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ABSTRACT

State-of-the-art targeted language understanding systems rely
on deep learning methods using 1-hot word vectors or off-
the-shelf word embeddings. While word embeddings can be
enriched with information from semantic lexicons (such as
WordNet and PPDB) to improve their semantic representa-
tion, most previous research on word-embedding enriching
has focused on improving intrinsic word-level tasks such as
word analogy and antonym detection. In this work, we enrich
word embeddings to force semantically similar or dissimilar
words to be closer or farther away in the embedding space to
improve the performance of an extrinsic task, namely, intent
detection for spoken language understanding. We utilize sev-
eral semantic lexicons, such as WordNet, PPDB, and Macmil-
lan Dictionary to enrich the word embeddings and later use
them as initial representation of words for intent detection.
Thus, we enrich embeddings outside the neural network as
opposed to learning the embeddings within the network, and,
on top of the embeddings, build bidirectional LSTM for in-
tent detection. Our experiments on ATIS and a real log dataset
from Microsoft Cortana show that word embeddings enriched
with semantic lexicons can improve intent detection.

Index Terms— word embeddings, semantic lexicons,
LSTM, intent detection, spoken language understanding

1. INTRODUCTION

Word embeddings represent words as real-valued vectors
and they have been widely used as the inputs to neural net-
work based models for NLP tasks. Word embedding models
such as word2vec (skip-gram and continuous bag-of-words
(CBOW)) [1, 2], and GloVe [3] generate word vectors based
on the distributional hypothesis [4], which assumes that the
meaning of each word can be represented by the context of
the word. However, word embeddings trained only with the
neighboring contexts may place words improperly in vector
spaces. For example, even though antonyms are semantically
opposite, because their contexts are similar in many cases,
antonym vectors can be quite close in vector spaces.
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To deal with this issue, semantic lexicons such as Word-
Net [5] and the Paraphrase Database (PPDB) [6, 7], which
contain semantic relations among words, have been used to
enrich word embeddings. In [8], each word vector is adjusted
to be in the middle between its initial vector and the average
of its synonymous words. In [9], each word vector is adjusted
with a max-margin approach letting synonyms be more sim-
ilar and antonyms be more dissimilar while maintaining the
similarities among initial neighboring words. In [10, 11, 12,
13], skip-gram is jointly trained to incorporate word relation
information from semantic lexicons. For more fine-grained
semantic representations, semantic intensity scales can be uti-
lized to enrich word embeddings [14]. Hypernym and hy-
ponym relations can also be used to enrich word embeddings
regarding semantic hierarchies [12, 15].

However, these enrichment approaches showed improved
performance only on word-level tasks such as word similarity
[8, 9, 11], antonym detection [10, 11, 16, 13], semantic hi-
erarchies [12, 15], and semantic scale inference [14]. More
critical language understanding tasks such as intent detection
and slot filling in spoken language understanding [17] require
dealing with phrases and sentences.

Recently, gated recurrent neural network models such as
Long Short-term Memory (LSTM) [18] and Gated Recurrent
Unit (GRU) [19] have been widely used for sentence-level
NLP tasks since they can utilize long temporal dependency in-
formation, which is important in dealing with long sentences.
Those models have also been actively used for intent detec-
tion and slot filling. Those two tasks have been jointly or in-
dependently trained with GRU, LSTM [20, 21], bidirectional
LSTM [22], or bidirectional LSTM with attention mechanism
in [23].

Those models showed good performances without ex-
ploiting external semantic resources. By utilizing semanti-
cally enriched word embeddings, we can further improve the
models for the spoken language understanding tasks.

In this work, we extend the word embedding enrichment
in [9] by incorporating the enrichment with related words
from Macmillan Dictionary, and build bidirectional LSTM
on top of the enriched word embeddings. By evaluating on
a publicly available language understanding benchmark cor-
pus, ATIS, and a real log dataset about places from Microsoft
Cortana, we show that word embeddings enriched with se-



mantic lexicons can improve the performance of intent detec-
tion. Also, we show that fixing the enriched word embeddings
during the training of the model is more effective than allow-
ing updating of the word embeddings when the training sets
are small.

