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ABSTRACT 
Network alarm triage refers to grouping and prioritizing a 
stream of low-level device health information to help 
operators find and fix problems. Today, this process tends 
to be largely manual because existing tools cannot easily 
evolve with the network. We present CueT, a system that 
uses interactive machine learning to learn from the triaging 
decisions of operators. It then uses that learning in novel 
visualizations to help them quickly and accurately triage 
alarms. Unlike prior interactive machine learning systems, 
CueT handles a highly dynamic environment where the 
groups of interest are not known a-priori and evolve 
constantly. A user study with real operators and data from a 
large network shows that CueT significantly improves the 
speed and accuracy of alarm triage compared to the 
network’s current practice.  
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ACM Classification Keywords 
H.5.2. [User Interfaces]: Graphical User Interface.  

General Terms 
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INTRODUCTION 
Triaging alarms is the first line of defense for modern 
computer networks. Triage is the process by which the 
multitude of low-level alarms (e.g., high link utilization, fan 
failure) generated by individual devices are grouped and 
prioritized. These groups are investigated by network 
engineers for problems with the network. Grouping related 
alarms, which likely stem from the same problem, helps 
engineers by reducing the number of issues they need to 
investigate and giving them a broader view of the problem 
than what an individual alarm provides. It is critical that 

triage is fast and accurate so engineers are not misled and 
problems can be identified and resolved quickly. 

Many automated systems have been developed for alarm 
triage (see [9, 17] for reviews). However, despite years of 
effort, these systems are never fully accurate due to the 
complexity of the problem. Large networks have thousands 
of diverse devices, each generating a different set of alarms. 
Further, because each network is different and the set of 
devices within a network changes with time, it is very 
challenging to develop systems that work across networks. 
Therefore, to cope with the inherent inaccuracy of 
automated systems, networks invariably employ human 
operators (so called “Tier 1” operators) for alarm triage. 
These operators are required to sift through the thousands 
of alarms per day that can be missed by automation. 

We explore a fundamentally different approach for alarm 
triage. Since human operators need to be involved in the 
triage process anyway, we ask if we can learn from their 
actions and in turn use that learning to assist them. By 
learning continuously and in situ from operator actions, the 
assistance provided would better fit the network and its 
unique practices as well as evolve with the network.   

We develop CueT (Figure 1), a system that combines novel 
visualizations with interactive machine learning for fast and 
accurate alarm triage. CueT maintains a constantly-
updating, machine-learning-based model for the triage 
process. As alarms arrive, CueT provides an operator with 
recommendations on how to group the alarms based on its 
model at that instant. The operator inspects the 
recommendations along with CueT’s visualization of its 
confidence in them, and decides how to triage. CueT then 
learns from these operator actions and updates its model.  

Our evaluation of CueT demonstrates the effectiveness of 
our approach. Testing with human operators and real data 
from a large, global network with approximately 15,000 
devices, we show that CueT significantly improves the 
accuracy and reduces the time required for alarm triage.  

The contributions of this paper are: 

 A novel approach to alarm triage. Our approach also 
applies to many other scenarios where a human needs 
help with organization of a continuous data stream (e.g., 
RSS information feeds, email management, social 
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network updates). It is designed to reside in a dynamic 
environment, where it learns from each human action to 
help with organizing the incoming data stream. 

 The design and implementation of CueT, a system that 
embodies our approach in the context of triaging network 
alarms. CueT tightly integrates visualization with the 
underlying computation, in contrast to existing work on 
network monitoring which tends to focus on one aspect 
or the other. CueT is based on an interactive machine 
learning technique operating in a highly dynamic 
environment; existing work assumes a fixed set of groups 
that are known a-prior. 

 Evaluation of CueT in a real-world environment with real 
operators and its comparison against the current practice 
of manual triage, showing that our approach leads to 
faster and more accurate triage. 

RELATED WORK 
Most research in network monitoring and alarm correlation 
has focused either on visualizations or automated solutions 
in isolation. Researchers have recently proposed 
visualization systems for network monitoring and diagnosis 
(e.g., [7, 14]). For example, the Visual-I system [7] uses 
visual grouping and scatterplots to highlight correlations 
between multiple devices and problems. While these 

systems leverage human visual and cognitive abilities to 
process data and look for patterns, our approach combines 
visualization and interactive machine learning in order to 
further reduce the cognitive effort of manually identifying 
patterns in large data sets. Helping automate pattern 
discovery can increase operator efficiency and accuracy, 
necessary for these time critical problems. 

Automated alarm correlation (also related to root cause 
analysis and fault localization) has long been an active area 
of research because of the complexity of the problem and 
the potential impact on the industry [9, 17]. Most solutions 
to this problem have taken the form of expert defined rules 
or models (e.g., [1, 3, 9, 12, 15]). Such approaches require 
manual configuration of rules which can be difficult to 
obtain, are not robust to new situations, and require 
frequent maintenance [9, 17]. In contrast, our interactive 
machine learning approach can handle general alarm 
correlations that require alarm grouping based on similarity. 

