
Simple Encrypted Arithmetic Library - SEAL (v2.0)

Kim Laine1 and Rachel Player2

1 Microsoft Research, USA
kim.laine@microsoft.com

2 Royal Holloway, University of London, UK??

rachel.player.2013@live.rhul.ac.uk

1 Introduction

Traditional encryption schemes, both symmetric and asymmetric, were not designed to respect
the algebraic structure of the plaintext and ciphertext spaces. Many schemes, such as Elgamal
(resp. e.g. Paillier), are multiplicatively homomorphic (resp. additively homomorphic), so that
one can perform certain limited types of computations directly on the encrypted data and have
them pass through the encryption to the underlying plaintext data, without requiring access to
any secret key(s). The restriction to a one particular type of operation is very strong, however,
and instead a much more powerful fully homomorphic encryption scheme, that respects two
algebraic operations between the plaintext and ciphertext spaces, would be needed for most
applications. The first such encryption scheme was presented by Craig Gentry in his famous
work [14], and since then researchers have introduced a number of new and more efficient fully
homomorphic encryption schemes.

Despite the promising theoretical power of homomorphic encryption, the practical side
still remains somewhat underdeveloped. Recently new implementations, new data encoding
techniques, and new applications have started to improve the situation, but much remains to
be done. In 2015 we released the Simple Encrypted Arithmetic Library - SEAL with the goal of
providing a well engineered and documented homomorphic encryption library, with no external
dependencies, that would be easy to use both by experts and by non-experts with little or
no cryptographic background. The library is available at http://sealcrypto.codeplex.com,
and is licensed under the MSR License Agreement.

Recently a large number of major changes were implemented in SEAL, and the new version
was released as SEAL v2.0. In this document we describe in detail this new release, and hope
to provide a practical guide to using homomorphic encryption for a wide audience. The reader
is also advised to go over the code examples that come with the library, and to read through
the detailed comments. For users of previous versions of SEAL we hope to provide clear
instructions for how to port old code to use SEAL v2.0. An introductory paper to an older
version of SEAL was given in [10], which the user new to SEAL v2.0 may also find helpful as
large parts of the API have remained unchanged.

1.1 Roadmap

In Section 1.2 we briefly discuss the major changes to SEAL, which are expanded upon in
the other sections of this document. In Section 2 we define notation and parameters we will
use throughout the document. In Section 3 we give the description of the Fan-Vercauteren
homomorphic encryption scheme (FV) – as originally specified in [13] – and in Section 4 we
describe how SEAL differs from this original description. In Section 5 we discuss the expected

?? Much of this work was done during an internship at Microsoft Research, Redmond.

http://sealcrypto.codeplex.com

noise growth behavior of SEAL ciphertexts as homomorphic evaluations are performed, and
in Section 5.3 we compare this to the expected behavior in previous versions. In Section 6
we discuss the available ways of encoding data into SEAL plaintexts. In Section 7 we discuss
the selection of parameters for performance, and describe the automatic parameter selection
module. In Section 8 we discuss the security properties of SEAL.

1.2 Overview of Changes

In this subsection we highlight some of the changes in SEAL v2.0 compared to previous
versions. In addition to the changes discussed below a huge number of bugs have been fixed,
and some core functions have been optimized.

Remark 1. Whenever we refer to (either implicitly or explicitly) an implementation of YASHE’,
we mean the implementation in the versions of SEAL prior to SEAL v2.0. Note that YASHE’
is no longer available in SEAL v2.0, and the only cryptosystem implemented is now FV.

Remark 2. Whenever we refer to (either implicitly or explicitly) implementations of encryp-
tor, decryptor, key generator, encryption parameters, coefficient modulus, plaintext modulus,
etc., we mean classes, objects, or variables with corresponding names in SEAL (Encryptor,
Decryptor, KeyGenerator, EncryptionParameters, coeff_modulus, plain_modulus, etc.).
We use unsigned integers, polynomials, and polynomial arrays to refer to the SEAL objects
BigUInt, BigPoly, and BigPolyArray.

New encryption scheme Previous versions of SEAL used the scheme YASHE’, introduced
by Bos, Lauter, Loftus, and Naehrig in [3], as the underlying encryption scheme. SEAL v2.0
uses the Fan-Vercauteren scheme, which we will refer to as the FV scheme, introduced by
Fan and Vercauteren in [13] (see also Section 3). This change improves both security and
performance. In particular, FV is more secure because it relies only on the RLWE assumption
(see Section 8). It also has better ciphertext noise growth properties (see Section 5) roughly
due to a smaller size secret key (represented by a BigPoly object in SEAL v2.0). As a result, in
many cases it is now possible to use smaller parameters (poly_modulus and coeff_modulus)
than before, resulting in significantly improved performance.

While plaintext elements remain the same as before, i.e. represented by BigPoly objects
with coefficients reduced modulo plain_modulus, in the FV scheme a freshly encrypted ci-
phertext is an array of two polynomials, represented by instances of a new class BigPolyArray.
In both schemes the secret key is a BigPoly. In FV the public key is a BigPolyArray of size 2,
whereas in YASHE’ it was represented by a single BigPoly.

Relinearization does not occur by default To obtain certain cryptographic properties
(compactness, circuit privacy), textbook-FV as described in [13] performs a relinearization
operation after every homomorphic multiplication. The reason is that homomorphic multipli-
cation in fact increases the size of the output ciphertext BigPolyArray. Precisely, the result
of multiplying two ciphertexts of sizes M and N results in a ciphertext of size M + N − 1.
Relinearization can be used to reduce the size down from 3 to 2 after every multiplication,
preventing the ciphertext size from leaking information about the evaluated arithmetic circuit.
In textbook-YASHE’ homomorphic multiplication also involves the production of an interme-
diate ciphertext, which should be relinearized to produce the final output ciphertext [3]. In

previous versions of SEAL the function Evaluator::multiply returned this output cipher-
text, while the intermediate ciphertext could be returned using the function Evaluator::

multiply_norelin. In SEAL v2.0 we do not perform relinearization by default anymore, so
instead Evaluator::multiply returns a ciphertext of size M + N − 1 (given inputs of size
M and N). If desired, subsequent relinearization must be done explicitly using Evaluator

::relinearize. The reason for this is that while in many cases relinearizing after every
multiplication is a good strategy, it is not optimal, and in some cases the user might be
able to squeeze out more performance by deferring relinearization until a later point, and
instead work temporarily with larger ciphertexts. We also extend the idea of relineariza-
tion in SEAL v2.0 to reducing a ciphertext of arbitrary size down to any size at least 2
(by default to size 2). See Section 4 for further discussion on the generalization of multi-
plication and relinearization. Accordingly, the function Evaluator::multiply_norelin has
been removed from the library, as have Evaluator::multiply_norelin_many and Evaluator

::exponentiate_norelin, whose functionality is entirely the same as that now given by
Evaluator::multiply_many and Evaluator:exponentiate.

Another reason for not relinearizing by default is that the performance of Evaluator::
relinearize depends strongly on the choice of the parameter decomposition_bit_count

in EncryptionParameters. A reasonable choice for the decomposition bit count is between
1/5 and 1/2 of the significant bit count of the coefficient modulus, but since it affects both
ciphertext noise growth and performance, it is hard to say what a truly optimal choice is
without knowing the details of the particular computation. On the other hand, the choice
of the decomposition bit count does not matter if there will be no relinearization in the
computation, and since relinearization does not occur by default anymore, the constructor of
EncryptionParameters can set it automatically to 0 (signaling that no relinearization will
be performed). This frees the user from having to worry about decomposition_bit_count

unless they choose to.
To to be able to relinearize a ciphertext, the owner of the secret key must have generated

enough evaluation keys that need to be subsequently given as input to the constructor of
Evaluator. More precisely, if a ciphertext has size equal to K, then K−2 evaluation keys will
be needed to relinearize it down to any size less than K. To generate k evaluation keys with
the key generator, the owner of the secret key can call KeyGenerator::generate with the
parameter k. Of course, if the key generator is instantiated with a decomposition bit count
of 0 (see the above paragraph), the generate function can only be called with parameter
k = 0 (the default value). Previously the constructor of Evaluator always required both
encryption parameters and evaluation keys, but now if no evaluation keys have been generated
the evaluator can be constructed by only passing it a set of encryption parameters. If the
evaluator is constructed in such a way, it will not be possible to use Evaluator::relinearize.
To conclude, if the user wishes to perform relinearization, they must first set the decomposition
bit count to a non-zero value, then generate an appropriate number of evaluation keys with
KeyGenerator::generate, and finally pass the generated EvaluationKeys instance to the
constructor of Evaluator.

