
 - 1 -

A Colorful Approach to Text Processing by Example

Kuat

Yessenov

MIT
Cambridge, MA

Shubham

Tulsiani

IIT Kanpur
Kanpur, India

Aditya

Menon

UCSD
San Diego, CA

Robert C.

Miller

MIT
Cambridge, MA

Sumit

Gulwani

MSR
Redmond, WA

Butler

Lampson

MSR
Cambridge, MA

Adam

 Kalai

MSR
Cambridge, MA

ABSTRACT

Text processing, tedious and error-prone even for

programmers, remains one of the most alluring targets of

Programming by Example. An examination of real-world

text processing tasks found on help forums reveals that

many such tasks, beyond simple string manipulation,

involve latent hierarchical structures.

We present STEPS, a programming system for processing

structured and semi-structured text by example. STEPS

users create and manipulate hierarchical structure by

example. In a between-subject user study on fourteen

computer scientists, STEPS compares favorably to

traditional programming.

Author Keywords

Programming by Example; Text Processing.

ACM Classification Keywords

D.1.2 Programming Techniques: Automatic Programming;

H.5.2 Information Interfaces and Presentation: UI

INTRODUCTION

Text processing (TP) is a problem of importance to

programmers, data analysts, and other knowledge workers

who have to handle data in many formats. Modern

programming languages and text processing tools generally

use regular expressions, string manipulation primitives, and

parser generators. In contrast, the programming by example

(PBE) approach (also called programming by

demonstration) allows the user to edit example text by

hand, and the system produces a program automatically [2,

13, 3, 7]. PBE systems are easier to learn and lack the

arcane syntax of programming languages. Even for

programmers, a sufficiently-powerful PBE system should

have superior usability.

A number of PBE systems address repetitive TP tasks, such

as reformatting a bibliography, from short demonstrations.

These systems face challenges and advance the state of the

art in HCI, Program Synthesis, and Machine Learning

aspects of PBE.

A key difficulty, revealed by our examination of tasks from

TP user forums, is that many tasks crucially rely on latent

hierarchical structure. Previous PBE systems, based on

patterns for cursor movement, string manipulation, or

multiple selections, fail to capture these structures.

Almost every text file has structure. Reformatting a

bibliography involves manipulating deeply nested

structures including different entry types like books or

articles, each with lists of author names that can be further

decomposed into surnames, etc. For a simpler motivating

example, consider a text file of multi-line records, e.g.:

TRB1006:

 Company: Yamaha

 Kind: Bass

 Year: 2006

COX15SA:

 Kind: Guitar

 Company: Yamaha

 Year: 2005

…

There is a structure obvious (to humans) here that may or

may not be necessary to uncover, depending on the task at

hand. For example, consider the following three tasks:

1. Sort the records by year.

2. Capitalize the company names.

3. Delete the year field from records where the

company is “Yamaha” (because they have been

discovered to be erroneous).

Only the second task may be accomplished without

referring to structure. A system like SmartEdit [1] may

quickly learn to repeat: move the cursor to the end of the

string “Company:”, select to the end of the line, and then

capitalize the selection.

However, for the first and third tasks, repetitive cursor

movements with string manipulation are insufficient, and

these tasks cannot be implemented by example using prior

systems. How can one enable users to expose and

manipulate such structure in a simple fashion, by example?

Our work is partly inspired by LAPIS [16], a system for

text editing that incorporates “lightweight structure” and

PBE. The multiple selection and simultaneous editing

features of LAPIS, on the second task above, would enable

one to select all company names and then simultaneously

capitalize them, all by example. In LAPIS, patterns match

arbitrary regions that may even partially overlap, such as

the patterns sentence and line of text. This makes different

patterns difficult to simultaneously display, and LAPIS

users cannot easily create or manipulate hierarchical

structure by example. The TP help forum posts we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

 - 2 -

examined discussed hierarchical structure far more often

than overlapping patterns.

STEPS and HSS

We introduce a Sequential Transformations by Example

Programming System (STEPS) that, through a sequence of

steps, modifies a hierarchically structured string (HSS).

This HSS is displayed using nested colored blocks, as in

Figure 1.

A STEPS user begins with a possibly-large text file and

specifies explicit steps by input/output pairs. On the 𝑖th step,

the user illustrates a function 𝑓𝑖 through an example of input

HSS 𝑥𝑖 and output HSS 𝑦𝑖 such that 𝑓𝑖(𝑥𝑖) = 𝑦𝑖 . The

system attempts to infer likely candidate functions mapping

𝑥𝑖 to 𝑦𝑖 . The output of a successful session is the modified

text file and a standalone script that may be run on future

data.