Some researchers have explored automatically learning 
rules or models from data that can then be used for 
automated alarm correlation and filtering (e.g., [13, 17]). 
However, most of these approaches require extensive 
training periods and must be retrained whenever the 
network topology changes [17]. In contrast, our approach is 
based on a dynamically changing model that is constantly 

 
Figure 1. CueT’s interface. Alarms stream in from the network and are displayed on the right. CueT’s triage recommendations for 

each alarm appear on the left along with a visualization of CueT’s confidence in those recommendations (far left). Device Names 
and other information are blurred for security reasons.  



 

learning from human guidance. We argue that human input 
is critical during the alarm correlation process because of 
the inherently inconsistent and ambiguous nature of the 
problem [9], which is a contributing factor to why alarm 
correlation is still an open area of research. 

While today’s commercial systems employ some of these 
previous techniques for alarm triage and filtering [5, 10, 
18], most companies still require teams of Tier 1 operators 
to manually triage the thousands of remaining alarms 
unhandled by these existing systems. Furthermore, most of 
these systems tend to use a tabular representation of the 
data, which can make it difficult for Tier 1 operators to find 
patterns and group alarms (e.g., Figure 2). Our approach 
combines interactive machine learning with an appropriate 
visualization in order to deal with general alarm triage that 
is difficult to handle with existing approaches. 

Our work is closely aligned with evolving research on 
interactive machine learning [2, 4, 6, 8]. All of these works 
assert the importance of human involvement and propose 
interactive systems for various applications (e.g., image 
segmenting [6], grouping documents [2, 4] and image 
search [8]). While all of these focus on a pool-based static 
environment, where the categories of interest and the pool 
of unlabeled data are known a-priori, our work involves a 
more challenging scenario. CueT deals with a highly 
dynamic environment where data is constantly streaming in 
and out and the set of labels to be assigned is constantly 
changing over time. Such dynamic scenarios, to the best of 
our knowledge, have not been addressed earlier in the realm 
of interactive machine learning. 

UNDERSTANDING THE TRIAGE PROCESS 
We visited the network operations center of a large 
organization on multiple occasions to understand current 
triage practices. We first talked informally with center 
managers to get a broad understanding of the process. We 
then closely observed two Tier 1 operators (1 female) for an 
hour each as they were triaging alarms using the current 
tool employed at this network operations center, and asked 
them questions during and after the observations.  

The current tool used at this operations center is a 
combination of two pieces: (1) an automated rule-based 
engine that selects alarms to be shown to Tier 1 operators 
and labels those alarms (e.g., alarm severity level) and (2) a 
table-based UI for operators to triage alarms using labels 
and other features (Figure 2).  

Our investigation revealed three main failings of the current 
process. First, the rule-based engine is hard to configure 
and keep up-to-date as the network evolves. As a result, 
thousands of alarms must still be manually triaged by 
operators every day. While triaging, the operators largely 
ignored the tool’s output, except for some basic information 
like alarm severity that is used for prioritizing which alarm 
to focus on next. Much of this information is not computed 
by the tool but is directly configured by network managers.  

Second, the triage process is highly manual partly because 
network managers often have specific instructions on how 
operators should temporarily handle certain types of alarms. 
These instructions are based on how managers expect the 
network to behave as they are making changes behind the 
scenes. They are typically conveyed in a formal document 
known as a whiteboard, updated daily and that operators are 
instructed to review before beginning a workday. Such 
special case instructions make it hard to develop tools for 
assisting with alarm triage. This difficulty applies not only 
to the traditional methods, but also to our approach as short-
term special cases create noise in our learning model. 

Third, the table-based visualization for the current triage 
process is rudimentary and inefficient. The alarms are 
presented as rows in a table that can be ordered by alarm 
attributes (e.g., severity). Another table in a different 
window shows the recently created alarm groups. The 
operators need to switch between these two windows to 
handle an alarm.  

In addition, we learned that some alarm attributes are more 
important than others for the triage process. Understanding 
the importance of alarm attributes helps us not only choose 
the right features for the machine learning algorithm but 
also design appropriate visual representations.  

While we studied only one network in detail, based on 
conversations with the network managers (who have a 
broader view of the industry and have also worked at other 
networks), we understand that the processes at this network 
are similar to those of many others. Next, we describe how 
CueT addresses these problems by interleaving human 
interaction with machine learning and visualization. 

CUET 
CueT consists of two interacting components: (1) a stream-
based interactive machine learning engine for making triage 
recommendations and (2) an interface to assist operators in 
inspecting and interpreting those recommendations and 
feeding operator actions back into the learning engine. We 
will refer to the alarm currently being triaged as the 
“incoming alarm,” a group of one or more related alarms 
that have already been triaged as a “ticket,” and the current 
set of tickets that are being used for recommendations (and 
have not been discarded yet) as the “working set of tickets.” 

 
Figure 2. Current tool for displaying alarms in the network 

operations center we observed. A separate tool with a similar 
interface is used for displaying tickets. 



 

Stream-Based Interactive Machine Learning  
One key aspect of our problem scenario is that it resides in 
a dynamic environment, where both the alarms and tickets 
being generated are constantly changing. Thus, our scenario 
is fairly different than the classical machine learning 
setting, where the classes are fixed and known a-priori, and 
the classifier operates in an assumed static environment. 
We tackle the challenges due to the dynamic environment 
and ever evolving set of classes (i.e., the working set of 
tickets and the alarms within those tickets). 

