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ABSTRACT
We study the adversarial multi-armed bandit problem in
a setting where the player incurs a unit cost each time he
switches actions. We prove that the player’s T -round mini-
max regret in this setting is Θ̃(T 2/3), thereby closing a fun-
damental gap in our understanding of learning with bandit
feedback. In the corresponding full-information version of
the problem, the minimax regret is known to grow at a much
slower rate of Θ(

√
T ). The difference between these two

rates provides the first indication that learning with bandit
feedback can be significantly harder than learning with full-
information feedback (previous results only showed a differ-
ent dependence on the number of actions, but not on T .)

In addition to characterizing the inherent difficulty of the
multi-armed bandit problem with switching costs, our re-
sults also resolve several other open problems in online learn-
ing. One direct implication is that learning with bandit
feedback against bounded-memory adaptive adversaries has
a minimax regret of Θ̃(T 2/3). Another implication is that
the minimax regret of online learning in adversarial Markov
decision processes (MDPs) is Θ̃(T 2/3). The key to all of our
results is a new randomized construction of a multi-scale
random walk, which is of independent interest and likely to
prove useful in additional settings.
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1. INTRODUCTION
Online learning with a finite set of actions is a fundamen-

tal problem in machine learning, with two important special
cases: the Adversarial (Non-Stochastic) Multi-Armed Ban-
dit [3] and Predicting with Expert Advice [5, 10]. This prob-
lem is often presented as a T -round repeated game between
a player and an adversary: on each round of the game, the
player chooses an action1 from the set [k] = {1, . . . , k} and
incurs a loss in [0, 1] for that action. The player is allowed to
randomize, i.e., on each round he selects a distribution over
actions and draws an action from that distribution. The
loss corresponding to each action on each round is set in
advance by the adversary, and in particular, the loss of each
action can vary from round to round. The player’s goal is to
minimize the total loss accumulated over the course of the
game.

The bandit problem and the experts problem differ in the
feedback received by the player after each round. In the
bandit problem, the player only observes his loss (a single
number) on each round; this is called bandit feedback. In
the experts problem, the player observes the loss assigned
to each possible action (for a total of k real numbers in each
round); this is called full feedback or full information. A
player that receives bandit feedback must balance an ex-
ploration/exploitation trade-off, while a player that receives
full feedback is only concerned with exploitation.

For example, say that we manage an investment portfo-
lio, we receive daily advice from k financial experts, and on
each day we must follow the advice of one expert. The loss
associated with each expert on each day reflects the amount
of money we would lose by following that expert’s advice
on that day. If we know the advice given by each expert,
the problem is said to provide full feedback. Alternatively,
if we purchase advice from a single expert on each day, and
the advice of the other k − 1 experts remains unknown, the
problem is said to provide bandit feedback.

In the problem just described, the player is allowed to
switch freely between actions. An equally interesting set-
ting is one where each switch incurs a switching cost : In
addition to the losses chosen by the adversary, the player

1In the bandit problem, each action is called an arm; in the
experts problem, each action is called an expert.



pays a penalty each time his action differs from the one he
played on the previous round. In the motivating example
described above, switching our primary financial consultant
may require terminating a contract with the previous ex-
pert and negotiating contract with the new one, or it may
just cost us the fees and commissions that result from a
significant change in investment strategy. Switching costs
arise naturally in a variety of other applications: In online
web applications, switching the content of a website too fre-
quently can be annoying to users; in industrial applications,
switching actions might entail reconfiguring a production
line. Moreover, Geulen et al. [11] reduced a family of online
buffering problems to switching cost problems; similarly, Gy-
orgy and Neu [12] used the switching cost setting to solve
the limited-delay universal lossy source coding problem.

We focus on analyzing the inherent difficulty of online
learning with switching costs, using the game-theoretic no-
tion of minimax regret. To define this notion, we must first
specify the setting formally. Before the game begins, the
adversary chooses a loss functions `1, . . . , `T , where each `t
maps the action set [k] to [0, 1]. Since the entire sequence
is chosen in advance, we say that the adversary is oblivi-
ous (to the player’s actions). On round t, the player selects
a distribution over the set of actions and draws an action
Xt from that distribution. The player then incurs the loss
`t(Xt) + 11Xt 6=Xt−1 , which includes the adversarially chosen
loss `t(Xt) and the switching cost. To make the loss on the
first round well-defined, we set X0 = 0 (so the first action
always counts as a switch). The player’s cumulative loss at

the end of the game equals
∑T
t=1

(
`t(Xt) + 11Xt 6=Xt−1

)
.

Since the loss functions are adversarial, the cumulative
loss is only meaningful when compared to an adequate base-
line. Therefore, we compare the player’s cumulative loss to
the loss of the best fixed policy (in hindsight), which is a
policy that chooses the same action on all T rounds. For-
mally, we define the player’s regret at the end of the game
as

R =

T∑
t=1

(
`t(Xt) + 11Xt 6=Xt−1

)
− min

x∈[k]

T∑
t=1

`t(x) . (1)

While regret measures the player’s performance on a given
instance of the game, the inherent difficulty of the game itself
is measured by minimax expected regret (or just minimax re-
gret for brevity). Intuitively, minimax regret is the expected
regret when both the adversary and the player behave op-
timally. Formally, minimax regret is the minimum over all
randomized player strategies, of the maximum over all loss
sequences, of E[R]. In this paper, our primary focus is to
determine the asymptotic growth rate of the minimax regret
as a function of the number of rounds T and the number of
actions k.