Figure 1 illustrates the first task in STEPS: first add

structure, coloring the records red and the years yellow

(𝑥1 = 𝑎, 𝑦1 = 𝑏), then sort red blocks by their yellow

blocks (𝑥2 = 𝑏, 𝑦2 = 𝑐), and finally remove the colors

(𝑥3 = 𝑐, 𝑦3 = 𝑑).1 Text and colored blocks are created and

manipulated in a fashion similar to standard text editing

operations. To color a block, one selects the text to be

colored and then clicks on the desired color from a palate.

1 This STEPS program can be displayed succinctly because

the output to each step is the input to the next, i.e., 𝑦𝑖 =
𝑥𝑖+1 for all 𝑖. In general, this need not be true.

This is similar to highlighting text in a rich text editor, but

only nested (nonoverlapping) blocks are permitted.

For the third task, a user might try to delete the yellow

blocks from red blocks containing “Yamaha.” If the system

fails to infer the correct transformation, additional colors

and steps provide a recourse, e.g., color records in red,

color the word Yamaha in blue, un-color red blocks that do

not contain blue blocks (illustrated in Figure 2), and finally

color and delete the year lines from the red blocks.

Demonstration vs. (mock) input/output examples

Each step is defined by an input-output pair of HSS’s; the

keystrokes and mouse movements used to generate this pair

are not recorded. In contrast, the original PBE dream is that

the system will simply observe the user perform actions and

generalize their intention.

Demonstrations can be faster and more natural than the

copying and pasting required to provide explicit before and

after HSS’s, but the ability to correct a PBE system is

essential as described by Lau’s study of why PBE systems

fail [11]. Input/output examples ease debugging, since

subtle mistakes can be identified and fixed by inspecting

and editing a static artifact rather than replaying a trace.

Additionally, interaction through mock examples is a single

technique that encompasses a variety of types of operations,

unlike demonstration. How do you demonstrate sorting (or

removing duplicates or counting) for a large file – do you

manually search for the alphabetically first entry? Or

suppose a user edits the 1st, 2nd, and 17th records – this may

or may not be a signal that the 3rd-16th records should not

change. Lau also advises “presenting a model users can

understand” [11], and input/output pairs make transparent

the information on which the system bases its inference.

Simplified mock examples that hide inessential information

or convey corner cases are common on TP help forms.

Editable input/output pairs similarly enable users to easily

construct ad-hoc artificial examples without changing the

underlying file. For example, in Figure 1, the second record

(𝑏)

(𝑑)

(𝑐)

(𝑎)

Figure 1. Sorting by year in STEPS. Mock input/output

pairs1 specify each step; nested colored blocks represent

structure.

Figure 2. Un-coloring red blocks that do not contain blue blocks.

This is a step in deleting year fields from Yamaha records (after

coloring records in red and “Yamaha” string in blue).

 - 3 -

was created artificially as a response to the fact that the

pattern first learned by the system for year was “200?”, i.e.,

a number starting with 200. In a large file, the user may not

find the entries where this is not the case. Hence, she

creates a mock entry with a year of 2050, and the system

infers the pattern of a number following “Year:”. Also,

since her data format permits arbitrary field order within a

record, she places the year first even though the year

happened to be last in all records in her file, so that the

resulting script will correctly generalize to future data.

Finally, for proficient users, mock examples may provide

surprisingly simple input-output pairs, e.g., the operation of

Figure 2 may be defined by:

and counting may be illustrated by:

Scope

STEPS is a programming system targeted at an audience of

people who program or have once programmed. These

users can benefit from such a tool, especially those who use

languages such as Java or C++ where TP is notoriously

awkward. The scope of STEPS is what one could

accomplish with “a short Perl/AWK script,” which most

programmers interpret to mean a precise syntactic or

structural transformation rather than a fuzzy knowledge-

based operation. Most text transformations found on TP

forums are in the scope of STEPS. One type of exception is

tasks that require multiple input files, and extending STEPS

to handle multiple files would increase its utility.

More fundamentally, STEPS is poorly suited for

probabilistic transformations like spelling correction, which

may be more suited for systems such as Google Refine [8].

