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Topological phases in frustrated quantum spin systems have fascinated researchers for decades. One of the
earliest proposals for such a phase was the chiral spin liquid put forward by Kalmeyer and Laughlin in 1987 as
the bosonic analogue of the fractional quantum Hall effect. Elusive for many years, recent times have finally
seen a number of models that realize this phase. However, these models are somewhat artificial and unlikely to
be found in realistic materials. Here, we take an important step towards the goal of finding a chiral spin liquid in
nature by examining a physically motivated model for a Mott insulator on the Kagome lattice with broken time-
reversal symmetry. We first provide a theoretical justification for the emergent chiral spin liquid phase in terms of
a network model perspective. We then present an unambiguous numerical identification and characterization of
the universal topological properties of the phase, including ground state degeneracy, edge physics, and anyonic
bulk excitations, by using a variety of powerful numerical probes, including the entanglement spectrum and
modular transformations.

I. INTRODUCTION

The low-energy properties of frustrated quantum spin sys-
tems – loosely speaking, systems of interacting spins in which
the local energetic constraints cannot all be simultaneously
satisfied – have fascinated researchers for many decades.
These systems arise in the description of the spin degrees of
freedom of Mott insulators, i.e. insulating states where the
fluctuations of the charge degrees of freedom have been sup-
pressed by interactions while the spin degrees of freedom re-
main free to form non-trivial quantum phases. Such states
are found in many materials, but can also be artificially made
in the lab using cold atomic gases [1, 2]. In most situations,
the spins collectively order into some pattern that can be de-
scribed through a local order parameter. A more exciting pos-
sibility, coined spin liquid phase [3], is that the spins do not
order into such a local pattern; instead, a more exotic state
governed by strong quantum fluctuations emerges.

In a famous paper in 1987, Kalmeyer and Laughlin [4] hy-
pothesized a scenario where a chiral topological spin liquid
(CSL) is formed. In this elusive phase of matter, the spins
form a collective state that can only be described in terms of
emergent, non-local topological properties. So far, this be-
havior has experimentally only been observed in fractional
Quantum Hall systems [5, 6]. Such topologically ordered
liquids [7] are characterized through a number of universal
properties ranging from topologically protected gapless edge
states [8, 9] and a ground state degeneracies that depend on
the topology of the sample [7] to exotic excitations that carry
fractional charge and satisfy neither fermionic nor bosonic ex-
change statistics [10]. These anyonic particles [11] can serve
as key ingredients in topological quantum computers [12],
making them relevant also for technological applications.

In the specific case of the chiral spin liquid as proposed
by Kalmeyer and Laughlin, the universal properties of the
ground state are captured by the bosonic ν = 1/2 Laughlin
state [13]. Probably the most striking property of this state
are its semionic bulk excitations: When exchanging two such

FIG. 1. Left panel: Kagome lattice considered in this manuscript,
where grey shading indicates the elementary triangles. Arrows on
the bonds indicate the direction induced by the magnetic flux Φ en-
closed in each triangle. Right panel: Visualization of the network-
model perspective on the chiral spin liquid phase arising from Hamil-
tonian (2). Consistent with a chiral topological phase, a collective
edge state encircles the whole systems. In this particular model, ad-
ditional closed edges encircle each hexagon.

semions, the wave function describing the collective state of
the system acquires a complex phase i, in stark contrast to
conventional bosons or fermions, where the factor is 1 and
−1, respectively. Equally striking is the emergence of a topo-
logically protected chiral edge state with a universal spectrum
at the boundary of the sample. This leads to unidirectional
transport along the boundary of the sample, while the bulk re-
mains insulating. The correspondence between edge and bulk
physics has been used as a powerful experimental probe into
the physics of fractional quantum Hall systems. Finally, the
ground state degeneracy of this state depends on the topology
of the underlying manifold; for example, when placed on a
torus, two ground states are found.

