
Elasticity Through Modularity

Jan S. Rellermeyer
Systems Group, ETH Zürich

Elasticity

 the ability to acquire and release resources on demand

 elastic infrastructure (like EC2):
virtualization

 elastic software?

Friday, April 09, 2010 2Jan S. Rellermeyer, ETH Zürich

Software Elasticity

Friday, April 09, 2010 3Jan S. Rellermeyer, ETH Zürich

Elastic Systems

 Fluidity

 Delocalization

Friday, April 09, 2010 4Jan S. Rellermeyer, ETH Zürich

Modularity as a System Design Principle

 Modules as units of encapsulation
 Modules as units of deployment
 Plain old modules

 Tradeoffs are well understood in
software engineering

Friday, April 09, 2010 5Jan S. Rellermeyer, ETH Zürich

Two components are loosely coupled, when changes in one never or rarely
necessitate a change in the other

A component exhibits high cohesion when all its functions/methods are
strongly related in terms of function

Elastic Modular Systems

 Fluidity

 Delocalization

Friday, April 09, 2010 6Jan S. Rellermeyer, ETH Zürich

OSGi: Dynamic Modules for Java

 Open Standard, well supported by major vendors
 App servers, Eclipse IDE, Embedded Software, Mobile Phones

 Modules are called Bundles
 JAR files with additional metadata

 Runtime system: The Framework
 Lifecycle management

 Bundles implement isolation and locality
 Interaction between bundles is limited
 Shared code through package imports

(explicit dependencies, tight coupling)
 Inter-bundle calls through services

(loose coupling)
 Monitoring system state through events

Friday, April 09, 2010 7Jan S. Rellermeyer, ETH Zürich

OSGi

 Lifecycle of each Bundles can be controlled individually
 Services are registered and retrieved through a central

service registry (in-VM SOA)
 The system is dynamic

Friday, April 09, 2010 8Jan S. Rellermeyer, ETH Zürich

Software Modules for the Cloud

 Life-Cycle Management
 Provision components, update components

 Composition
 Make components communicate

 Fabric of the Cloud:
 Distributed System
 Potential node failures and

link failures

 Approach: Assimilate Complexity into a Runtime System

Friday, April 09, 2010 9Jan S. Rellermeyer, ETH Zürich

[J.S. Rellermeyer, G. Alonso, T. Roscoe: R- OSGi - Distributed Applications through Software Modularization. In:
Middleware 2007]
[J.S. Rellermeyer, M. Duller, and G. Alonso: Engineering the Cloud from Software Modules. In: ICSE-Cloud 2009].

Cirrostratus
A Runtime System for Elastic Modules
 Provide a “Single System Image” for modular applications

 Single OSGi Framework

 Virtual Modules,Services
 For migration and replication
 Provide a global, uniform view

 Capture and replicate the state of services
 Symbolic execution at load time to infer state
 Code rewriting to make state changes explicit

 Continuous monitoring and re-deployment
 Optimize despite infrastructure and workload are changing

Friday, April 09, 2010 10Jan S. Rellermeyer, ETH Zürich

Cirrostratus

+ implicit requirements
+ non-functional requirements

Friday, April 09, 2010 11Jan S. Rellermeyer, ETH Zürich

Elasticity and The Problem of State

 Idea: replicate services on demand
 Problem: It makes a difference if you have one service or

ten services
 State!

Friday, April 09, 2010 12Jan S. Rellermeyer, ETH Zürich

Inferring State: Symbolic Execution

 For each service, perform an
abstract interpretation when the
module is loaded the first time

 Interprete the code in terms of
symbols rather than concrete
values

 Determine how state propagates
through the system

 Capture the state through
bytecode-rewriting

Friday, April 09, 2010 13Jan S. Rellermeyer, ETH Zurich

add(I)I
L0
ALOAD 0
DUP
GETFIELD test/Simple.state : I
ILOAD 1
IADD
PUTFIELD test/Simple.state : I

L1
ALOAD 0
GETFIELD test/Simple.state : I
IRETURN

L2
LOCALVARIABLE this Ltest/Simple;
L0 L2 0
LOCALVARIABLE i I L0 L2 1
MAXSTACK = 3
MAXLOCALS = 2

Monitoring and Re-deployment

 System inserts performance probes into the code
 Controllers can sense the running application
 System provides interfaces to trigger actions
 e.g., eigrate a service, replicate a service, drop a replica, rebind a

service

 Controllers are typically provided by the application
 Have application-specific knowledge
 Know non-functional requirements

Friday, April 09, 2010 14Jan S. Rellermeyer, ETH Zurich

Use Case: Stendhal

 Client/server online game

Friday, April 09, 2010 15Jan S. Rellermeyer, ETH Zurich

Server

Client node 1

Server

Client node 2

Server

Future Work

 Generalizing the ideas of modularity as a systems design
principle beyond Java and OSGi
 We did it for services in C, nesC, through R-OSGi
 OSGi-kind of runtime for the .net CLR

 Build interesting applications
 Porting .net CF to Lego Mindstorms NXT for swarms of robots

 Supported by the Microsoft Innovation Cluster for
Embedded Software (ICES)

 Graduate

Friday, April 09, 2010 16Jan S. Rellermeyer, ETH Zürich

CONCLUSIONS

• Software elasticity is challenging

• Modularity is key to facilitating elastic deployments of software

• The arising complexity such as the problem of state replication can be
mitigated by an intelligent runtime system like Cirrostratus

Friday, April 09, 2010 17Jan S. Rellermeyer, ETH Zürich

	Elasticity Through Modularity
	Elasticity
	Software Elasticity
	Elastic Systems
	Modularity as a System Design Principle
	Elastic Modular Systems
	OSGi: Dynamic Modules for Java
	OSGi
	Software Modules for the Cloud
	Cirrostratus� A Runtime System for Elastic Modules �
	Cirrostratus�
	Elasticity and The Problem of State
	Inferring State: Symbolic Execution
	Monitoring and Re-deployment
	Use Case: Stendhal
	Future Work
	Conclusions