Validity of ciphertexts In SEAL v2.0 we adopt the philosophy that for a ciphertext to
be valid it should not reveal any information about the underlying plaintext beyond the fact
that it is the result of the evaluation of an arithmetic circuit with properties that might be
inferred from the noise level and the size of the ciphertext. For this reason the functions
Evaluator::multiply_plain with a plaintext multiplier 0, and Evaluator:exponentiate

with exponent 0, are now not allowed, and will result in SEAL throwing an exception.

Thread safety Earlier versions of SEAL used a memory pool (class util::MemoryPool),
but this was not thread-safe. As a result, each Encryptor, Decryptor, Evaluator, and all the
encoders had their own memory pools, and in a multi-threaded application each thread would
have to contain its own local instance of these objects if they were to be used concurrently.
The util::MemoryPool class is now thread-safe, and there is one single global instance of if
used by the entire library.3 Consequently, a single instance of each of the classes mentioned
above can now be used concurrently from any number of threads. As before, classes such as
BigUInt, BigPoly, BigPolyArray, and PolyCRTBuilder are not fully thread-safe, and the
limitations are described in the comments in the header files.

Default source of randomness Previous versions of SEAL assumed that the user supplied
their own cryptographic source of randomness to EncryptionParameters, and if this was not
done it did not use real randomness (for testing purposes). As supplying a custom randomness
source is slightly non-trivial, the default behavior was changed to use std::random_device

for randomness. For more details, see Section 7.

2 Notation

We use b·c, d·e, and b·e to denote rounding down, up, and to the nearest integer, respectively.
When these operations are applied to a polynomial, we mean performing the corresponding
opearation to each coefficient separately. The norm ‖ · ‖ always denotes the infinity norm.
We denote the reduction of an integer modulo t by [·]t. This operation can also be applied to
polynomials, in which case it is applied to every integer coefficient separately. The reductions
are always in all cases done into the symmetric interval [−t/2, t/2). loga denotes the base-a
logarithm, and log always denotes the base-2 logarithm. To help the reader keep up with the
notation, Table 1 below lists commonly used parameters, and in some cases their corresponding
names in SEAL v2.0.

3 The FV Scheme

In this section we give the definition of the FV scheme as presented in [13].

3.1 Plaintext Space and Encodings

In FV the plaintext space is Rt = Zt[x]/(xn + 1), that is, polynomials of degree less than n
with coefficients modulo t. We will also use the ring structure in Rt, so that e.g. a product of
two plaintext polynomials becomes the product of the polynomials with xn being converted
everywhere to a −1. The homomorphic addition and multiplication operations on ciphertexts
(that will be described later) will carry through the encryption to addition and multiplications
operations in Rt.

If one wishes to encrypt (for example) an integer or a rational number, it needs to be
first encoded into a plaintext polynomial in Rt, and can be encrypted only after that. If the
hope is to also be able to compute additions and multiplications on e.g. integers in encrypted
form, the encoding must be such that addition and multiplication of encoded polynomials
in Rt carry over correctly to the integers when the result is decoded. SEAL provides a few
different encoders for the user’s convenience. These are discussed in more detail in Section 6
and demonstrated in the SEALExamples project that comes with the code.

3 The global memory pool can be accessed through util::MemoryPool::default_pool().

Parameter Description Name in SEAL (if applicable)

q Modulus in the ciphertext space (coefficient modulus) coeff_modulus

t Modulus in the plaintext space (plaintext modulus) plain_modulus

n A power of 2

xn + 1 The polynomial modulus which specifies the ring R poly_modulus

R The ring Z[x]/(xn + 1)

Ra The ring Za[x]/(xn + 1), i.e. same as the ring R but with
coefficients reduced modulo a

w A base into which ciphertext elements are decomposed during
relinearization

logw decomposition_bit_count

` There are `+ 1 = blogw qc+ 1 elements in each component of
each evaluation key

δ Expansion factor in the ring R (δ ≤ n)

∆ Quotient on division of q by t, or bq/tc

rt(q) Remainder on division of q by t, i.e. q = ∆t+ rt(q),
where 0 ≤ rt(q) < t

χ Error distribution (a truncated discrete Gaussian distribution)

σ Standard deviation of χ noise_standard_deviation

B Bound on the distribution χ noise_max_deviation

Table 1: Notation used throughout this document.

3.2 Ciphertext Space

Ciphertexts in FV are arrays of polynomials in Rq. These arrays contain at least two poly-
nomials, but grow in size in homomorphic multiplication operations unless relinearization is
performed. Homomorphic additions are performed by computing a component-wise sum of
these arrays, but multiplications are more complicated and will be described below.

3.3 Description of Textbook-FV

Let λ be the security parameter. Let w be a base, and let `+1 = blogw qc+1 denote the number
of terms in the decomposition into base w of an integer in base q. We will also decompose
polynomials in Rq into base-w components coefficient-wise, resulting in `+ 1 polynomials. By

a
$← S we denote that a is sampled uniformly from the finite set S.
The scheme FV contains the algorithms SecretKeyGen, PublicKeyGen, EvaluationKeyGen,

Encrypt, Decrypt, Add, and Multiply. These algorithms are described below.

• SecretKeyGen(λ): Sample s
$← R2 and output sk = s.

• PublicKeyGen(sk): Set s = sk, sample a
$← Rq, and e← χ. Output pk = ([−(as+ e)]q, a).

• EvaluationKeyGen(sk, w): for i ∈ {0, . . . , `}, sample ai
$← Rq, ei ← χ. Output

evk =
(
[−(ais+ ei) + wis2]q, ai

)
.

• Encrypt(pk,m): For m ∈ Rt, let pk = (p0, p1). Sample u
$← R2, and e1, e2 ← χ. Compute

ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q) .

• Decrypt(sk, ct): Set s = sk, c0 = ct[0], and c1 = ct[1]. Output[⌊
t

q
[c0 + c1s]q

⌉]
t

.

• Add(ct0, ct1): Output (ct0[0] + ct1[0], ct0[1] + ct1[1]).
• Multiply(ct0, ct1): Compute

c0 =

[⌊
t

q
ct0[0]ct1[0]

⌉]
q

,

c1 =

[⌊
t

q
(ct0[0]ct1[1] + ct0[1]ct1[0])

⌉]
q

,

c2 =

[⌊
t

q
ct0[1]ct1[1]

⌉]
q

.

Express c2 in base w as c2 =
∑`

i=0 c
(i)
2 wi. Set

c′0 = c0 +
∑̀
i=0

evk[i][0]c
(i)
2 ,

c′1 = c1 +
∑̀
i=0

evk[i][1]c
(i)
2 ,

and output (c′0, c
′
1).

4 How SEAL Differs from Textbook-FV

In practice, some operations in SEAL are done slightly differently, or in slightly more gen-
erality, than in textbook-FV (see Section 3.3). In this section we discuss these differences in
detail.

To make clear the generalization of FV operations it is convenient to think of each cipher-
text component as corresponding to a particular power of the secret key s. In particular, in
a ciphertext ct = (c0, c1, . . . ck) of size k + 1, the c0 term is associated with s0, the c1 term
with s1, and so on, so that the ck term is associated with sk.

4.1 Decryption

A SEAL v2.0 ciphertext ct = (c0, . . . , ck) is decrypted by computing[⌊
t

q
[ct(s)]q

⌉]
t

=

[⌊
t

q

[
c0 + · · ·+ cks

k
]
q

⌉]
t

.

This generalization of decryption (compare to Section 3.3) is handled automatically. The
decryption function determines the size of the input ciphertext, and generates the appropriate
powers of the secret key which are required to decrypt it. Note that because we consider well-
formed ciphertexts of arbitrary length valid, we automatically lose the compactness property
of homomorphic encryption. Roughly speaking, compactness states that the decryption circuit
should not depend on ciphertexts, or on the function being evaluated. For more details, see [2].