2. ENRICHING WORD EMBEDDINGS

We use 200 dimensional GloVe word vectors, which showed
competitive performance in various NLP tasks [24], as the
baseline word vectors, and enrich them with the enrichment
method used in [9]. The method adjusts word vectors to make
1) synonym word vectors to be more similar, 2) antonym
word vectors farther apart while 3) keeping the adjusted word
vectors’ similarities to their initial neighboring word vec-
tors. These three criteria are formulated as three max-margin
objective functions whose linear combination is minimized
with stochastic gradient descent. While this approach deals
with only synonyms and antonyms, we added a new objective
function making related words in Macmillan dictionary to
be more similar. Those max-margin objective functions are
formulated as follows.

2.1. Enriching with antonyms

Word vectors are adjusted so that the cosine similarity be-
tween a word and each of its antonyms will be zero or lower:

AF (V ) =
∑

(u,w)∈A

τ (cos (vu, vw)) , (1)

where τ (x) = max (0, x), V is the vocabulary matrix, A
is the set of antonym pairs, and vi is the i-th row of V (i-
th word vector). The antonym pairs consist of the antonyms
from WordNet and Exclusion relations from PPDB.

2.2. Enriching with synonyms

The cosine similarity between a word and each of its syn-
onyms is increased:

SC (V ) =
∑

(u,w)∈S

τ (δ − cos (vu, vw)) , (2)

where S is the set of synonym pairs and δ is 1. The synonym
pairs consist of the Equivalence relations from PPDB. Since
δ is 1, synonym vectors are encouraged to be adjusted to be
maximally similar.

2.3. Regularizing by keeping the similarity to the initial
neighboring words

If we adjust word vectors too much, we may loose informa-
tion about their distributional semantics coming from the ini-
tial word vectors. This may degrade the quality of word vec-
tors. To deal with this issue, we added a regularization term

to the objective function by keeping the cosine similarity be-
tween the initial vectors of a word and each of its neighboring
words higher than or equal to the current cosine similarity be-
tween them as follows:

KN
(
V, V 0

)
=

N∑
i=1

∑
j∈N(i)

τ
(
cos (vi, vj)− cos

(
v0i , v

0
j

))
, (3)

where V 0 is the initial vocabulary matrix,N is the vocabulary
size, and N (i) is the set of the initial neighbors of the i-th
word. For each word, other words with cosine similarities
higher than or equal to 0.8 are regarded as its neighbors in the
formulation.
The objective function for the word vector enrichment is rep-
resented as the sum of the following three terms:

C
(
V, V 0

)
= AF (V ) + SC (V ) +KN

(
V, V 0

)
(4)

This function is minimized by stochastic gradient descent
with learning rate 0.1 for maximum of 20 epochs.

2.4. Enriching with clusters of related words

The objective functions described so far are from [9] and they
only utilize synonyms and antonyms to enrich word vectors.
If we can also use information of related words, we can fur-
ther improve the word embeddings. For example, “commute”
and “ride” are not synonyms in WordNet but they are related
as belonging to a same category of “traveling in a vehicle.”
In this case, even though “commute” and “ride” are not syn-
onyms, it is helpful for representing word semantics to make
the corresponding word vectors sufficiently similar. There-
fore, we also adjust word vectors so that the cosine similarity
between those related words from Macmillan Dictionary1 is
higher than or equal to 0 using:

RC (V ) =
∑

(u,w)∈R

τ (δ − cos (vu, vw)) , (5)

where R is the set of related words and δ is 0. Different from
Equation (2), which maximizes the cosine similarity between
synonyms, we set δ to 0 so that related word vectors whose
cosine similarity is already higher than or equal to 0 are not
adjusted. This helps prevent related words from being more
similar than synonyms in embedding spaces. Since verbs and
nouns are important content words in intent detection, we
tried both cases of using related verbs and nouns and using
all the related words.

1Available from http://www.macmillandictionary.com/us



intents2s1s0

hb
0

hf
0

hb
1

hf
1

hb
2

hf
2

hb
N

hf
N

wNw2w1w0

Fig. 1. The bidirectional LSTM architecture used in this
work. wi, h

f
i , hbi , and si denote the word embedding layer,

the forward hidden unit layer, the backward hidden unit layer,
and the slot output layer at i-th time step. intent is the intent
output layer of the current sentence.

