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Aerophones in Flatland: Interactive Wave Simulation of Wind Instruments

Andrew Allen Nikunj Raghuvanshi

Microsoft Research

Figure 1: Wave fields for 2D wind instruments simulated in real-time on a graphics card. A few examples are shown, which are simplified virtual models of (a)
trumpet, (b) clarinet, and (c) flute. Our interactive wave solver lets the user design and instantly perform such virtual instruments, promoting experimentation
with novel designs. Dynamic changes such as opening and closing tone holes or manipulating valves automatically changes the resulting sound and radiation
pattern. Synthesized musical notes can be heard in the accompanying demonstrations.

Abstract

We present the first real-time technique to synthesize full-
bandwidth sounds for 2D virtual wind instruments. A novel inter-
active wave solver is proposed that synthesizes audio at 128,000Hz
on commodity graphics cards. Simulating the wave equation cap-
tures the resonant and radiative properties of the instrument body
automatically. We show that a variety of existing non-linear excita-
tion mechanisms such as reed or lips can be successfully coupled to
the instrument’s 2D wave field. Virtual musical performances can
be created by mapping user inputs to control geometric features of
the instrument body, such as tone holes, and modifying parameters
of the excitation model, such as blowing pressure. Field visualiza-
tions are also produced. Our technique promotes experimentation
by providing instant audio-visual feedback from interactive virtual
designs. To allow artifact-free audio despite dynamic geometric
modification, we present a novel time-varying Perfectly Matched
Layer formulation that yields smooth, natural-sounding transitions
between notes. We find that visco-thermal wall losses are crucial for
musical sound in 2D simulations and propose a practical approxi-
mation. Weak non-linearity at high amplitudes is incorporated to
improve the sound quality of brass instruments.

CR Categories: H.5.5 [Information Interfaces and Presentation]:
Sound and music computing—modeling; G.1.8 [Numerical Analy-
sis]: Partial differential equations—finite difference methods; I.3.1
[Computer Graphics]: Hardware architecture—graphics processors

Keywords: wind instruments, wave equation, radiation, scatter-
ing, graphics processor (GPU), sound synthesis

1 Introduction

Making wind instruments (aerophones) is an innate human activity
dating back at least 20,000 years [Baines 1967]. Wind instruments
are non-linear dynamical systems with an active excitation mecha-

nism, such as a trumpet player’s buzzing lips, undergoing coupled
oscillation with the resonant cavity formed by the body of the in-
strument. This two-way coupling is essential to their operation,
irreducible to a feed-forward model. For instance, the sound of os-
cillating lips filtered through a trumpet’s resonant acoustic response
results in a comb-filtered buzzing sound, not a steady musical note.
The complex physics underlying their behavior has naturally invited
enduring curiosity from physicists [Helmholtz 1885]. Ever since
the rise of digital computers, the musical acoustics community has
held sustained interest in performing direct physical simulation to
create virtual instruments. In computer graphics, physically-based
sound synthesis and propagation have seen rising interest over the
past couple decades, with the goal of modeling sounds that are per-
ceptually similar to reality. Our work shares this motivation: while
the simulations are based closely on physical principles, the pri-
mary objective is to actively support user interaction and synthesize
sounds that resemble everyday experience.

Existing real-time virtual wind instruments are based on Digital
Waveguides and related techniques [Smith 2010]. The essential
idea is that constant-speed wave propagation in one dimension can
be expressed as a superposition of two opposing traveling waves,
implementable efficiently as digital delay lines. Assuming prop-
agating wavefronts are planar or spherical (infinite cylindrical or
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conical bores respectively), wind instruments are reduced to cir-
cuits of such delay lines. Externally-specified filters at delay line
junctions compensate for important wave effects that one dimen-
sional wave propagation lacks inherently, such as scattering and ra-
diation losses at tone holes and the bell (open end). A given instru-
ment geometry is conceptually broken into segments with roughly
constant propagation impedance to build an analogous virtual in-
strument circuit. Coefficients for the filters at circuit junctions are
determined from analytic approximation, offline simulation or ex-
periments. Stability and realizability of the resulting circuit have
to be ensured carefully. The resulting flexible signal processing
framework has been used to create many virtual instrument models
with compelling sounds [Smith 1996; Smith 2004].

However, constructing the digital waveguide circuit for a given in-
strument geometry is a manual process requiring significant exper-
tise in acoustic signal processing. An alternative approach that we
explore in this paper is to directly simulate the wave equation on
the instrument geometry. All linear acoustic phenomena including
radiation and scattering are modeled automatically, thus obviating
the need for externally specified filters or manual analysis of geom-
etry for reduction to a 1D circuit. Wave simulation on geometry
also constrains exploration to physically plausible sounds, unlike
manipulation of filter coefficients. Unfortunately, such wave simu-
lation is extremely compute-hungry. Resolving wind instruments’
geometric features and dynamics requires spatial and temporal res-
olutions in the millimeter and microsecond range respectively. Con-
sequently, no work exists on such real-time wave simulation.

We present the first real-time technique to synthesize audio for vir-
tual wind instruments using 2D wave simulation of the resonator
for all audible frequencies. As shown in Figure 1, these simula-
tions naturally model changes in sound and radiation pattern due
to shape modification. For instance, opening a tone hole automati-
cally changes the local radiation and scattering characteristics. This
affects the net frequency-dependent impedance at the mouthpiece,
causing a change in musical note. Our interactive system lets the
user edit shape to create and modify instrument profile, tone holes,
valve systems, flaring bells, or mutes. The designed virtual instru-
ments can be performed by mapping user input from a keyboard
or any digital controller to excitation parameters such as breath
pressure, and geometric modification, such as opening a valve in
a trumpet-like instrument. The instant audio-visual feedback dur-
ing design and performance promotes experimentation with virtual
instruments. Besides creative applications, the interactive envi-
ronment is useful for educational purposes. The generated audio-
visuals can also be a valuable tool for studying instrument physics
in a simplified setting.