Our approach builds on nearest neighbor classification. In 
particular, CueT provides triage recommendations for an 
incoming alarm via a nearest-neighbor strategy that orders 
the working set of tickets by their similarity to that alarm. 
Similarity is measured using a distance function that can 
adapt based on operator actions. 

While the nearest neighbor strategy can help match 
incoming alarms with existing tickets, there is no easy way 
to identify that a new ticket needs to be spawned. We 
extend the classification module to include a mechanism for 
recommending when an incoming alarm should spawn a 
new ticket and include this recommendation in CueT’s 
ordered list of recommendations. New tickets are 
interactively spawned and added to the working set when a 
human operator judges that an incoming alarm is unrelated 
to any existing ticket (i.e., part of a new problem). 
Additionally, old tickets are dynamically discarded from the 
working set over time, simulating the effect of problems 
represented by those tickets as being resolved (and reducing 
interference among existing tickets in the working set).  

Recommending Existing Tickets 
CueT measures similarity between the incoming alarm and 
a ticket in the working set of tickets by computing the 
average distance between the incoming alarm and each 
alarm in the ticket. CueT then orders the tickets by their 
average distance to the incoming alarm and uses this 
ordering of tickets as its triage recommendations. 

Distance between alarms is measured using 17 individual 
distance metrics, each of which represents alarm similarity 
along a feature attribute. These 17 distance metrics were 
found to be relevant and important for triage during our 
initial observations of Tier 1 operators. The operators 
typically inspect the following alarm attributes:  

 Device Name (e.g., ab1-cd2-ef3-gh4) 

 Device Type (e.g., Router, Switch) 

 Element Type (device part needing attention, e.g., Port) 

 Name (includes Device Name and additional information 
such as the Element that needs attention, e.g., Port-ab1-
cd2-ef3-gh4) 

 Severity (an integer ranging from 1 to 5 representing 
highest to lowest priority, respectively) 

 Event Name (e.g., Fan-3-Failed, High Utilization) 

From these attributes, CueT computes 17 string-based 
distance metrics described below. Our simulations in the 
following section show that these string-based distance 
metrics effectively capture operators’ practice of visually 
comparing the attribute values of alarms. Further, because 
large organizations often follow standard device naming 
conventions [16] (e.g., the “ab1” in ab1-cd2-ef3-gh4 
typically indicates the location of the device), some of our 
string-based metrics implicitly encode topological 
information about the underlying network structure (e.g., 
device ab1* is likely to be near device ab2*). If 
organizations do not include topological information in 
device names, such information is typically available in 
network configuration data, from where it can be easily 
extracted and used to compute the following metrics. 

For alarm attributes Device Name, Name, and Event Name, 
as well as the four standard component parts of the Device 
Name (e.g., ab1-cd2-ef3-gh4 is divided into ab1, cd2, ef3, 
and gh4), CueT computes two string-based distance metrics 
(amounting to fourteen metrics in total): the edit distance 
and the longest common substring (LCS) converted to a 
distance according to: 

di,j = maxlength (i, j) − si,j 

where si,j is the length of the longest common substring 
between strings i and j. We include both edit distance and 
LCS because they have complementary strengths. For 
example, LCS is a good measure for strings that encode 
location. Devices “ab1*” and “ac1*” are likely in different 
locations. For these, LCS distance (which is 2) better 
captures that these are different than edit distance (which is 
1). As described below, our method of learning the 
combination of these individual metrics will reduce the 
effect of any irrelevant metric (edit distance in this case). 

For alarm attributes Device Type, Element Type, and 
Severity, CueT computes one string matching distance 
metric each (amounting to three metrics in total). This 
distance metric returns 0 if the attribute values are the same 
or 1 if they are different. 

We combine these 17 distance metrics using Mahalanobis 
distance, which parameterizes distance between any alarms 
u and v, represented as d dimensional feature vectors, by a 
d×d positive definite covariance matrix A: 

Distance (u, v) = (u - v)T A (u - v) 

This function effectively weights the 17 distances by the 
matrix A, which encodes their relative importance for alarm 
classification and the correlations between them. 

We learn the parameters of the matrix A from operators 
using an online metric learning algorithm [11], originally 
derived for nearest neighbor classification in static 
environments. We extend the procedure to dynamic 
scenarios where both the number and type of classes are 
varying. In particular, given a stream of alarms, each 
labeled with the ticket that it was triaged into, we 
incrementally update the matrix A by encoding the labels as 



 

constraints indicating that the incoming alarm and each 
alarm in the target ticket should be near each other. When 
an alarm spawns a new ticket, no update is made to the 
matrix A (however, this does change the working set of 
tickets). To learn the parameters of A, we initialize it to the 
identity matrix (and set the regularization parameter η to 
.001) and then update the parameters as we observe triage 
actions. We continue this process for N alarms, where N is 
determined empirically from our simulation experiments 
described below, and then fix the distance function. The 
final covariance matrix AN is used in making 
recommendations for the remaining data. 

Intuitively, the parameters learned for the matrix A reflect 
the importance and correlations among the individual 
distance metrics, to best explain the human operator’s 
actions. The advantage of learning the matrix A from data is 
that it does not require expert tuning, which can be difficult 
to obtain and does not evolve with the network [9, 17].   