Minimax regret rates are already well understood in sev-
eral of the settings discussed above. Without switching
costs, the minimax regret of the adversarial multi-armed
bandit problem is Θ(

√
Tk) (see Auer et al. [3], Audibert

et al. [2]) and the minimax regret of the experts problem is
Θ(
√
T log k) (see Littlestone and Warmuth [14], Freund and

Schapire [10], Cesa-Bianchi and Lugosi [4]). This implies
that when no switching costs are added, the bandit problem
is not substantially more difficult than the experts problem
(at least when the number of actions is constant), despite
the added burden of exploration.

When switching costs are added, the previous literature
does not provide a full characterization of minimax regret.
Clearly, the lower bound without switching costs still apply
with switching costs are added. In the full feedback setting
with switching costs, the Follow the Lazy Leader algorithm
[13] and the Shrinking Dartboard algorithm [11] both guar-
antee a matching upper bound of O(

√
T log k), so the min-

imax regret is Θ(
√
T log k). However, the minimax regret

of the bandit problem with switching costs was not well un-
derstood. Arora et al. [1] presented a simple algorithm with

a guaranteed regret of O(k1/3T 2/3), but a matching lower
bound was not known.

Recently, Cesa-Bianchi et al. [6] addressed this gap, but
fell short of resolving it. Specifically, they modified the game
by allowing the loss per round to drift out of the interval
[0, 1] and to possibly grow in magnitude to be as large as

Θ(
√
T ). In this setting, they proved that the minimax regret

(with a constant number of actions k) grows at a rate of

Θ̃(T 2/3). However, allowing unbounded loss per round is
quite uncommon and not very natural. Also, it isn’t clear
what implications their results have on the original problem
(i.e., with bounded losses), and whether their Θ̃(T 2/3) rate
is merely an artifact of the unbounded loss functions they
allow.

1.1 Our Results
Our main result is a new Ω̃(T 2/3) lower bound on the

regret of the multi-armed bandit problem with switching
costs (in the standard setting, with losses bounded in [0, 1]).

Theorem 1. For any randomized player strategy that re-
lies on bandit feedback, there exists a sequence of loss func-
tions `1, . . . , `T (where `t : [k] 7→ [0, 1]) that incurs a regret

of R = Ω̃(k1/3T 2/3), provided that k ≤ T .

When combined with the upper bound in Arora et al.
[1], our result implies that the minimax regret of the multi-

armed bandit problem with switching costs is Θ̃(k1/3T 2/3).
A direct consequence of this result is that the bandit problem
with switching costs is substantially more difficult than the
corresponding experts problem. To the best of our knowl-
edge, this is the first example that exhibits (even for con-
stant k) a clear gap between the asymptotic difficulty of
online learning with bandit and full feedback, as T grows.

To prove Theorem 1, we apply (the easy direction of)
Yao’s minimax principle [16], which states that the regret
of a randomized player against the worst-case loss sequence
is at least the minimax regret of the optimal deterministic
player against a stochastic loss sequence. In other words,
as an intermediate step toward proving Theorem 1, we con-
struct a sequence of stochastic loss functions, each from [k]
to [0, 1], and prove that the expected regret of any determin-
istic player (where expectation is now taken with respect to

the randomness of the loss sequence) is Ω̃(k1/3T 2/3).
We then generalize our lower bound to the case where each

switch incurs a cost of c > 0, where c does not necessarily
equal 1 (e.g., set c = T q, for some q ∈ [−1, 1]). A corollary of
this result is that any algorithm for the multi-armed bandit
problem (without switching costs) that guarantees a regret

of O(
√
T ) (e.g., the EXP3 algorithm [3]) can be forced to

make Ω̃(T ) switches. Finally, we observe that our problem
is a special case of an online Markov decision process (MDP)
learning problem with adversarial rewards and bandit feed-



Input: time horizon T > 0, number of actions k ≥ 2

1: Set ε = k1/3T−1/3/(9 log2 T ) and σ = 1/(9 log2 T ).

2: Choose χ ∈ [k] uniformly at random.

3: Draw T independent zero-mean σ2-variance Gaus-
sians ξ1:T .

4: Define W0:T recursively by

W0 = 0 ,

∀ t ∈ [T ] Wt = Wρ(t) + ξt

with

ρ(t) = t− 2δ(t) ,

where δ(t) = max
{
i ≥ 0 : 2i divides t

}
.

5: For all t ∈ [T ] and x ∈ [k], set

Lt(x) = Wt + 1
2
− ε · 11χ=x .

Output: loss functions L1:T .

Figure 1: The adversary’s randomized algorithm for
generating a loss sequence L1:T , which is bounded in
[0, 1] with constant positive probability, and ensures

an expected regret of Ω̃(k1/3T 2/3) against any deter-
ministic player.

back, and therefore the minimax regret of that problem is
also Ω̃(T 2/3).

The paper is organized as follows: in Sec. 2 we describe
the general construction of the stochastic loss sequence and
in Sec. 3 we present the stochastic process that underlies our
construction. We then prove our lower bound on regret in
Sec. 4 and present extensions and implications in Sec. 5.

2. CONSTRUCTING THE LOSS SEQUENCE
In this section we construct a sequence2 of stochastic loss

functions, L1:T , where each Lt randomly maps the action
set [k] to the real line. Our construction allows the loss
functions to take values outside of the interval [0, 1], but with
constant positive probability all of their values are bounded
in [0, 1]. In other words, we say that an instantiation of
this sequence is admissible if the range of each function in
the sequence is contained in the interval [0, 1], and we show
that L1:T is admissible with constant positive probability.
We also prove that the expected regret of any deterministic
player, when the loss sequence is admissible, is Ω̃(k1/3T 2/3).
The adversary’s randomized algorithm for generating the
sequence L1:T is given in Fig. 1. The key to this algorithm
is the stochastic process W1:T , defined on lines 3–4 of Fig. 1.
The adversary draws a concrete sequence from this process
and uses it to define the loss values of all k actions. First,
the adversary picks an action χ ∈ [k] uniformly at random,
to serve as the best action (whose loss is always smaller than
the loss of the other actions). The loss of all actions x 6= χ
is simply set to Lt(x) = Wt + 1

2
. The loss of the best action

χ is set to Lt(χ) = Wt + 1
2
− ε, where ε is a predefined

gap parameter, and is therefore consistently better than the
losses of the other actions.