Over the last decades, much research has been devoted to
finding realistic spin Hamiltonians that have such a chiral
topological phase as their ground state, but to this date, the
only known examples are Hamiltonians that are unlikely to be
relevant for any material [14–19]. Here, we study a simple
spin model on the Kagome lattice (left panel of Fig. 1) that is
derived from the Hubbard model, which is the minimal rele-
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vant model for itinerant interacting electrons, in the presence
of time-reversal symmetry breaking. The Hubbard Hamilto-
nian reads

H =−
∑
〈i,j〉,σ

(tijc
†
iσcjσ + t∗ijc

†
jσciσ)

+
hz
2

∑
i

(ni↑ − ni↓) + U
∑
i

ni↑ni↓.
(1)

Here, a magnetic field induces both a Zeeman term hz as
well as a flux Φ through each elementary triangle of the lat-
tice, such that for i, j, k clockwise around a triangle we have
tijtjktki = t3 exp(iΦ), as indicated by the arrows in the left
panel of Fig. 1. When Φ 6= 0 or hz 6= 0, time-reversal symme-
try is broken. When considered at half-filling, 〈n〉 = 1, and
in the limit of large repulsive interaction strength U , a Mott
insulating state is formed and an effective spin model can be
derived from perturbation theory in t/U [20].

Here, we will demonstrate conclusively that in a very wide
parameter regime where a large enough magnetic flux Φ
breaks time-reversal symmetry, the ground state of the effec-
tive spin model – and hence also the Hubbard model in an ap-
propriate parameter regime – is a chiral topological spin liquid
with emergent anyonic excitations.

II. MODEL

Starting from from the Hubbard model of Eqn. (1), a t/U
expansion at half filling gives the following spin Hamilto-
nian [20]:

H = JHB

∑
〈i,j〉

~Si · ~Sj + hz
∑
i

Szi

+ Jχ
∑

i,j,k∈4

~Si · (~Sj × ~Sk) + . . . ,
(2)

where for the three-spin term, the i, j, k are ordered clockwise
around the elementary triangles of the Kagome lattice. The
term χijk = ~Si · (~Sj × ~Sk), referred to as the scalar spin
chirality [21, 22], breaks time-reversal symmetry and parity,
but preserves SU(2) symmetry. To lowest order, the coupling
parameters depend on the parameters of the Hubbard model
as JHB ∼ t2/U and Jχ ∼ Φt3/U2, ignoring further sub-
leading terms. We choose to parametrize the model using
JHB = J cos θ and Jχ = J sin θ and set J = 1.

In the absence of time-reversal symmetry breaking (θ = 0
and hz = 0), this is the Kagome lattice nearest-neighbor
Heisenberg antiferromagnet, which has become a paradig-
matic model for frustrated magnetism [23–25] with possible
spin liquid ground state and relevance to the description of
materials such as Herbertsmithite and Volborthite [26, 27].
Recent numerical work [28–30] has indicated that this model
may realize a time-reversal symmetric Z2 topological spin liq-
uid, while other numerical results give evidence for a gapless
spin liquid phase [31, 32].

Here, we explore the ground state phase diagram of (2)
away from the time-reversal invariant Heisenberg point θ = 0.

= =

↑

↑

↑

= = !

Two-channel Kondo physics

FIG. 2. (color online) Top: Sketch of a puddle of topological phase
replacing each triangle of three spins. Bottom: Behavior of two
corner-sharing triangular puddles of the topological phase.

In particular, we find an extended chiral spin liquid phase
around the point θ = π/2 and hz = 0, where the Hamilto-
nian reduces to the three-spin term,

HCSL =
∑

i,j,k∈4
χijk. (3)

Our numerical results indicate that the CSL is in fact sta-
ble almost up to the Heisenberg point, namely for all θ ≥
0.05π. We also establish an extended range of stability
against other perturbations, including (i) the Zeeman field,
(ii) an easy-axis spin anisotropy in the Heisenberg term,
(iii) a next-nearest neighbor Heisenberg term, and (iv) the
Dzyaloshinsky-Moriya (DM) interaction induced by Rashba-
type spin-orbit coupling for the fermions. While the aim of
this paper is not to examine the nature of the transitions out of
the chiral spin liquid phase, e.g. the expected phase transition
to the time-reversal symmetric spin liquid of the Heisenberg
antiferromagnet, these questions should be addressed in future
work.

In the following, we will use two complementary routes to
show that the ground state of Eq. (3) is indeed a chiral spin
liquid. First, we argue for this from a powerful perspective
rooted in the physics of network models of edge states akin to
the Chalker-Coddington network model for the integer quan-
tum Hall transition [33]. We will then turn to powerful numer-
ical tools to unambiguously identify the universal properties
of the chiral spin liquid.