Our interactive technique is enabled by a novel wave solver based
on Finite-Difference Time-Domain (FDTD) that runs on commod-
ity graphics cards simulating audio at 128,000Hz. We introduce
a time-varying Perfectly Matched Layer (PML) formulation that
supports on-the-fly shape modification without generating auditory
artifacts. Each simulation cell is allowed to smoothly change be-
tween solid and open states with user-controlled transition time.
This results in natural note transitions when performing the instru-
ment which is critical to believable music synthesis. We show that
modeling visco-thermal losses at instrument walls is essential in
multi-dimensional wave simulation and propose a practical approx-
imation suitable for real-time evaluation. Absence of such model-
ing can result in overwhelming high-frequency parasitic resonant
modes. Weakly non-linear propagation at high amplitudes is also
modeled using an efficient formulation to improve the sound qual-
ity of brass instruments. Finally, we demonstrate that a variety of
non-linear excitation models from existing 1D virtual instrument
literature can be successfully coupled to our 2D wave fields, result-
ing in natural sounding simulations.

2 Related Work

Musical acoustics is a vast area of research with rich literature.
We limit discussion to closely related work below. For a gen-
eral overview of the area, we refer the reader to the well-regarded
text [Fletcher and Rossing 1998]. For a review of more recent re-
search on wind instrument physics, see [Fabre et al. 2012]. We dis-
cuss literature on particular physical aspects relevant to our work
alongside technical discussion in Sections 3, 4 and 5.

2.1 Real-time virtual instruments

McIntyre, Schumacher and Woodhouse [1983] are generally cred-
ited for introducing the framework for fast digital sound synthesis
of wind instruments: an active, non-linear excitation mechanism
coupled in a feedback loop with a passive resonator with linear re-
sponse. Assuming a fixed instrument configuration (e.g., pattern
of open/closed tone holes), the resonator is represented by a time-
invariant impulse response that relates the excitation’s input at the
bore entrance to the resulting feedback of the instrument air col-
umn at the same point. This affords time-domain modeling of the
oscillatory phenomena essential to wind instrument sound produc-
tion. This technique was used to create the first demonstrations of
physical modeling synthesis for a variety of wind instruments.

Around the same time, Smith [1986] introduced the highly influ-
ential digital waveguide technique. Assuming cylindrical or coni-
cal bore profiles, real-time synthesis could be achieved using digi-
tal delay lines that can be implemented efficiently as shift buffers.
Since 1D wave propagation doesn’t include scattering and radia-
tion, externally-determined filters at delay line junctions are spec-
ified to compensate. This effectively allowed expressing the res-
onator impulse response in a much more flexible digital circuit
form. It was shown later in [Scavone and Smith 1996] that by
carefully modifying coefficients for tone hole radiation and scat-
tering filters, a time-varying impulse response could be achieved,
resulting in the sound of the instruments being performed. Digi-
tal waveguides and closely related techniques such as wave digital
filters [van Walstijn and Campbell 2003] today form the basis for
a large body of real-time techniques for 1D time-domain simula-
tion. Surveys of the area can be found in [Smith 1996; Smith 2004;
Välimäki et al. 2006; van Walstijn 2007] and a discussion of the
underlying techniques in [Smith 2010; Cook 2002].

2.2 Physical modeling

Real-time virtual instruments represent only a small part of the
much larger research area of physical modeling of musical instru-
ments. Digital waveguide modeling was one of the first techniques
to afford computationally feasible time-domain simulation and has
served as a natural tool for such digital experiments. The primary
goal of instrument physics research, however, is to design accurate
models that closely match the acoustic characteristics of real instru-
ments, in order to advance scientific understanding. For gradually-
varying cross sections, 1D finite difference models have been pro-
posed that can accurately model continuous effects such as wall
losses and dispersion [Bilbao 2009], although fast-flaring horns
used in brass instruments are troublesome for 1D modeling in gen-
eral. Nevertheless, such models have been used to impressive ef-
fect to perform offline synthesis of brass instrument sounds [Bilbao
and Chick 2013]. With advancing computational power, offline 3D
simulation is being employed increasingly. To pick a few examples,
there has been work on elucidating the dynamics of the air jet in flue
instruments using 3D Navier-Stokes solution [Bader 2013; Gior-
dano 2014], and detailed simulation studies of the fluid-structure
interaction in single reeds [Ricardo et al. 2007]. Frequency-domain
3D FEM simulation is employed in [Lefebvre and Scavone 2012]
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Symbol Meaning Value

ρ mean density 1.1760 (1− 0.00335∆T )

c speed of sound 3.4723× 102(1 + 0.00166∆T )

γ adiabatic index 1.4017 (1− 0.00002∆T )

µ dynamic viscosity 1.8460× 10−5(1 + 0.0025∆T )

P Prandtl number 0.7073 (1− 0.0004∆T )

j imaginary unit
√
−1

p pressure –
v particle velocity –
n surface unit normal –

∆t simulation time step 7.81× 10−6

∆s simulation cell size 3.83× 10−3

Table 1: Symbols and meanings. All values are in SI units. Physical con-
stant values are for air at reference temperature of 26.85◦C (300◦K), taken
from [Keefe 1984]. ∆T is temperature difference from reference, and val-
ues are accurate for |∆T | < 10.

to study the acoustic characteristics of individual woodwind tone
holes with the intent of integrating the resulting filters into real-
time digital waveguide simulations. There has also been work on
offline numerical shape optimization of musical instruments, such
as an improved clarinet [Noreland et al. 2013] and a more melodi-
ous trumpet [Macaluso and Dalmont 2011].

2.3 Wave simulation and graphics processors (GPUs)

Limited work exists on real-time wave simulation for full audi-
ble bandwidth in more than one dimension. With thousands
of lightweight cores, GPUs are a natural fit for parallel wave
solvers. Offline band-limited room acoustics calculations have at-
tracted increased interest recently [Savioja et al. 2010; Hamilton
and Webb 2013] and more generally for auralization [Tsingos et al.
2011]. Real-time 3D FDTD simulation of a small room is presented
in [Savioja 2010]. Simulations are limited to a usable bandwidth
of νm = 1.5kHz, typical for current state-of-the-art time-domain
room acoustic solvers. GPUs for sound synthesis have also gained
interest recently [Bilbao et al. 2013]. Specifically, there has been
work on offline sound synthesis for timpani drums [Webb 2014].
Simulation on coarse-resolution 2D drum membranes is presented
in [Hsu and Pérez 2013], we report much higher performance by
better utilizing GPU parallelism as discussed in section 6.1.