The types of errors that are rampant in unstructured data

entered by humans may require too many steps. For

example, in correcting addresses, STEPS would likely

require a separate step for correcting each type of error,

such as adding “NY” state fields to entries labeled with a

city “New York” (or even “New Yrok”) but where the state

was omitted.

That said, STEPS is easily extensible. If the underlying

library of functions included, say, a mapping zip codes to

city names, then STEPS programs could easily employ this

mapping. STEPS does not acquire and extract rich data

from the web. However, the programmers posting on

Perl/AWK TP forums rarely expected such fuzzy,

probabilistic operations, suggesting that one can convey to

programmers the types of tasks appropriate for STEPS.

If the data at hand is tabular in nature, spreadsheet

processing software such as Excel, Google Refine [8] or

Data Wrangler [9] may be more appropriate. However, the

coloring feature of STEPS can be trivially applied to

importing spreadsheets, coloring respective cells.

The hope is that systems like ours may also serve as

stepping stones towards the dream of popular end-user

systems with rich semantic capabilities. However, for the

systems built en route to be useful, it is important to

establish user expectations that are reliably met.

Contributions

This paper makes the following contributions:

 hierarchical structure coloring and manipulation as

a user interface technique for PBE;

 mock input/output examples as a user interface

technique for PBE;

 STEPS, a web-based PBE system that incorporates

these techniques;

 a Domain Specific Language for manipulating

hierarchically structured strings

 a user study of programmers showing that STEPS

is faster than conventional programming, on tasks

that have been out of reach for other PBE systems.

The remainder of this paper proceeds with a discussion of

related work, the tasks used in our user study, a description

of the interface, and a short description of the synthesis

architecture. Finally, we discuss the user study.

RELATED WORK

A number of PBE systems for simple string manipulation

that do not expose or manipulate structure by example

exist, such as EBE [18], Tourmaline [17], Cima [14], TELS

[19], Visual Awk [10], DEED [5], SmartEdit [12], and

Flash Fill [6].2 The lack of exposed structure limits the

scope of these systems, as discussed earlier.

Additional tools consider the structure of text documents

for purposes other than text processing. The PADS project

[4] learns structure for ad-hoc data sources in domain

specific languages designed for programmers. It produces

very precise format specifications capable of identifying

any errors in a data file, at a cost of increased complexity. It

does not permit structural manipulations by example.

Data Wrangler extracts data from a text file and imports it

into a spreadsheet program that supports some PBE [9]. For

data that is inherently tabular, the powerful spreadsheet

manipulations offered provide an alternative to PBE for

many tasks. However, the loss of formatting information in

the import process and the inability to manipulate

hierarchical structure may limit applicability to general TP.

For synthesis and ranking, we use the framework of Menon

et al. [15]. We also borrow ideas from Gulwani’s pattern

matching algorithm [6], which in turn borrows ideas from

the Version Space Algebra approach to PBE [12].

2 Flash Fill has been released in Microsoft Excel 2013.

 - 4 -

For a recent overview of Programming by Example

interaction paradigms, see [7].

TASKS

Following Gulwani’s analysis of Excel help forums [6], we

began by examining a large number of (single-file) text-

processing tasks from a Unix shell script help forum [1]

from which we created over one hundred benchmark tasks.

Common practice on forums was to include input/output

examples. Real and artificial examples were both prevalent.

Below are some typical scenarios of how STEPS can be

used for text processing. These also happen to be the tasks

we used to evaluate STEPS, which we describe later.

User Study Task 1: Remove digits (warm up)

Delete digits, as illustrated below.

Al123

John45

…

This task can be done by most prior PBE systems and

regular-expression search-and-replace in some editors.

STEPS requires users to color text before deleting it; the

first step is selecting what is to be deleted and the second

step is simply deleting it (for which STEPS provides a

shortcut).

𝑥1 𝑦1 𝑥2 𝑦2

Al123

John45

Al123

John45

Al123

John45

Al

John

The argument for not allowing direct deletion in one step is

that it is surprisingly hard to debug: visually inspecting the

result of a deletion is difficult because one does not see

what has been deleted, while inspecting the results of

coloring is easy. Alternatively, one could modify the system

to allow deletion in one step and show deleted text in

strikeout, as in earlier systems such as SmartEdit.