The key step of our first argument is to view each triangle
of spins as the seed of a chiral topological phase, a puddle
encircled by an edge state, as illustrated in the top panel of
Fig. 2. The natural candidate for the phase filling the puddle
is the bosonic ν = 1/2 Laughlin state [34], which is the sim-
plest bosonic quantum Hall state known to possess the SU(2)
symmetry required by our construction. It is also the state
envisioned by Kalmeyer and Laughlin [4]. Forming a lat-
tice out of the elementary triangles, we should then consider
a situation with many individual puddles of this topological
phase. To see what collective state is formed, we have to un-
derstand how two corner-sharing triangles of the Kagome lat-
tice are joined. This situation of edges meeting at the corner
spin shared by two triangles is an incarnation of two-channel
Kondo physics [35, 36], for which it is well-known that the
edges will heal [37, 38] if the coupling to the center spin is
symmetric, as illustrated in the lower panel of Fig. 2 and dis-
cussed in more detail in the appendix. Thus, the corner spin
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FIG. 3. (a) Exact diagonalization excitation energies on small tori
of type XT4-0 up to length 5. (b) Energy gap on a thin, long strip of
width 4 sites; dashed lines indicate the extrapolation toN →∞. The
two different branches denote systems with an even (black) and odd
(blue) number of unit cells. (c) Entanglement entropy at the center of
the same system as (b) on a semi-logarithmic scale for even (black)
and odd (blue) number of unit cells; dashed lines indicate a fit. Both
fits are consistent with c = 1. In all panels, N is the total number of
lattice sites.

has merged the two triangles to form a larger puddle encircled
by a single edge state, i.e. to form a larger region of the topo-
logical phase. We can repeat the above step (Fig. 2) for all
pairs of corner-sharing triangles of the Kagome lattice. The
system then forms one macroscopic, extended region of a sin-
gle topological phase with one edge state encircling its outer
boundary, as illustrated in the right panel of Fig. 1, and with
closed loops encircling the interior hexagons of the Kagome
lattice. We thus obtain a direct realization of the Kalmeyer-
Laughlin state for a chiral topological spin liquid phase.

III. NUMERICAL IDENTIFICATION OF THE CSL

We now turn to a numerical identification of the CSL at the
chiral point θ = π/2 of Hamiltonian (2) and in its vicinity by
studying the three hallmark properties of a chiral topological
phase: the presence of (i) a gapped spectrum with a topolog-
ical degeneracy on the torus, (ii) a gapless edge state with a
universal spectrum of low-energy excitations, and (iii) any-
onic bulk excitations. On a technical level, we resort to ex-
act diagonalization and DMRG calculations to extract energy
spectra, entanglement spectra, and modular matrices for vari-
ous system configurations. To label their diameter and bound-
ary condition, we will use the notation introduced in Ref. 28;
see also the Methods section.

We first demonstrate that the system has a finite gap in the
thermodynamic limit. To this end, we consider a sequence of
XT4-0 tori of length up to 5 unit cells, shown in the left panel
of Fig. 3. For systems with N ≥ 18 sites, there clearly is
a low-lying excitation, which can be attributed to a two-fold
near-degeneracy of the ground state. All excitations above
these near-degenerate ground states are separated by a spec-
tral gap of roughly ∆ ≈ 0.05. Further consistent evidence for
the gap can be obtained from exact diagonalization of a 36-
site XT6-3 cluster and on XT4-2 clusters of size up to 30 sites

(not shown). As a further consistency check, we can extract
the gap for long, thin cylinders using DMRG. Performing this
for cylinders of type XC4-0 with up to 100 sites, we confirm
that the triplet gap does not depend significantly on the length
of the system, ruling out the presence of gapless modes prop-
agating along the cylinder.

We conclude from this that the gap remains finite in the
thermodynamic limit. The qualitative agreement between the
spectral gap extracted for different system sizes and bound-
ary conditions is also a strong indication that the correlation
length of the system is short compared to the system sizes
we are able to study numerically. To further support this,
we have calculated the spin-spin and dimer-dimer correlation
functions as well as an upper bound on the asymptotic correla-
tion length on infinite cylinders. All of these indicate a corre-
lation length on the order of one unit cell. Taken together, this
gives strong evidence that the properties observed on small
tori and quasi-one-dimensional systems are representative of
the two-dimensional phase in the thermodynamic limit.