2.4 Interactive applications

There is a large body of literature in computer graphics for visual
simulation of physical phenomena. Over the last decade sound syn-
thesis has received increasing attention, such as the sound of wa-
ter [Zheng and James 2009] and fire [Chadwick and James 2011].
Rigid body sounds have attracted considerable interest in particu-
lar, especially using precomputed modal analysis [O’Brien et al.
2002; Chadwick et al. 2009; Chadwick et al. 2012; Langlois et al.
2014]. Auralizing physical events such as objects breaking, rolling
and sliding in synchronization with visual cues aids immersion in
virtual environments. There is also existing work on interactive mu-
sical simulation for percussive instruments [Ren et al. 2012]. In all
cases the aim is to produce sounds that are believable and closely
tied to an interactive experience. Our work is similarly motivated.

Significant research exists on the complementary problem of
modeling sound propagation in virtual scenes, using ray-
based [Funkhouser et al. 1998; Chandak et al. 2008; Schissler et al.
2014] and precomputed wave-based techniques [James et al. 2006;
Mehra et al. 2013; Raghuvanshi and Snyder 2014]. Propagation

modeling improves the sense of presence in virtual 3D scenes by
capturing effects such as occlusion and reverberation due to scene
geometry. Our simulations generate sounds along with the near-
field radiation pattern of the instruments, although in 2D. Tech-
niques similar to [James et al. 2006] could be employed along with
existing propagation systems to embed our simulations in an inter-
active virtual environment, for instance, to provide the wind instru-
ment component of a virtual orchestra [Huopaniemi et al. 1994].

3 Background

Sound resonance and radiation in wind instruments is well-
approximated by a set of coupled linear wave equations –

∂p

∂t
= −ρc2∇ · v, (1a)

∂v

∂t
= −1

ρ
∇p. (1b)

Table 1 lists the symbols and values employed. These equations
predict the spatio-temporal evolution of deviations in pressure p and
particle velocity v from quiescent conditions. Boundary condi-
tions are prescribed as time-dependent normal velocity vn (x, t) =
v · n̂ on the surface of the instrument. Acoustic wave fields are
complex and can depend sensitively on instrument shape. Refer-
ring to Figure 1, opening a tone hole results in high frequencies
being strongly radiated while low frequencies are largely scattered
back into the instrument. This changes the frequency-dependent
impedance presented by the resonator to the excitation mechanism,
changing the note’s pitch. Dynamic changes to the tone holes re-
sult in a complex interplay of these effects. The resulting transients
during note onset are critical for each wind instrument’s distinct
audible timbre [Rossing et al. 2001].

We simulate the above equations in 2D, which qualitatively model
all linear wave effects such as interference, radiation, scattering and
propagation delay. However, quantitatively accurate prediction for
real instruments requires 3D simulation. For example, although
one would expect the scattering and radiation amplitudes due to a
tone hole or bell to follow the same general trend with increasing
frequency in 2D and 3D, the exact quantitative values at each fre-
quency can be different. Nevertheless, we observe in our results
that 2D simulations have musical timbre identifiably similar to real
instruments. Note that this limitation is mainly computational, we
expect our technique to extend unmodified to 3D.

3.1 Numerical simulation

The Finite-Difference Time-Domain (FDTD) technique performs a
uniform discretization of space into cells. The pressure field, p, is
sampled at the cell centers, while velocity components vx and vy
are sampled on a staggered grid, lying on vertical and horizontal
cell edges respectively. Staggering the grid affords second-order
accurate spatial derivatives. In the case of wind instruments, the
cell size, ∆s, is limited by geometric resolution rather than small-
est simulated wavelength. We use ∆s = 3.83mm which allows
real-time computation while still being able to represent the main
geometric features required to design virtual instruments. The time-
step, ∆t is restricted by the Courant–Friedrichs–Lewy condition in
two dimensions as ∆t ≤ ∆s/

√
2c. We observe stable simulations

at the upper bound for ∆t = 7.81 × 10−6, corresponding to an
update rate of 128,000Hz, which is used in all our simulations.

3.2 Perfectly matched layer

At the edges of the rectangular simulation domain, outgoing radia-
tion from the instrument needs to be absorbed. Insufficient absorp-
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tion leads to spurious domain-wide resonance. We employ the Per-
fectly Matched Layer (PML) technique to ensure high-efficiency
attenuation. PML is obtained by analytic continuation of the wave
equation into complex, stretched spatial coordinates where prop-
agating waves decay exponentially with distance. Absorptivity is
controlled using two stretching fields {σx (x) , σy (x)} which con-
trol the local rate of absorption for propagation along both axial
directions. In the continuous case, PML is perfectly reflection-free.
Discretization results in reflections that increase with larger jumps
in absorptivity. This necessitates a layer of cells across which ab-
sorptivity is increased gradually.

PML is usually formulated with σx and σy controlled separately for
maximum generality [Gedney 1996], allowing anisotropic absorp-
tion which can be tuned to any application. This requires auxiliary
differential equations and variables. We assume a single absorption
field by constraining σx = σy . This allows us to express PML as a
particularly simple modification to Eq. 1 –

∂p

∂t
+ σp = −ρc2∇ · v, (2a)

∂v

∂t
+ σv = −1

ρ
∇p. (2b)

This form is very efficient to compute, involving no auxiliary vari-
ables while still remaining effective at absorbing outgoing radia-
tion in our application. A 6-cell thick layer is sufficient to remove
audible reflections, with σ decreasing linearly from 0.5/∆t at the
domain edges to 0 inside.

4 Simulating the resonator

4.1 Dynamic geometry using time-varying PML

Performing virtual instruments requires on-the-fly modifications to
geometry, such as when opening a tone hole, closing a valve or
applying a mute. It is quite challenging to ensure that such intro-
duction and removal of geometry within a running FDTD simula-
tion remains stable and produces natural-sounding note transitions
without pops or clicks. We propose a novel time-varying PML for-
mulation for this purpose. We define a time-varying dynamic ge-
ometry field β (x, t) bounded between 0 and 1 globally, allowed
to vary slowly in time (compared to ∆t) at each point in space. A
value of β = 1 indicates air and β = 0 corresponds to enforcement
of some prescribed particle velocity vb(t). As discussed later, this
velocity could be provided either by an external source, such as an
excitation mechanism, or by lossy wall reflections.

