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Understanding the genetic underpinnings of disease is important
for screening, treatment, drug development, and basic biological
insight. One way of getting at such an understanding is to find
out which parts of our DNA, such as single-nucleotide polymorph-
isms, affect particular intermediary processes such as gene expres-
sion. Naively, such associations can be identified using a simple
statistical test on all paired combinations of genetic variants and
gene transcripts. However, a wide variety of confounders lie hid-
den in the data, leading to both spurious associations and missed
associations if not properly addressed. We present a statistical
model that jointly corrects for two particular kinds of hidden struc-
ture—population structure (e.g., race, family-relatedness), and
microarray expression artifacts (e.g., batch effects), when these
confounders are unknown. Applying our method to both real
and synthetic, human and mouse data, we demonstrate the need
for such a joint correction of confounders, and also the disadvan-
tages of other possible approaches based on those in the current
literature. In particular, we show that our class of models has max-
imum power to detect eQTL on synthetic data, and has the best
performance on a bronze standard applied to real data. Lastly,
our software and the associations we found with it are available
at http://www.microsoft.com/science.

differential expression ∣ genome wide association ∣ microarray ∣
population structure ∣ expression heterogeneity

Just as it has become fruitful to systematically scan the genome
for genetic markers of disease (i.e., Genome Wide Association

Studies—GWAS), so too has it become fruitful to systematically
scan the genome for genetic markers of change in gene-expres-
sion levels. For example, one might scan individual SNPs across
the entire genome to see with which, if any, gene-expression
levels a SNP is associated. The motivation for conducting such
eQTL (for “expression Quantitative Trait Locus” (1)) studies
is wide ranging (e.g., see recent reviews (2–5)). These studies
are also referred to as Genetical Genomic or Genetics of Gene
Expression—GOGE studies (3). From a basic biology perspec-
tive, such eQTL studies can shed light on how genes are regulated
without the need for prior knowledge of particular regulatory me-
chanisms (3, 4). From the perspective of dissecting the genetics of
a complex disease, eQTL studies can provide insight into how a
disease-associated locus might be contributing to the disease of
interest by providing information about which gene-expression
pathway(s) the locus is affecting (2, 4). From a statistical perspec-
tive, one can use the results of an eQTL study to prioritize a list of
disease-associated loci to follow up on; that is, one can use the
existence of a SNP–gene-expression association as prior evidence
that variation at the locus is more likely to have disease conse-
quences (2, 6). Furthermore, eQTL studies can infuse causal
information into gene-gene and protein-protein correlation
networks by making use of the fact that DNA can affect gene ex-
pression, but not the other way around (1, 7–9). Finally, the utility
of eQTL studies is likely to increase as larger and more diverse
datasets are amassed, and with the advent of new technologies
such as RNA sequencing and exon arrays (2).

Along with the potential pay offs of eQTL studies come major
statistical challenges. In particular, we have to contend with chal-
lenges from two formerly distinct areas of statistical analysis:
(i) GWAS and (ii) differential expression (i.e., searching for gene-
expression levels that are associated with some variable of inter-
est). In eQTL studies, each time we scan the genome for associa-
tion with one gene’s expression level, we are conducting a
traditional GWAS scan, and hence the GWAS statistical pitfalls
such as confounding by population structure must be dealt with
(10–12, 13). In addition each time we ask if a particular genomic
locus is associated with a gene’s expression level in an eQTL scan
we are in effect asking if that gene is differentially expressed
between individuals with different alleles at that locus. Thus
the statistical pitfalls of differential expression analysis must be
dealt with, including confounding due to expression artifacts such
as batch effects, and more generally, expression heterogeneity
(4, 14–17). To our knowledge, no one has yet provided a coherent
eQTL statistical framework to jointly tackle the issues of con-
founding across both of these formerly distinct areas. In this
paper, we introduce such a framework and show the utility of
it on both real and synthetic datasets. Additionally, within our
framework, a method for correction of expression artifacts alone,
in situations where the confounders are unknown, is introduced
and shown to be superior to other methods in use today, such as
Inter-sample Correlation Emended (ICE) (14) and Surrogate
Variable Analysis (SVA) (15). Our software is available at
http://www.microsoft.com/science.