User Study Task 2: Replace / with \ in Location field

The data consists of records separated by blank lines, and

the goal is to replace / with \ in Location fields only,

not in other fields such as Last Modified. The first two

records are:

Acrobat 6.0.2 Professional:

Version: 6.0.6

Last Modified: 18/10/2003 00:11

Kind: PowerPC

Location: /Apps/Acrobat/Professional.app

LiveUpdate:

Version: 3.0.1

Last Modified: 17/04/2003 12:00

Location: /Apps/Norton/LiveUpdate.app

To accomplish this task, one first adds structure and then

performs the replacement. So, if the above data is the first

mock input 𝑥1, then a possible first mock output 𝑦1 is:

After replacing / with \, one removes all color (for which

the interface provides a shortcut). Note that adding the three

colors above in STEPS would actually require three steps

because STEPS currently limits users to adding one new

color per step. Throughout this paper, we keep the

presentation succinct by adding multiple colors

simultaneously.

User Study Task 3: List fonts by style

Each font entry has a style. Sort the styles, and then list

fonts with that style in the order they occur, each followed

by a semicolon. Sample data:

AquaKana:

 Family: .Aqua Kana

 Style: Regular

 Version: 1.0

 Designer: JIYU-KOBO Ltd.

 Embeddable: Yes

Mock Input Mock Output

System response

FAILED TO FIND PATTERN. Perhaps see

an example of sorting.

Figure 3. Though STEPS fails to infer a pattern, it is able

to guess that the desired function may be sorting, and it

provides context-specific help.

 - 5 -

Courier:

 Family: Courier

 Style: Regular

 Version: 5.1d1e1

 Embeddable: Yes

Courier-Bold:

 Family: Courier

 Style: Bold

 Version: 5.1d1e1

 Embeddable: Yes

Sample output:

Bold: Courier-Bold;

Regular: AquaKana; Courier;

This task, by far the most difficult, merits a more detailed

walk through, which we give in the next section.

The fourth and final user study task involves searching an

HTTP log file and extracting URL components that meet

multiple criteria. In hindsight, it would have provided more

variety to replace this task with one operating on semi-

structured data that is not purely record based. We recently

used STEPS for such tasks in response to a journal editor

who requested a script to format-check journal submission

files. The tasks include a number of tests on a latex file,

such as verifying that the section titles are in “title case”.

AVOIDING “DEAD ENDS”

Every PBE system will inevitably fail in some cases; the

key question is how to proceed. There was nothing more

frustrating to our users than a failure message with no

suggestion of how to make progress, as Lau also reports

[11]. Search failures, such as in Figure 3, occur when the

system fails to find any useful transform mapping 𝑥 to 𝑦

that is “reasonable” (i.e., other than the trivial transform

that always outputs the constant string 𝑦). Ambiguity

failures occur when the computer finds too many

transforms.3 Users can often address ambiguity failures by

providing longer mock examples or weeding through

suggested transformations. Furthermore, a system good at

ranking candidate transforms may also avoid ambiguity

failures.

One participant in our user study reported, “I was surprised

that I never reached a dead end.” In our experiments, dead

ends did occur sometimes, and they were usually caused by

search failures. STEPS employs several strategies to avoid

dead ends.

First, the STEPS philosophy is to decompose complex

transforms into smaller steps. Adding further colored blocks

often makes progress.

3 The example of Figure 3 is ambiguous in many ways: it

could be sorting records by year (or ID) or reversing

records. It is also ambiguous because it will not even be

clear how to segment further records.

Second, in the case of search failure, STEPS still attempts

to identify the type of transform being illustrated, to provide

useful feedback in the form of documentation or examples.

Some examples of operations that are easier to recognize

than to precisely infer include: sorting (mock output is a

permutation of mock input), deleting, adding or removing

color, extending or shrinking color, and counting (numbers

in the mock output but not mock input).

In such cases, context-specific help can be given. For

example, in sorting records, suppose that a user first tries to

accomplish the entire task in a single step, as in Figure 3.

The fact that the lines in the mock input and output are

permutations of one another is a clue that sorting may be

the primary operation. Hence feedback on how to sort

suggests to the user that she might first color records. (Note

that if the user is trying to do something besides sorting,

such as reversing records, such feedback may still be

helpful because she still needs to segment records.) As we

shall see, it turns out that the clues of Menon et al. [15]

perfectly model the problem of guessing the transformation

type.

Third, when exact matches to 𝑓(𝑥) = 𝑦 are not found,

STEPS returns functions 𝑓 that are approximately correct,

i.e., 𝑓(𝑥) ≈ 𝑦. (Our notion of approximation considers

differences in white space to be of minimal importance.)

This can address small user typos and also may lead to

unanticipated but more productive alternative suggestions.