4.2 Multiplication

Consider the Multiply function as described in Section 3. The first step that outputs the
intermediate ciphertext (c0, c1, c2) defines a function which in previous versions of SEAL was
implemented as Evaluator::multiply_norelin4, and causes the ciphertext to grow in size.
The second step defines a function that we call relinearization, implemented as Evaluator::
relinearize, which takes a ciphertext of size 3 and an evaluation key, and produces a cipher-
text of size 2, encrypting the same underlying plaintext. Note that the ciphertext (c0, c1, c2)
can already be decrypted to give the product of the underlying plaintexts (see Section 4.1),
so that in fact the relinearization step is not necessary for correctness of homomorphic mul-
tiplication.

It is possible to repeatedly use a generalized version of the first step of Multiply to
produce even larger ciphertexts if the user has a reason to further avoid relinearization. In
particular, let ct1 = (c0, c1, . . . , cj) and ct2 = (d0, d1, . . . , dk) be two SEAL v2.0 ciphertexts
of sizes j + 1 and k+ 1, respectively. Let the ciphertext output by Multiply(ct1, ct2), which
is of size j + k + 1, be denoted ctmult = (C0, C1, . . . , Cj+k). The polynomials Cm ∈ Rq are
computed as

Cm =

[⌊
t

q

(∑
r+s=m

crds

)⌉]
q

.

In SEAL v2.0 we define the function Multiply (or rather family of functions) to mean this
generalization of the first step of multiplication. It is implemented as Evaluator::multiply.

4 This is not quite true, because previous versions of SEAL used YASHE’, where ciphertexts did not grow
in size, but instead the resulting ciphertext had to instead be decrypted under a single higher power of the
secret key. Note that in SEAL v2.0 decryption will require the entire sequence s0, s1, s2.

4.3 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to (at least) 2 after
it has been increased by multiplications as was described in Section 4.2. In other words,
given a size k + 1 ciphertext (c0, . . . , ck) that can be decrypted as was shown in Section 4.1,
relinearization is supposed to produce a ciphertext (c′0, . . . , c

′
k−1) of size k, or – when applied

repeatedly – of any size at least 2, that can be decrypted using a smaller degree decryption
function to yield the same result. This conversion will require a so-called evaluation key (or
keys) to be given to the evaluator, as we will explain below.

In FV, suppose we have a size 3 ciphertext (c0, c1, c2) that we want to convert into a
size 2 ciphertext (c′0, c

′
1) that decrypts to the same result. Suppose we are also given a pair

a pair evk =
(
[−(as+ e) + s2]q, a

)
, where a

$← Rq, and e ← χ. Now set c′0 = c0 + evk[0]c2,
c′1 = c1 + evk[1]c2, and define the output to be the pair (c′0, c

′
1). Interpreting this as a size 2

ciphertext and decrypting it yields

c′0 + c′1s = c0 + (−(as+ e) + s2)c2 + c1s+ ac2s = c0 + c1s+ c2s
2 − ec2 .

This is almost what is needed, i.e. c0 + c1s + c2s
2 (see Section 4.1), except for the additive

extra term ec2. Unfortunately, since c2 has coefficients up to size q, this extra term will make
the decryption process fail.

Instead we use the classical solution of writing c2 in terms of some smaller base w (see

e.g. [7, 6, 4, 13]) as c2 =
∑`

i=0 c
(i)
2 wi. Instead of having just one evaluation key (pair) as above,

suppose we have `+1 such pairs constructed as in Section 3.3. Then one can show that instead
setting c′0 and c′1 as in Section 3.3 successfully replaces the large additive term that appeared
in the naive approach above with a term of size linear in w.

This same idea can be generalized to relinearizing a ciphertext of any size k+1 to size k ≥ 2,
as long as a generalized set of evaluation keys is generated in the EvaluationKeyGen(sk, w)
function. Namely, suppose we have a set of evaluation keys evk2 (corresponding to s2), evk3
(corresponding to s3) and so on up to evkk (corresponding to sk), each generated as in
Section 3.3. Then relinearization converts (c0, c1, . . . , ck) into (c′0, c

′
1, . . . , c

′
k−1), where

c′0 = c0 +
∑̀
i=0

evkk[i][0]c
(i)
k ,

c′1 = c1 +
∑̀
i=0

evkk[i][1]c
(i)
k ,

and c′j = cj for 2 ≤ j ≤ k − 1.

Note that in order to generate evaluation keys, one needs to access the secret key, and
so in particular the evaluating party would not be able to do this. The owner of the secret
key must generate an appropriate number of evaluation keys and pass these to the evaluating
party in advance of the relinearization computation. This means that the evaluating party
should inform the key generating party beforehand whether or not they intend to relinearize,
and if so, by how many steps. Note that if they choose to relinearize after every multiplication
only one evaluation key, evk2, is needed.

In SEAL v2.0 we define the function Relinearize (or rather family of functions) to mean
this generalization of the second step of multiplication as was described in Section 3.3. It is
implemented as Evaluator::relinearize.

4.4 Addition

We also need to generalize addition to be able to operate on ciphertexts of any size. Suppose we
have two SEAL v2.0 ciphertexts ct1 = (c0, . . . , cj) and ct2 = (d0, . . . dk), encrypting plaintext
polynomials m1 and m2, respectively. Suppose WLOG j ≤ k. Then

ctadd = ([c0 + d0]q, . . . , [cj + dj]q, dj+1, . . . , dk)

encrypts [m1 +m2]t. Subtraction works exactly analogously.
In SEAL v2.0 we define the functions Add (or rather family of functions) to mean this

generalization of addition. It is implemented as Evaluator::add. We also provide a function
Sub for subtraction, which works in an analogous way, and is implemented as Evaluator::sub.

4.5 Other Homomorphic Operations

In SEAL v2.0 we provide a function Negate to perform homomorphic negation. This is im-
plemented in the library as Evaluator::negate.

We also provide the functions AddPlain(ct,madd) and MultiplyPlain(ct,mmult) that,
given a SEAL v2.0 ciphertext ct encrypting a plaintext polynomial m, and plaintext polyno-
mials madd,mmult ∈ Rt, output encryptions of m + madd and m ·mmult, respectively. When
one of the operands in either addition or multiplication does not need to be protected, these
operations can be used to hugely improve performance over first encrypting the plaintext and
then performing the normal homomorphic addition or multiplication. We will also see later in
Section 5 that MultiplyPlain incurs much less noise to the ciphertext than normal Multiply,
which will allow the evaluator to perform significantly more MultiplyPlain than Multiply

operations. These functions are implemented in SEAL v2.0 as Evaluator::add_plain and
Evaluator::multiply_plain. Analogously to AddPlain we have implemented a plaintext
subtraction function as Evaluator::sub_plain.

In many situations it is necessary to multiply together several ciphertexts homomorphi-
cally. The naive sequential way of doing this has very poor noise growth properties. Instead,
the user should use a low-depth arithmetic circuit. For homomorphic addition of several values
the exact method for doing so is less important. SEAL v2.0 defines functions MultiplyMany

and AddMany, which either multiply together or add together several ciphertexts in an optimal
way. These are implemented as Evaluator::multiply_many and Evaluator::add_many.

Exponentiating a ciphertext to a non-zero power should be done using a similar low-depth
arithmetic circuit that MultiplyMany uses. SEAL v2.0 defines a function Exponentiate, which
is implemented as Evaluator:exponentiate.

Remark 3. The implementations of MultiplyMany and Exponentiate do not involve relin-
earization, and might be slow when large products are to be computed. The user might want
to implement their own variants of these functions that relinearize either after every multipli-
cation, or at least after the first few multiplications. This could have a significant impact on
performance.

4.6 Key Distribution

In Section 4.3 we already explained how key generation in SEAL v2.0 differs from textbook-
FV. There is another subtle difference, that is also worth pointing out. In textbook-FV the
secret key is a polynomial sampled uniformly from R2, i.e. it is a polynomial with coeffi-
cients in {0, 1}. In SEAL v2.0 we instead sample the key uniformly from R3, i.e. we use
coefficients {−1, 0, 1}.