The observed two-fold near-degeneracy is consistent with
what is expected for the CSL, namely a 2g-fold ground state
degeneracy on a manifold of genus g, which will be split by
an amount that is exponentially small in the system size. We
also find two states |Ψa〉with very similar energy densities for
infinite cylinders of type XC8-4 and XC12-6. As explained in
the Methods section, the two states can be identified by their
well-defined topological flux a through the cylinder, which for
the ν = 1/2 Laughlin state can be the identity (a = 1) or a
semion (a = s).

Edge physics
Placing a chiral topological phase on a cylinder or disk, a
gapless chiral edge state emerges with a universal spectrum
governed by a conformal field theory [8, 9]. To observe this,
we consider the spectral gap of the system when placed on a
thin, long strip with a fixed width of 4 sites. In stark contrast
with the case of a thin long cylinder, the spin gap vanishes as
a/L+b/L2, where a and b are parameters of the fit (Fig. 3(b)).
This is a hallmark signature of a gapless edge mode. We can
further pinpoint the universality class of the edge theory by
extracting its central charge c from the entanglement entropy.
As shown in the Fig. 3(c), we find good agreement with a
value of c = 1, which is precisely that expected for the chiral
SU(2)1 Wess-Zumino-Witten conformal field theory describ-
ing the edge of a ν = 1/2 Laughlin state.

As an even more refined probe, we use the entanglement
spectrum, which reflects the same universal properties as the
physical edge spectrum [39–43]. For each of the two ground
states |Ψa〉 obtained for an infinite cylinder, the entanglement
spectrum, see Fig. 4, is consistent with the corresponding sec-
tor of the chiral SU(2)1 Wess-Zumino-Witten conformal field
theory: The entanglement spectrum of |Ψ1〉 displays precisely
the sequence of degeneracies of the tower of Kac-Moody de-
scendants of the identity primary field (1-1-2-3-5-...). These
are reproduced by counting the number of low-lying close-by
states in each tower grouped by momentum and spin quantum
numbers. Similarly, the entanglement spectrum of |Ψs〉 dis-
plays the degeneracies of the spin-1/2 primary field and its de-
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FIG. 4. Entanglement spectrum of the reduced density matrix ρa for
one half of an infinite cylinder obtained for both ground states |Ψ1〉
(left) and |Ψs〉 (right panel). The entanglement energies shown on
the vertical axis, up to the global shift and rescaling, are given by
Ea,σ = − log(pa,σ), where pa,σ are the eigenvalues of ρa. The
horizontal axis shows the momentum in the transverse direction of
the corresponding eigenvectors of ρa. Each tower is identified by its
Sz quantum number as indicated by the blue label; we have offset the
momentum of different towers by 2π to improve clarity. The cylinder
used here is XC12-6.

scendants (also 1-1-2-3-5-...). We note that in the identity sec-
tor, all towers carry integer representations of the spin quan-
tum number, whereas in the semion sector they carry half-
integer representations. In both ground states, the levels can
be grouped into SU(2) multipletts.

Emergent anyons
The bulk of the chiral spin liquid phase has anyonic excita-
tions, referred to as semions. The topological properties of
these quasiparticles can be characterized through their modu-
lar T and S matrices [12]. The T matrix contains the central
charge c and the self-statistics of the anyonic particles, i.e. the
phase that is obtained when two particles of the same kind are
exchanged. The S matrix contains the mutual statistics of the
anyonic quasiparticles, their quantum dimensions (counting
the internal degrees of freedom of each particle), and the total
quantum dimension of the phase. More detailed definitions of
these quantities are given in the Methods summary.