STEP-BY-STEP WALK THROUGH

Bart, a fictitious user, is asked to write a program for User

Study Task 3, namely grouping and listing fonts by style.

Bart first pastes the data sample into the system in a text

area, and the clicks a “START SCRIPT” button. For the

first step, Bart tries:

Mock Input 𝑥1 Mock output 𝑦1

Note that the system displays white space (spaces, tabs and

newlines) with visible characters. Bart also employs a

STEPS feature by which he names the grey color as “font.”

After he hits the “Auto-code” button, the system offers Bart

only one suggestion of a program with an English

description of “Mark from capital letter to ‘Yes’ as font.” It

also gives him an opportunity to preview the transform

before executing it. Bart examines the data, and it looks

good. It appears that all the records end in “Embeddable:

Yes.” However, Bart, like the participants in our study, is

 - 6 -

not intimately familiar with the data. He is not sure if

“Embeddable” will always be followed by “Yes,” so he

changes the mock pair so the second record ends in “No.”

The computer is forced to generalize.

Mock Input 𝑥1 Mock output 𝑦1

The new program generated is, “Mark from capital letter to

‘Embeddable: ’, word as font.” Bart looks at the resulting

preview, is satisfied, and continues. Several points worth

making are:

1) Bart preferred to create an artificial mock example

(actually modify an example) rather than spend the

time searching for an example with “Embeddable:

No” in the data.

2) In fact, all the data at hand did happen to end in

“Embeddable: Yes.” However, since Bart wanted a

program that generalized well to future examples,

his efforts were not in vain.

3) When this task was used in the user study, about

half of the study participants examined the data

preview and accepted the first program, and about

half made the artificial “No” example. Two

participants exerted further effort on segmentation

because they were concerned about the fact that

records may end in a completely different field

than “Embeddable.”

4) The suggestions and ranking of the system could

be better on this example (i.e., perhaps a better

pattern would be to recognize that records start on

nonindented lines), but nonetheless users succeed

with mock examples and additional colors.

In the second step, Bart introduces a new color, green,

which he calls “name.” For the mock example, he takes the

first two records and colors “AquaKana” and “Courier” in

green. The system provides three possible programs along

with the ability to preview them in a dialog, shown below.

Each of these programs is presented by its English

description alone; the code is collapsed.4 By clicking on any

of these options, Bart sees a preview of its effect. The first

4 Moreover, there are typically multiple programs yielding

exactly the same output on the data, and these are all

collapsed into a single group. In earlier versions, we had

them expanded by default, but no user was editing the code

or selecting amongst multiple programs that yield the same

output.

one is clearly wrong, as Bart intended the entire “Courier-

Bold” to be green. But the third program is exactly what

Bart wanted. He clicks “Accept” and moves on to the next

step.

He then introduces a new color called style and marks the

styles in a similar fashion. He then simplifies matters by

replacing each record with just the name and style. The

program generated is, “Within font, keep only name, style”

and the resulting data is as follows,

…

Bart then sorts the records by style. For mock input he finds

four records that are out of order (two would have sufficed):

The mock output are these four records sorted by their blue

style. The generated program is “Sort font by style in

alphabetical order.”

Grouping

For the crucial step, Bart creates a new color called

“styleGroup”. He finds six consecutive fonts and groups

them into four groups based on equivalent styles.

Above is the mock output (the mock input is the same

without the yellow color). The generated program is

“Group font by style as styleGroup.”

 - 7 -

Wrap-up

The rest of the task is straightforward. Bart keeps only the

first occurrence of the style within each yellow group,

deleting the rest, and then appends semicolons and removes

newlines, as was required in the task.

Note that grouping was the most difficult step for most

users in the study, as we will discuss. This is probably

because the tutorial we had given them had examples of

sorting but no examples of grouping. Nonetheless, all but

one of the participants tried grouping on their own, and the

other participant found an alternative solution. (Also note

that no participant renamed any colors or edited the style

declarations.)

INTERFACE

STEPS is a web application that works inside a browser

window. Figure 4 shows a typical session consisting of a

list of step tabs shown on the left side (1). The session starts

by pasting raw text into the BEGIN tab and ends by

copying the output text in the END tab. Step tabs enable the

user to revisit and debug steps. Changes to a step

automatically propagate throughout all following tabs, and

changes to the data in the BEGIN tab propagate all the way

to the END tab.