5 Inherent Noise

In this section we explain the concept of inherent noise, or ciphertext noise. We will explain
how the noise grows in homomorphic operations, and present both theoretical bounds on
the noise growth, and practical estimates that are used by SimulationEvaluator and by
the automatic parameter selection module to help the user determine appropriate optimized
parameters for their computation (see Section 7.4). Although in textbook-FV all ciphertexts
have size 2, in SEAL v2.0 we allow ciphertexts of any size greater than or equal to 2. We give
general bounds accordingly.

Definition 1 (Inherent noise). Let ct = (c0, c1, . . . , ck) be a ciphertext encrypting the
message m ∈ Rt. Its inherent noise v ∈ Rq is defined to be a polynomial such that

ct(s) = c0 + c1s+ · · ·+ cks
k = ∆m+ v + aq

for some polynomial a.

We will often refer to both v and its norm ‖v‖ as inherent noise. We will see below in
Section 5.1 that in fact ‖v‖ is what matters the most, and in particular in the comments in
the code ‖v‖ is what inherent noise always refers to. In SEAL v2.0 the quantity ‖v‖ is output
by the function inherent_noise. As always, we use the symmetric representation modulo q
for the coefficients of v and use their absolute values as integers when computing the norm.

5.1 Maximal Noise

The main result related to inherent noise is that once its coefficients reach a large enough value
the ciphertext becomes corrupted and impossible to decrypt even with the correct secret key.
The upper bound on the inherent noise depends on both the coefficient modulus q and the
plaintext modulus t.

Lemma 1. The function (or family of functions) Decrypt, as presented in Section 4.1, cor-
rectly decrypts a ciphertext as long as the inherent noise satisfies ‖v‖ < ∆/2.

Proof. Consider a ciphertext ct = (c0, c1, . . . , ck). Its decryption m′ under a secret key s is
defined as

m′ =

[⌊
t

q

[
c0 + c1s+ · · ·+ cks

k
]
q

⌉]
t

.

By definition of inherent noise, c0 + c1s+ · · ·+ cks
k = ∆m+ v (mod q), so

m′ =

[⌊
t(∆m+ v)

q

⌉]
t

=

[⌊
m− rt(q)

q
m+

t

q
v

⌉]
t

,

where we used q = ∆t+rt(q). This means that m′ = m in Rt as long as the terms −rt(q)m/q+
tv/q are removed by the rounding. In other words, we need∥∥∥∥−rt(q)q m+

t

q
v

∥∥∥∥ < 1

2
.

Since ∥∥∥∥−rt(q)q m+
t

q
v

∥∥∥∥ ≤ t

q
· ‖m‖+

t

q
‖v‖ ≤ t2

q
+
t

q
‖v‖ ,

it suffices to require that
t2

q
+
t

q
‖v‖ < 1

2
,

which can be written as

‖v‖ < q

2t
− t =

∆

2
+
rt(q)

2t
− t < ∆

2
.

ut

In SEAL v2.0 the noise bound ∆/2 is output by the function inherent_noise_max.

5.2 Overview of Noise Growth

We now present an overview of how the user can expect to noise behave in homomorphic
operations in typical applications. In this section by inherent noise we always mean ‖v‖,
and not the polynomial v, due to the reasons explained above. Since the results presented
here are probabilistic estimates, it might be possible to construct examples of plaintexts and
ciphertexts that yield very different looking results. Nevertheless, the estimates are vastly
simpler to read and interpret than exact formulas, and can be expected to be accurate in
most cases.

The noise growth estimates are presented in Table 2. For each operation we describe
the output noise in terms of the noises of the inputs and the encryption parameters (recall
Table 1). For input ciphertexts cti we always denote their respective inherent noises by vi.
When there is a single encrypted input ct we denote its inherent noise by v.

We would like to take this opportunity to point out a few important facts about noise
growth that the user should keep in mind.

1. Every ciphertext, even if it is freshly encrypted, contains a non-zero amount of noise.
2. In FV the noise in a freshly encrypted ciphertext depends only on the degree n of the

polynomial modulus and a bound B of the output of the error distribution χ.
3. Addition and subtraction have an almost insignificantly small impact on noise. In practice

we always have rt(q) < t� ∆/2.
4. Plain multiplication increases the noise by a constant factor that depends on the plaintext

multiplier m. If integer encoders are used, N (the number of nonzero coefficients of m)
and especially ‖m‖ can be small, in which case the increase in noise can be just a few
bits. When PolyCRTBuilder is used the situation is radically different as N ≈ n and
‖m‖ ≈ t, and plain multiplication results in roughly the same kind of noise growth as
normal multiplication.

5. Roughly speaking, multiplication increases the noise by a multiplicative factor of t when
integer encoders are used, and by a factor of nt when PolyCRTBuilder is used. However,
there is an additional multiplicative factor that depends in an exponential way on the sizes
of the ciphertexts. When relinearization is used the sizes never grow too large and this factor
becomes largely insignificant. However, if relinearization is not used, it can easily become
the dominant factor in the noise of the result. In addition to performance increases from
having smaller ciphertext sizes, this gives another good reason to perform relinearization.

6. Relinearization increases the noise only by an additive factor that mainly depends on the
encryption parameters. This should be contrasted with how multiplication increases the
noise by a multiplicative factor. This means, for example, that after a few multiplications
have been performed so that the noise has reached a size larger than the additive factor,

Operation Input description Output noise

Encrypt Plaintext m ∈ Rt 2B
√

2n/3

Negate Ciphertext ct v

Add/Sub Ciphertexts ct1 and ct2 v1 + v2 + rt(q)

AddPlain/SubPlain Ciphertext ct and plaintext m v + rt(q)

MultiplyPlain Ciphertext ct and plaintext m N‖m‖ (‖v‖+ rt(q)/2)
with N non-zero coefficients

Multiply (with integer encoders) Ciphertexts ct1 and ct2 of sizes t (‖v1‖+ ‖v2‖+ rt(q))

j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉k−1

2j1+j2

Multiply (with PolyCRTBuilder) Ciphertexts ct1 and ct2 of sizes nt (‖v1‖+ ‖v2‖+ rt(q))

j1 + 1 and j2 + 1 ×
⌈√

2n/3
⌉k−1

2j1+j2

Relinearize Ciphertext ct of size K and target v + (K − L)
√
nB(`+ 1)w

size L such that 2 ≤ L < K

AddMany Ciphertexts ct1, . . . , ctk
∑

i vi + (k − 1)rt(q)

MultiplyMany Ciphertexts ct1, . . . , ctk Apply Multiply in a tree-like manner

Exponentiate Ciphertext ct and exponent k Apply MultiplyMany to k copies of ct

Table 2: Noise estimates for homomorphic operations in SEAL.

relinearization no longer affects the noise in a harmful way at all. Instead, it will only be
beneficial due to the smaller noise increase in subsequent multiplications (see above). On
the other hand, relinearizing after the very first multiplication is typically not an optimal
strategy due to the additive factor being significantly larger than the noise resulting purely
from multiplications. Subsequent multiplications will then build more noise on top of the
(relatively large) additive factor that came from relinearization.

7. The decomposition bit count (recall Table 1) has a significant effect on the performance of
relinearization (recall Section 4.3), but also on the noise growth in relinearization. Tuning
down the decomposition bit count, and thus decreasing w, can have a huge negative impact
the performance, but also a huge positive impact on noise growth in relinearization.

5.3 Comparison to Previous Versions

The previous versions of SEAL use the YASHE’ encryption scheme, introduced in [3]. There
are important differences between how noise grows in FV and in YASHE’, which someone
who used the previous versions should find instructive.

The root cause for these differences is that in YASHE’ the secret key had actually coeffi-
cients of size t, rather than of small constant size as in FV. As a result, in many operations in
YASHE’ noise grows roughly by a factor of t faster than in FV, while the noise ceiling remains
the same.

This starts all the way from fresh encryptions, where in YASHE’ the noise can be expected
to be larger by roughly a factor of t when using integer encoders. In addition, there is an
important curiosity in YASHE’, namely the noise in a fresh encryption contains also a second
term that is proportional to ‖m‖rt(q). When integer encoders are used, ‖m‖ is very small,
and this term tends to either be smaller or of the same size than the usual dominant term.
However, when PolyCRTBuilder is used, ‖m‖ contains very large coefficients, and unless t
and q are chosen so that rt(q) is small, a fresh encryption can have noise proportional to t2.
In some cases (where t is large) having a term of size t2 in the noise of a freshly encrypted
ciphertext can be completely disastrous for performance. This makes parameter selection for
YASHE’ much more complicated and delicate.