Recommending Starting a New Ticket 
CueT maintains a threshold distance for starting a new 
ticket based on information about when operators spawn 
new tickets. When an operator spawns a new ticket for an 
incoming alarm, the distance between this alarm and the 
nearest ticket in the working set is stored. We experimented 
with several strategies for computing the threshold distance 
from these stored distances. They include taking the 
minimum and average over various window sizes of the 
most recently stored distances (including a window of all 
the distances). We found that taking the minimum within a 
window of the five most recent stored distances performs 
best. That a small window size performs better than larger 
sizes likely stems from the fact that thresholds need to 
reflect the dynamically changing distribution of tickets in 
the metric space. 

For each incoming alarm, CueT computes the latest 
threshold distance using the strategy above and inserts a 
“start new ticket” recommendation into its ordered list of 
recommendations according to this distance. 

Spawning New Tickets and Discarding Old Tickets 
When an operator determines that an incoming alarm is part 
of a new problem, a new ticket is created and added to the 
working set. CueT also automatically discards old tickets, 
simulating the resolution of problems. We use a windowing 
mechanism to discard old tickets. In particular, we fix the 
window size to N, which is the number of alarms used for 
learning our covariance matrix. Any time the number of 
unique alarms in the working set of tickets exceeds N we 
remove the oldest ticket in the set. Spawning new tickets 
and discarding old ones means that the working set of 
tickets used for machine learning based recommendations is 
continually evolving as an operator interacts with CueT. 

Simulation Experiments 
In this section, we present the results of experiments that 
simulate human interaction with CueT’s interactive 

machine learning component. For our experiments, we 
obtained alarm triage data from a network operations center 
at a large organization that monitors a network with 
approximately 15,000 devices. This data was labeled by 
Tier 1 operators through their manual triage process. To 
evaluate CueT’s interactive machine learning component 
over a long period, we use data spread across several 
months. In particular, we use data from the first day of each 
month between January and August 2010 (inclusive) except 
for May and July when the network had recording 
problems. This data set contains 338,218 alarms of which 
8,719 are unique and are mapped to 1,281 unique tickets. 

To simulate human interaction and compute the accuracy of 
CueT’s learning, we processed alarms in the data in the 
order in which they occurred. For each alarm, we first 
compute an ordered list of recommendations that we use to 
measure accuracy. Then, we obtain the actual label for the 
alarm and either add the alarm to an existing ticket or create 
a new ticket. If we add the incoming alarm to an existing 
ticket and we have observed fewer than N alarms, we 
update AN as described previously. If we start a new ticket, 
we update the threshold distance for starting new tickets 
and update the working set of tickets. Finally, if we 
determine that the working set has exceeded the window 
size of N alarms, we discard the oldest ticket in the set. 

We measure recommendation accuracy for each incoming 
alarm by comparing the recommendations to the ground 
truth (all of the alarm triage data observed before reaching 
the current incoming alarm, without discarding any tickets). 
There are two types of correct recommendations: 

 Correct New Ticket. CueT recommends a new ticket be 
created and the alarm’s label shows that a human 
operator actually created a new ticket for that alarm. 

 Correct Existing Ticket. CueT recommends an existing 
ticket and that ticket is the alarm’s actual label. 

If neither of these is true, we record the recommendation as 
incorrect. Note that because the nature of the problem we 
are dealing with requires that we operate in a moving 
window, some of our errors may be the result of discarding 
tickets (e.g., recommending a new ticket when the correct 
ticket is in the ground truth but no longer exists in the 
working set of tickets). 

Because multiple tickets may be the same distance away 
from an incoming alarm, we compute recommendation 
accuracy as whether or not the alarm’s actual label 
appeared within the set of ticket recommendations a given 
distance away from the alarm or closer. For example, if 
CueT predicts two different ticket recommendations as 
being equally closest to the incoming alarm (“Top 1 
distance” away) and if the correct label is one of the two 
tickets then we consider this a correct recommendation at 
the Top 1 distance. Similarly, a recommendation is correct 
at the Top 2 distance if the correct label is within the set of 
tickets recommended at the Top 2 distance away from the 
incoming alarm or less (e.g., at the Top 1 distance). We 



 

experimented with accuracy within the Top 1, 2, 3 and 4 
distances from the incoming alarm. 

We ran ten simulations over our data, varying the number 
of alarms N used in both learning the distance function 
parameters AN as well as in the window size for discarding 
old tickets. Figure 3 (left) illustrates CueT’s accuracy 
within the set of tickets recommended at the Top 1, 2, 3, 
and 4 distances from incoming alarms averaged over all the 
simulation trials. Figure 3 (middle and right) shows the 
average number and percentage of tickets (out of N) 
presented at each of the Top 1 to 4 distances. From these 
results it appears that presenting tickets in the Top 3 
distances achieves a good balance between relatively high 
accuracy and a small number of tickets being presented. 
Therefore, for our user study described later, we fix CueT 
to recommend tickets for an incoming alarm within the Top 
3 distances from that alarm. 