Each step has resizable panes for its input (2), output (3),

mock input (4), and mock output (5). Spaces, tabs, and

newline characters are displayed with visible glyphs.5 Our

earlier designs, which placed the mock input to the left of

the mock output (or above the mock output), led users to

mistakenly edit the mock input when they meant to edit the

mock output. The code for the step is shown above the

output and collapsed to a human-readable comment by

default (6).

IMPLEMENTATION

We apply the synthesis and ranking approach of Menon et

al [15]. To instantiate it, we need to define a domain

specific language, and a number of clues, functions which

generate candidate program fragments based the mock

input and mock output. A clue might suggest, for example,

that if a month name is present, the system should increase

the likelihood of date transformations.

5 Using the browser’s built-in search functionality,

searching for strings that include spaces fails when space

characters are replaced with visible characters. Instead, one

may create a new font where the standard space character is

visible.

Figure 4. The STEPS interface.

Steps are shown in separate tabs.

Visible are:

1. List of steps

2. Step input data

3. Step output data

4. Mock input

5. Mock output

6. Editable code

7. Draggable palette

8. Feedback

9. Auto-code button

Figure 6. Tooltips appear when you hover over a colored

block, indicating region name and block index/total count.

Mismatches in numbers can be useful for debugging.

≠

Figure 5. Colors can have semantically

meaningful names and can be collapsed (via the

palette) to protect data and for visualization.

 - 8 -

Domain Specific Language

We have designed a domain specific language,

implemented as a small JavaScript library, which defines a

colored string data type together with a small set of

operations. A colored string is a string in which some

regions are marked with a tag, an arbitrary string associated

with a color. They must be nested as in XML: each tagged

string consists of a sequence of tagged and plain substrings.

The library will be made available online and is the only

requirement to use the synthesized scripts outside of

STEPS.

The core set of operations is shown in Table 1 and makes

up the language of STEPS. These operations were chosen

because they have natural English descriptions and also are

general enough to cover a large number of input-to-output

examples. For simplicity, each proposal that our system

generates corresponds to exactly one command in the

language, which we present in a direct English translation.

Generality is achieved by supplying a variety of options

that slightly alter the behavior of the operations. For

example, mark-between can optionally find the start or

the end non-greedily or in nested fashion and drop either

the start or the end match; the sort command takes an

option to specify which comparison to use, etc.

The library also defines a pattern language for tagged

strings. This language extends regular expressions with

matching by tags and/or containment of another pattern,

excluding certain tags by hiding them, and selecting

matches by occurrence. The substitution mask for the

replace operation can refer back to parts of the match to

build a new tagged string.

Clue generation

The clue generation is primarily guided by the nature of the

operation, e.g., adding colors, removing colors, or editing

text. The nature can be determined by a quick inspection of

the mock pair.

Then, for each command, STEPS generates a number of

candidates for the parameters and the options. For pattern

inference, it uses a library of common regular expression

patterns, existing text and tags in the mock pair, and their

combination. The space of all candidate programs is

exhaustively explored, and all solutions that approximately

match the mock pair are presented.

USER STUDY

We performed a between-subject user study on fourteen

computer scientists, doctoral students or postdocs, at a

major software research laboratory. It would be difficult to

get a true sample of “typical” programmers, but as Figure 7

shows, the participants had a variety of levels of

programming experience.

The tasks, from the Task section above, were presented

through a web-based form. Each task had an input file, and

correctness was judged solely on the output produced for

that input file (to avoid judging correctness of programs in

general). The data varied in length from 200-830 lines.

Submitted answers were automatically judged and

participants were informed whether their answer was

correct or not and thus had an opportunity to “debug”

submissions. (Otherwise it would not be clear when to

move to the next problem or double check one’s work.)

Seven participants were randomly assigned to each of the

two conditions. In the STEPS group, participants were

given a 20-minute overview of STEPS including a hands-on

tutorial of some of the major types of features. Note that

grouping was not covered in the tutorial since we wanted to

see if participants could discover how to do it on their own.

They were then given a maximum of 70 minutes to work on

the tasks.

In the control group, participants were allowed to

accomplish the tasks using whatever means they wished, be

it programming, manual editing, or using other tools such

as word processors or spreadsheets. Prior to the experiment,

they were told that they were to be given text-processing

tasks and were allowed to prepare a machine of their choice

(typically either a personal laptop or a company-provided

desktop). They were also given 70 minutes for the tasks.