To date, the utility of eQTL studies has been limited by the small
number of individuals in the study (5). Thus, efforts are being
ramped up to create much larger datasets, and so confounding
factors will play an even larger (negative) role if not properly ac-
counted for—both because larger datasets are likely to be more
heterogeneous, and because they contain more power to reveal
confounding structure (18, 19). Therefore, tackling these confoun-
ders in a rigorous way will help to pave the way for further discov-
eries in this burgeoning area.

Results
Our approach, which we call LMM-EH-PS, builds on a class of
previous approaches for modeling hidden confounders in associa-
tion studies called linear mixed-effects models (20). These mod-
els have been used previously either to correct for population
structure (PS) such as race, family, or cryptic relatedness in GWAS
studies (12, 13, 21), or, to correct for hidden expression artifacts
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arising from technical, demographic, genetic, and environmental
factors (14) (which we henceforth refer to as expression heteroge-
neity (15) or EH). Nonetheless, no one has used a mixed model
approach, or any approach for that matter, to simultaneously
correct for both types of confounders. Doing so requires combin-
ing and extending the current linear mixed modeling approaches,
yielding a method well suited to analysis of eQTL studies as
demonstrated shortly.

Roughly speaking, mixed-effects models work to tackle con-
founders in a two-step process. First, a set of similarities between
every two individuals is computed, either in “SNP space” (for
GWAS),or in“expressionspace” (forexpressionstudies).Encoded
in these similarities are the very confounders we seek to model—
respectively PS and EH. For example, SNP-based similarity might
encode information about race and relatedness between indivi-
duals, whereas expression-based similarity might encode informa-
tion about technical artifacts. Second, these sets of similarities
are then used in a regression model to tease apart the true eQTL
associations from the spurious ones. Without such correction,
these types of confounders are known to causemany false positives
and also loss of power (10–13, 17, 18, 21–24).

Mixed-effects models are complemented in the association
literature by principal components based approaches such as
Eigenstrat, SVA, and similar algorithms (11, 15, 17, 22, 23, 25).
Still coarser methods for PS correction include Structured Asso-
ciation (24), which clusters individuals and then uses the cluster
labels as covariates in the association model of interest, and
Genomic Control (18), which rescales the test statistic by a single
factor to alleviate spurious associations from confounding.
Because mixed-effects models are fully specified probabilistic
generative models (26–28), adapting and extending them to
new problems such as the joint correction tackled in this work
is natural and intuitive.

We performed two main sets of experiments, both focused on
datasets containing SNPs and microarray gene expression for the
same individuals. The first set of experiments analyzed data from
the human liver cohort dataset (29), of which we used the 378
individuals of only Caucasian descent, containing no detectable
confounding population/relatedness structure. We used this data-
set to demonstrate the utility of our method for correction of
EH alone, that is, when PS is not present. This dataset contained
39,296 probes and 571,229 SNPs, although we worked with a sub-
set of the data for evaluation purposes, as described with each
experiment. In the second set of experiments, we focused on a
mouse dataset (30) consisting of 188 male individuals across
19 strains of mice (16 inbred and 3 wild, with 7–11 individuals
per strain) with 40,639 probes and 48,186 SNPs. We detected
both PS and EH in this mouse data. Thus we applied our full
model to this dataset, demonstrating its utility and also the weak-
nesses of other approaches. We evaluated the following types of
models:

• LMM-EH-PS, our model (corrects for EH and PS)
• LMM-EH, our model (corrects for EH)
• LMM-PS, a linear mixed-effects model (corrects for PS)
• ICE, the model reported in ref. 14 (corrects for EH)
• ICE-PS, the model reported in ref. 14 with an additional PS

component added into the linear mixed model (corrects for
EH and PS)

• SVA, linear regression with SVA covariates computed as in
ref. 15 (corrects for EH)

• SVA-PS, a linear mixed-effects model with SVA covariates
computed as in ref. 15 (corrects for EH and PS)

• LINREG linear regression (no corrections)

We also compared a modification of SVA that outperformed
SVA, as shown in the SI Appendix. Finally, Genomic Control was
used as a postprocessing step to the models listed above, with
little apparent benefit, also as shown in the SI Appendix.

