triaged based on similarity. These
alarms reduce CueT’s accuracy because its model does not
handle exceptional cases. Despite that our results show that
CueT’s accuracy is no worse and its speed is much better.

We re-did our analysis after removing 39 of these
exceptional alarms from the data to evaluate CueT’s
performance in the absence of special cases. Our corrected
analyses of variance show that participants were still faster
with CueT but also more accurate than the Traditional
condition (Figure 5). The accuracy with CueT versus the

Traditional condition was 81.3% (SD=6%) vs. 72.4%
(SD=12%), (t(10)=2.29, p=.045). The participants were
significantly faster with CueT at triaging in terms of both
Time on Screen (M=86.9s, SD=69.2s vs. M=176.2s,
SD=85.2s, t(10)=4.63, p=.001) and Time to Ticket (M=9.9s,
SD=3.1s vs. M=15.7s, SD=4.6s, t(10)=6.52, p<.001).

Subjective Preference
We analyze our post-condition questionnaires using
Friedman Chi-Square tests. CueT was favored significantly
more than Traditional in terms of overall satisfaction
(χ2(1,N=11)=9.0, p=.003), how much participants liked
using the system (χ2(1,N=11)=11.0, p=.001), whether they
felt that they could efficiently ticket alarms with the system
(χ2(1,N=11)=6.4, p=.011), and whether they felt the system
was easy to use (χ2(1,N=11)=11.0, p=.001) (Figure 6).

Regarding CueT-specific features, participants tended to
agree with the statements “The ticket recommendations
were useful” (5.81 avg.) and “The Distance Overview was
useful” (5.36 avg.). In addition, all of our participants chose
CueT as their preferred system for network alarm triage.

DISCUSSION AND FUTURE WORK
Our results show that real network operators can triage
alarms significantly faster with CueT than with their
traditional method. When considering general alarms as
well as exceptional cases, CueT reduces the Time on Screen
of alarms by 61.2% on average. When excluding
exceptional cases the savings on this measure are 50.7%.
Savings are lower without exceptional cases because such
cases require an action that can be performed quickly and
without deliberation (e.g., rapidly creating new tickets
without looking for similar tickets). Time on Screen is
affected by the order in which an operator triages alarms.
Thus, CueT’s Alarm Overview, designed to facilitate
awareness of alarms remaining in the queue of alarms to be
triaged, likely contributed to the savings on this measure. In

listing the things they liked about CueT, one participant
commented that “Having the alert change colors as it
approached SLA helps with prioritization.”

For Time to Ticket, CueT enables a savings of 21.6% when
considering general and exceptional alarms, and a savings
of 36.8% when considering only the general alarms that
CueT is designed for. Considering that participants
performed only 4.6 manual searches on average throughout
their session with CueT (compared to 84.6 searches on
average with the traditional method) and only one
participant ever ticketed an alarm via dragging and
dropping the alarm onto CueT’s Search View, participants
relied on CueT’s recommendations to triage. Therefore, as
Time to Ticket measures the time between ticket actions,
this savings in time can be attributed to CueT’s ability to
provide operators with suggestions about how to ticket each
alarm rather than having to manually search for tickets. To
put this in perspective, assuming 10K alarms per day and a
time savings of 5.8s per alarm (36.8%), CueT’s estimated
cumulative time savings using this measure amounts to
about 20 operator days per month.

As our observations of operators revealed, exceptional
cases are a reality in network operations. CueT currently
cannot automatically exclude exceptional cases from its
dynamically changing model. Remarkably, when
considering general alarms along with exceptional cases, no
significant decrease in overall accuracy is observed. This
suggests that CueT does not adversely affect operator
ability to deal with exceptional cases. Furthermore,
although including exceptional cases in CueT’s dynamic
model may cause interference in recommendation accuracy
for general alarms, CueT still performed significantly better
than the traditional method for the general case, by 9%.
This result points at the robustness of using triage
recommendations from human-guided interactive machine
learning based models. As interference can negatively
affect CueT’s recommendation accuracy, it is fair to regard
CueT’s performance results from our evaluation as a lower
bound on its potential for improving alarm triage. In fact, it
may be possible for network administrators to reduce some
of this noise by creating temporary rules to automatically
remove exceptional alarms. Despite the potential for
interference, nine of our eleven participants commented that
CueT’s recommendation ability was one of the things they
most liked about the system (e.g., “Recommendations done
by the system for appropriate tickets was very useful.”).

In terms of their subjective preference, all participants
preferred CueT over the traditional method. The only
questions for which there was no significant difference
between CueT and the traditional method were whether the
use of color was appropriate and whether the system was
easy to learn. As with CueT, the traditional method also
makes use of color coding to indicate severity of alarms.
CueT however takes an additional step in overlaying
information about the operator’s SLA on the colored area of
an alarm. In terms of being easy to learn, our participants

Figure 5. Accuracy (left), Time on Screen (middle), and Time
to Ticket (right) comparisons. All differences are significant.

Error bars represent standard error.

Figure 6. 7-point Likert scale questionnaire results. Stars
indicate the question was significantly different.

were all already familiar with the traditional system of
manually triaging alarms. Despite this, they were still able
to learn and start using CueT in a matter of minutes.