Participants identified their programming experience as

low: “learned to program,” medium: “spent a good bit of

Operation Params Description

mark 𝑝, 𝑡 mark matches to pattern 𝑝 as tag t

split 𝑝, 𝑡 mark between consecutive matches

to pattern p as tag t

mark-

between
𝑝1, 𝑝2, 𝑡 mark between matches to 𝑝1, 𝑝2 as 𝑡

within 𝑝, 𝑓 apply function 𝑓 to each match of

tag pattern 𝑝

retag 𝑝, 𝑡 re-tag matches to 𝑝 as 𝑡

untag 𝑝 un-tag matches to the tag pattern 𝑝

shrink 𝑡, 𝑝 shrink tags 𝑡 to a match of 𝑝

extend 𝑡, 𝑝 extend tags 𝑡 to a match of 𝑝

sort 𝑡, 𝑝 sort substrings of tag 𝑡 by matches

to 𝑝 (which can be a tag itself)

group 𝑡1, 𝑡2, 𝑝 consecutive matches to 𝑡1 with the

same match to 𝑝 as 𝑡2

replace 𝑝, 𝑚 replace matches to 𝑝 by a

substitution mask 𝑚

remove 𝑝 remove matches to 𝑝

keep 𝑝 keep only matches to 𝑝

Table 1: STEPS operations and their required parameters.

 - 9 -

time programming,” or high: “worked on large projects or

been have been employed as a programmer.”

Results

STEPS users completed 82% of the tasks compared to

68% for the control group. Everyone completed the first

two tasks. Therefore, we performed an ANOVA of

completion times for the first two tasks with task and

condition as independent factors. The times were log-

transformed to make the distribution closer to normal. We

found a significant main effect of condition (F=5.22, p<

0.032), in which STEPS users were faster than the control

on tasks 1 and 2, but no significant effect of task or

interaction between task and condition.

Discussion

In the STEPS group, a minority of the steps (the ones that

were accepted) were simply prefixes of the data. For task 3,

grouping was a key step that six out of the seven

participants discovered on their own even though our

tutorial did not mention this operation. For this task, the

remaining participant used STEPS for partial automation,

finding a way to perform what most do in grouping using

only five marking steps (though this would not have scaled

well to larger data).

Participants were asked to compare STEPS to programming

or something else they were familiar with. Several

compared STEPS to “playing a game” or “solving a

puzzle,” one user compared it to using a spreadsheet, and

one participant responded that using STEPS was like

programming in an unfamiliar language. The latter

participant found STEPS frustrating and wished she could

just program instead, but the other participants used

positive words such as “cool.” Several participants

requested access to STEPS for their personal use.

On the negative side, participants uniformly expressed

frustration at not knowing what the possible primitive

operations were, i.e., what it could do and what it couldn’t

do. In hindsight, this might have been improved at the cost

of a longer tutorial, or by better exposition such as is found

in LAPIS and SmartEdit.

In the control group, people used a variety of programming

languages, partial automation (e.g., for the first task several

participants opened the data in a text editor and ran 10

search-and-replace commands, replacing each digit with an

empty string), and in some cases even manual editing.

Presumably this was done when they thought it would be

faster than programming, and hence forcing them to

program (or program in a specific language) would present

the comparison to STEPS in an even better light.

It is well known that most of the time in programming is

spent debugging and understanding one’s data.

Anecdotally, this was true for our control participants as

well. It seems quite likely that the speed-ups we observed

were partly due to how STEPS makes it easier to visualize,

understand, and debug the data, compared to programming.

CONCLUSION AND FUTURE WORK

For more than a decade, progress has stalled on what used

to be considered one of the most interesting challenges in

end user programming: performing sophisticated text edits,

such as reformatting a bibliography, by example.

Examination of tasks found on TP help forums sheds light

on the difficulty: many TP tasks require exposing and

manipulating hierarchical structure present in text files.

This paper introduced STEPS, a system for manipulating

hierarchical structures by example.

Our user study demonstrates that STEPS is faster than other

alternatives, at least for computer science graduate students

and postdocs. It also became clear that STEPS can be

improved in terms of the way in which it displays the

inferred operations and set of possible operations, both of

which have been addressed by previous work.

Looking forward, a central question is to what extent end

users would adopt a HSS manipulation system like STEPS.

In order for this to happen, STEPS inference must be

improved to handle single steps that are more complex.

Also, ways must be found to teach the end users about key

concepts in STEPS. One possible approach is to allow

demonstrations alongside input-output pairs, meaning that a

user can demonstrate a step on their data while the system

generates and displays the corresponding input-output pair.