As is common in the GWAS community, we summarized the
departure of an observed p-value distribution from the theoreti-
cal null distribution by use of the so-called λ statistic. This statistic
represents how much smaller the observed median p-value is
compared to that expected in the theoretical null distribution
(10, 18). Therefore, on data containing no (or very few) eQTL
associations, λ > 1 suggests that the p-value distribution is inflated
(too many small p-values), which can happen when a confounder
such as PS is not properly addressed. In contrast, λ < 1, a much
less common phenomenon, represents deflated p-values (too few
small p-values). Of course small variations from λ ¼ 1 occur even
in synthetically generated datasets with no associations because
of sampling error (i.e., finite data).

To more fully capture how an observed p-value distribution de-
parts from the theoretical null distribution, beyond comparing
just the median p-values, we also used the Kolmogorov-Smirnov
(KS) test which better takes into account the full distribution
of p-values.

Modeling of Expression Heterogeneity Alone. For experiments on
human data, we randomly selected 6,000 SNP-probe hypotheses
with which to work. Under the assumption that most of these
pairs do not contain true associations, one would expect to
observe a distribution of p-values similar to a theoretical null, that
is, uniformly distributed on [0, 1] with λ ¼ 1. Because eQTL ana-
lysis can be viewed as many GWAS problems analyzed together
(one per gene-probe), this assumption is reasonable. Addition-
ally, this assumption is further supported by the fact that results
on synthetic null data were strikingly similar to those on the real
data, as will be shown next.

The left column in Fig. 1 shows SNP-probe hypothesis p-value
histograms for the real human data. Of interest is that ICE
p-values were deflated as summarized by λ ¼ 0.93, suggesting a
problem with the method. This deflation can occur when an
inconsistent estimator is used for model parameter KEH (see
Materials and Methods) in the mixed model and is discussed in
detail in the SI Appendix. In contrast, when we used our model,
LMM-EH, the deflation essentially disappeared, yielding
λ ¼ 0.99.

The right column in Fig. 1 shows the analogous p-value histo-
grams on synthetic data containing no associations. The resem-
blance between the left and right columns in Fig. 1 is striking,
suggesting that our synthetic data was representative of the real
data. For example, the ICE model was still deflated, whereas
our model (LMM-EH) was not. Of particular interest is that
SVA appeared to have a comparable number of associations
as on the real data. The SVA algorithm found 31 Surrogate Vari-
ables (SVs) on the synthetic data vs. 50 on the real data, using 100
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Fig. 1. P-value histograms for human data. Left column shows results on
real-data: ICE p-values were deflated as indicated by λ ¼ 0.93, whereas our
model, LMM-EH, corrected this to λ ¼ 0.99. The right column shows results
on synthetic data: ICE p-values were deflated as indicated by λ ¼ 0.92,
whereas our model corrected this to λ ¼ 0.97. Linear regression with SVA
covariates was more inflated than linear regression alone.
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permutations over a range of eigengene-significance from 0.01 to
0.5. Because this was synthetic data, however, we now know that
these were spurious associations, suggesting that the associations
SVA found on the real data were also spurious. Such behavior
likely resulted from overfitting of the model parameters (see
“Overview of Synthetic Experiments” and the SI Appendix). On
the null synthetic data, a two-sided, one-sample KS test for uni-
formity indicated that the p-value distribution from our model
(LMM-EH) was not significantly different from the theoretical
null (p ¼ 0.26), but that of ICE was (p ¼ 0.02). These results
suggest that our approach to correcting for EH was the only
one among those tested that yielded calibrated p-values.

Fig. 2 shows the results of power experiments on the synthetic
data containing 5% associations, at strengths found in the real
data. The ICE model had power comparable to our model.
However, in a setting where one does not know the true False
Discovery Rate (FDR), one must estimate it and pick a p-value
cut-off based on this estimated FDR.When we did so for the ICE
method, this method underestimated its power because of its
deflated p-values, resulting in a loss of hits for a given estimated
FDR level (e.g., 60 for ICE rather than 80 with our model at an
estimated FDR ¼ 0.15, or 80 instead of 110 with our model at
estimated FDR ¼ 0.2). Our model achieved the highest number
of true associations for a given estimated FDR cut-off.

