
Elasticity Through Modularity

Jan S. Rellermeyer
Systems Group, ETH Zürich

Elasticity

 the ability to acquire and release resources on demand

 elastic infrastructure (like EC2):
virtualization

 elastic software?

Friday, April 09, 2010 2Jan S. Rellermeyer, ETH Zürich

Software Elasticity

Friday, April 09, 2010 3Jan S. Rellermeyer, ETH Zürich

Elastic Systems

 Fluidity

 Delocalization

Friday, April 09, 2010 4Jan S. Rellermeyer, ETH Zürich

Modularity as a System Design Principle

 Modules as units of encapsulation
 Modules as units of deployment
 Plain old modules

 Tradeoffs are well understood in
software engineering

Friday, April 09, 2010 5Jan S. Rellermeyer, ETH Zürich

Two components are loosely coupled, when changes in one never or rarely
necessitate a change in the other

A component exhibits high cohesion when all its functions/methods are
strongly related in terms of function

Elastic Modular Systems

 Fluidity

 Delocalization

Friday, April 09, 2010 6Jan S. Rellermeyer, ETH Zürich

OSGi: Dynamic Modules for Java

 Open Standard, well supported by major vendors
 App servers, Eclipse IDE, Embedded Software, Mobile Phones

 Modules are called Bundles
 JAR files with additional metadata

 Runtime system: The Framework
 Lifecycle management

 Bundles implement isolation and locality
 Interaction between bundles is limited
 Shared code through package imports

(explicit dependencies, tight coupling)
 Inter-bundle calls through services

(loose coupling)
 Monitoring system state through events

Friday, April 09, 2010 7Jan S. Rellermeyer, ETH Zürich

OSGi

 Lifecycle of each Bundles can be controlled individually
 Services are registered and retrieved through a central

service registry (in-VM SOA)
 The system is dynamic

Friday, April 09, 2010 8Jan S. Rellermeyer, ETH Zürich

Software Modules for the Cloud

 Life-Cycle Management
 Provision components, update components

 Composition
 Make components communicate

 Fabric of the Cloud:
 Distributed System
 Potential node failures and

link failures

 Approach: Assimilate Complexity into a Runtime System

Friday, April 09, 2010 9Jan S. Rellermeyer, ETH Zürich

[J.S. Rellermeyer, G. Alonso, T. Roscoe: R- OSGi - Distributed Applications through Software Modularization. In:
Middleware 2007]
[J.S. Rellermeyer, M. Duller, and G. Alonso: Engineering the Cloud from Software Modules. In: ICSE-Cloud 2009].

Cirrostratus
A Runtime System for Elastic Modules
 Provide a “Single System Image” for modular applications

 Single OSGi Framework

 Virtual Modules,Services
 For migration and replication
 Provide a global, uniform view

 Capture and replicate the state of services
 Symbolic execution at load time to infer state
 Code rewriting to make state changes explicit

 Continuous monitoring and re-deployment
 Optimize despite infrastructure and workload are changing

Friday, April 09, 2010 10Jan S. Rellermeyer, ETH Zürich

Cirrostratus

+ implicit requirements
+ non-functional requirements

Friday, April 09, 2010 11Jan S. Rellermeyer, ETH Zürich

Elasticity and The Problem of State

 Idea: replicate services on demand
 Problem: It makes a difference if you have one service or

ten services
 State!

Friday, April 09, 2010 12Jan S. Rellermeyer, ETH Zürich

Inferring State: Symbolic Execution

 For each service, perform an
abstract interpretation when the
module is loaded the first time

 Interprete the code in terms of
symbols rather than concrete
values

 Determine how state propagates
through the system

 Capture the state through
bytecode-rewriting

Friday, April 09, 2010 13Jan S. Rellermeyer, ETH Zurich

add(I)I
L0
ALOAD 0
DUP
GETFIELD test/Simple.state : I
ILOAD 1
IADD
PUTFIELD test/Simple.state : I

L1
ALOAD 0
GETFIELD test/Simple.state : I
IRETURN

L2
LOCALVARIABLE this Ltest/Simple;
L0 L2 0
LOCALVARIABLE i I L0 L2 1
MAXSTACK = 3
MAXLOCALS = 2

Monitoring and Re-deployment

 System inserts performance probes into the code
 Controllers can sense the running application
 System provides interfaces to trigger actions
 e.g., eigrate a service, replicate a service, drop a replica, rebind a

service

 Controllers are typically provided by the application
 Have application-specific knowledge
 Know non-functional requirements

Friday, April 09, 2010 14Jan S. Rellermeyer, ETH Zurich

Use Case: Stendhal

 Client/server online game

Friday, April 09, 2010 15Jan S. Rellermeyer, ETH Zurich

Server

Client node 1

Server

Client node 2

Server

Future Work

 Generalizing the ideas of modularity as a systems design
principle beyond Java and OSGi
 We did it for services in C, nesC, through R-OSGi
 OSGi-kind of runtime for the .net CLR

 Build interesting applications
 Porting .net CF to Lego Mindstorms NXT for swarms of robots

 Supported by the Microsoft Innovation Cluster for
Embedded Software (ICES)

 Graduate 

Friday, April 09, 2010 16Jan S. Rellermeyer, ETH Zürich

CONCLUSIONS

• Software elasticity is challenging

• Modularity is key to facilitating elastic deployments of software

• The arising complexity such as the problem of state replication can be
mitigated by an intelligent runtime system like Cirrostratus

Friday, April 09, 2010 17Jan S. Rellermeyer, ETH Zürich

	Elasticity Through Modularity
	Elasticity
	Software Elasticity
	Elastic Systems
	Modularity as a System Design Principle
	Elastic Modular Systems
	OSGi: Dynamic Modules for Java
	OSGi
	Software Modules for the Cloud
	Cirrostratus� A Runtime System for Elastic Modules �
	Cirrostratus�
	Elasticity and The Problem of State
	Inferring State: Symbolic Execution
	Monitoring and Re-deployment
	Use Case: Stendhal
	Future Work
	Conclusions