We consider the following modification to PML (Eq. 2) –

∂p

∂t
+ σ′p = −ρc2∇ · v, (3a)

β
∂v

∂t
+ σ′v = −β2∇p

ρ
+ σ′vb. (3b)

Here we have defined the effective absorptivity σ′ = 1 − β + σ,
where σ is the PML absorptivity used at domain boundaries as de-
fined in Section 3.2.

We do not perform geometry editing inside the absorber layer,
where we set β = 1, vb = 0, reducing these equations to an ab-
sorbing PML layer per Eq. 2, as desired. Outside the absorbing
layer, σ = 0 (no PML absorption), thus reducing to σ′ = 1 − β.
With this substitution, Eq. 3b corresponds to interpolating between
two equations using weight β: the momentum equation (1b) and
boundary condition enforcement, v = vb. As β decreases from 1
to 0 for a fixed differential volume, the contained fluid gradually be-
comes unresponsive to pressure gradients, instead moving with the

Figure 2: Without wall loss modeling (top), parasitic high-frequency reso-
nance develops. Wall losses are necessary to suppress them (bottom).

specified velocity, vb. Due to such enforcements of vb, there can
be large net inflow or outflow in the volume, as given by the diver-
gence term in the right hand side of Eq. 3a, causing large changes
in pressure. The σ′p term on the left hand side dampens such fluc-
tuations in pressure, corresponding to adding or removing mass to
the volume. Finally, the momentum weight β2 in Eq. 3b can be
any function that varies monotonically with β between 0 and 1.
We choose this specific form because it generates natural-sounding
transients in our experiments.

These equations lead to the following discrete update rules, where
we denote with ∇̃ the standard discrete spatial derivatives as per-
formed in FDTD.

p(n+1) =
p(n) − ρc2∆t ∇̃ · v(n)

1 + σ′∆t
, (4a)

v(n+1) =
βv(n) − β2∆t ∇̃p(n+1)/ρ+ σ′∆t v

(n+1)
b

β + σ′∆t
. (4b)

Note that a semi-implicit scheme has been used for the σ′p and
σ′v terms, required for stability with this formulation. This equa-
tion provides an elegant framework for all the physical phenomena
we model, through the unifying dynamic geometry field, β. Time-
domain wave simulations are generally quite susceptible to numeri-
cal instability. We have observed in our experiments that the result-
ing numerical implementation with our scheme is robustly stable in
the face of arbitrary shape manipulation within a live simulation.

4.2 Visco-thermal wall losses

Multi-dimensional wave simulations naturally support arbitrary
propagation directions in the bore. This is essential to their abil-
ity to automatically model the effect of geometric features such as
tone holes and flaring bells. Propagation paths transverse to the in-
strument’s axis correspond to high frequency resonant modes. We
observe that such high-frequency transverse oscillations can build
up in 2D virtual instrument models instead of the desired length-
wise resonant modes. This is perhaps because of the much shorter
feedback delay with the active excitation mechanism. As we dis-
cuss shortly, physical wall losses in wind instruments increase with
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frequency. We observe that accounting for wall losses success-
fully discourages such high-frequency parasitic resonant modes, as
shown in Figure 2. Wall loss modeling thus seems essential for
multi-dimensional wind instrument simulation. Prior 1D models
avoid this difficulty due to their inability to model any propagation
directions within the bore other than the instrument’s axis.

4.2.1 Lossy boundary condition

The adiabatic, inviscid flow conditions assumed by the linear wave
equation are violated near instrument walls. A boundary layer
forms between the laminar flow in the interior on one side and no-
slip (zero-velocity), isothermal conditions at the boundary. Fortu-
nately, high-resolution Navier-Stokes simulation of the boundary
layer can be avoided. The net losses in the laminar flow due to the
boundary layer can be approximated analytically. These analytic
formulae can then be expressed as a boundary condition relating
pressure and normal velocity.

Such a boundary condition suitable for 3D frequency-domain FEM
simulation has been proposed by [Bossart et al. 2003]. The main
idea is to compute virtual wall velocities so that they capture the
analytically determined loss and phase relations. In frequency do-
main, assuming implicit time dependence of the form ejωt, this is
expressed as an admittance boundary condition: v̂n = Ŷ p̂ where
hat denotes Fourier transform of the corresponding time-domain
signal. The wall loss filter Ŷ is given by,

L (θ) = − lv sin2 θ + lt (γ − 1)

ρc2
√

2
,

Ŷ = (1 + j)L (θ)
√
ω, (5)

where lv =
√
µ/ρ and lt =

√
µ/ρP are constants that determine

thickness of the viscous and thermal boundary layers via lv/
√
ω

and lt/
√
ω respectively. The angle of incidence is θ, computable

from particle velocity as: sin2 θ = 1 − (v · n̂/ |v|)2 where n̂ is
the unit normal pointing into the domain. This term is absent in
1D models that only support propagation paths along the instru-
ment axis [Abel et al. 2003]. Table 1 lists physical constants used
above. Because v is dependent on the solution for p, the solution in
frequency-domain is non-trivial, requiring iterative solution starting
from a guess for θ [Bossart et al. 2003]. However, in time domain
it can be computed straightforwardly, as the time-varying particle
velocity is readily available.

4.2.2 Efficient time-domain wall losses

To incorporate Eq. (5) in our time domain simulations, we need
a fast and reasonably accurate time-domain digital filter Y ′ such
that its Fourier transform approximates the desired filter (Ŷ ′ ≈ Ŷ ).
Wall losses can then be applied in time-domain as vn = Y ′ ∗ p,
where ∗ denotes convolution. IIR (Infinite Impulse Response)
filters allow one to realize the convolution using a recursive up-
date rule. The filter’s

√
ω-dependence in Eq. 5 corresponds to a

fractional-derivative in time, making time-domain implementation
non-trivial. [Bilbao and Chick 2013] propose using 20th order IIR
filters for offline 1D FDTD simulations. While this technique is
accurate, it is unfortunately not practical for real-time computation.
We find a second-order IIR filter by brute-force sampling optimiza-
tion of the three feed-forward and two feedback coefficients of Y ′.
It can provide reasonable accuracy while costing limited additional
memory and negligible additional computation.