This might be a useful way to introduce the concept of

input-output pairs.

Age Gender
Programming
Experience

Task
1

Task
2

Task
3

Task
4

24 M High 1 2 16 6

25 M Medium 12 12 29 12

29 M Medium 6 4 20 *

29 M Low 11 7 * *

28 M Low 19 10 * *

26 M Low 14 19 * *

26 F High 36 8 * *

25 M Medium 1 3 14 3

28 M High 3 7 17 16

30 F Medium 2 5 30 11

27 M Medium 3 12 * 13

27 F Low 2 5 54 *

23 M Low 2 8 56 *

29 M Medium 3 8 * *

 * Did not complete in the allocated 70 minutes.

C
o

n
tr

o
l

S
T

E
P

S

Figure 7. User study results. Task times are in minutes.

 - 10 -

A caution raised by Lau [11] and Gulwani [7] is to compare

the perceived value of automation with its bottom-line cost,

as users may be unwilling to incur the burden of switching

out of one application into a separate PBE system. To this

end, it may be wise to incorporate such a system into a

programming IDE, which may also set certain expectations

by explicitly presenting STEPS as an alternative to

traditional programming.

REFERENCES

[1] The UNIX and Linux forums: Shell programming

and scripting. http://www.unix.com/shell-programming-

scripting.

[2] Allen Cypher, editor. Watch What I Do:

Programming by Demonstration. MIT Press, 1993.

[3] Allen Cypher, Mira Dontcheva, Tessa Lau, and

Jeffrey Nichols. No Code Required: Giving Users Tools to

Transform the Web. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2010.

[4] Kathleen Fisher and David Walker. The PADS

project: an overview. In ICDT, 2011.

[5] Yuzo Fujishima. Demonstrational automation of

text editing tasks involving multiple focus points and

conversions. In Proceedings of the International

Conference on Intelligent User Interfaces (IUI ’98), pages

101–108, 1998.

[6] Sumit Gulwani. Automating string processing in

spreadsheets using input-output examples. In Proceedings

of the 38th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL 2011), 317-

330, 2011.

[7] Sumit Gulwani. Synthesis from Examples:

Interaction Models and Algorithms. In Proceedings of the

14th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 8-14, 2012.

[8] David Huynh and Stefano Mazzocchi. Google Refine.

http://code.google.com/p/google-refine/.

[9] Sean Kandel, Andreas Paepcke, Joseph

Hellerstein, and Jeffrey Heer. Wrangler: interactive visual

specification of data transformation scripts. In Desney S.

Tan, Saleema Amershi, Bo Begole, Wendy A. Kellogg, and

Manas Tungare, editors, CHI, pages 3363–3372, 2011.

[10] Jurgen Landauer and Masahito Hirakawa. Visual

AWK: a model for text processing by demonstration. In

Proceedings of the 11th International IEEE Symposium on

Visual Languages ’95, pages 267–274, 1995.

[11] Tessa Lau. Why programming-by-demonstration

systems fail: Lessons learned for usable AI. AI Magazine,

30(4):65–67, 2009.

[12] Tessa Lau, Steven Wolfman, Pedro Domingos,

and Daniel Weld. Programming by demonstration using

version space algebra. Machine Learning, 53(1-2), 2003.

[13] H. Lieberman. Your Wish Is My Command:

Programming by Example. Morgan Kaufmann, 2001.

[14] David Lawrence Maulsby. Instructible agents.

PhD thesis, Calgary, Alta., Canada, Canada, 1995. UMI

Order No. GAXNN-03114.

[15] Aditya Krishna Menon, Omer Tamuz, Sumit

Gulwani, Butler Lampson, and Adam Tauman Kalai. A

Machine Learning Framework for Programming by

Example. Proceedings of the 29th International Conference

on Machine Learning, 2013.

[16] Robert C. Miller. Lightweight structure in text.

CMU PhD thesis, Pittsburgh, PA, USA, 2002..

[17] Brad A. Myers. Watch what I do. chapter

Tourmaline: text formatting by demonstration, pages 309–

321. MIT Press, Cambridge, MA, USA, 1993.

[18] Robert P. Nix. Editing by example. TOPLAS,

7(4):600–621, 1985.

[19] Sun Wu and Udi Manber. Agrep – a fast

approximate pattern searching tool. In Proceedings of the

Winter USENIX Technical Conference, pages 153–162,

1992.