For a fixed number of quasiparticles, only a finite number
of possible S and T matrices exist [44, 45]. For two types of
quasiparticles (as in the case of the ν = 1/2 bosonic Laugh-
lin state) only two choices are possible [44]. Therefore, by
numerically calculating the S and T matrices and comparing
them against the two possibilities, we have fully identified the
universal properties of the topological phase. For the ν = 1/2
Laughlin state, the modular matrices are

T = e−i
2π
24

[
1 0

0 i

]
S =

1√
2

[
1 1

1 −1

]
. (4)

For an XT8-4 torus of 48 sites at θ = 0.05π, where the
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FIG. 5. Singlet and triplet gaps as a function of θ for an infinite XC8-
4 cylinder. The triplet gap is a lower bound on the critical magnetic
field hc; hence, the shaded region in the middle panel indicates the
minimal stability of the phase in the θ-hz phase diagram.

finite-size corrections to this quantity are minimal, we obtain

T = e−i
2π
24 0.988

[
1 0

0 i · e−i0.0021π

]
, (5)

S =
1√
2

[
0.996 0.995

0.996 −0.994e−i0.0019π

]
.

This is in very good agreement with the T and S matrices for
the ν = 1/2 Laughlin state given in Eqn. (4) and provides the
strongest confirmation of the nature of the bulk topological
phase. The correct normalization of the first row or column of
the S matrix indicates that we have indeed obtained a full set
of ground states. We can also read off the total quantum di-
mension D = 1/S11 =

√
2/0.996 of the phase, which deter-

mines the topological entanglement entropy [46, 47] that has
been widely used to identify topological phases. Furthermore,
the central charge c = 0.988 is in excellent agreement with the
prediction and the value extracted from the edge above.

Stability of the chiral spin liquid
To establish the region in which the phase persists as θ is tuned
in the range θ ∈ [0, π/2], we first consider the fidelity [48]
F (θ) = 〈Ψa(θ − ε)|Ψa(θ + ε)〉 shown in the bottom panel
of Fig. 5 (for the precise definition of this quantity for infinite
systems, see the appendix). The fidelity remains near unity
as θ is tuned away from the chiral point θ = π/2, until it
suddenly drops for θ < 0.05π, indicating a transition. Fur-
ther support for the extended stability of the CSL is found in
various other characteristics, including the spectral gap, the
modular matrices and the entanglement spectrum. This is re-
markable as it indicates that tuning away from the Heisen-
berg model (θ = 0) with a small critical chiral coupling of
(Jχ/JHB)crit ≤ tan(0.05π) ≈ 0.16 is sufficient to drive the
system into the chiral phase.
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In experimental scenarios, a Zeeman magnetic field hz is
likely to be generated along with the orbital magnetic field that
induces the three-spin chiral term. The relative strength of the
orbital magnetic field and the Zeeman field is determined by
the g-factor and the ratio t/U . The energy gap in the triplet
sector gives a lower bound on the critical field strength hc up
to which the CSL phase is stable. The values for the triplet
gap shown in the middle panel of Fig. 5 remain large all the
way from the fully chiral point (θ = π/2) to the transition out
of the CSL towards the Heisenberg point (θ = 0).

In the top panel of Fig. 5, we also show the singlet gap, i.e.
the gap to the lowest excitation in the Sz = 0 sector. As op-
posed to the triplet gap, which appears to remain large across
the transition, the singlet gap decreases as the transition out of
the CSL is approached. Note that the gaps may be rounded off
at the transition by effects due to either the finite diameter or
the finite bond dimension of the matrix-product state ansatz.
We point out, however, that a closing only of the singlet and
not the triplet gap is consistent with the scenario for the tran-
sition from the chiral spin liquid into a doubled semion phase
(twisted Z2 topological phase) studied in Ref. 49.

IV. OUTLOOK

We have taken an important step towards finding realistic
models for a chiral spin liquid in a frustrated spin system. We
believe that this will nucleate new research efforts both by the-
orists and experimentalists. From a theoretical point of view,
studying the transition from the chiral spin liquid to the pu-
tative time-reversal symmetric spin liquid in the Heisenberg
model will provide the unique opportunity to study a topo-
logical phase transition in a realistic model, and may pro-
vide invaluable insights into the physics of frustrated spins
on the Kagome lattice. For experimentalists, our work will
provide a guide in searching for realizations of bosonic frac-
tional Quantum Hall physics in the lab, be it in materials that
have Kagome lattice structure and form Mott insulators, or by
engineering such systems in cold atomic gases.