Rather than directly comparing the trial filter’s Fourier transform
Ŷ ′ to the objective filter Ŷ , we use an optimization error metric
that compares their resulting propagation characteristics. We an-
alytically compute both filters’ resulting phase and amplitude for

plane-wave propagation along (θ = π/2) an infinite cylindrical
duct over unit distance (1m). For a reasonable upper bound on er-
ror, we assume a duct radius of 5mm. The optimization objective
is then the mean of absolute relative errors in the resulting phase
and amplitude for Ŷ ′ and Ŷ , computed over the frequency range of
60−8000Hz. The resulting feed-forward and feedback coefficients
for the optimized filter Y ′ are L (θ)×{495.9,−857.0, 362.8} and
{−1.35, 0.40} respectively. Note the implicit time-dependence
in the filter because of the L (θ) term which in turn depends
on the time-domain particle velocity v. The relative amplitude
error stays below 20% and phase errors stay below 0.5% from
350− 10, 000Hz, providing a reasonable approximation.

4.3 High-amplitude non-linearity

Brass instruments such as the trumpet or trombone can have very
high bore pressures, exceeding 10kPa on high notes. At such lev-
els, propagation in air is no longer perfectly linear. To first or-
der, high pressure amplitude changes the local speed of sound with
peaks propagating faster than troughs. This results in waveform
steepening and spectral enrichment at higher frequencies, resulting
in the characteristic timbre of brass instruments [Myers et al. 2012].
Digital waveguide simulation for such amplitude-dependent prop-
agation has been proposed in [Cooper and Abel 2010]. The effect
is quite straightforward to include in our simulations. The current
acoustic pressure deviation, p, is used at each cell to compute the
local speed of sound, cn = c (1 + βcp/P0), and used in place of
c in Eq. 3a. The atmospheric pressure is P0 = 101325Pa and
βc = 1.2 for air. Stability is ensured by clamping the computed
speed cn to 1.1c and satisfying the more restrictive CFL condition
∆t < ∆s/1.1

√
2c. Although this scheme reduces the accuracy of

the simulation to first-order in areas of high pressure variation, the
resulting improvement in sound quality is significant.

5 Excitation mechanisms

The non-linear physics of wind instrument excitation mechanisms
is quite complex [Fletcher and Rossing 1998]. We have integrated
a few of the well-known simplified models for single-reed (clar-
inet, saxophone), buzzing lips (trumpet, tuba) and air jet (recorder,
flute). This selection is certainly not exhaustive. Our motivation
is to consider non-linear excitation mechanisms covering a wide
range of physical phenomena and demonstrate that although they
are usually integrated with 1D virtual instrument models, they can
be successfully adapted to 2D resonator simulations. We start by
discussing some general issues faced while coupling these mecha-
nisms to our simulations and then discuss each in detail along with
our modifications. Physical parameter values used are listed in Ta-
ble 2.

5.1 Coupling with the resonator

Dynamical equations modeling the feedback between excitation
models and resonator can result in a simultaneous system of equa-
tions relating physical state of the excitation model to the wave field
in the resonator. Such global solutions preclude real-time computa-
tion. Adding a time-step of delay allows fast explicit schemes but
can result in unstable simulations, especially for large time steps.
In our case, the spatial resolution required by 2D modeling of res-
onator geometry enforces a time step of ∆t ≈ 8µs. This has the
fortunate consequence that adding a single-step delay to the discrete
formulation incurs negligible phase error. We observe robustly sta-
ble simulation in all our tests when adding such a delay, allowing
efficient and modular integration of dynamical excitation models.

Excitation models generate the volume flow entering into the instru-
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Figure 3: Excitation mechanisms.

ment from the mouth of the player, Ubore. Assuming an instrument-
dependent height in the third dimension, H , we divide the flow
uniformly between all excitation cells. Their particle velocity is
set as |vb| = Ubore/H∆sn, where n is the number of user-
drawn excitation cells. The direction of excitation velocities is user-
controlled and shared across all excitation cells to generate locally-
plane waves. The input to the excitation model such as bore pres-
sure or velocity is taken from a single cell specified by the user.

The output volume flow, Ubore, can have unwanted frequency con-
tent above 22kHz. Numerical propagation errors in this range
can couple with non-linear excitation in some cases, resulting in
noise in the output sound. We low-pass the output of all ex-
citation mechanisms above 22kHz using a second-order Butter-
worth filter which has nearly linear phase response in the audible
range. The feed-forward and feedback coefficients for the filter are
0.160863× {1, 2, 1} and {−0.590436, 0.233886} respectively.

5.2 Single reed

Many woodwind instruments such as the clarinet employ a sin-
gle reed, as shown in Figure 3a. The first vibrational mode fre-
quency for typical clarinet reeds is much higher than the playing
range. This allows reasonable approximation with a quasi-static
model in which reed inertia is ignored [Scavone and Smith 1996],
commonly employed in virtual instrument models [Smith 2010].
The reed’s elasticity is characterized by a single spring constant
per unit area, kr , measured experimentally [Dalmont et al. 2003].
The pressure difference in the player’s mouth and instrument bore,
∆p = pmouth − pbore displaces the reed to xr = ∆p/kr , con-
trolling flow into the instrument. The reed motion is constrained
as xr ∈ (0, hr) corresponding to its equilibrium open position and
maximum displacement that closes the air channel respectively. Air
flow from the player’s mouth is in the form of a thin jet through the
small reed opening that transfers its kinetic energy into the instru-
ment bore over a distance much shorter than acoustic wavelengths.
Thus incompressible flow is assumed and steady-state Bernoulli’s
equation yields the particle velocity

√
2 |∆p| /p. After some sim-

plification, this yields the volume flow into the bore,

Ubore = wjhr

(
1− ∆p

∆pmax

)√
2∆p

ρ

when ∆p > 0, Ubore = 0 otherwise. Here ∆pmax ≡ krhr and wj

is the effective width of the jet, its cross-section area being wjhr .