CueT’s accuracy at the Top 3 distances over the various 
values of N that we experimented with (10, 20, 30, 40, 50, 
100, 150, 200, 250, and 300) appears to peak at an N value 
of 30 alarms (Figure 4). Therefore, for our user study, we 
set N=30 in our interactive machine learning engine. 

CueT Interface 
CueT’s interface (Figure 1) consists of two main views: the 
Alarm View on the right displays alarms as they stream in 
from the network and the Ticket View on the left displays 
CueT’s ticket recommendations.  

When operators click on an alarm in the Alarm View, CueT 
displays its recommendations for that alarm in the Ticket 
View and illustrates its confidence in those 
recommendations with the Ticket Distance Overview. 
Operators can then inspect the recommendations and 
visualizations to determine how to triage the alarm (that is, 
either add it to an existing ticket or start a new one). 

Operators triage the alarm by dragging and dropping it onto 
the appropriate ticket in the Ticket View. CueT’s interface 
also contains a Search View (bottom left in Figure 1) 
through which operators can search for existing tickets by 
entering a search string as they do with their current system 
for triaging alarms. Operators can add alarms to tickets 
appearing in the Search View just as in the Ticket View.  

Alarms and Alarm View 
Our initial observations of operators helped us determine 
the importance of certain alarm attributes. Severity and 
Notification Time, most viewed by operators when 
determining which alarm to triage next, are displayed 
prominently. As shown in Figure 1 (right), Severity (on a 
scale of 1-5) is encoded on the left of an alarm by color: red 
(most severe), orange-red, orange, yellow, and white (least 
severe). The Notification Time attribute is emphasized in 
bold and displayed at the top right-hand side of the alarm.  

Operators often work under a service level agreement 
(SLA) that defines the time limit within which an alarm 
must be triaged. CueT highlights when an alarm has passed 
this limit by overlaying a pattern on the Severity display as 
in the alarms at the top of the Alarm View in Figure 1. 

Operators also sometimes use the Count attribute of an 
alarm to determine which alarm to deal with next. The 
Count attribute represents the number of duplicate alarms 
observed and many duplicates sometimes signal a severe 
problem. CueT represents Count by the length of the 
horizontal bar (color coded by Severity of the alarm) at the 
bottom of the alarm. In addition, if duplicates are observed, 
the time when the last duplicate was observed is displayed 
in gray at the bottom right of the alarm.  

Alarm Name is also emphasized in the alarm in bold as this 
attribute is used most often when comparing alarms to 
existing tickets and deciding how to triage. The rest of the 
alarm information, including Device Type, Event Name, and 
a description of the event is displayed less saliently in the 
alarm in gray. This layout allows operators to visually scan 
and compare alarms by Severity, Time, and Count while 
still being able to digest the rest of the alarm information in 
a compact representation. 

Alarms are displayed in the Alarm View as they stream in 
from the network. Since operators often miss important 
alarms that appear off of the screen, the Alarm View 
includes an Alarm Overview (far right in Figure 1) that 
provides awareness of all alarms still requiring triage even 
if they are off the screen. This overview displays one 
rectangle per alarm, color coded by that alarm’s Severity 
and possibly the pattern if that alarm has passed its SLA. 
The heights of the rectangles automatically adjust so as to 
always display all of the alarms currently available for 
triage. The rectangles are presented in the order that alarms 
are displayed in the Alarm View, where alarms can be 
sorted by any attribute of the alarm. This allows the 
overview to act as a scroll bar for easy alarm navigation. 

 
Figure 3. CueT’s accuracy (left), number (middle), and % of 
tickets presented (right) within Top 1, 2, 3, 4 distances from 

each incoming alarm, averaged over all simulation trials. 

  

Figure 4. CueT’s accuracy at the Top 3 distances for various 
window sizes N. N=30 achieves peak performance. 



 

Tickets, Ticket View, and Ticket Distance Overview 
Tickets are a collection of related alarms (Figure 1 left). 
Each ticket has a parent alarm, which is manually 
determined by a human operator and typically represents 
either the most severe or the first alarm in the ticket. The 
label at the top of the ticket is color coded by Severity of 
the ticket’s parent alarm. The ticket label also includes the 
ticket’s unique ID, automatically generated by the system at 
the time of creation, and two numbers in parenthesis; the 
number of unique alarms within that ticket followed by the 
total number of duplicates across those alarms. Unique 
alarms and duplicates are dually represented in the ticket as 
a series of horizontal bars (similar to the Count display in 
the alarm representation), one for each unique alarm, and 
again color coded by Severity of the alarm and reflecting 
the number of duplicates for that alarm by its length. 

Immediately below the ticket label is information about the 
ticket’s parent alarm along with the ticket description. 
Below the parent alarm is the best matching alarm within 
the ticket to the incoming alarm (next to the star icons in 
Figure 1). This serves as an explanation for why CueT is 
recommending that an operator triage an alarm into a given 
ticket. Thus, ticket representations displayed in the Ticket 
View are tailored for each alarm. Operators can also click 
on a ticket to display all the alarms currently grouped 
within the ticket. New ticket recommendations are 
displayed as empty ticket stubs with a gray label and text 
within the ticket displaying “Start New Ticket.” 