Multiplication in YASHE’ increases the noise by a multiplicative factor, as in FV, but in
YASHE’ the multiplicative factor has an extra power of t in it. Relinearization is YASHE’ also
increases the noise by an additive term, but now the additive term is larger by an extra power
of t. It is important to understand that these differences of t can result in massive differences
in how deep circuits can be evaluated when t is large (say, 30 bits).

Interestingly, plain multiplication is roughly equally good in YASHE’ and FV. Instead,
as we already pointed out in Section 5.2, the difference between multiplication and plain
multiplication is in some sense smaller in FV than it is in YASHE’. We observed that if the
plaintext polynomial has large coefficients, then the noise growth is similar to what we see in
usual FV multiplication (recall Table 2).

6 Encoding

One of the most important aspects in making homomorphic encryption practical and useful
is in using an appropriate encoder for the task at hand. Recall from Section 3 that plaintext
elements in the FV scheme are polynomials in Rt (represented in SEAL as BigPoly objects),
and homomorphic operations on ciphertexts are reflected in the plaintext side as corresponding
(multiplication and addition) operations in the ring Rt. In typical applications of homomorphic

encryption the user would instead want to perform computations on integers (or real numbers),
and encoders are responsible for converting these integer (or real number) inputs to elements
of Rt in an appropriate way.

It is easy to see that encoding is a highly non-trivial task. The rings Z and Rt are very
different (most obviously the set of integers is infinite, whereas Rt is finite), and they are
certainly not isomorphic. However, typically one does not need the power to encrypt any
integer, so we can just as well settle for some finite reasonably large subset of Z and try to
find appropriate maps from that subset into Rt. But again there is a problem, because no
non-trivial subset of Z is closed under additions and multiplications (there are no finite ideals
except (0)), so we have to settle for something that does not respect an arbitrary number
of homomorphic operations. It is then the responsibility of the evaluating party to be aware
of the type of encoding that is used, and perform only operations such that the underlying
plaintexts throughout the computation remain possible to decode.

In the rest of this section we describe several encoders that are available in SEAL v2.0,
along with their pros and cons. The encoders are the same that were already available in
earlier versions of SEAL (see [10]), so a user familiar with them will not miss anything by
skipping the rest of this section.

6.1 Scalar Encoder

Perhaps the simplest possible encoder is what we could call the scalar encoder. Given an
integer a, simply encode it as the constant polynomial a ∈ Rt. Obviously we can only encode
integers modulo t in this manner. Decoding amounts to reading the constant coefficient of the
polynomial and interpreting that as an integer. The problem is that as soon as the underlying
plaintext polynomial (constant) wraps around t at any point during the computation, we are
no longer doing integer arithmetic, but rather modulo t arithmetic, and decoding might yield
an unexpected result. This means that t must be chosen to be possibly very large, which
creates problems with the noise growth for two reasons. First, recall that the noise ceiling is
∆/2, where ∆ = bq/tc, which decreases when t increases. Second, recall from Table 2 that the
noise growth in most of the operations, and particularly in multiplication, depends strongly
on t, so increasing t even a little bit can possibly significantly reduce the amount of noise that
is available for homomorphic computations.

One possible way around this is to encrypt the integer modulo twice, using two or more
relatively prime plaintext moduli {ti}. Then if the computation is done separately to each of
the encryptions, in the end after decryption the result can be combined using the Chinese
Remainder Theorem to yield an answer modulo

∏
ti. As long as this product is larger than

the largest underlying integer appearing during the computation, the result will be correct as
an integer.

The scalar encoder is currently not implemented in SEAL v2.0. Instead, it can be con-
structed as a special case of some of the other encoders by choosing their parameters in a
certain way. In most practical applications the scalar encoder is not a good choice. It is ex-
tremely wasteful in the sense that the entire huge plaintext polynomial is used to encode and
encrypt only one small integer. The other encoders attempt to make better use of the plaintext
polynomials by either packing more data into one polynomial, or spreading the data around
inside the polynomial to obtain encodings with smaller coefficients.

6.2 Binary Encoder and Balanced Encoder

The binary encoder and the balanced encoder are closely related (the balanced encoder is a
generalization of the binary encoder), so we start by explaining how the binary encoder works,
and then briefly discuss the balanced encoder.

The idea of the binary encoder is to encode an integer −(2n − 1) ≤ a ≤ 2n − 1 as follows.
First, form the (up to n-bit) binary expansion of |a|, say an−1 . . . a1a0. Then the binary
encoding of a is

BinaryEncode(a) = sign(a) ·
(
an−1x

n−1 + . . .+ a1x+ a0
)
.

Remark 4. In SEAL v2.0 we only have an unsigned big integer data type (BigUInt), so we
represent each coefficient of the polynomial as an unsigned integer modulo t. For example,
the −1 coefficients of the polynomial will be stored as the unsigned integers t− 1.

Decoding (BinaryDecode) amounts to evaluating the plaintext polynomial at x = 2. It is clear
that in good conditions (see below) the binary encoder respects integer operations:

BinaryDecode [BinaryEncode(a) + BinaryEncode(b)] = a+ b ,

BinaryDecode [BinaryEncode(a) · BinaryEncode(b)] = ab .

When the binary encoder is used, the norms of the plaintext polynomials are guaranteed
to be bounded by 1 only when no homomorphic operations have been performed. When two
binary encodings are added together, the coefficients sum up and can therefore get bigger. In
multiplication this is even more noticeable due to the appearance of cross terms. In multipli-
cations the polynomial length also grows, but often in practice this is not an issue due to the
large number of coefficients available in the plaintext polynomials. Things will go wrong as
soon as any modular reduction – either modulo the polynomial modulus xn + 1, or modulo
the plaintext modulus t – occurs in the underlying plaintexts at any point during the com-
putation. If this happens, decoding is likely to yield an incorrect result, but there will be no
other indication that something has gone wrong. It is therefore crucial that the evaluating
party understands the limitations of the binary encoder, and makes sure that the plaintext
underlying the result ciphertext will still be possible to decode correctly.

The binary encoder is significantly better than the scalar encoder, as the coefficients in the
beginning are much smaller than in plaintexts encoded with the scalar encoder, leaving more
room for homomorphic operations before problems with reduction modulo t are encountered.
From a slightly different point of view, the binary encoder allows a smaller t to be used,
resulting in both smaller noise growth in homomorphic operations, and a larger noise ceiling.

The balanced encoder is really a family of encoders, one for each odd integer base B.
Where the binary encoder used the binary representation, the balanced encoder uses a base-
B representation, with coefficients chosen from the symmetric – or balanced (hence the name)
– set [−(B − 1)/2, . . . , (B − 1)/2]. There is a unique such representation for each integer in
[−(Bn − 1)/2, (Bn − 1)/2]. Decoding is now performed by evaluating a plaintext polynomial
at x = B. The balanced encoder with B = 3 provides encodings with equally small norm as
the binary encoder, but with a more compact representation. In particular, it does not waste
space in repeating the sign for each non-zero coefficient. Larger B provide even more compact
representations, but at the cost of increased coefficients. In most common applications either

the binary encoder or the balanced encoder with B = 3 is the best choice, and there is little
difference between these two.

Both the binary and the balanced encoder are available in SEAL v2.0 through the classes
BinaryEncoder and BalancedEncoder, respectively.

6.3 Fractional Encoders

There are several ways for encoding rational numbers. The simplest and often most efficient
way is to simply scale all rational numbers to integers, encode them using one of the encoders
described above in Section 6.2, and modify any computations to instead work with such scaled
integers. After decryption and decoding the result needs to be scaled down by an appropriate
amount. While efficient, in some cases this technique can be annoying, as it will require one
to always keep track of how each plaintext has been scaled. Here we describe what we call the
binary and balanced fractional encoders. Here the words binary and balanced refer to the base
(and set of representatives of integers modulo the base) that is being used in decomposing the
numbers, just like in Section 6.2. For this reason we will only describe the binary fractional
encoder in detail, and the balanced ones work analogously.