Our modifications: When the reed is nearly shut or open in
this model, we observe high-frequency oscillations audible as a
“grainy” sound. In the near-shut case, this results from the inability
of the simplified model to capture the complex aero-acoustics in a
thin channel [Fletcher and Rossing 1998]. We enforce smoothness
during closure by multiplying Ubore with a tight, decreasing shelf
function: 0.5 + 0.5 tanh (4 (−1 + (∆pmax −∆p) /w∆pmax)),

with w = 0.01. For the open position, spurious oscillations can
result because Ubore varies sensitively to changes in ∆p when
∆p ≈ 0. Substituting ∆p ← max{αr∆pmax, 0} in the above
expression with αr = 0.05 avoids such behavior while leaving the
main operating range near ∆p = ∆pmax/3 unaffected.

5.3 Buzzing lips

Instruments in the brass family such as trumpets and tubas are per-
formed by buzzing the player’s lips into a mouthpiece. Lip stiffness
and mouth pressure largely determine produced pitch. Compared
to a stiff reed fixed on one end, lips exhibit more degrees of free-
dom. Refer [Campbell 2004] for a review of brass excitation mod-
els. We employ the well-regarded two-dimensional model proposed
in [Adachi and Sato 1996] that produces elliptical lip motion as ob-
served in measurements [Copley and Strong 1996].

Referring to Figure 3b, the origin is located as shown. Air flows
from the player’s mouth at pressure pmouth, to between the lips
where pressure changes to plip, exiting into the bore at pressure
pbore. Lip motion is assumed symmetric about the horizontal (X)
axis. The primary dynamical variable is the position of the lip,
L = (lx, ly), obeying the following equation of motion,

ml
∂2L

∂t2
+

√
mlkl
Q

∂L

∂t
+kl (L− L0) = 2F∆p +2FBern +Fcoll.

(6)
The left hand side describes a damped simple harmonic oscillator
with rest position L0, and damping expressed via the quality factor,
Q. The spring constant kl and mass ml are derived from the user-
controlled lip resonance frequency fl as, ml = 1.5/

(
(2π)2 flip

)
and kl = 1.5fl. Denoting width of lip opening wc and lip thick-
ness lc, the normal force due to pressure difference across the
lips is F∆p = wc (pmouth − pbore) ẑ × (L− Ljoint). The pres-
sure between the lips, plip results in a transverse Bernoulli force
FBern = wc lc plipŷ. Finally, the lip collision force is given by
Fcoll = max {−3kly, 0} ŷ with quality factor reduced to Q = 0.5
on collision (ly < 0). Lip motion within the cup generates a vol-
ume flow of Ulip = ẑ · (wc (L− Ljoint)× dL/dt). Air passing
between the lips accounts for most of the volume flow, Uac = S ve,
where S = max {2wcly, 0} is the lip opening area and ve is parti-
cle velocity at the lip exit. The latter obeys the following relations
to pressure –

ρlc
∂ve
∂t

+
ρ

2
ve |ve|+ plip − pmouth = 0 (7)

−ρve |ve|
S

Scup

(
1− S

Scup

)
+ pbore − plip = 0 (8)

Equation 7 governs flow from the mouth to the end of the lip chan-
nel assuming laminar flow and conservation of energy. Equation
8 is derived by assuming perfect boundary separation of the air jet
from lips into the mouthpiece cup, conserving momentum, where
Scup is the area of bore entrance from cup.
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Meaning Value

wj
effective jet

width 1.2× 10−2

hr
max. reed

displacement 6.0× 10−4

kr reed stiffness 8.0× 106

(a) Single-reed [Dalmont et al. 2003]

Meaning Value
fl lip resonance frequency 60− 700Hz

ml lip mass 1.5/
(
(2π)2 flip

)
kl lip stiffness 1.5flip

wc lip opening width 7.0× 10−3

lc lip thickness 2.0× 10−3

Scup mouthpiece entrance area 2.3× 10−4

L0 lip resting position
1.0× 10−3,
−1.0× 10−4

(b) Buzzing lips [Adachi and Sato 1996]

Meaning Value
hf width of flue 1.0× 10−3

dl
flue exit to

labium distance 1.0× 10−2

yl
labium vertical

offset 3× 10−4

αj
jet speed

coefficient 0.4

(c) Air jet [de La Cuadra 2006]

Table 2: Physical parameters for excitation mechanisms. All values are in SI units.

Our modifications: To solve the simultaneous system of equations,
we introduce a single time-step delay by employing Eq. 8 and use
the existing values of ve and pbore to determine plip. This is used
to update the lip’s position L per Eq. 6. The particle velocity ve
is then updated via Eq. 7 to calculate Uac and Ulip as described
previously, yielding the net output flow, Ubore = Ulip + Uac.

Terms corresponding to particle velocity ve appear as Uac/S in the
original paper. We utilize particle velocity directly, which is better
behaved numerically when S ≈ 0. Further, we relax the assump-
tion of flow always going from the player’s mouth into the instru-
ment (ve > 0) by substituting ρv2

e → ρve |ve|, making sure that
the Bernoulli effect respects the direction of flow. We observed in
our experiments that this change improves robustness by ensuring
that momentary negative flow does not cause instability.

The original paper suggests using a value of Q = 3 for the lip
damping factor. While this produces convincing sustained tones,
we observe that better sounding transients are obtained in our sys-
tem by reducing the damping, setting Q = 8. With this lowered
damping, sustained lip oscillations are obtained even if the res-
onator is removed, corresponding to reality. This ensures that while
transitioning between musical notes during performance, the lips
keep oscillating and providing energy to the resonator.

5.4 Air jet

Flute and recorder excitation relies on the complex aero-acoustics
of an unstable air jet that is directed at a sharp labium (Figure 3c).
We use the jet drive model proposed in [Verge 1995], improved
in later work [de La Cuadra 2006] with better estimates of some
physical parameters. The vertical component of particle velocity
near the flue exit, vbore results in deflection of the jet as

η (t) =
vbore
vj

hf , (9)

where hf is the flue channel width. This captures the resonant cav-
ity’s influence on the jet. The particle velocity of the jet at the flue
exit is vj =

√
2pmouth/ρ where pmouth is pressure in the player

mouth. The deflection is advected along the jet, reaching the labium
edge after time delay τ = dl/αjvj , where dl is the distance to the
labium edge from the flue exit and αjvj is the effective jet propa-
gation speed. Depending on the deflection, and assuming analytic
expressions for the jet velocity profile across its cross-section char-
acterized by a width parameter bj , the jet contributes the following
flow into the bore,

Ubore = − bjvjH
∆s

tanh

(
η (t− τ)− yl

bj

)
, (10)

where yl is the vertical offset of the labium edge with respect to
the flue exit center, and H is instrument height. The propagation

delay in the feedback, τ , is typically around 1ms and is essential to
self-sustained oscillations in flue instruments.