Because there is no gold standard with which to evaluate eQTL
analyses of real data, some researchers have advocated the use of
a “cis-enrichment” (31) bronze standard. The rationale behind
this score is as follows. When searching for eQTL associations
between a SNP and a gene-probe level, there are two primary
types of associations that one can find: (i) a local (or cis) associa-
tion in which the SNP is close to the gene probe and thus likely to
be acting in cis, and (ii) a distant (or trans) association in which
the SNP is not close to the gene probe and thus likely acting in
trans (4). It is commonly believed that cis-acting SNPs have stron-
ger associations than trans-acting SNPs (3) because the mode of
action is more direct. Consequently, it is sometimes assumed
that cis associations should tend to get lower p-values than trans
associations, and that the extent to which this is so is a reflection
of the quality of the analysis (31).

We applied a cis-enrichment test (see Materials and Methods)
to the real human data. In order to have enough power to detect
differences between different models, we required enough poten-
tial cis eQTL (here defined as within 500 Kb of the gene, as was
done in refs. 14, 30, 31) in the set of hypotheses tested and so
focused on SNPs and gene probes in chromosome 1 rather than
a random set of hypotheses across the genome. We selected every
sixth SNP and all gene probes on chromosome 1. This procedure
resulted in respectively 3;674 probe × 7;266 SNPs. Although
each model had lower p-values for cis vs. trans hypotheses

(p < 1e − 16 by Mann Whitney), our model, LMM-EH, had
significantly better cis enrichment than the other models (see
Materials and Methods) as shown in Table 1. Additionally, the
ranking of models provided by this evaluation matched the rank-
ing implied by our power experiments on synthetic data, and also
the ranking of models suggested by deviation from uniform of
p-value histograms shown earlier.

Modeling of Expression Heterogeneity and Population Structure. For
experiments on mouse data, we again randomly selected 6,000
SNP-probe hypotheses which with to work. The left column of
Fig. 3 shows p-value histograms on the real mouse data. We see
that ICE-based models (ICE, ICE-PS) lead to dramatically de-
flated p-values (λ ¼ 0.71 λ ¼ 0.63) again pointing to a problem
with the method. In contrast, when we used our model (LMM-
EH-PS) the deflation disappeared, giving λ ¼ 1.02.

The right column of Fig. 3 shows the analogous p-value histo-
grams on synthetic data containing no true associations. The re-
semblance between the histograms on the real and synthetic data
was again striking and suggests that our synthetic data was repre-
sentative of the real data. Because the right column in Fig. 3
shows results on data with no associations, it is apparent that
all models other than our joint model either produced serious
inflation or deflation of p-values. Of particular interest is that
when we added SVA-based covariates (with 24 SVs found on
the synthetic datasets, and 29 on the real data, using 100 permu-
tations and for a range of eigengene-significance from 0.01 to 0.5)
to a PS-correcting mixed-effects model (SVA-PS), there was a
large amount of inflation (λ ¼ 3.13), more so than when we used
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Fig. 2. Power curves for synthetic human data. The left plot shows the Re-
ceiver Operating Characteristic (ROC) curve, which displays the true positive
rate (TPR) as a function of the false positive rate (FPR). This plot demonstrates
that our model and ICE achieved similar power, surpassing linear regression
with or without SVA covariates. The red line denotes what random guessing
would have achieved. The right plot shows the number of associations called
significant for each estimated FDR level (estimated as in ref. 15), demonstrat-
ing that in a real setting, ICE would be penalized for its deflated p-values
(λ ¼ 0.93) because they result in overly conservative FDR estimates.

Table 1. Human cis-enrichment, a starred p-value indicates that the
starred model outperforms the nonstarred model

ICE LINREG SVA

LMM-EH* 8.31e−3* <1e−16* 9.85e−6*
ICE* <1e−16* 1.01e−4*
LINREG* 8.27E−11
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λ=1.02, LMM−EH−PS
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λ=5.68, LINREG

λ=0.57, LMM−EH

λ=0.74, ICE

λ=0.63, ICE−PS

λ=1.00, LMM−EH−PS

Fig. 3. P-value histograms for mouse data. Left column shows results on
real-data: ICE-based p-values were deflated, as indicated by λ ≪ 1. SVA-based
models, LMM-PS, LMM-EH, and LINREG were inflated. Only our model
(LMM-EH-PS) appeared to be calibrated, with λ ¼ 1.02. Our model also indi-
cated a small number of true associations (roughly 100 of 6,000 tests). The
right column shows results on synthetic data: ICE-based p-values were de-
flated as indicated by λ ≪ 1. Other models were inflated, and our model
(LMM-EH-PS) appeared calibrated with λ ¼ 1.00.
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SVA with only linear regression (SVA). These results suggest that
SVA can be lead further astray in the presence of PS.