The easiest way to explain how the binary fractional encoder works is through a simple
example. Consider the rational number 5.8125. It has a finite binary expansion

5.875 = 22 + 20 + 2−1 + 2−2 + 2−4 .

First we take the integer part and encode it as usual with the binary encoder, obtaining the
polynomial BinaryEncode(5) = x2 + 1. Then we take the fractional part 2−1 + 2−2 + 2−4,
add n (recall Table 1) to each exponent, and convert it into a polynomial by changing the
base 2 into the variable x, resulting in xn−1 + xn−2 + xn−4. Next we flip the signs of each of
the terms, in this case obtaining −xn−1− xn−2− xn−4. For rational numbers r in the interval
[0, 1) with finite binary expansion we denote this encoding by BinaryFracEncode(r). For any
rational number r with finite binary expansion we set

BinaryFracEncode(r) = sign(r) · [BinaryEncode(b|r|c) + BinaryFracEncode({|r|})] ,

where {·} denotes the fractional part. For example,

BinaryFracEncode(5.8125) = −xn−1 − xn−2 − xn−4 + x2 + 1 .

Decoding works by essentially reversing the steps described above. First, separate the high-
degree part of the plaintext polynomial that describes the fractional part. Next invert the
signs of those terms and shift their exponents by −n. Finally evaluate the entire expression
at x = 2. We denote this operation BinaryFracDecode.

It is not hard to see why this works. As a very simple example, imagine computing 1/2 · 2,
where BinaryFracEncode(1/2) = −xn−1 and BinaryFracEncode(2) = x. Then in the ring Rt
we have

BinaryFracEncode(1/2) · BinaryFracEncode(2) = −xn = 1 ,

which is exactly what we would expect, as BinaryFracDecode(1) = 1. For a more complicated
example, consider computing 5.8125 · 2.25. We already computed BinaryFracEncode(5.8125)
above, and BinaryFracEncode(2.25) = −xn−2 + x. Then

BinaryFracEncode(5.8125) · BinaryFracEncode(2.25)

= (−xn−1 − xn−2 − xn−4 + x2 + 1) · (−xn−2 + x)

= x2n−3 + x2n−4 + x2n−6 − 2xn − xn−1 − xn−2 − xn−3 + x3 + x

= −xn−1 − xn−2 − 2xn−3 − xn−4 − xn−6 + x3 + x+ 2 .

Finally,

BinaryFracDecode(−xn−1 − xn−2 − 2xn−3 − xn−4 − xn−6 + x3 + x+ 2)

=
[
x3 + x+ 2 + x−1 + x−2 + 2x−3 + x−4 + x−6

]
x=2

= 13.078125 .

There are several important aspects of the binary fractional encoder that require further
clarification. First of all, above we described only how BinaryFracEncode works for rational
numbers that have finite binary expansion, but many rational numbers do not, in which
case we need to truncate the expansion of the fractional part to some precision, say nf bits
(equivalently, high-degree coefficients of the plaintext polynomial). Next, the decoding process
needs to somehow know which coefficients of the plaintext polynomial should be interpreted
as belonging to the fractional part and which to the integer part. For this purpose we fix a
number ni to denote the number of coefficients reserved for the integer part, and all of the
remaining n−ni coefficients will be interpreted as belonging to the fractional part. Note that
nf + ni ≤ n, and that nf only matters in the encoding process, whereas ni is needed both in
encoding (can only encode integer parts up to ni bits) and in decoding.

Decoding can fail for two reasons. First, if any of the coefficients of the underlying plaintext
polynomials wrap around the plaintext modulus t the result after decoding is likely to be
incorrect, just as in the normal binary encoder (recall Section 6.2). Second, homomorphic
multiplication will cause the fractional parts of the underlying plaintext polynomials to expand
down towards the integer part, and the integer part to expand up towards the fractional part.
If these different parts get mixed up, decoding will fail. Typically the user will want to choose
nf to be as small as possible, as a many rational numbers will have dense infinite expansions,
filling up most of the leading nf coefficients. When such polynomials are multiplied, cross
terms cause the coefficients to quickly increase in size, resulting in them getting reduced
modulo t unless t is chosen to be very large.

The balanced fractional encoder is again really a family of encoders, parametrized by the
odd base B that it uses for expansions in both the integer and in the fractional parts. Just
like before, the word balanced refers to the coefficients in the expansions always being chosen
from the symmetric set [−(B − 1)/2, . . . , (B − 1)/2] of representatives for integers modulo B.

The binary and balanced fractional encoders are available in SEAL v2.0 through the classes
BinaryFractionalEncoder and BalancedFractionalEncoder, respectively. Both will need
the user to supply the integers nf and ni as parameters to the constructors.

6.4 CRT Batching

The last encoder that we describe is very different from the previous ones, and extremely
powerful. It allows the user to pack n integers modulo t into one plaintext polynomial, and
to operate on those integers in a SIMD (Single Instruction, Multiple Data) manner. This
technique is also often called batching in homomorphic encryption literature. For more details
and applications we refer the reader to [5, 20].

Batching only works when the plaintext modulus t is chosen to be a prime number and
congruent to 1 (mod 2n), which we assume to be the case5. In this case the multiplicative

5 Note that this means t > 2n, which can in some cases turn out to be an annoying limitation.

group of integers modulo t contains a subgroup of size 2n, which means that there is an integer
ζ ∈ Zt such that ζ2n = 1 (mod t), and ζm 6= 1 (mod t) for all 0 < m < 2n. Such an element
ζ is called a primitive 2n-th root of unity. Having a primitive 2n-th root of unity in Zt is
important because then the polynomial modulus xn + 1 factors modulo t as

xn + 1 = (x− ζ)(x− ζ3) . . . (x− ζ2n−1) (mod t) ,

and according to the Chinese Remainder Theorem (CRT) the ring Rt factors as

Rt =
Zt[x]

(xn + 1)
=

Zt[x]∏n−1
i=0 (x− ζ2i+1)

CRT∼=
n−1∏
i=0

Zt[x]

(x− ζ2i+1)
∼=

n−1∏
i=0

Zt[ζ2i+1] ∼=
n−1∏
i=0

Zt .

All of the isomorphisms above are isomorphisms of rings, which means that they respect both
the multiplicative and additive structures on both sides, and allows one to perform n additions
(resp. multiplications) in integers modulo t (right-hand side) at the cost of one single addition
(resp. multiplication) in Rt (left-hand side).

We still need to describe how the isomorphisms are computed. For simplicity, denote
αi = ζ2i+1. In one direction the isomorphism is given by

Decompose : Rt
∼=−→

n−1∏
i=0

Zt , m(x) 7−→ [m(α0),m(α1), . . . ,m(αn−1)] .

The other direction is slightly more complicated. We define the intermediate polynomials

f̃i(x) =
xn + 1

x− αi
∈ Rt ,

which have the nice property that f̃i(αj) = 0 precisely when j 6= i. Next we scale the polyno-

mials f̃i and define fi(x) = f̃i(x)/f̃i(αi). The polynomials fi(x) have the even nicer property
that fi(αj) = 1 when j = i, and 0 when j 6= i. The other direction of the isomorphism is

Compose :
n−1∏
i=0

Zt
∼=−→ Rt , [λ0, λ1, . . . , λn−1] 7−→

n−1∑
i=0

λifi(x) .

When used correctly, batching can provide an enormous performance improvement over
the other encoders. Obviously, when using batching for computations on encrypted integers
rather than on integers modulo t, one needs to ensure that the values in the slots never get
reduced modulo t during the computation. Note that this is exactly the same limitation that
the scalar encoder has (recall Section 6.1), and is solved by choosing t to be large enough,
which will unfortunately cause large noise growth and reduce the noise ceiling.

SEAL v2.0 provides all of the batching-related tools in the PolyCRTBuilder class.

7 Encryption Parameters

Everything in SEAL v2.0 starts with the construction of an instance of a container that holds
the encryption parameters (EncryptionParameters). This will store the parameters xn + 1
(poly_modulus), q (coeff_modulus), t (plain_modulus), σ (noise_standard_deviation),
B (noise_max_deviation), logw (decomposition_bit_count), and a source of randomness
(random_generator). Some of these parameters are optional, e.g. if the user does not specify

σ or B they will be set to default values. If the user does not set the decomposition bit count,
SEAL will assume that no relinearization is going to be performed, and prevents the creation
of any evaluation keys (recall Section 1.2 and Section 4.3). If no randomness source is given,
SEAL will automatically use std::random_device.