2We use the notation Ui:j as shorthand for the sequence
Ui, . . . , Uj throughout.

When faced with the loss sequence L1:T , the player at-
tempts to identify which of the k actions has the smaller
loss (or equivalently, to reveal the value of χ). Although the
loss values of the best action are deterministically separated
from those of the other actions by a constant gap, the player
only observes one loss value on each round and never knows
if his chosen action incurred the higher loss or the lower loss.
Our analysis shows that the player’s ability to uncover infor-
mation about the identity of the best action depends on the
characteristics of the stochastic process W1:T . For example,
if this process were an i.i.d. sequence, it is easy to see that
the player could identify the best action by estimating the
expected loss of each action to within ε/2 (for example, using
Hoeffding’s bound), requiring only O(σ2/ε2) samples of each
action and at most k− 1 switches between actions. This ex-
ample already implies that the dependency structure in our
construction of W1:T plays a central role. We show that a
careful choice of the stochastic process W1:T ensures that the
amount of information uncovered by the player during the
game is tightly controlled by the number of switches he per-
forms. Therefore, to detect the best action, the player must
switch actions frequently and pay the associated switching
costs.

3. THE STOCHASTIC PROCESS
The key to our analysis is a careful choice of the stochas-

tic process W1:T that underlies the definition of L1:T . In
this section we describe a stochastic processes with a con-
trollable dependence structure, which includes i.i.d. Gaus-
sian sequences and simple Gaussian random walks as special
cases.

Let ξ1:T be a sequence of independent zero-mean Gaussian
random variables with variance σ2. Let ρ : [T ] 7→ {0} ∪ [T ]
be a function that assigns each t ∈ [T ] with a parent ρ(t).
We allow ρ to be any function that satisfies ρ(t) < t for all
t. Now define

W0 = 0 ,

∀ t ∈ [T ] Wt = Wρ(t) + ξt .

Note that the constraint ρ(t) < t guarantees that a recur-
sive application of ρ always leads back to zero. The defini-
tion of the parent function ρ determines the behavior of the
stochastic processes. For example, setting ρ(t) = 0 implies
that Wt = ξt for all t, so the stochastic process is simply
a sequence of i.i.d. Gaussians. On the other hand, setting
ρ(t) = t−1 results in a simple Gaussian random walk. Other
definitions of ρ can create interesting dependencies between
the variables of the stochastic process.

3.1 Depth and Width
We highlight two properties of the parent function ρ (and

consequently, of the induced stochastic process) that are es-
sential to our analysis.

Definition 1 (ancestors, depth). Given a parent func-
tion ρ, the set of ancestors of t is denoted by ρ∗(t) and de-
fined as the set of positive indices that are encountered when
ρ is applied recursively to t. Formally, ρ∗(t) is defined re-
cursively as

ρ∗(0) = {}
∀ t ∈ [T ] ρ∗(t) = ρ∗

(
ρ(t)

)
∪ {ρ(t)} . (2)

The depth of ρ is then defined as d(ρ) = maxt∈[T ] |ρ∗(t)|.



Using this definition, we can write Wt = ξt +
∑
s∈ρ∗(t) ξs,

where ξ0 = 0. Thus, if d(ρ) = d, the induced stochastic
process includes sums of at most d independent Gaussians,
each with variance σ2. This implies the following bound.

Lemma 1. Let W1:T be the stochastic process defined by
the parent function ρ. Then

∀δ ∈ (0, 1) P
(

max
t∈[T ]

|Wt| ≤ σ
√

2d(ρ) log T
δ

)
≥ 1− δ .

Proof. For any t ∈ [T ], Wt is normally distributed with
zero mean and variance bounded by d(ρ)σ2. Since a stan-
dard Gaussian variable Z satisfies P(|Z| ≥ z) ≤ exp(− 1

2
z2)

for any z ≥ 0, we infer that

P
(
|Wt| ≥ σ

√
2d(ρ) log T

δ

)
≤ exp

(
− log T

δ

)
=

δ

T
.

The above holds for each t ∈ [T ] and the lemma follows from
the union bound.

Lemma 1 implies that the depth of ρ and the variance
σ2 determine how far the process W1:T will drift. Since we
require a process that is bounded with high probability, we
need to minimize the depth of ρ. (We could counter the ef-
fect of a deep ρ by setting σ to be small, but if we do so, the
resulting process would not be able to mask the ε gap be-
tween the losses of the different actions.) This consideration
rules out the simple Gaussian random walk, whose depth is
T .

Definition 2 (cut, width). Given a parent function ρ,
define

cut(t) = {s ∈ [T ] : ρ(s) < t ≤ s} ,

the set of rounds that are separated from their parent by t.
The width of ρ is then defined 3 as w(ρ) = maxt∈[T ] |cut(t)|.

Note that the cut size for any s ∈ [T ] is an integer between
1 and T . One extreme is the simple Gaussian random walk
(ρ(t) = t − 1), whose cuts are of size 1. The other extreme
is the sequence of i.i.d. Gaussians (ρ(t) = 0), for which
|cut(s)| = s, and therefore w(ρ) = T .