Our modifications: The air jet model depends sensitively on the
vertical particle velocity in the bore, vbore. It is read from the
user-specified cell for excitation input as mentioned in Section 5.1.
This cell has to be selected carefully to be on or close to the em-
bouchure hole, for the instrument to function. Turbulent noise is
not accounted for by these models but can be quite audible in the
jet-driven family of instruments. We add a small white noise term
with amplitude 0.5m/s to vbore in Eq. 9. The noise is naturally
filtered through the instrument’s body, causing it to meld with the
musical note being played.

6 GPU Solver

In this section we provide details of the system and GPU imple-
mentation.

6.1 Implementation

Finite difference methods in 2D represent fields as two dimensional
arrays of values, with update operations requiring access to spatial
neighbors for each cell. Graphics processors are designed for fast,
parallel two-dimensional texture accesses, thus providing an excel-
lent fit for this data organization. The GPU architecture is tuned for
high throughput at visual update rates. Audio simulations operate
at orders of magnitude higher rates, making synchronization costs a
major hurdle. This limits some implementations to using only a sin-
gle Streaming Multiprocessor (SM) [Hsu and Pérez 2013], a frac-
tion of the computational power available on today’s graphics cards
that have more than 10 SMs. We utilize programmable shaders
written in the GLSL language and observe real-time performance at
update rates of 128, 000Hz by utilizing all available SMs. Shaders
have the additional advantage of allowing direct rendering of visu-
alizations from simulation data resident in GPU memory. Although
some of the details of our technique are specific to GPUs, we expect
it would be easy to adapt to any parallel architecture.

6.2 Data organization

The entire simulation data is stored in a four-channel (RGBA), 32-
bit floating point global texture. It is bound to the frame buffer only
once, avoiding costly bind operations at every time-step. The tex-
ture is divided into four quadrants that store the field for the next,
current, and two prior time-steps. The global texture contains addi-
tional space for maintaining the state of the excitation mechanism
and relevant data as applicable, such as the delay line for the air
jet excitation model in Section 5.4. Finally, a single row in the
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global texture contains synthesized audio samples. FDTD typically
requires data only for one prior time-step. However, second-order
IIR filtering involved in modeling visco-thermal wall losses (Sec-
tion 4.2) necessitates storing fields for two prior steps.

Computation proceeds for each time-step by rendering to the “next”
quadrant while reading from the other three, followed by a mem-
ory barrier for synchronization and updating pointers circularly so
that “next” becomes “current” and so on. Note that this scheme
avoids read and write to the same pixel, which can cause perfor-
mance penalties on GPUs. Figure 4 shows a schematic of simula-
tion data organization in the texture. Rather than storing pressure
and velocity fields as separate textures, we pack the data into the
texture’s four color channels. This greatly improves data locality
and cache performance. For each cell, we store the pressure at the
cell center p with the velocity vx to it right and vy above it on the
staggered velocity grid. These values take three of the four texture
channels per cell. The fourth channel is utilized for affecting the
dynamics of the cell’s field, discussed next.

6.3 Boundary handling

The fourth available channel in each pixel is used to store the cell’s
dynamical state which may be modified by user interaction. A cell
can be in one of four states: excitation, wall, air and dynamic. The
behavior of each of these kinds of cells is completely character-
ized by the dynamic geometry field, β (x, t), used in Eq. 4. This
field is sampled at cell centers. Excitation cells have β = 0 with
the particle velocity vb provided by the currently chosen excitation
mechanism, as discussed in Section 5.1. Wall cells use the same
value of β = 0 but with vb provided by the lossy boundary condi-
tion as described in Section 4.2.2. Air cells are specified by β = 1.
When a user changes a cell between air and wall, the value of β
is changed within a single time-step. This generates an impulsive
sound providing a useful interaction cue for geometry creation.

For geometry that needs to change smoothly over time, such as tone
holes, the user draws the cells as dynamic. Dynamic cells can be
grouped so they utilize a single value of β that varies smoothly over
time between 0 and 1. We set this transition interval to 10ms over
which β changes linearly. Each dynamic cell thus stores the ID of
its group as its current state. Based on the ID, the value of β is
looked up for the current cell at each time-step. Grouping allows
easy modeling of dynamic geometric elements that change together,
such as changing multiple valve states, or a mute being introduced.
Moving geometry can also be approximated. One can place cells
with different group IDs in a row and stagger their transitions, such
as the slide whistle example discussed in Section 7.

6.4 Simulation update

At each time-step, pressure at each cell center is updated via Eq. 4a
using the velocities stored with the current cell and its neighbors.
The velocity update per Eq. 4b poses a problem, requiring updated
pressures for the neighbors above and to the right. The standard
approach is to update the global pressure field and then use it to
update the global velocity field. This introduces a costly synchro-
nization barrier between pressure and velocity updates. Further,
one performs a scan on the entire field data twice, increasing mem-
ory bandwidth requirements. Our scheme avoids these issues and is
much faster in practice: the current cell computes updated pressures
for the required neighbors as temporary values, which are used to
update its particle velocity. The required data for a cell is shown in
dark colors in Figure 4, with the containing pixels marked by dotted
lines. The resulting access pattern is still quite local to the cell.

An additional issue is that the value of the dynamic geometry field,
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Figure 4: Data organization. Pressure and velocity (p, vx, vy) are packed
into three color channels of a 32-bit floating point RGBA texture. Pixels are
shown as dotted squares. History for two prior time-steps is stored similarly,
one of which is shown in gray. The fourth channel (not shown) is used to
store interactive information, such as parameters for dynamic geometry.

β, is defined at cell centers and velocity updates require its value
on cell edges. We tie-break between the cells adjoining the edge by
taking the minimum value of β for the two cells sharing the edge.
This ensures that boundary conditions are properly enforced at the
edges of a wall or excitation cell. Updated pressure from the user-
specified listener cell is appended to the audio buffer. To reduce
read-back bandwidth requirements, only every other audio sample
is stored in the audio buffer, which has a size of 2048 samples.
When the buffer is full, the data is read back from the GPU. The
resulting audio at a sampling rate of 64kHz is sent directly to the
audio device for playback.