3. INTENT DETECTION

Intent detection is a query/utterance classification task that
can be formulated as:

y′ = argmax
y

p (y|w1, ..., wn) , (6)

where wi is an i-th word of the current sentence and y is the
intent.

Using the enriched word embeddings as initial word rep-
resentations, we build bidirectional LSTM where we train an
end-to-end model that jointly learns the slot and intent classes
from the training data. Figure 1 shows the architecture of the
model.

In Figure 1, wi denotes the word embedding output of
the i-th word in the current sentence. w0 and wN denote the
word embedding outputs of the beginning (BOS) and the end-
ing (EOS) of the sentence, respectively. hfi and hbi denote the
LSTM hidden layer outputs in forward direction and back-
ward direction, respectively. si denotes the slot output and
intent is the intent output of the sentence. For the regular-
ization, we normalize word vectors after each update and we
insert a dropout layer [25] with drop rate 0.5 between hidden
layers and the output layers.

In [22], it was shown that joint training for both intent
detection and slot filling can perform better than training a
model only for intent detection. Therefore, similar to the
joint modeling architectures in [22], we jointly train intent
detection and slot filling, where the nodes of 0 to (N − 1)-
th time steps are used for slot filling, and the nodes of N -th
(EOS) step are used for the intent detection. However, differ-
ent from the approach in [22], we have dedicated connections
from hidden nodes to the slot filling and other connections
from hidden nodes to the intent detection since intent labels
are never targeted in slot filling and vice versa. Also, while

ATIS Places

Words in the vocabulary 637 13,640
Intent labels 22 35
Train set sentences 4,978 10,000
Dev set sentences - 10,000
Test set sentences 893 10,000

Table 1. The vocabulary sizes, the numbers of the intent la-
bels, the train set sizes, the development set sizes, and the test
set sizes of the evaluation datasets.

ATIS Places

WordNet antonyms 53 530
PPDB antonyms 9 137
PPDB synonyms 67 1,268
Related verbs & nouns from Macmillan 269 5,389
All related words from Macmillan 458 6,417

Table 2. The numbers of adjusted words by different seman-
tic lexicons.

only forward hidden nodes are used for intent detection in
[22], we detect intents using both forward and backward hid-
den nodes.

Since we jointly train both intent detection and slot filling,
we utilize both intent errors and slot filling errors for updat-
ing the model. Because there can be more than one slot while
there is only one intent in a sentence, as a gradient normal-
ization, we divide the gradients from slot filling errors by the
number of slots in the current sentence. In this case, since
the gradients from slot filling errors are shrinked, the model
is trained with more focus on correcting the intent detection
errors.

We try both cases of fixing and updating the word embed-
ding layer during the training to see if fixing the word embed-
dings can perform better depending on the size of the training
sets.

4. EVALUATION

We show the accuracies of intent detection given different
methods of word embedding enrichment and different train-
ing set sizes for both cases of word embedding fixing or up-
dating during the training.

4.1. Evaluation datasets

We evaluate intent detection on ATIS and Places from Mi-
crosoft Cortana. Table 1 shows the description of the two
datasets. We change words occurring only once in the train-
ing set to <unk>, and we map words in the test set but not
existing in the training set to <unk>.

ATIS is one of the most widely used datasets for the eval-
uation of spoken language understanding tasks. In ATIS, for



ATIS Intent Detection Accuracy (%)
Train set coverage

10% 20% 40% 80% 100%

word
embeddings
fixed

1-hot (d = 637) 84.77 89.03 92.05 93.73 94.62
GloVe 83.99 89.14 91.60 95.07 94.85
GloVe+VerbCls n-hot (d = 661) 84.88 90.03 92.39 94.62 94.85
GloVe adjusted w/ syn & ant 88.69 91.16 93.51 95.97 95.97
GloVe adjusted w/ related verbs&nouns 88.69 91.04 94.06 95.52 95.86
GloVe adjusted w/ syn & ant & related verbs&nouns 88.80 91.38 94.51 95.41 96.30
GloVe adjusted w/ all related words 88.91 91.60 93.28 95.74 96.53
GloVe adjusted w/ syn & ant & all related words 86.90 91.49 94.06 95.30 96.53