During completion of this work, we became aware of related work
in Refs. 50 and 51.
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Appendix A: Method summary

We label the system sizes according to the scheme intro-
duced in Ref. 28. For cylinders, the labels are XCm-n; here,
X indicates the orientation of the cylinder, m is the diame-
ter of the cylinder in measured sites, and n is the shift of the
boundary condition when wrapping the place to a cylinder.
Note that cylinders of type XC(2n)-n are spanned by the ba-
sis vectors of the triangular lattice. For tori, we use the labels
XTm-n, where m and n have the same meaning as above.
Two examples are shown in Fig. 6.

We numerically study finite systems using exact diagonal-
ization as well as the density-matrix renormalization group
(DMRG) method [53, 54]. While our exact diagonalization
is limited to 36 sites, DMRG allows us to study systems in
a limit of long, thin cylinders and strips. Up to M = 4000
states are used in the finite-size DMRG calculations. Finite-
size DMRG calculations allow us to extract the spin gap as
well as the entanglement entropies for continguous blocks of
sites, which we use to extract the central charge of the system
by fitting to the well-known formulas of Ref. 55.

Furthermore, we use infinite-size DMRG with a translation-
ally invariant matrix product state ansatz of up to M = 4096
states. This allows us to obtain a complete set of ground states
with well-defined anyonic flux, as first proposed in Ref. 56.
Here, the use of an infinite cylinder (as opposed to a finite
cylinder with boundaries, where there is no ground state de-
generacy) is key to obtain one ground state for each anyonic
charge, analogous to the torus. In this basis, we can extract
the entanglement spectrum as well as the T and S matri-
ces. Ref. 56 details the non-trivial step of resolving the en-
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tanglement spectrum by transverse momentum. We here only
describe how to obtain the T and S matrices and defer the
discussion of how we extract the fidelity and gaps to the ap-
pendix.

The T and S matrices are defined through a world-line dia-
gram for anyonic particles as:

Tab = e−i 2π
24 cδabdaΘa Θa =

a a

Sab =
1
D

a b

Here, D is the total quantum dimension of the phase, and da
is the quantum dimension of a quasi-particle of topological
charge a. These matrices can be related to generators of the
modular group on the torus, and fulfill the conditions (ST )3 =
S2 and S4 = 1. The T -matrix is proportional to the twist
factors Θa, which contain the self-statistics of the excitations,
i.e. the phase that is obtained when two particles of the same
kind are exchanged once; we have Θ1 = 1. The T matrix
has a prefactor e−i

2π
24 c = T11, where c is the central charge of

the anyon model. The S-matrix contains the mutual statistics,
i.e. the statistics obtained when particles of general types a, b
are braided around each other. The first row of the S matrix
contains the quantum dimensions da of the quasiparticles.

To numerically obtain these matrices, first a quasi-
orthonormal basis {|Ψtor

a 〉} on a torus of 3 × L × L sites
with well-defined topological flux a through the torus and a
π/3 rotational symmetry must be obtained. As pointed out in
Ref. 57, the modular matrices T and S of the emergent anyon
model can then be extracted from the matrix elements of a π/3
rotation Rπ/3 by using the relation

〈Ψtor
a |Rπ/3|Ψtor

b 〉 = (DTS−1D†)ab. (A1)

Here, D is a diagonal matrix containing only complex phases;
it accounts for the freedom in choosing the phases of the vec-
tors |Ψtor

a 〉. In Ref. 56, it was shown (i) how to build the basis
|Ψtor
a 〉 from an MPS representation for |Ψcyl

a 〉 and (ii) how to
extract both T and S from 〈Ψtor

a |Rπ/3|Ψtor
b 〉. Note that the

matrix T is referred to as U in the reference.

Appendix B: Method details

Finite-size DMRG
To study the finite cylinders and strips discussed in the main
text that are beyond the system size amenable to exact diag-
onalization, we use the density-matrix renormalization group
(DMRG) method [53, 54, 58, 59]. While for many years
limited to one-dimensional systems by its exponential scaling
in the width of quasi-one-dimensional systems, recent years
have seen a surge in applications of large-scale DMRG calcu-
lations to 2d systems [60]. A key point is that while it scales
exponentially in the width of the system, the scaling is poly-
nomial in the length, allowing it to go much beyond exact

diagonalization if boundary conditions and the mapping to a
one-dimensional system are chosen appropriately. DMRG is
based on a variational ansatz, matrix-product states [59], that
can be systematically improved by increasing the number M
of states kept, where the computational cost grows asO(M3).
For the calculations shown in Fig. 3 of the main text, we use
up to M = 3600 states.