7 Results

Our system runs in real-time on an NVIDIA GeForce GTX Titan
Black graphics card at an update rate of 128,000Hz. Please refer
to the accompanying video which demonstrates all the effects dis-
cussed is this section. The simulation cell size was 3.83mm in a
rectangular domain of dimensions 0.84m×.42m (220 × 110 pix-
els). The cell size and domain dimensions allow real-time execu-
tion on a region large enough to contain typical wind instruments.
When designing instruments with curved geometry, the stair-cased
approximation results in numerical scattering error. However, it is
limited because all audible wavelengths are significantly larger than
the cell size. The pitch of the instrument is nevertheless affected
and in our informal tests, reasonable convergence is achieved in the
range of 1mm cell size. With advancing GPU computational power,
one can expect such simulations to be real-time in the near future.

7.1 Virtual Instruments

We have designed simplified 2D analogues of real instruments with
our system, as shown in Figure 1.

A Simple Trumpet tuned to a chromatic scale is shown in Fig-
ure 1(a). Our system lets the user create arbitrary geometric ar-
rangements, such as the valve system in this case. A key was as-
sociated to control the valves in a coordinated way to change the
effective sound path. There is little work on modeling such dy-
namic brass valve systems [Harrison and Chick 2014]. The flaring
bell makes the sound more mellow, qualitatively similar to reality.
High amplitude non-linearity (Section 4.3) does yield the expected
bright, rich sound of brass instruments in our simulations. With-
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Figure 5: (a) A bugle call on a trumpet-like instrument produces natural-sounding transients between notes, seen in the spectrogram at the bottom. (b) A model
akin to a slide whistle, with dynamically-changing length, produces artifact-free audio with continuously-varying pitch.

out such modeling the instruments lack this characteristic timbre.
We also clearly observe elliptical lip motion in our simulations, as
expected from the brass excitation model (Section 5.3).

A 2D clarinet tuned to a pentatonic scale is depicted in Figure 1(b).
When the register key is opened (bottom), the pitch shifts an octave
higher and a large fraction of the sound is observed to radiate from
the key. As shown in the accompanying demo, the model clearly
exhibits odd harmonics. These behaviors are qualitatively as ex-
pected [Fletcher and Rossing 1998].

A simple diatonic flute is shown in Figure 1(c). The small em-
bouchure hole on the left top of the instrument is sufficient to turn
it into a resonator open at both ends, clearly exhibiting a dipole ra-
diation pattern and even harmonics. These are heard as distinctly
flute-like sounds. We also interfaced a digital wind controller to
provide breath pressure and tone hole state, resulting in a signifi-
cantly more nuanced performance.

7.2 Dynamic geometry

Our technique produces smooth, natural-sounding transients be-
tween musical notes, enabled by our time-varying PML formula-
tion. An example is shown in Figure 5(a) of a bugle call, with the
continuously varying pitch clearly visible in the spectrogram. We
use a value for 10ms as the transition time for all dynamic geome-
try. As a stress test, in Figure 5(b) we show a model akin to a slide
whistle. The length varies smoothly causing continuous change in
the pitch as seen in the spectrogram at the bottom.

7.3 Experimental designs

Our system enables intuitive experimentation with virtual instru-
ments by direct shape design. Figure 6(a) shows a brass instrument
that supports multiple simultaneous paths which would be difficult
to create in reality. Very complex valve systems can be created, as
shown in Figure 6(b), to make a maze-like instrument which routes
sounds through a large number of possible paths with lengths tuned
to musical notes. Figure 6(c) depicts a hybrid instrument contain-
ing both a valve and a tone hole. Please consult the supplemental
video to listen to their sounds.

7.4 Comparisons

We have performed comparisons of our simulations with recorded
musical tones from a B[ trumpet and a B[ clarinet. The players
were presented with videos of our virtual instruments and tried to

best reproduce the music. For this purpose, they were instructed not
to re-articulate notes of the melody or to adjust their embouchure.
For sustained (held) note comparisons, we also show results from
the Synthesis Tool Kit (STK), a well-regarded implementation of
real-time digital waveguides. We tuned the parameters for the
STKClarinet object as: {reed stiffness = 80, noise level = 32, vi-
brato = 0, aftertouch = 128} and for the STKBrass as: {amplitude
= 0.5, lip tension = 64, slide length = 32, mod frequency = 8,
mod wheel = 4, aftertouch = 128}. The tests show that the musical
timbre of our simulations is believably similar to real instruments,
and our simulations sound less synthetic than the STK.

We also performed comparisons with recordings for simple perfor-
mances on the clarinet and trumpet models. While for the clarinet
the player was able to match notes, the notes do not quite match on
the trumpet. Nevertheless, the results do show that the perceived
transients between notes and overall instrument timbre in our sim-
ulations sound natural, similar to recordings. The brass sounds are
substantially brighter in our simulations, perhaps because the lis-
tener was placed close-by in front of the bell during simulation,
while the live recording was done to the side and further away.

8 Conclusion and future directions

We have presented the first technique for real-time wave simulation
of 2D wind instruments for all audible frequencies. Our interactive
system promotes experimentation with novel virtual instrument de-
signs. The user can directly manipulate shape to instantly affect
synthesized sound, providing a more natural medium for experi-
menting with virtual instruments than prior 1D techniques requiring
digital signal processing expertise. Generated sounds are naturally
constrained to be physically plausible. Field and excitation visual-
izations provide insight into instrument operation. In future work,
we wish to undertake more detailed investigation into natural inter-
faces to these virtual instruments, both for design and performance.
Our technique could also form the basis for accurate, interactive 3D
simulations in the future. A unified excitation model that subsumes
the various separate models for reed, lips and air jet would also be
a fruitful direction, to let the user explore a wider variety of virtual
instrument timbres.
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Figure 6: Virtual instrument experiments. (a) A trumpet-like instrument with a valve system supporting multiple simultaneously active sound paths (b) A
sound maze controlled by a complex valve system (c) A hybrid instrument containing both a valve and a tone hole.
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