Each time the operator clicks on an alarm to triage in the 
Alarm View, CueT generates its ticket recommendations 
for the selected alarm and displays them in the Ticket View. 
They are shown in order of increasing distance from the 
alarm as per the distance function described previously. By 
default, and as determined by our simulation results, the 
Ticket View initially displays only the tickets within the 
Top 3 distances from the alarm being triaged as this helps 
to balance operator load and the probability of these tickets 
containing the correct recommendation. CueT allows 
operators to reveal more tickets to inspect using the Ticket 
Distance Overview visualization. 

The Ticket Distance Overview (far left in Figure 1) is 
designed to provide operators with an estimate of its 
confidence in its recommendations so that operators can 
determine the necessity of inspecting more tickets. Each 
bubble in the Ticket Distance Overview corresponds to a 
ticket. The vertical position of the bubbles relative to the 
top of the overview reflects the distance between the alarm 
being triaged and each ticket within the working set. That 
is, the closer the bubble is to the top, the better a match the 
corresponding ticket is for the alarm with respect to our 
distance function. Also vertical positions of the bubbles 
correspond to the ordered list of recommendations in the 
Ticket View. Vertical distances are normalized so as to fit 
all of the existing tickets within the display. Thus, the 
positions of the bubbles display relative distances between 
tickets rather than absolute distances. Horizontal 

positioning is only used to minimize overlap of bubbles that 
are of equal or near equal distance to the incoming alarm.  

Bubbles that are positioned near each other are comparable 
in terms of their similarity to the alarm currently being 
triaged. In this case, the overview should encourage 
operators to inspect all of the comparable tickets. To enable 
operators to inspect more tickets when necessary, CueT 
provides a horizontal green bar allowing them to set the 
distance threshold for the tickets to be displayed in the 
Ticket View. It divides the bubbles into a visible region 
(above the bar and corresponding to visible tickets in the 
Ticket View) and the invisible region (faded bubbles below 
the bar and corresponding to tickets not currently visible in 
the Ticket View). Operators can drag this bar vertically to 
reveal and inspect other tickets within the Ticket View. 

USER STUDY 
We conducted a user study to examine the effectiveness of 
CueT for alarm triage as compared to the traditional method 
of manually ticketing alarms. For the Traditional condition, 
we replicated the commercial system used by our network 
operators (Figure 2). As in the commercial system, 
participants could keyword search the tabular view of 
existing tickets to add incoming alarms or create new 
tickets. Adding alarms to existing tickets or creating new 
tickets is achieved by right clicking on a row in the table of 
alarms and selecting the corresponding action from a popup 
menu. The commercial system has separate windows for 
displaying alarms and searchable tickets, both using a 
tabular format. To avoid the overhead of switching between 
windows (a problem we observed during our initial 
observations), our version of the Traditional interface 
combines both of these views in one window as in CueT. 
This combination provides a fairer evaluation of the current 
practice, as the two-window issue is easy to fix. 

Data, Study Design, and Equipment 
For our study we used part of the data that we used for our 
simulation experiments (January 1, 2010 data). To compare 
two interfaces, we created two data sets from this data. To 
ensure that each set includes comparable numbers, 
distributions and types of alarms and tickets, we extracted 
alternating unique alarms. We also simulated the correct 
assignment of alarms to tickets for alarms not being shown 
as CueT relies on a dynamically changing working set of 
tickets. Therefore, Data Set 1 included odd alarms (while 
we simulated the correct assignment for even alarms) and 
Data Set 2 included even alarms (where we simulated the 
correct assignment for odd alarms). Each data set contained 
80 unique alarms to be triaged by our participants as our 
pilot study showed that was a manageable number of 
alarms to triage in about 20 minutes. For demonstration and 
practice in each condition, we also created two additional 
data sets (Demo Sets 1 and 2) from the April 1, 2010 data 
using this same approach.  



 

We conducted a within-subjects study, with each participant 
performing alarm triage using both CueT and the 
Traditional method. We compared CueT to the Traditional 
method in terms of accuracy, speed, and user preference. To 
avoid a learning effect, we counterbalanced the presentation 
order of the two interfaces.  

We ran participants individually or in pairs depending on 
their schedule (two pairs). Each participant worked on a 2.7 
GHz dual-core Windows 7 laptop with 4 GB RAM. We 
attached a 20.1’’ Samsung monitor at a resolution of 
1200x1600 (i.e., in a portrait orientation) to each laptop, as 
well as a mouse and keyboard. We turned the laptop away 
from participants so they could only look at the attached 
monitor and use the attached mouse and keyboard. When 
we ran pairs, we faced their desks away from each other to 
minimize disturbance. 

Procedure and Participants 
Before each condition, the experimenter demonstrated each 
interface using Demo Set 1. Then the participants were 
allowed to practice triaging alarms using Demo Set 2 until 
they were comfortable with the interface and had practiced 
triaging several alarms, for a maximum of 5 minutes. 

In each condition, participants were asked to triage all 80 
alarms presented as accurately and quickly as possible and 
in the order that they normally would (i.e., they could triage 
the alarms in any order, but are encouraged to triage high 
severity alarms and alarms that have passed their SLA 
first). All interface actions were time-stamped and logged. 