Fig. 4 shows the results of power experiments on synthetic data
which contained 5% associations, at strengths found in the real
data multiplied by a factor of 3 (factors 1 and 5 are shown in the
SI Appendix). At a strength multiplier of 1, all models recovered
only a few associations. At a strength multiplier of 3, our model
performed best (p ¼ 0.002, based on our permutation test). At a
strength multiplier of 5, this statistically significant win remained.
Additionally, the plot showing #Hits vs. Estimated FDR indicates
that ICE-PS was further crippled when forced to use its estimated
FDR, which is highly conservative because of the deflated p-va-
lues. In particular, at an estimated FDR of 0.1, our model found
around 130 hits, whereas ICE-PS found only about 40. Again, our
model achieved the highest number of true associations for a
given estimated FDR cut-off, and also for a given actual FDR.

We also applied our cis-enrichment test to the real mouse data,
restricting the hypotheses tested to chromosome 1, as with the
human data (using all SNPs and all gene probes on chromosome
1, resulting in 2;751 probe × 4;343 SNP hypotheses tested). Simi-
larly to the cis-enrichment tests on the human data, although each
model had lower p-values for cis vs. trans hypotheses (p < 1e − 16
by Mann Whitney), our model, LMM-EH-PS, had significantly
better cis enrichment than the other models, as shown in Table 2.
Additionally, the ranking of models provided by this evaluation
matched the ranking implied by our power experiments on syn-
thetic data, and also the ranking of models suggested by deviation
of p-value histograms shown earlier.

One other point worth mentioning is that upon a full analysis
of the mouse data (the cross-product of all 40;639 gene probes×
48;186 SNPs), there was not a single common hypothesis among
the top 5,000 ranked gene probes between LMM-EH-PS and lin-
ear regression. Between the two most similarly and best perform-
ing models, LMM-EH-PS and ICE-PS, there were 15 hypotheses
in common among the top 5,000. Of these 15 hypotheses, the SNP
fixed effect was always in the same direction and the correlation
coefficient between them was 0.98. A list of the top 10,000 SNP–
gene-probe pairs found by our model can be found on the same
web page as our software.

eQTL Hotspots/Trans-Bands. It has been previously observed that
eQTL analyses sometimes show eQTL hotspots/trans-bands, that

is, SNPs that are associated with a large number of gene probes. It
is believed that some of these may be spurious due to confound-
ing effects, but that some may also be real—resulting from, for
example, a SNP that affects expression of a transcription factor
which in turn acts on many genes (e.g., (14, 16)). We looked for
trans-bands using the same data as for the cis-enrichment tests.
As shown in the SI Appendix, we found that in the human data,
there were visually apparent trans-bands when linear regression
was used, and subtle ones when SVA was used. Neither ICE nor
LMM-EH, however, showed any trans-bands. On the mouse data,
trans-bands were apparent in linear regression and LMM-PS, and
more subtly in SVA and PS-SVA, but not in the other models
(those that correct for EH). Under the assumption that our other
evaluations of the models are correct, most if not all of the trans-
bands observed here are likely spurious, because they appeared in
the worst-performing models.

Discussion
We have introduced a statistical framework for joint correction of
population structure and EH in eQTL studies showing that such a
correction is needed and that other models that might naturally
be applied to this problem do not perform well. Our evaluations
suggest that our models, in comparison to other approaches,
provide better calibrated p-values and maximum power of eQTL
detection, both on synthetic data where ground truth is known,
and on real data when using a cis-enrichment bronze standard.