Remark 5. The choice of encryption parameters significantly affects the performance, capabil-
ities, and security of the encryption scheme. Some choices of parameters may be insecure, give
poor performance, yield ciphertexts that will not work with any homomorphic operations, or
a combination of all of these.

In this section we will describe the encryption parameters and their impact on performance.
We will discuss security briefly in Section 8. In Section 7.4 we will discuss the automatic
parameter selection tools in SEAL v2.0, which can assist the user in determining (close to)
optimal encryption parameters for certain use-cases.

7.1 Default Values

Unlike in previous versions of SEAL, the constructor of EncryptionParameters sets the values
for σ and B by default to the ones returned by the static functions

ChooserEvaluator::default_noise_standard_deviation()

and

ChooserEvaluator::default_noise_max_deviation() .

Currently these default values are set to 3.19 and 15.95, respectively, but it should be easy
for a user to change them if they desire to.

As we have mentioned several times before, the user no longer needs to set a value for
decomposition_bit_count unless they choose to use relinearization. By default the construc-
tor will set this value to zero, which will prevent the construction of evaluation keys.

SEAL v2.0 contains a list of pairs (n, q) that are returned by the static function

ChooserEvaluator::default_parameter_options() .

The list that is currently used by default is presented in Table 3.

Remark 6. The current list of default parameters is based on relatively old security estimates
(from 2014) [16]. As the security of FV encryption scheme depends crucially on these choices,
and we highly recommend for the user to consult an expert in RLWE-based cryptography,
and subsequently edit this list to satisfy their own security needs.

n 1024 2048 4096 8192 16384

q 248 − 220 + 1 294 − 220 + 1 2190 − 230 + 1 2383 − 233 + 1 2767 − 256 + 1

Table 3: Default pairs (n, q).

7.2 Polynomial Modulus

The polynomial modulus (poly_modulus) should be a polynomial of the form xn + 1, where
n is a power of 2. This is both for security and performance reasons (see Section 8). Although
SEAL v2.0 does allow more general polynomial moduli to be used, this is highly discouraged
and might be removed from future versions of the library.

Using a larger n allows for a larger q to be used without decreasing the security level,
which in turn increases the noise ceiling and thus allows for larger t to be used, which is
often important for integer encodings to work (recall Section 6). Increasing n will significantly
decrease performance, but on the other hand it will allow for more elements of Zt to be batched
into one plaintext when using PolyCRTBuilder.

7.3 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the coefficient modulus q
affects two things: the upper bound on the inherent noise that a ciphertext can contain6 (see
Section 5.1), and the security level7 (see Section 8.2 and references therein).

We recommend using coefficient moduli of the form 2A−2B+1 (as in the default parameters
in Table 3). This results in more efficient arithmetic, and when t is a power of 2 such that
log t ≤ B it yields better noise growth properties due to having rt(q) = 1 (see Table 2). An
even faster form of q is 2C − 1, but then it will not be as easy to have rt(q) = 1, which may
or may not matter, depending on the situation.

In principle, the plaintext modulus t can be any integer. However, choosing t to be a
power of 2 (when possible) is recommended for efficiency reasons. When using batching (recall
Section 6.4) it will not be possible to have t be a power of 2 – as t needs to be a prime of
specific type – and instead we recommend choosing the entire triple (n, q, t) simultaneously
so that t = 1 (mod 2n), q is of the form 2A − 2B + 1, and rt(q) = 1 (see above).

7.4 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation SEAL v2.0 provides
an automatic parameter selection module. It consists of two parts: a Simulator component
that simulates noise growth in homomorphic operations using the estimates of Table 2, and a
Chooser component, which estimates the growth of the coefficients in the underlying plaintext
polynomials, and uses Simulator to simulate noise growth. Chooser also provides tools for
computing an optimized parameter set once it knows what kind of computation the user
wishes to perform.

Simulator Simulator consists of two components. A Simulation is a model of the inherent
noise ‖v‖ (recall Section 5) in a ciphertext. SimulationEvaluator is a tool that performs all
of the usual homomorphic operations on simulations rather than on ciphertexts, producing
new simulations with noise value computed according to Table 2. Simulator is implemented
in SEAL v2.0 by the Simulation and SimulationEvaluator classes.

6 Bigger q means higher noise bound (good).
7 Bigger q means lower security (bad).

Chooser Chooser consists of three components. A ChooserPoly models a plaintext poly-
nomial, which can be thought of as being either encrypted or unencrypted. In particular, it
keeps track of two quantities: the largest coefficient in the plaintext (coefficient bound), and
the number of non-zero coefficients in the plaintext (length bound). It also stores the opera-
tion history of the plaintext, which can involve encryption, and any number of homomorphic
operations with an arbitrary number of other ChooserPoly objects as inputs. ChooserPoly
also provides a tool for estimating the noise that would result when the operations stored
in its operation history are performed, which it does using Simulator, and a tool for test-
ing whether a given set of encryption parameters can support the computations in its his-
tory. ChooserEvaluator is a tool that performs all of the usual homomorphic operations on
ChooserPoly objects rather than on ciphertexts, producing new ChooserPoly objects with
coefficient bound and length bound estimates based on the operation in question, and on the
inputs. Furthermore, ChooserEvaluator contains a tool for finding an optimized parameter
set, which we will discuss below. ChooserEncoder creates a ChooserPoly that models an
unencrypted plaintext (empty operation history), encoded using the balanced encoder (recall
Section 6.2). ChooserEncryptor converts ChooserPoly objects with empty operation history
(modeling unencrypted plaintexts) into ones with operation history consisting only of encryp-
tion. These tools are all implemented in SEAL v2.0 by the ChooserPoly, ChooserEvaluator,
ChooserEncoder, and ChooserEncryptor classes.

Parameter Selection One of the most important tools in Chooser is the SelectParame-

ters functionality. It takes as input a ChooserPoly, a set ParameterOptions of pairs (n, q),
a value for σ, and a value for B, and attempts to find an optimal pair (nopt, qopt) from Pa-

rameterOptions, together with an optimal value topt, and returns the triple (nopt, qopt, topt),
along with an optimal value for the decomposition bit count if relinearization was used. It also
sets the parameters σ and B (see below). SelectParameters is implemented in SEAL v2.0
by the function ChooserEvaluator::select_parameters.

Recall from Section 7.1 that SEAL v2.0 has an easy-to-access (and easy-to-modify) default
list of pairs (n, q), and values for σ and B. The basic version of the function ChooserEvaluator

::select_parameters uses these, but there is also an overload that lets the user pass their
own values to be used instead. There is also a third kind of overload that takes several
ChooserPoly objects as input and ensures that the parameters returned are large enough to
support the operation histories of each of them.

The way the ChooserEvaluator::select_parameters function works is as follows. First
it looks at the ChooserPoly input(s) it is given, and selects a t just large enough to be sure
that all the computations can be done without reduction modulo t taking place in the plaintext
polynomials8. Next, it loops through each (n, q) pair available in the order they were given,
and runs the ChooserPoly::test_parameters function every time until a set of parameters
is found that gives enough room for the noise with a safety margin of 10 bits (this value was
somewhat arbitrarily chosen, and should be easy to change in the code).

If the computation involved relinearization, things are a little bit trickier. Whenever a new
pair (n, q) is selected, the decomposition bit count is set to be the smallest possible so that
blogw qc+1 = 2 (recall Table 1). This means that in relinearization the polynomial coefficients
can be split into two base-w components, which offers the best performance at the cost of
higher noise growth, as noise grows in relinearization by an additive factor proportional to w

8 This makes sense in the context of the binary and balanced encoders. Currently automatic parameter
selection is only designed to work with these integer encoders.

(recall Table 2). If these parameters fail, the decomposition bit count will be decremented
until decryption is expected to succeed, or the decomposition bit count becomes so small that
blogw qc+1 > 5, in which case the outermost loop moves on to the next (n, q) pair. If eventually
a good parameter set is found, the function populates the instance of EncryptionParameters
given to it, and returns true. Otherwise it returns false. The SEALExamples project that
comes with the code contains a detailed demonstration of using the parameter selection tools.