After each condition, participants were given a short 
questionnaire about the interface they just used. The 
questionnaire included 7-point Likert scale questions asking 
for the participants’ level of agreement with statements 
about the interface (e.g., “Overall, I am satisfied with this 
system.”) and specific questions about the CueT interface if 
they had just used that interface (e.g., “The ticket 
recommendations were useful.”). It also asked participants 
to list three things that they liked and three that they would 
like improved about the interface. At the end of the session, 
a final questionnaire asked participants to select which 
interface they preferred and explain why. 

The experiment lasted about 90 minutes and participants 
were given a gratuity of $20 worth of dining coupons. To 
encourage participants to triage alarms quickly and 
accurately, we also offered a prize of an additional $20 
worth of dining coupons for the person who performed the 
best in terms speed and accuracy in each condition. 

We recruited eleven people (two female, ages 28 to 44) plus 
one male pilot from the network operations team. Our 
participants were not currently working as Tier 1 operators, 
though six of them were self-proclaimed experts at the 
alarm triage process and four said they were proficient. One 
said he was a beginner. We could not recruit active Tier 1 
operators because of their tight work schedule and because 
many work outside of the country.  

Results 

Performance: Accuracy and Speed 
We analyze our logged data in terms of accuracy and speed. 
Accuracy is computed as the percentage of alarms correctly 
triaged out of the total presented. Correctness of participant 
labels is measured against the ground truth labels. 

We compute two measures for speed: Time on Screen and 
Time to Ticket. The former is the time between when an 
alarm appeared on screen and when the participant 
completed the triage operation for that alarm. Along with 
Accuracy, it is a key measure of triage performance and is 
used to formulate service level agreements (SLAs) that the 
monitoring team offers. For instance, a possible guarantee 
may be that for 95% of alarms Time on Screen would be 
under 5 minutes. Note that both CueT and Traditional 
present multiple alarms on screen simultaneously and 
operators need not triage alarms in the order in which they 
appear on screen. Therefore, Time on Screen is affected by 
the order in which an operator decides to triage an alarm. 
Thus, for a detailed view of triage behavior, we also study 
Time to Ticket, which is time between successive triage 
actions regardless of order.  

For Accuracy, Time on Screen, and Time to Ticket, we 
perform paired-samples t tests. We report means and 
standard deviations throughout.  

Our analyses showed that participants were able to triage 
alarms faster with CueT than with the Traditional interface 
while maintaining the same level of accuracy. Participants 
were significantly faster with CueT than Traditional in 
terms of Time on Screen (M=107.7s, SD=127.7s vs. 
M=277.8s, SD=168.5s, t(10)=4.43, p=.001) and in terms of 
Time to Ticket (M=10.1s, SD=2.69s vs. M=12.9s, SD=3.79s, 
t(10)=3.26, p=.009). There was no significant difference in 
terms of accuracy between the CueT and Traditional 
conditions (M=71.8%, SD=17% vs. M=76.4%, SD=8%).  

Our data included a type of alarm that required special 
handling. Operators are usually instructed to always create 
a new ticket for each such alarm, regardless of similarity to 
other alarms. Only a few participants asked us how to triage 
such alarms, to which we responded that they should triage 
as normal. The logged data shows that such alarms were 
handled unevenly by participants. Some rapidly created 
new tickets without inspecting recommendations (in CueT) 
or searching related tickets (in the CueT or Traditional 
condition), while others triaged based on similarity. These 
alarms reduce CueT’s accuracy because its model does not 
handle exceptional cases. Despite that our results show that 
CueT’s accuracy is no worse and its speed is much better.  

We re-did our analysis after removing 39 of these 
exceptional alarms from the data to evaluate CueT’s 
performance in the absence of special cases. Our corrected 
analyses of variance show that participants were still faster 
with CueT but also more accurate than the Traditional 
condition (Figure 5). The accuracy with CueT versus the 



 

Traditional condition was 81.3% (SD=6%) vs. 72.4% 
(SD=12%), (t(10)=2.29, p=.045). The participants were 
significantly faster with CueT at triaging in terms of both 
Time on Screen (M=86.9s, SD=69.2s vs. M=176.2s, 
SD=85.2s, t(10)=4.63, p=.001) and Time to Ticket (M=9.9s, 
SD=3.1s vs. M=15.7s, SD=4.6s, t(10)=6.52, p<.001). 

Subjective Preference 
We analyze our post-condition questionnaires using 
Friedman Chi-Square tests. CueT was favored significantly 
more than Traditional in terms of overall satisfaction 
(χ2(1,N=11)=9.0, p=.003), how much participants liked 
using the system (χ2(1,N=11)=11.0, p=.001), whether they 
felt that they could efficiently ticket alarms with the system 
(χ2(1,N=11)=6.4, p=.011), and whether they felt the system 
was easy to use (χ2(1,N=11)=11.0, p=.001) (Figure 6).  

Regarding CueT-specific features, participants tended to 
agree with the statements “The ticket recommendations 
were useful” (5.81 avg.) and “The Distance Overview was 
useful” (5.36 avg.). In addition, all of our participants chose 
CueT as their preferred system for network alarm triage.  