Future work that would naturally follow from that presented
here would be to extend beyond the search for pair wise SNP–
gene associations to that of identifying multivariate relationships
among genes, among SNPs, and among SNPs and genes, for ex-
ample in the form of modules (32, 33), and also incorporating
auxiliary information (33). Additionally, applying these kinds of
ideas to eQTL studies involving copy number variation, or RNA
sequencing data, or to combinations of data types would likely to
be a productive endeavor.

Materials and Methods
Linear mixed-effects models (20) can be understood on an intuitive level from
a variety of viewpoints. We view the linear mixed-effects model as a prob-
abilistic generative model (26–28). Probabilistic generative models are a class
of statistical models in which the semantics literally describe how one would
generate observed data from the model for a fixed set of model parameters.
Of course in practice we have the opposite situation—we have the observed
data, but not the parameters of the model that generated it. Our task of
parameter fitting is then to find the model parameters that, for example,
make the observed data most likely (i.e., maximum likelihood). Once the
parameters of the model have been fit, we can then use the fit of the data
under different models—for example, those with and without a proposed
SNP effect on one gene probe’s expression—to generate p-values for parti-
cular SNP–probe eQTL hypotheses, using, for example, a likelihood ratio test
(LRT) (13).

Our LMM-EH-PS model is set up to generate microarray expression data,
whereas the SNP data is assumed to be fixed and is not generated by the
model. This decision is motivated by the fact that SNP data can affect changes
in expression data but not the other way around. In the generative model
view of the mixed-effects model, the central idea is that each individual
in the dataset is assigned a single number, ui (for the ith individual) which
represents where that individual lies in “confounder space.” As a concrete
example, if one had a dataset consisting of individuals with varying degrees
of admixture between Caucasian and African, this single number might
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Fig. 4. Power curves for synthetic mouse data. The left plot shows the ROC
curve, where our model LMM-EH-PS achieved maximum power. The red
line denotes what random guessing would have achieved. The right plot
illustrates how the best ICE-based model (ICE-PS), which yielded deflated
p-values, penalized itself because of its overly conservative estimated FDR.

Table 2. Mouse cis-enrichment, a starred p-value indicates that the starred model outperforms the nonstarred model

mouse ICE-PS LMM-EH ICE LMM-PS LINREG SVA PS-SVA

LMM-EH-PS* 1.80e−014* <1e−16* <1e−16* 1.89e−008* 2.22e−015* <1e−16* <1e−16*
ICE-PS* 4.02e−14* <1e−16* 0.163* 4.97e−5* <1e−16* <1e−16*
LMM-EH* 0.497 0.403* 0.1959* <1e−16* <1e−16*
ICE* 0.106 0.390* <1e−16* 2.22e−16*
LMM-PS* 8.88e−5* <1e−16* <1e−16*
LINREG* <1e−16* 2.44e−14*
SVA* <1e−16
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represent the fraction of say Caucasian ancestry in each person. For more
complex types of PS, the space becomes more complex but the general idea
remains the same. In order to generate “observed” gene-expression data for
one gene probe, g (total of G gene probes), and all individuals, ~yg (dimension
N × 1 for N individuals), from the model, one first samples these “confounder
coefficients,” ~ug ¼ ½u1

g;…;uN
g �, and then treats them as covariates in a linear

regression model (Eq. 1) in order to generate the gene-expression values.
One generates the confounder coefficients by way of a matrix, K (dimension
N × N), representing similarities between individuals. K may contain the
similarity between all pairs of individuals as measured in “SNP space” if cor-
recting for PS, or the similarity between all pairs of individuals in “expression
space” if correcting for EH. The confounder coefficients are drawn from a
zero-mean Gaussian with covariance K. This model is pictorially represented
in the SI Appendix and is fully specified as follows,

~ugjK ∼Nð ~ugj ~0;KÞ generate the confounding coefficients

~eg ∼Nð ~egj ~0;IÞ generate the noise

~yg ¼ X ~βg þ τg ~ug þ σg ~eg compute gene expression data; [1]