We believe CueT’s tight integration between interactive
machine learning and visualization is key to its success. As
with other distance-based recommendation systems,
multiple tickets in CueT can be equally distant from an
alarm. Presenting recommendations as a traditional list
would therefore require arbitrarily ordering tickets and
would likely mislead operators. To ensure high accuracy,
CueT’s Ticket Distance Overview visualization was
specifically designed to show estimates of recommendation
quality and encourage operators to inspect comparable
tickets. Further, the coupling between machine learning and
visualization makes it easy for operators to provide
feedback to the system and keep the model up-to-date.
However, additional studies that compare CueT’s machine
learning with and without visualization would shed more
light on the value of this integration. We suggest a
longitudinal investigation of operator confidence in the
recommendations and the effects on operator vigilance in
carefully inspecting those recommendations with and
without visualization.

CONCLUSION
We present CueT, a system that combines novel
visualizations and interactive machine learning to deal with
a highly dynamic environment where the groups of interest
are not known a-priori and evolve constantly. We
implement CueT in the context of triaging network alarms
to assist network operators in the complex task of alarm
triage. Our user study indicates that CueT increases
operator accuracy as well as speed compared to the current
approach. All of our study participants preferred CueT over
the traditional method, a sentiment that is reflected in one
participant’s comment: “the new system compared to the
old is hands down better.” While CueT is designed for
triaging alarms, we believe that the lessons learned from
our work readily extend to other scenarios where humans
need to organize continuous streams of data.

ACKNOWLEDGEMENTS
We thank the staff at the network operations center,
especially Spencer Watkins, for explaining their current
practices to us and letting us observe their work. We also
thank our study participants for their time and feedback.

REFERENCES
1. Appleby, K., Goldszmidt, G., and Steinder, M. Layered

Event Correlation Engine for Multi-Domain Server
Farms. Proc. INM 2001, IEEE (2001), 329-344.

2. Basu, S., Fisher, D., Drucker, S.M., and Lu, H. Assisting
Users with Clustering Tasks by Combining Metric
Learning and Classification. Proc. AAAI 2010.

3. Brugnosi, S., Bruno, G., Manione, R., Montariolo, E.,
Paschetta, E., and Sisto, L. An Expert System for Real
Time Fault Diagnosis of the Italian Telecommunications
Network. Proc. INM 1993, IEEE (1993), 617-628.

4. desJardins, M., MacGlashan, J., and Ferraioli, J.
Interactive Visual Clustering. Proc. IUI 2007, ACM
Press (2007), 361-364.

5. EMC Ionix,
http://www.emc.com/products/family/ionix-family.htm

6. Fails, J.A. and Olsen, Jr., D.R. Interactive Machine
Learning. Proc. IUI 2003, ACM Press (2003), 39-45.

7. Fisher, D., Maltz, D.A., Greenberg, A., Wang, X.,
Warncke, H., Robertson, G., and Czerwinski, M. Using
Visualization to Support Network and Application
Management in a Data Center. Proc. INM 2008, IEEE
(2008), 1-6.

8. Fogarty, J., Tan, D., Kapoor, A., and Winder, S.
CueFlik: Interactive Concept Learning in Image Search.
Proc. CHI 2008, ACM Press (2008), 29-38.

9. Gardner, R.D. and Harle, D.A. Methods and Systems for
Alarm Correlation. Proc. GLOBECOM 1996, IEEE
(1996), 136-140.

10. HP OpenView, http://openview.hp.com

11. Jain, P., Kulis, B., Dhillon, I.S., and Grauman, K.
Online Metric Learning and Fast Similarity Search.
Proc. NIPS 2008, (2008), 761-768.

12. Jakobson, G. and Weissman, M.D. Alarm Correlation:
Correlating multiple network alarms improves
telecommunications network surveillance and fault
management. IEEE Network 7, 6 (1993), 52-59.

13. Klementtinen, M., Mannila, H., and Toivonen, H. Rule
Discovery in Telecommunication Alarm Data. J.
Network and Systems Management 7, 4 (1999), 395-
423.

14. Lakkaraju, K, Yurcik, W., and Lee, A.J. NVisionIP:
Network Visualizations of System State for Security
Situational Awareness. Proc. VizSEC/DMSEC 2004,
ACM Press (2004), 65-72.

15. Liu, G., Mok, A.K., and Yang, E.J. Composite Events
for Network Event Correlation. Proc. INM 1999, IEEE
(1999), 247-260.

16. Spring, N., Mahajan, R., Wetherall, D., and Anderson,
T. Measuring ISP Topologies with Rocketfuel. Proc.
SIGCOMM 2002, ACM Press (2002), 133-145.

17. Steinder, M. and Sethi, A.S. A Survey of Fault
Localization Techniques in Computer Networks.
Science of Computer Programming 53, (2004), 165-194.

18. Yemini, S., Kliger, S., Mozes, E., Yemini, Y., and
Ohsie, D. High Speed and Robust Event Correlation.
IEEE Communications Magazine 34, 5 (1996), 82-90.