word
embeddings
updated

1-hot (d = 637) 88.02 90.26 93.62 95.41 94.62
GloVe 87.23 91.71 92.72 94.29 95.63
GloVe+VerbCls n-hot (d = 661) 87.68 90.48 94.29 94.85 95.86
GloVe adjusted w/ syn & ant 84.66 90.37 94.18 95.86 96.30
GloVe adjusted w/ related verbs&nouns 85.55 89.36 92.72 96.08 96.53
GloVe adjusted w/ syn & ant & related verbs&nouns 85.55 90.15 94.85 94.96 95.86
GloVe adjusted w/ all related words 86.56 89.03 94.74 95.07 95.97
GloVe adjusted w/ syn & ant & all related words 87.46 90.03 93.73 95.52 97.31

Table 3. Intent detection accuracies on ATIS.

example, the intents of “I need a flight tomorrow from Colum-
bus to Minneapolis,” “what is the seating capacity of a Boeing
767”, and “show me the ground transportation in Denver” are
“flight,” “capacity,” and “ground service,” respectively.

In addition, we also evaluated intent detection perfor-
mance on a real log dataset about places from Microsoft
Cortana. Some examples of the dataset are provided below:

i want some hot wings tonight. (find-place)
where is the nearest planet fitness ? (find-place)

display map of ocala drive (get-route)
how far is my home to here ? (get-distance)
skype call now to mcdonalds (make-call)

The focus here is on audiovisual media in the places domain.
The user interacts via voice with a system (in our case it was
the Windows Phone) that can perform a variety of tasks such
as browsing and searching. We used crowd-sourcing to col-
lect and annotate queries with semantic entities. The dataset
contains several thousand training and evaluation queries. We
sampled 10,000 sentences from the places logs to compile our
training, development, and test data. (see details in Table 1).

4.2. Semantic lexicons for enriching word embeddings

As described in Section 2, we enrich word embeddings with
WordNet antonyms, PPDB antonyms, PPDB synonyms, and
related words from Macmillan Dictionary. Table 2 shows how
many words in the vocabulary were adjusted by specific se-
mantic lexicons for each training set.

4.3. Experiment results

On top of the enriched word embeddings, we build a bidi-
rectional LSTM model for the joint intent detection and slot

filling. We optimize the model with ADAM2 [26]. Given
the enriched word embeddings and the training set, we train
the model for 100 epochs and choose the parameters showing
the best intent detection accuracy on the development set and
evaluate it on the test set. Since there is no development set in
ATIS, we randomly sampled 20% of the training set to use as
the development set. In the cases that 100% of ATIS training
set is used, we fix the number of epochs to be the epoch show-
ing the best intent accuracy for the development set when the
model is trained with 80% of the training set.

Tables 3 and 4 show the intent detection accuracies on dif-
ferent proportions of the training set and different adjustment
methods for the word embeddings. In these tables, “1-hot”
denotes the case representing each word as the vectors whose
dimensionality is the vocabulary size. In the vectors, the ele-
ment corresponding to the word’s index in the vocabulary is
set to 1 and all other elements are set to 0. “GloVe” denotes
that the initial GloVe vectors are used without any adjust-
ments. We used off-the-shelf GloVe vectors3 that are trained
with 2014 Wikipedia dump and English Gigaword Fifth Edi-
tion for ATIS, but we trained GloVe vectors with the entire
training set for Places since many of the words in Places are
missed in the off-the-shelf GloVe vectors. “GloVe+VerbCls
n-hot” denotes that each GloVe vector is concatenated with an
n-hot vector representing the classes that the word is belong-
ing to in Macmillan Dictionary. For example, “arrive” be-
longs to the classes of “General Words Meaning to Happen,”
“To Succeed in Doing Something,” “Pregnancy and Having a
Baby,” and so on. These belongings can be represented by set-
ting 1 to the corresponding elements in a vector representing