where ∼ denotes that a variable is stochastically generated from the distri-
bution to the right of this symbol;Nð ~rj ~m;ΣÞ denotes a Gaussian distribution in
~r with mean ~m and covariance matrix Σ ; I denotes the identity matrix; σg
(scalar) is the magnitude of the Gaussian residual noise; τg (scalar) is the mag-
nitude of the confounding PS (or EH); ~βg (dimension Q × 1) is the effect of S
SNPs andQ − S other effects (e.g., bias/offset term and covariates such as gen-
der and age) on the gene-expression level for gene-probe g, and X (dimen-
sion Q × N) is the corresponding design matrix. See the SI Appendix for a way
to explicitly include strain relationships in this model. Readers familiar with
the conventional mixed model presentation will recognize ~ug as a random
effect X, as the fixed effects, and the likelihood function for this model,
pð ~ygjX; ~βg;τg;σg;KÞ ¼ Nð ~ygjX ~βg;τ2gK þ σ2gIÞ, which arises from integrating out
~ug. The likelihood of all of the gene-expression data, Y ¼ ½ ~y1; ~y2;…; ~yG� (di-
mension N × G), is given by pðY jf ~βg;τg;σgg;KÞ ¼

Q
gpð ~ygjX; ~βg;τg;σg;KÞ, where

f ~βg;τg;σgg denotes the parameters over all gene probes. Because we only test
for one SNP at a time, we do not actually incorporate all SNPs into the model
jointly, instead restricting the fixed effects to include just one SNP at a time.
Details of this model and on how to learn its parameters, f ~βg;τg;σgg, are pro-
vided in the SI Appendix. We usemaximum likelihood (ML) parameter fitting,
and an LRT test to generate p-values from twomodels—onewith a single SNP
effect, and one without it. Our experiments have shown that use of REML
(Restricted Maximum Likelihood) provides comparable results in this setting.

When one seeks to account for both PS and EH simultaneously, one need
simply generate two sets of confounder coefficients, ~ugjKPS ∼ Nð ~ugj ~0;KPSÞ
and ~vgjKEH ∼ Nð ~vgj ~0;KEHÞ, independently, using the similarities between
individuals in respectively SNP space (KPS), or expression space (KEH), and then
add these into the regressionmodel, yielding a likelihood, for one gene, g, of

pð ~ygjX; ~βg;σg;wg;KEH;KPSÞ
¼ Nð ~ygjX ~βg;τ2g ½wgKEH þ ð1 − wgÞKPS� þ Iσ2g Þ;

where wg in [0,1] is the relative weight of KEH to KPS. The log likelihood for
all gene probes can be written in a similar manner to that shown earlier.

When correcting for both PS and EH simultaneously, we use a KPS deter-
mined from the SNP data just as we do when correcting for PS alone. An
Identity-By-Descent, Identity-By-State, and covariance matrix (11) have been
used for KPS (e.g., (12, 13, 21)). In separate experiments, we found all three
yield comparable results. Thus, we used only the covariance matrix in
this study.

When modeling EH, Kang et al. use the covariance matrix of the gene-
expression data in their ICE model (14). This estimate of KEH is inconsistent
(see SI Appendix); and we have found that its use leads to deflated p-values,
as seen in the Results section. Therefore we have developed an approach to
correcting for EH with mixed-effects models in which we treat KEH as a para-
meter to be learned in the model and useML to fit it. This approach alleviates
the problem of deflated p-values seen with ICE. We develop a new algorithm
to estimate KEH that combines coordinate-ascent and expectation-maximiza-
tion (34).

We estimate parameters, f ~βg;τg;wg;σgg and KEH for all gene-probemodels
simultaneously by iterating between two steps. First, we identify the ML
values of f ~βg;τg;wg;σgg conditioned on a fixed value of KEH. Then we identify
theML value of KEH conditioned on fixed values of f ~βg;τg;wg;σgg. In each step
the likelihood either increases or remains the same. Note that when learning

KEH, we omit use of the SNPs in X as is also done in ref. 15. We then
incorporate use of the learned KEH, and relearn the other parameters in
the context of a now known KEH, to evaluate SNP–gene-probe hypotheses.
For our mouse dataset, estimation of KEH took 10 h when parallelized across
1,100 processors. For our human dataset, estimation of KEH took 5 h when
parallelized across 1,100 processors. Further details about the joint EH and PS
model, including time complexity, and also details about parameter fitting
including KEH are provided in the SI Appendix.