Our analysis in Sec. 4.1 shows that any information that
the player uncovers about the identity of the best action can
be attributed to a switch performed on the current round or
on a past round (where the first round is always considered
to be a switch). Moreover, we prove that the amount of
information that can be extracted from a switch at time t
is controlled by the size of cut(t). Therefore, a process with
a small width forces the player to perform many switches.
This rules out the sequence of i.i.d. Gaussians, as it is too
wide and reveals too much information to a player that se-
lects the same action repeatedly.

3.2 The Multi-scale Random Walk
To prove our lower bound, we require a stochastic process

that is neither too deep nor too wide. We present such a
process, called the Multi-scale Random Walk (MRW), whose
depth and width are both logarithmic in T . The MRW pro-
cess is formed by the parent function given by

ρ(t) = t− 2δ(t) , (3)

3The width of ρ coincides with the cut-width of the num-
bered graph it determines, see [7].

where

δ(t) = max
{
i ≥ 0 : 2i divides t

}
.

Put another way, ρ(t) is obtained by taking the binary rep-
resentation of t, identifying the lowest order 1, and flipping
it to 0. For example if t = 10110100 (which equals the dec-
imal number 180) then ρ(t) = 10110000 (which equals the
decimal number 176).

Fig. 2 depicts the MRW process for T = 7. Notice that
the process takes steps on multiple scales, each of which
corresponds to a different power of two. An alternative de-
scription of the same process can be obtained by considering
a binary tree with leaves corresponding to the random vari-
ables W1:T , as depicted in Fig. 2. In this description, we
associate the right edges of the tree, enumerated in a DFS
traversal order, with the Gaussian variables ξ1:T . Then, each
Wt is defined as the sum of the ξj ’s encountered along the
path from the root to the leaf corresponding to Wt.

We conclude the section with the following lemma, which
summarizes the properties of the MRW process used in our
analysis.

Lemma 2. The depth and width of the MRW are both
upper-bounded by blog2 T c+ 1.

Proof. Let n = blog2 T c + 1 and note that any integer
t ∈ [T ] can be written using n bits. We shall prove that, for
all t ∈ [T ], the number |ρ∗(t)| is bounded by (in fact, is equal
to) the number of 1’s in the n-digit binary representation of
t, while |cut(t)| is bounded by the number of 0’s in that
representation plus one. This would immediately imply the
lemma, as |ρ∗(t)| and |cut(t)| are both positive and their
sum is at most n+ 1.

First, observe that the number of 1’s in the representation
of the parent ρ(t) is one less than the number of 1’s in the
representation of t, and |ρ∗(0)| = 0. Hence, |ρ∗(t)| equals
the number of 1’s in the binary representation of t.

Moving on to the width, choose any t ∈ [T ] and con-
sider the cut it defines. We show that each s ∈ cut(t) \ {t}
corresponds to a distinct zero in the n-bit binary represen-
tation of t. Let s ∈ cut(t) \ {t} and denote j = δ(s). Note
that ρ(s) = s − 2j is a multiple of 2j+1, so we can write
s− 2j = a · 2j+1 for some integer a. By the definition of the
cut and since s 6= t, we have a · 2j+1 < t < a · 2j+1 + 2j .
Consequently, s = 2j+1 · bt/2j+1c+ 2j and the coefficient of
2j in the binary representation of t is zero. Together with
the fact that t ∈ cut(t), we have shown that the size of the
cut defined by t is at most the number of zero bits in its
binary representation plus one.

4. ANALYSIS
In this section, we prove our main result: a Ω̃(k1/3T 2/3)

lower bound on the expected regret of the multi-armed ban-
dit with switching costs, when the loss functions are stochas-
tic and the player is deterministic. Our result is stated for-
mally in the following theorem. Recall that an instantiation
of the random functions L1:T is admissible if the range of
each loss function lies in the interval [0, 1].

Theorem 2. Let L1:T be the sequence of stochastic loss
functions defined in Fig. 1. Then for T ≥ max {k, 6}, L1:T is
admissible with constant positive probability and the expected
regret (as defined in Eq. (1)) of any deterministic player,
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Figure 2: An illustration of the MRW process for T = 7. (Top) The MRW with a directed edge from ρ(t) to
t, for each t ∈ [T ]. (Bottom) The MRW can be equivalently described as the values at the leaves of a binary
tree, where the value at each leaf is obtained by summing the i.i.d. Gaussian variables ξt’s on the (right)
edges along the path from the root.

conditioned on the event that L1:T is admissible, is at least
k1/3T 2/3/(100 log2 T ).

Before we begin with the analysis, we note a delicate point
regarding the definition of the random variablesX1:T . Recall
that the player uses a deterministic strategy, one that deter-
ministically maps his past observations of L1:t−1 to his next
action, Xt. By design, this deterministic mapping is defined
for inputs in [0, 1]. If the instantiation of the loss sequence
is not admissible then the player’s next action is undefined.
However, notice that the statement of the above theorem
is only concerned with the actions of the player’s algorithm
when the stochastic loss functions are all admissible, and it
is independent of the behavior of the player when this is not
the case. Therefore, in our analysis we may assume that the
player’s algorithm can handle any sequence of real loss values
as feedback and produces a sequence of actions X1:T regard-
less of whether the underlying loss functions are admissible
or not. For example, we could assume that the player rein-
terprets his observed values as max

(
0,min(1, Lt(Xt))

)
and

then applies his standard strategy for bounded losses. Our
analysis merely requires that the player has a deterministic
response to any sequence of real loss values he observes.