2learning rate=0.001, β1 = 0.9, β2 = 0.999, and ε = 1e− 8.
3Available from http://nlp.stanford.edu/projects/

glove/



Places Intent Detection Accuracy (%)
Train set coverage

10% 20% 40% 80% 100%

word
embeddings
fixed

GloVe 88.64 90.78 92.70 93.57 94.03
GloVe adjusted w/ syn & ant 88.56 90.42 92.54 93.63 93.87
GloVe adjusted w/ related verbs & nouns 88.51 90.61 92.49 93.62 94.23
GloVe adjusted w/ syn & ant & related verbs&nouns 88.70 91.38 92.84 94.00 94.36
GloVe adjusted w/ all related words 88.47 91.18 93.03 93.95 94.17
GloVe adjusted w/ syn & ant & all related words 88.68 90.53 92.74 93.84 94.15

word
embeddings
updated

GloVe 86.44 90.71 92.56 93.88 94.08
GloVe adjusted w/ syn & ant 86.50 91.08 92.34 94.03 94.44
GloVe adjusted w/ related verbs & nouns 86.09 90.30 92.49 93.92 94.27
GloVe adjusted w/ syn & ant & related verbs&nouns 86.58 90.70 92.39 93.83 94.20
GloVe adjusted w/ all related words 87.23 90.59 92.47 94.06 94.31
GloVe adjusted w/ syn & ant & all related words 86.53 89.97 92.69 94.10 94.18

Table 4. Intent detection accuracies on Places.

the classes while setting 0 to other elements. By attaching this
vector to the GloVe vector, we can use the information of verb
relations without adjusting GloVe vectors. However, they did
not show better performance than the adjusted word vectors
for ATIS. “Syn & ant” denotes that semantic lexicons (Word-
Net antonyms, PPDB synonyms, and PPDB antonyms) that
were used in [9] are used for the adjustment, “related verb &
nouns” denotes that the related verbs and nouns from Macmil-
lan Dictionary are used, and “syn & ant & related verbs &
nouns” denotes that all the synonyms, antonyms, related verbs
and nouns are used for the adjustment.

Table 3 shows the experiment results on ATIS. For this
dataset, in the cases just using initial GloVe without enrich-
ment, fixing the word embeddings during the training is worse
than updating the word embeddings. However, fixing the
word embeddings enriched with semantic lexicons show bet-
ter performance than updating GloVe during the training in
most cases. In many of the cases where enriched word embed-
dings are updated during the training, the performances of en-
riched word embeddings are worse than just using GloVe vec-
tors if 20% or smaller proportions of the training set are used
though the enrichments show better performances if 40% or
larger proportions of the training set are used. This is mainly
because a certain subset of word embeddings can be substan-
tially modified during the model training.

Table 4 shows the results on Places. For this dataset,
fixing word embeddings that are enriched with synonyms,
antonyms, and related verbs and nouns also showed better
performances than using GloVe vectors for all the training set
proportions regardless of fixing or updating during the train-
ing. However, for some enrichment methods, updating en-
riched GloVe vectors during the training showed better per-
formance when using larger proportions of the training set.
Since the vocabulary size of Places is large, we did not evalu-
ate 1-hot and GloVe+VerbCls n-hot cases on Places.

In sum, for both ATIS and Places, using fixed word em-
beddings that are enriched with semantic lexicons showed

better performance than using the original GloVe vectors in
most cases. Specifically, if smaller proportions of the training
set are used, fixing the enriched word embeddings was better
than updating the enriched word embeddings in most cases.

5. CONCLUSION AND FUTURE WORK

In this work, we showed that enriching word embeddings with
semantic lexicons can be helpful not only for word-level tasks
but also intent detection, which is a sentence-level down-
stream task. Evaluating on two datasets, ATIS and Places
from Microsoft Cortana, using the fixed enriched word em-
beddings as the input layer of the bidirectional LSTM models
showed better performances of intent detection than using the
original GloVe vectors. Fixing the enriched word embeddings
was more effective when the training set is small.

We tried semantic lexicons used in [9] and related words
from Macmillan Dictionary to enrich the word embeddings.
For places domain task, using synonyms, antonyms, and the
related verbs and nouns showed good performance when the
word embeddings are fixed. For ATIS, using all the related
words showed good performance in many, but not all, cases.

As future work, we can first try more complex models
such as stacked bidirectional LSTM [27] and LSTM with
Memory Networks [28, 29]. Since having only small training
sets is a more critical issue for such more complex mod-
els, providing well enriched word embeddings can be more
helpful. We can also try different lexicons such as hyper-
nym/hyponym relations and relational database entries for
adjusting word embeddings.
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