DISCUSSION AND FUTURE WORK 
Our results show that real network operators can triage 
alarms significantly faster with CueT than with their 
traditional method. When considering general alarms as 
well as exceptional cases, CueT reduces the Time on Screen 
of alarms by 61.2% on average. When excluding 
exceptional cases the savings on this measure are 50.7%. 
Savings are lower without exceptional cases because such 
cases require an action that can be performed quickly and 
without deliberation (e.g., rapidly creating new tickets 
without looking for similar tickets). Time on Screen is 
affected by the order in which an operator triages alarms. 
Thus, CueT’s Alarm Overview, designed to facilitate 
awareness of alarms remaining in the queue of alarms to be 
triaged, likely contributed to the savings on this measure. In 

listing the things they liked about CueT, one participant 
commented that “Having the alert change colors as it 
approached SLA helps with prioritization.” 

For Time to Ticket, CueT enables a savings of 21.6% when 
considering general and exceptional alarms, and a savings 
of 36.8% when considering only the general alarms that 
CueT is designed for. Considering that participants 
performed only 4.6 manual searches on average throughout 
their session with CueT (compared to 84.6 searches on 
average with the traditional method) and only one 
participant ever ticketed an alarm via dragging and 
dropping the alarm onto CueT’s Search View, participants 
relied on CueT’s recommendations to triage. Therefore, as 
Time to Ticket measures the time between ticket actions, 
this savings in time can be attributed to CueT’s ability to 
provide operators with suggestions about how to ticket each 
alarm rather than having to manually search for tickets. To 
put this in perspective, assuming 10K alarms per day and a 
time savings of 5.8s per alarm (36.8%), CueT’s estimated 
cumulative time savings using this measure amounts to 
about 20 operator days per month. 

As our observations of operators revealed, exceptional 
cases are a reality in network operations. CueT currently 
cannot automatically exclude exceptional cases from its 
dynamically changing model. Remarkably, when 
considering general alarms along with exceptional cases, no 
significant decrease in overall accuracy is observed. This 
suggests that CueT does not adversely affect operator 
ability to deal with exceptional cases. Furthermore, 
although including exceptional cases in CueT’s dynamic 
model may cause interference in recommendation accuracy 
for general alarms, CueT still performed significantly better 
than the traditional method for the general case, by 9%. 
This result points at the robustness of using triage 
recommendations from human-guided interactive machine 
learning based models. As interference can negatively 
affect CueT’s recommendation accuracy, it is fair to regard 
CueT’s performance results from our evaluation as a lower 
bound on its potential for improving alarm triage. In fact, it 
may be possible for network administrators to reduce some 
of this noise by creating temporary rules to automatically 
remove exceptional alarms. Despite the potential for 
interference, nine of our eleven participants commented that 
CueT’s recommendation ability was one of the things they 
most liked about the system (e.g., “Recommendations done 
by the system for appropriate tickets was very useful.”).  

In terms of their subjective preference, all participants 
preferred CueT over the traditional method. The only 
questions for which there was no significant difference 
between CueT and the traditional method were whether the 
use of color was appropriate and whether the system was 
easy to learn. As with CueT, the traditional method also 
makes use of color coding to indicate severity of alarms. 
CueT however takes an additional step in overlaying 
information about the operator’s SLA on the colored area of 
an alarm. In terms of being easy to learn, our participants 

Figure 5. Accuracy (left), Time on Screen (middle), and Time 
to Ticket (right) comparisons. All differences are significant. 

Error bars represent standard error. 

Figure 6. 7-point Likert scale questionnaire results. Stars 
indicate the question was significantly different. 



 

were all already familiar with the traditional system of 
manually triaging alarms. Despite this, they were still able 
to learn and start using CueT in a matter of minutes. 

We believe CueT’s tight integration between interactive 
machine learning and visualization is key to its success. As 
with other distance-based recommendation systems, 
multiple tickets in CueT can be equally distant from an 
alarm. Presenting recommendations as a traditional list 
would therefore require arbitrarily ordering tickets and 
would likely mislead operators. To ensure high accuracy, 
CueT’s Ticket Distance Overview visualization was 
specifically designed to show estimates of recommendation 
quality and encourage operators to inspect comparable 
tickets. Further, the coupling between machine learning and 
visualization makes it easy for operators to provide 
feedback to the system and keep the model up-to-date. 
However, additional studies that compare CueT’s machine 
learning with and without visualization would shed more 
light on the value of this integration. We suggest a 
longitudinal investigation of operator confidence in the 
recommendations and the effects on operator vigilance in 
carefully inspecting those recommendations with and 
without visualization. 

CONCLUSION 
We present CueT, a system that combines novel 
visualizations and interactive machine learning to deal with 
a highly dynamic environment where the groups of interest 
are not known a-priori and evolve constantly. We 
implement CueT in the context of triaging network alarms 
to assist network operators in the complex task of alarm 
triage. Our user study indicates that CueT increases 
operator accuracy as well as speed compared to the current 
approach. All of our study participants preferred CueT over 
the traditional method, a sentiment that is reflected in one 
participant’s comment: “the new system compared to the 
old is hands down better.” While CueT is designed for 
triaging alarms, we believe that the lessons learned from 
our work readily extend to other scenarios where humans 
need to organize continuous streams of data. 
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