Our analysis requires some new notation. First, let M =∑T
t=1 11Xt 6=Xt−1 be the number of switches in the action se-

quence X1:T (recall that we arbitrarily set X0 = 1). Also,
for all t ∈ [T ], let Zt = Lt(Xt) be the loss observed by
the player on round t. Recall our assumption that Xt, the
player’s action on round t, is a deterministic function of his
past observations Z1:(t−1).

4.1 Distinguishability Requires Switching
We begin the analysis with a key lemma that relates the

player’s ability to identify the best action to the number
of switches he performs. This lemma also highlights the

importance of finding a stochastic process with a small w(ρ).
The lemma bounds the distance between each one of the
conditional probability measures

Qi(·) = P(· |χ = i) , i = 1, 2, . . . , k ,

and the probability measureQ0 that corresponds to an (imag-
inary) adversary that uses χ = 0. Thus Q0(·) is the prob-
ability when all actions incur the same loss. Let F be the
σ-algebra generated by the player’s observations Z1:T . Then
the total variation distance between Q0 and Qi on F is de-
fined as

dFTV(Q0,Qi) = sup
A∈F

∣∣Q0(A)−Qi(A)
∣∣ .

This distance captures the player’s ability to identify whether
action i is better than or equivalent to the other actions
based on the loss values he observes. The following lemma
upper-bounds this distance in terms of the number of switches
to action i or from action i, denoted by the random vari-
able Mi, and in terms of the width w(ρ) of the underlying
stochastic process. Here we use the notation EQj to refer to
the expectation with respect to the distribution Qj , for any
j = 0, 1, . . . , k.

Lemma 3. For all i ∈ [k], it holds that

dFTV(Q0,Qi) ≤ (ε/2σ)
√
w(ρ)EQ0 [Mi]

and

dFTV(Q0,Qi) ≤ (ε/2σ)
√
w(ρ)EQi [Mi] .

To see the significance of this lemma, consider first the case
k = 2, where M1 = M2 = M by definition. By the trian-
gle inequality, dFTV(Q1,Q2) ≤ dFTV(Q0,Q1) + dFTV(Q0,Q2).



Concavity of square root yields√
EQ1 [M ] +

√
EQ2 [M ] ≤

√
2 (EQ1 [M ] + EQ2 [M ])

= 2
√

E[M ] .

The second claim of Lemma 3 for k = 2 now implies that
dFTV(Q1,Q2) ≤ (ε/σ)

√
w(ρ)E[M ]. This inequality clari-

fies the dilemma facing the player: If he switches actions
frequently so that E[M ] = Ω(T 2/3/ log(T )), the switching
costs guarantee the desired lower bound on regret. Oth-
erwise, E[M ] = o(T 2/3/ log(T )) ; since ε/σ = Θ(T−1/3)
and w(ρ) = Θ(log(T )), the distance dFTV(Q1,Q2) tends to
zero with T , the player is unable to distinguish between
the two actions, and he suffers an expected regret of order
Θ(εT ) = Θ(T 2/3/ log(T )). We do not formalize this argu-
ment here, since we prove the lower bound for any k below.

Proof of Lemma 3. Let Y0 = 1
2

and Yt = L(Xt) for all
t ∈ [T ]. Note that Xt is a deterministic function of Y0:(t−1).
Define YS = {Yt}t∈S and let ∆(YS | YS′) be the relative
entropy (i.e., the Kullback-Leibler divergence) between the
joint distribution of YS , conditioned on YS′ , under Q0 and
Qi. Namely,

∆(YS | YS′) = EQ0

[
log

f0(YS | YS′)
fi(YS | YS′)

]
, (4)

where fj(YS | YS′) denotes the density of YS conditioned
on YS′ , induced by the measure Qj . For brevity, also de-
fine ∆(YS) = ∆(YS | ∅). Given Yρ∗(t), Yt is conditionally

independent4 of Ys, for all s /∈ ρ∗(t). Using the chain rule
for relative entropy (see, e.g., Theorem 2.5.3 in [8]), we can
decompose the quantity ∆(Y0:T ) as

∆(Y0:T ) = ∆(Y0) +

T∑
t=1

∆
(
Yt | Yρ∗(t)

)
(5)

and deal separately with each term in the sum. First note
that ∆(Y0) = 0, because Y0 is a constant. The value of
∆
(
Yt | Yρ∗(t)

)
is computed by considering three separate

cases. If Xt = Xρ(t) (i.e., the player chooses the same ac-
tion on rounds t and ρ(t)) then the distribution of Yt con-
ditioned on Yρ∗(t) is N(Yρ(t), σ

2) under both Q0 and Qi,
where N(µ, σ2) denotes the normal distribution with mean
µ and variance σ2. If Xt = i and Xρ(t) 6= i then the dis-

tribution of Yt conditioned on Yρ∗(t) is N(Yρ(t), σ
2) under

Q0 and N(Yρ(t) − ε, σ2) under Qi. Finally, if Xt 6= i and
Xρ(t) = i then the distribution of Yt conditioned on Yρ∗(t) is

N(Yρ(t), σ
2) under Q0 and N(Yρ(t) + ε, σ2) under Qi. Over-

all,

∆
(
Yt | Yρ∗(t)

)
= Q0

(
Xt = i,Xρ(t) 6= i

)
· dKL

(
N(0, σ2)

∥∥N(−ε, σ2)
)

+Q0

(
Xt 6= i,Xρ(t) = i

)
· dKL

(
N(0, σ2)

∥∥N(ε, σ2)
)

=
ε2

2σ2
Q0(At) , (6)

where At =
{
Xt = i,Xρ(t) 6= i ∨ Xt 6= i,Xρ(t) = i

}
is the

event that the player switches an odd number of times (and

4Note that this conditional independence property holds for
both distributions Qi and Q0.

in particular, at least once) to or from action i between
rounds ρ(t) and t. Substituting Eq. (6) into Eq. (5) gives

∆(Y0:T ) =
ε2

2σ2

T∑
t=1

Q0(At) =
ε2

2σ2
EQ0

[
T∑
t=1

11At

]
. (7)

The event At implies that there exists at least one time s of
switch to or from action i, such that t ∈ cut(s). Therefore,
if we let S1:Mi denote the random sequence of times of such
switches (in the action sequence X1:T ), then

T∑
t=1

11At ≤
Mi∑
r=1

∑
t∈cut(Sr)

11At ≤
Mi∑
r=1

|cut(Sr)| ≤ w(ρ)Mi .