From DMRG, we can easily extract the entanglement en-
tropy for a contiguous block of sites at the end of an open
system. This allows us to calculate the central charge of a
gapless quasi-one-dimensional system by performing a fit to
the well-known results of Refs. 55 and 61, which for the en-
tanglement entropy of a contiguous block of n = N/2 sites in
an open 1d system of N sites has

S(N) = S0 +
c

6
log

(
2N

π

)
. (B1)

Infinite-size DMRG
As discussed in the Methods summary, we use infinite-
size DMRG to efficiently obtain ground states, parametrized
through translationally invariant matrix-product states, on in-
finite cylinders up to XC12-6 and with up toM = 4096 states,
exploiting a U(1) symmetry of the system. The calculation of
the entanglement spectrum as well as the modular matrices
has been explained in the Methods summary; below, we pro-
vide additional detail on numerical parameter used. We also
discuss how to extract the fidelity and the bulk gaps from such
an infinite ansatz.

Modular matrices The approach to extracting the T and S
matrix outlined in the Methods summary requires the calcula-
tion of the matrix elements of 〈Ψtor

a |Rπ/3|Ψtor
b 〉, where Rπ/3

is a 60-degree rotation. The cost of an exact calculation of this
matrix scales as a very large power in the bond dimension M ,
and in practice we have to resort to sampling techniques to
obtain an approximate evaluation. The result of Eq. (5) of the
main text were obtained using 2 · 105 samples over spin con-
figurations in the Sz basis using a Markov chain Monte Carlo
update scheme. We have checked that the values for T and
S are converged to within 10−3. Therefore, the main source
of the deviation between the numerically obtained results and
the exact matrices is due to finite size effects.

Fidelity While the calculation of the fidelity

F (θ) = 〈Ψa(θ − ε)|Ψa(θ + ε)〉 (B2)

is straightforward in the case of finite-size DMRG and ex-
act diagonalization, more care must be taken in the case of
infinite-size DMRG as all states are either equal or orthog-
onal in the thermodynamic limit. In the case of translation-
ally invariant infinite MPS, one can consider the spectrum of
the transfer operator of the product of two normalized infi-
nite MPS. Given the eigenvalue with largest absolute value
|λ| ∈ [0, 1] of this transfer operator, the overlap of the states
for N sites is |λ|N . Clearly, as N → ∞, λN → 0 or 1.
Therefore, instead of the overlap we quote directly the abso-
lute value of the eigenvalue |λ|, which shows the same behav-
ior as the fidelity for finite systems. We use ε = 0.025.
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FIG. 7. Comparison of singlet and triplet gaps obtained for infinite
cylinders (XC8-4 and XC4-2) as well as for finite tori using DMRG
and exact diagonalization of up to N = 36 sites. All infinite-size
results have been extrapolated to the M →∞ limit.

Bulk gaps In standard DMRG calculations, the triplet gap
is easily available by changing the total spin quantum num-
ber of the target state, which is enforced exactly. The singlet
gap can be obtained by first converging the ground state of
the system and then optimizing a second state under the con-
straint of orthogonality against the ground state. For infinite-
size DMRG calculations, however, neither of these methods
are applicable, and we therefore must resort to a different ap-
proach. For this manuscript, we choose to approximately ex-
tract the gaps from the spectrum of an effective local Hamil-
tonian obtained by contracting a network of the MPS with the
matrix-product operator representation of the Hamiltonian ev-
erywhere except on one bond.

To validate our approach, we compare the energy gaps ex-
tracted from infinite cylinders to small tori of the same di-
ameter. Note that a comparison against finite-size DMRG on
long cylinders is hampered by the gapless edge that emerges
in that topology. In Fig. 7, we compare (i) infinite XC4-2
cylinders against an XT4-2 torus with 30 sites, and (ii) infinite
XC8-4 cylinders against an XT6-3 torus with 36 sites. The
energies for the tori are mostly obtained with DMRG using
up to M = 4000 states; for both sizes, we have performed
exact diagonalization calculations at selected values of θ to
confirm the ground state energies obtained from DMRG are
within 1% error of the exact energies. The good agreement
between the two methods clearly validates the approach used.
We have also verified for various values of θ that for XC8-4,
the gaps above the two ground states corresponding to dif-
ferent topological sectors are comparable. We therefore only
show results for infinite cylinders in the main text.