8 Security of FV

8.1 RLWE

The security of the FV encryption scheme is based on the apparent hardness of the famous
Ring Learning with Errors (RLWE) problem [17]. We give a definition of the decision-RLWE
problem appropriate to the rings that we use.

Definition 2 (Decision-RLWE). Let n be a power of 2. Let R = Z[x]/(xn + 1), and
Rq = Zq[x]/(xn + 1) for some integer q. Let s be a random element in Rq, and let χ be
the distribution on Rq obtained by choosing each coefficient of the polynomial from a discrete
Gaussian distribution over Z. Denote by As,χ denote the distribution obtained by choosing
a← Rq uniformly at random, choosing e← χ, and outputting (a, [a ·s+ e]q). Decision-RLWE
is the problem of distinguishing between the distribution As,χ and the uniform distribution
on R2

q .

It is possible to prove that for certain parameters the decision-RLWE problem is as hard as
solving certain famous lattice problems in the worst case. However, in practice the parameters
that are used are not necessarily in the range where the reduction holds, and the reduction
might be very difficult to perform in any case.

Remark 7. Note that SEAL v2.0 will allow the user to set the polynomial modulus into any
polynomial, not just to one of the form xn + 1 for n a power of 2. While it is possible to prove
security results for certain other choices of the polynomial modulus (see [17, 11]), these proofs
require the error terms e to be sampled from the distribution χ in a way very different from
how SEAL does so. This is one reason why we strongly suggest using only polynomial moduli
of the form xn + 1 for n a power of 2.

In practice an attacker will not have unlimited access to the oracle generating samples in
the decision-RLWE problem, but the number of samples available will be limited to d. We call
this the d-sample decision-RLWE problem. It is possible to prove that solving the d-sample
decision-RLWE problem is equally hard as solving the (d−1)-sample decision-RLWE problem
with the secret s instead sampled from the error distribution χ [18]. Furthermore, it is possible
to argue [15, 13] that the security level remains roughly the same even if s is sampled from
almost any narrow distribution with enough entropy, such as the uniform distribution on R2

or R3, as in SEAL v2.0 (recall Section 4.6).
It is easy to give an informal argument for the security of the FV scheme, assuming the

hardness of decision-RLWE. Namely, the FV public key is indistinguishable from uniform
based on the hardness of 2-sample decision-RLWE (or rather the hardness of the 1-sample
small secret variant described above). Subsequently, an FV encryption is indistinguishable
from uniform based on the 3-sample decision-RLWE (or rather the hardness of the 2-sample
small secret variant described above), and the assumed uniformity of the public key. We refer
the reader to [18] and [13] for further details and discussion.

8.2 Choosing Parameters for Security

Each RLWE sample (as + e, a) ∈ R2
q can be used to extract n Learning with Errors (LWE)

samples [19, 16]. To the best of our knowledge, the most powerful attacks against d-sample
RLWE all work by instead attacking the nd-sample LWE problem, and when estimating the
security of a particular set of RLWE parameters it makes sense to instead focus on estimating
the security of the induced set of LWE parameters.

At the time of writing this, determining the concrete hardness of parametrizations of
(R)LWE is an active area of research (see e.g. [9, 8, 1]) and no standardized (R)LWE parameter
sets exist. We would like reiterate our strong suggestion for the user to consult experts in the
security of (R)LWE when choosing parameters for SEAL.

8.3 Circular Security

Recall from Section 3 that in textbook-FV we require an evaluation key, which is essentially
a masking of the secret key raised to the power 2 (or, more generally, to some higher power).
Unfortunately, it is not possible to argue the uniformity of the evaluation key based on the
decision-RLWE assumption. Instead, one can think of it as an encryption of (some power of)
the secret key under the secret key itself, and to argue security one needs to make the extra
assumption that the encryption scheme is secure even when the adversary has access to all
of the evaluation keys which may exist. In [13] this is assumption is noted as a form of weak
circular security.

In SEAL v2.0 we do not perform relinearization by default, and therefore do not require
the generation of evaluation keys, so it is possible to avoid having to use this extra assumption.
However, in many cases using relinearization has massive performance benefits, and – as far
as we are aware – there exist no known practical attacks that would exploit the evaluation
keys.

8.4 Circuit Privacy

The privacy goal of SEAL is to allow the evaluation of arithmetic circuits on encrypted inputs,
without revealing anything about the values of the input wires to the circuits beyond what is
revealed by the output wires. In particular, no attempt is made to keep the arithmetic circuit
itself private.

There are ways in which a semi-honest party can find information about a circuit that was
evaluated on encrypted data simply by looking at the resulting ciphertexts, or – even better
– at resulting ciphertext/plaintext pairs. For example, if no relinearization is used, they can
read the highest power that was computed from the size of the output ciphertext. Whoever
holds the secret key can compute the noise in the ciphertext and deduce information about
the structure of the circuit from that, especially if no relinearization was used.

It is possible to obtain circuit privacy in essentially two ways. Another way, already de-
scribed by Gentry in [14], is to flood the noise by first relinearizing the ciphertext size down
to 2, and then adding an encryption of 0 with noise super-polynomially larger than the old
noise. This will statistically hide the old noise, but seriously restricts the number of homomor-
phic operations that can be performed. An alternative to this approach, replacing flooding
with a soak-spin-repeat strategy, is given by Ducas and Stehlé in [12]. This technique restricts
the scheme less, but uses Gentry’s bootstrapping process to repeatedly re-encrypt the cipher-
text. This is unfortunately slow, requires also a significant amount of room for noise, and is
not currently implemented in SEAL.

References

[1] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. J.
Mathematical Cryptology, 9(3):169–203, 2015.

[2] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela Jäschke, Christian A.
Reuter, and Martin Strand. A guide to fully homomorphic encryption. Cryptology ePrint Archive,
Report 2015/1192, 2015. http://eprint.iacr.org/2015/1192.

[3] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a ring-based fully
homomorphic encryption scheme. In Cryptography and Coding, pages 45–64. Springer, 2013.

[4] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 868–886. Springer, 2012.

[5] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based homomorphic encryption.
In Public-Key Cryptography–PKC 2013, pages 1–13. Springer, 2013.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 309–325. ACM, 2012.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
SIAM Journal on Computing, 43(2):831–871, 2014.

[8] Johannes A. Buchmann, Niklas Büscher, Florian Göpfert, Stefan Katzenbeisser, Juliane Krämer, Daniele
Micciancio, Sander Siim, Christine van Vredendaal, and Michael Walter. Creating cryptographic chal-
lenges using multi-party computation: The LWE challenge. In Keita Emura, Goichiro Hanaoka, and Rui
Zhang, editors, Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography,
AsiaPKC@AsiaCCS, Xi’an, China, May 30 - June 03, 2016, pages 11–20. ACM, 2016.

[9] Eric Crockett and Chris Peikert. Challenges for ring-lwe. Cryptology ePrint Archive, Report 2016/782,
2016. http://eprint.iacr.org/2016/782.

[10] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Manual for using homomorphic encryption for bioinformatics. Technical report, Microsoft Research, 2015.
http://research.microsoft.com/apps/pubs/default.aspx?id=258435.

[11] Léo Ducas and Alain Durmus. Ring-lwe in polynomial rings. In Marc Fischlin, Johannes A. Buchmann,
and Mark Manulis, editors, Public Key Cryptography - PKC 2012 - 15th International Conference on
Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings,
volume 7293 of Lecture Notes in Computer Science, pages 34–51. Springer, 2012.

[12] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 294–310. Springer, 2016.

[13] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/.

[14] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9, pages 169–178,
2009.

[15] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. 2010.

[16] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes fv and
yashe. In Progress in Cryptology–AFRICACRYPT 2014, pages 318–335. Springer, 2014.

[17] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June
3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer, 2010.

[18] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryptography. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, pages 35–54.
Springer, 2013.

[19] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, Baltimore, MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[20] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations. Designs, codes and
cryptography, 71(1):57–81, 2014.

http://eprint.iacr.org/2015/1192
http://eprint.iacr.org/2016/782
http://research.microsoft.com/apps/pubs/default.aspx?id=258435
http://eprint.iacr.org/

	Simple Encrypted Arithmetic Library - SEAL (v2.0)