Plugging this inequality back into Eq. (7) gives

∆(Y0:T ) ≤ ε2w(ρ)

2σ2
EQ0 [Mi] .

Pinsker’s inequality (Lemma 11.6.1 in [8]) now implies that

sup
A∈F′

(
Q0(A)−Qi(A)

)
≤ ε

2σ

√
w(ρ)EQ0 [Mi] ,

where F ′ is the σ-algebra generated by Y0:T . We can replace
F ′ with F above to obtain dFTV(Q0,Qi) in the left-hand side,
simply because Z1:T is a deterministic function of Y0:T and
therefore F ⊂ F ′.

This proves the first claim of the lemma. To prove the
second bound, we can simply reverse the roles of Q0 and Qi
in our arguments above and obtain the same bound over the
total variation distance but in terms of the expectation with
respect to the distribution Qi.

4.2 Regret Lower Bound
With Lemma 3 in hand, we can prove Theorem 2 and

conclude Theorem 1. We begin with a simple corollary of
the lemma.

Corollary 1. It holds that

1

k

k∑
i=1

dFTV(Q0,Qi) ≤
ε

σ
√

2k
·
√
w(ρ)EQ0 [M ] .

Proof. Averaging the inequalities of Lemma 3 over i =
1, 2, . . . , k, using the concavity of the root function and not-
ing that

∑k
i=1Mi = 2M (as each switch is counted twice in

the sum) yields

1

k

k∑
i=1

dFTV(Q0,Qi) ≤
ε

2σ
· 1

k

k∑
i=1

√
w(ρ)EQ0 [Mi]

≤ ε

σ
√

2k
·
√
w(ρ)EQ0 [M ] ,

as claimed.

We now turn to analyzing the player’s expected regret.
Using the definitions above, this regret can be written as

R =

T∑
t=1

Lt(Xt) +M − min
x∈[k]

T∑
t=1

Lt(x) .

The next lemma shows that the conditional expectation in
the statement of Theorem 2 is not much smaller than the
unconditional expected regret, E[R].



Lemma 4. Consider the event

B = {∀ t ∈ [T ], x ∈ [k] : Lt(x) ∈ [0, 1]}

under which the loss sequence is admissible. Then

E[R | B] ≥ E[R]− εT/6

provided that T ≥ max {k, 6}.
Proof. We first show that P(B) ≥ 5/6. As the process

W1:T has depth d ≤ blog2 T c+ 1 ≤ 2 log2 T , Lemma 1 with
δ = 1/T ≤ 1/6 implies that with probability at least 5/6,
we have

|Wt| ≤ σ
√

2d log T
δ
≤ σ

√
8 log2 T log T ≤ 3σ log2 T

for all t ∈ [T ]. Thus, setting σ = 1/(9 log2 T ) we obtain that

P
(
∀t ∈ [t] 1

2
+Wt ∈

[
1
6
, 5
6

])
≥ 5

6
.

For T ≥ max {k, 6} we have ε < 1/6 and thus Lt(x) ∈ [0, 1]
for all x ∈ [k] whenever 1

2
+ Wt ∈ [ 1

6
, 5
6
]. This implies that

P(B) ≥ 5/6.
If B does not occur then the regret can be at most εT

(since the per-round regret is at most ε). Thus E[R | ¬B] ≤
εT and so

E[R | B] ≥ E[R]− E[R | ¬B] · P(¬B)

≥ E[R]− εT/6 ,

as required.

Next, we relate the expected regret to the total variation
between Q0 and the Qi’s.

Lemma 5. The expected regret E[R] is lower bounded in
terms of the distributions Q0,Q1, . . . ,Qk as

E[R] ≥ εT

2
− εT

k
·
k∑
i=1

dFTV(Q0,Qi) + E[M ] .

Proof. For i ∈ [k], let Ni denote the number of times the
player picks action i, so we can write R = ε (T −Nχ) +M .
Consequently,

E[R] =
1

k

k∑
i=1

E[ε (T −Ni) +M | χ = i]

= εT − ε

k

k∑
i=1

EQi [Ni] + E[M ] . (8)

On the other hand, for all i ∈ [k] and t ∈ [T ], the event
{Xt = i} is in the σ-field F , so Qi(Xt = i)−Q0(Xt = i) ≤
dFTV(Q0,Qi) . Summing over t = 1, . . . , T yields EQi [Ni] −
EQ0 [Ni] ≤ T · dFTV(Q0,Qi), whence

k∑
i=1

EQi [Ni] ≤ T ·
k∑
i=1

dFTV(Q0,Qi) +

k∑
i=1

EQ0 [Ni]

= T ·
k∑
i=1

dFTV(Q0,Qi) + T .