0 0.1 0.2 0.3 0.4 0.5
θ/π

0

0.05

0.1

0.15

0.2

0.25

J dm

FIG. 8. Phase diagram in the presence of DM interactions (C1).

Appendix C: Perturbations

Beyond the terms of Hamiltonian (2) of the main text, we
also consider two additional perturbations, namely a particular
form of the Dzyaloshinskii-Moriya (DM) interaction [62–64]
and a next-nearest neighbor (NNN) Heisenberg term. We ex-
plore these phases at a smaller bond dimension of M = 256
using infinite-size DMRG.

The DM interaction preserves lattice and U(1) spin symme-
try, but breaks SU(2), and is given as

HDM = JDM
∑
i<j

ẑ · (Si × Sj). (C1)

Here, the sum runs over nearest neighbors and clockwise
around triangles. The phase diagram as a function of DM
interaction is shown in Fig. 8. We observe that the phase is
robust against a DM term of strength comparable to the gap.

The simulation in the presence of the NNN Heisenberg term
is much more computationally challenging than the nearest-
neighbor model considered above. We therefore have deter-
mined the stability only for θ = 0.15π. Using the fidelity as
indicator of a phase transition, we have found the phase to be
stable for JNNN ∈ [−0.1, 0.27].

We can break the SU(2) symmetry of the Heisenberg term
without breaking lattice symmetries by introducing an easy-
axis anisotropy,

HXXZ = Jz
∑
〈i,j〉

Szi S
z
j . (C2)

For negative values of Jz , we find that the phase is stable for
all Jz > −1.2. The chiral phase appears very stable for Jz >
0, and we have not been able to reliably determine a phase
boundary.
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Two-channel Kondo physics

FIG. 9. Top panel: Illustration of the behavior of the edge states
at a corner shared by two puddles. Bottom panel: Behavior of two
corner-sharing triangular puddles of the topological phase.

Appendix D: Network model

We now revisit the network model perspective discussed in
the main text, and provide additional detail on how the heal-
ing of the edge states surrounding two corner-sharing triangles
that share one spin can be understood in terms of two-channel
Kondo physics.

If we envision the puddles to be very large, they would carry
the edge state on each side and the corner would look as shown
in panel (I.a) of Fig. 9. The pair of edge states on the upper
triangle is known [10, 34] to be described by the same theory
as the right- and left-movers of a semi-infinite uniform spin-

1/2 Heisenberg chain, and analogously for the lower pair of
edge states. The spin at the corner then appears as the center
spin of an infinite chain (panels (I.b,I.c)). It is well known that
the infinite chain will heal if the center spin is coupled to the
two semi-infinite chains with equal strength [37, 38]. Then,
the right- and left-movers will extend throughout the entire,
infinite system (panel (I.d)). The effect on the corner spin is
summarized in panel II of Fig. 9, where the situation shown
in II.a corresponds to I.a, while II.d corresponds to I.d. As is
evident from II.d, the corner spin has merged the two triangles
to form a larger puddle encircled by a single edge state, i.e. to
form a larger region of the topological phase.

We can illustrate the validitiy of the above network model
picture by considering the situation where the spins are re-
placed by Majorana fermion zero modes. Specifically, we can
form a term analogous to the spin chirality, a chiral hopping
term χ̃ijk = ı(γiγj + γjγk + γkγi). This model, which is
quadratic in fermionic operators, can be diagonalized straight-
forwardly. Since the Kagome lattice is obtained as a triangu-
lar lattice of three-site unit cells, we obtain three energy bands
Eα(kx, ky), α = 1, 2, 3. We observe that all three bands are
separated by a gap from each other, and the central band E2

is dispersionless, i.e. E2(kx, ky) = 0. Noting that the number
of states in this band coincides with the number of hexagons
in the system, we identify these zero-energy states as the non-
interacting edge states encircling the hexagons of the Kagome
lattice shown in the right panel of Fig. 1. We calculate the
Chern number C [65] using the real-space method of Refs. 66
and 67 and find that C of the top and bottom band is C = ±1,
i.e. that the model is in a topological phase; this was previ-
ously observed in Ref. 68.
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