Plugging this into Eq. (8) and using k ≥ 2 gives

E[R] ≥ εT − εT

k
·
k∑
i=1

dFTV(Q0,Qi)−
εT

k
+ E[M ]

≥ εT

2
− εT

k
·
k∑
i=1

dFTV(Q0,Qi) + E[M ] ,

as claimed.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We first prove the theorem for
deterministic players that make no more than εT switches
on any sequence of loss functions, and relax this assump-
tion toward the end of the proof. For algorithms with this
property, we have Q0(M > εT ) = Qi(M > εT ) = 0 for all
i ∈ [k]. Since {M ≥ m} ∈ F , this implies

EQ0 [M ]− EQi [M ] =

bεTc∑
m=1

(Q0(M ≥ m)−Qi(M ≥ m))

≤ εT · dFTV(Q0, Qi)

for all i ∈ [k], that gives

EQ0 [M ]− E[M ] =
1

k

k∑
i=1

(EQ0 [M ]− EQi [M ])

≤ εT

k

k∑
i=1

dFTV(Q0, Qi) .

Combining this with the results of Lemma 4 and Lemma 5,
we obtain

E[R | B] ≥ εT

3
− 2εT

k

k∑
i=1

dFTV(Q0,Qi) + EQ0 [M ] ,

where B is the event defined in Lemma 4.
On the other hand, recall Lemma 2 that states that the

width of the MRW process is bounded by w(ρ) ≤ blog2 T c+
1 ≤ 2 log2 T . Corollary 1 together with this bound gives

1

k

k∑
i=1

dFTV(Q0,Qi) ≤
ε

σ
√
k
·
√

EQ0 [M ] log2 T .

Plugging this into the previous inequality and using the no-
tation m =

√
EQ0 [M ] results with the lower bound

E[R | B] ≥ εT

3
+m

(
m− 2ε2

σ
√
k
T
√

log2 T

)
.

The right hand side, which is minimized at

m = (ε2/σ
√
k)T

√
log2 T ,

can be further lower bounded by εT/3− (ε4/σ2k)T 2 log2 T .
Using our choice of

σ =
1

9 log2 T
and ε =

k1/3T−1/3

9 log2 T

gives

E[R | B] ≥
(

1

27
− 1

81

)
· k

1/3T 2/3

log2 T
≥ k1/3T 2/3

50 log2 T
. (9)

This proves the theorem for algorithms with the assumed
property. In order to relax this assumption, note that we
can turn any player algorithm to an algorithm that makes
at most εT switches, simply by halting the algorithm once
it makes bεT c switches and repeating its last action on the
remaining rounds. The regret R∗ of the modified algorithm
equalsR unlessM > εT and in the latter caseR∗ ≤ R+εT ≤
2R as the per-round regret can be at most ε, so E[R∗ | B] ≤



2E[R | B]. Since E[R∗ | B] is lower bounded by the right-
hand side of Eq. (9), this implies the claimed lower bound
on the expected regret of any deterministic player.

Finally, we can prove Theorem 1.

Proof of Theorem 1. Recall that any randomized al-
gorithm is equivalent to an a-priori random choice of a de-
terministic algorithm, for which the statement of Theorem 2
applies. Since the adversary is oblivious to the player’s ac-
tions, the statement of Theorem 2 for a randomized player (where
the expectation is now taken with respect to both the func-
tions L1:T and the player’s random bits) follows by taking
the expectation over its internal randomization.

The fact that the expected regret with respect to the ran-
domization in L1:T , conditioned on the (probable) event that
L1:T is admissible, is lower bounded by the stated quantity
implies that there exists some admissible realization `1:T for
which the regret is lower bounded by the same quantity.

5. EXTENSIONS AND IMPLICATIONS
In this section we present few extensions of our results and

discuss several implications.

5.1 Binary losses
In our construction of a randomized adversary, described

in Sec. 2, the loss values Lt(x) are all real numbers in the
interval [0, 1]. One might wonder whether a similar con-
struction exists where each of the loss values is constrained
to be either 0 or 1. A simple adaptation of our construction
shows that this is indeed the case. To see this, simply set the
loss of action x at time t to be the outcome of a biased coin
toss with bias Lt(x); in case Lt(x) /∈ [0, 1], set this loss value
arbitrarily. In this sequence of binary loss functions, action
χ is consistently better in expectation by an ε gap when-
ever the loss values are all bounded in the [0, 1] interval,
which is sufficient in our analysis. Our arguments regarding
the player’s inability to identify the best action still apply
since the feedback he observes is only further obscured by
additional random noise.

5.2 Arbitrary Switching Cost
Assume that each switch incurs a cost of c to the player,

instead of a unit cost as before. Repeating the proof of The-
orem 2, we are able to get an Ω̃(c1/3k1/3T 2/3) lower bound,
which is tight with respect to T , k and c (up to poly-log
factors) in light of the upper bound of Arora et al. [1].

Theorem 3. Let the cost of switch be c > 0 and assume
that T > c ·max {k, 6}. For any randomized player strategy
that relies on bandit feedback, there exists a sequence of loss
functions `1:T (where `t : [k] 7→ [0, 1]) that incurs a regret of

R = Ω̃(c1/3k1/3T 2/3).

Proof. Redefine the gap between the actions in the con-
struction of the functions L1:T to ε = (ck)1/3T−1/3/(9 log2 T ).
Using the same notation as in the proof of Theorem 2, we
can show that

E[R | B] ≥ εT

3
+m

(
cm− 2ε2

σ
√
k
T
√

log2 T

)
.

The right-hand side is minimized atm = (ε2/cσ
√
k)T

√
log2 T

and is lower bounded by εT/3 − (ε4/σ2ck)T 2 log2 T . Set-

ting ε = (ck)1/3T−1/3/(9 log2 T ) and using our choice of

σ = 1/(9 log2 T ) gives the lower bound

E[R | B] ≥ c1/3k1/3T 2/3

50 log2 T
.

Proceeding as in the proofs of Theorem 2 and Theorem 1, we
establish the existence of the admissible sequence `1:T .

5.3 Tradeoff between Loss and Switches
As a corollary of Theorem 3, we can quantify the trade-

off between the loss accumulate by a multi-armed bandit
algorithm and the number of switches it performs. For sim-
plicity, we treat the number of actions k as a constant and
state the result only in terms of T .

Theorem 4. Let A be a multi-armed bandit algorithm
that guarantees an expected regret (without switching costs)
of Õ(Tα). Then, there exists a sequence of loss functions

that forces A to make Ω̃(T 2(1−α)) switches.

In particular, the popular EXP3 algorithm [3] guarantees

a regret of O(
√
T ) without switching costs. In this case,

Theorem 4 implies that EXP3 can be forced to make Ω̃(T )
switches.

Proof of Theorem 4. Assume the contrary, i.e. thatA
can guarantee a regret of Õ(Tα) (without switching costs)
with Õ(T β) switches over any sequence of T loss functions,
with α + β/2 < 1. In this case, we can pick a real number
γ such that α < γ < 1− β/2. Consider the performance of
this algorithm in a setting where the cost of a switch is c =
T 3γ−2. Clearly, the expected regret (including switching
costs) of the algorithm in this setting is upper bounded by

Õ(Tα + T 3γ−2 · T β) = õ(T γ) ,

over any sequence of loss functions, as α < γ and β < 2−2γ.
This contradicts Theorem 3, which guarantees the existence
of a loss sequence that incurs a regret (including switching

costs) of Ω̃(T (3γ−2)/3 · T 2/3) = Ω̃(T γ).

5.4 Lower Bound for Online Adversarial
Markov Decision Processes

The multi-armed bandit problem with switching costs is
a special case of the online adversarial deterministic Markov
decision process (ADMDP) with bandit feedback (see Dekel
and Hazan [9] for a formal description of this setting). The
important aspect of the ADMDP setting is that the player
has a state, and that his loss on each round depends both on
his action and on his current state. Moreover, the player’s
action on round t determines his state on round t+ 1. The
k-armed bandit problem with switching costs can be de-
scribed as a k-state ADMDP, where each state represents
the player’s previous action. The player incurs the loss as-
sociated with the action he chooses and pays an additional
cost whenever he changes his state.

As a result, our lower bound applies to the class of AD-
MDP problems. Dekel and Hazan [9] proves a matching
upper bound, which implies that the (undiscounted) mini-

max regret of the ADMDP problem is Θ̃(T 2/3). The AD-
MDP setting belongs to the more general class of adversarial
MDPs with bandit feedback [17, 15], where the state tran-

sitions are allowed to be stochastic. This implies a Ω̃(T 2/3)
lower bound on the (undiscounted) minimax regret of the
general setting.



6. CONCLUSION
In this paper, we proved that the T -round k-action multi-

armed bandit problem with switching costs has a minimax
regret of Θ̃(k1/3T 2/3), and is therefore strictly harder than
the corresponding experts problem (with full feedback). To
the best of our knowledge, this is the first example of a
setting in which learning with bandit feedback is signifi-
cantly harder than learning with full-information feedback
(in terms of the dependence on T ). Furthermore, we believe
our work is the first to demonstrate that online learning may
become significantly easier if the loss sequences are known
to be i.i.d. over time5. Our analysis shows that the diffi-
culty of the problem stems from the player’s need to pay for
exploring the quality of the different actions.

Since our problem is a special case of online learning with
bandit feedback against a bounded-memory adaptive adver-
sary, we conclude that the minimax regret of the general
setting is also Ω̃(T 2/3), which matches the upper bounds of
Arora et al. [1]. We also showed how our construction re-
solves several other open problems in online learning. More-
over, we believe that the multi-scale random walk, defined
in Sec. 3.2, will prove to be a useful tool in other settings.

References
[1] R. Arora, O. Dekel, and A. Tewari. Online bandit learn-

ing against an adaptive adversary: from regret to pol-
icy regret. In Proceedings of the Twenty-Ninth Interna-
tional Conference on Machine Learning, 2012.

[2] J.-Y. Audibert, S. Bubeck, et al. Minimax policies for
adversarial and stochastic bandits. In Proceedings of
the 22th annual conference on learning theory (COLT),
pages 217–226, 2009.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006.

[5] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helm-
bold, R. E. Schapire, and M. K. Warmuth. How to
use expert advice. Journal of the ACM, 44(3):427–485,
May 1997.

[6] N. Cesa-Bianchi, O. Dekel, and O. Shamir. Online
learning with switching costs and other adaptive adver-
saries. In Advances in Neural Information Processing
Systems 26, 2013.

[7] F. R. K. Chung and P. D. Seymour. Graphs with small
bandwidth and cutwidth. Discrete Mathematics, 75(1-
3):113–119, 1989.

[8] T. Cover and J. Thomas. Elements of information the-
ory. John Wiley & Sons, 2006.

[9] O. Dekel and E. Hazan. Better rates for any adversar-
ial deterministic MDP. In Proceedings of the Thirtieth
International Conference on Machine Learning, 2013.

5When the loss sequences are i.i.d., Cesa-Bianchi et al. [6]
show that the multi-armed bandit problem with switching
costs has a minimax regret of Θ̃(

√
T ).

[10] Y. Freund and R. Schapire. A decision-theoretic gener-
alization of on-line learning and an application to boost-
ing. Journal of computer and System Sciences, 55(1):
119–139, 1997.
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