Because the goal of this paper is to demonstrate the strengths and weak-
nesses of different models that correct for confounding structure in our data,
we have concentrated on additive SNP effects, encoding the pair of each SNPs
an individual has by the number of wild-type alleles (as defined by the data
itself). Our conclusions are likely to be insensitive to these restrictions. We
also impute any missing SNPs as in ref. 11, and any missing gene-probe values
by the median value for that probe.

Overview of Synthetic Experiments. At present there are no benchmark eQTL
datasets with which to evaluate the success of different analyses. Following
the work of others, we therefore worked with synthetic datasets (11–13). To
generate synthetic expression data, we first fitted our model to the real
data. Then, because our model is a generative model, we used the estimated
parameters from the fitted models to generate gene-probe data. To gener-
ate a SNP-probe association, we used the SNP regression weight ( ~βg) esti-
mated for our model on the real data for the top 5% of SNP-probe
hypotheses, multiplied by some strength factor to obtain a variety of
strengths (e.g., strength ¼ 1, 3, 5). Thus, our synthetic datasets contained
5% true associations.

Whereas one can never be absolutely certain of the relevance of synthe-
tically-generated data to a real problem on hand, there are actions one can
take to achieve relevance, and empirical assessments that can be made to
gauge relevance. Forcing data generation to use only parameters estimated
on real data provides some reassurance that the amount of structure (e.g., EH
or PS) the model is generating is on the order of that found in the real data.
Also, if results from analysis of synthetic data are similar to those achieved on
the real data for a variety of experimental conditions, then one has reason to
believe that the generative model has captured the important properties of
the data well. As already mentioned, we restricted the synthetic data gen-
eration in this way—that is, to contain only the amount of PS and EH that
our model inferred from the real data. Additionally, as seen in our experi-
ments, the p-value distributions for real and synthetic data across all models
used were strikingly similar. To further assess robustness of our model, we
also generated null data from a linear mixed model with a PS correction
and SVA covariates (PS-SVA) fitted to the real data, as reported in the SI
Appendix. Interestingly, when we used that same model (PS-SVA) to analyze
the data, we observed statistically significant inflation, which likely resulted
from overfitting. In contrast, our model was able to successfully capture
the confounding structure generated by PS-SVA, having produced a p-value
distribution not significantly different from the null distribution.

Methods of Empirical Assessment Used in Results Section. The calibration (in-
flation/deflation) of p-values was assessed using p-value histograms, the one-
sample KS test for uniformity, and the p-value distribution summary statistic
λ. The λ statistic, pervasive in GWAS studies and used to help judge inflation/
deflation of p-value distributions, is defined as the ratio of the median
observed to median theoretical p-value, after conversion from p-value space
to log-likelihood space by way of an inverse chi-square mapping (10, 18).

We evaluated power of our models applied to synthetic data in several
complementary ways. One, we plotted Receiver Operating Characteristic
(ROC) curves, which show the true positive rate (TPR) as a function of the
false positive rate (FPR). Two, we plotted the number of associations found
vs. the estimated FDR (computed using ref. 35). Here, we do not use the ac-
tual FDR which is possible to compute in our synthetic experiments, because
we specifically want to show howmethods with deflated p-values hurt them-
selves by causing their estimated FDR to be conservative—in real experiments
one can only compute the estimated FDR, not the actual FDR. Three, we use a
nonparametric permutation test equivalent to the one reported in ref. 36,
using 1,000 randomizations, to determine whether the Area Under the Curve
was different between pairs of models. For all three of these assessment tech-
niques, we focused on the regime of interest for GWAS problems—that is, a
relatively small FPR or FDR. In particular, we use only the portion of ROC
curves where FPR < 20%; in plots of number of associations found vs. FDR,
we show only the portion where estimated FDR < 20%. Note that we do
not filter our inferred associations by whether or not they are deemed to
be potentially cis rather than trans, nor do we select one among several SNPs
in linkage disequilibrium (LD). Rather, we use all 6,000 p-values resulting from
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the 6,000 tests performed by each model in each experiment. Among the
6,000 SNPs chosen at random, we did not see much LD (e.g., mean Pearson
correlation between all pairs of 6,000 mouse SNPs was 0.07 and standard
deviation was 0.3).

To test which of two models was better able to assign lower p-values to cis
eQTL hypotheses over trans hypotheses (i.e., our cis-enrichment test), we
used a two-step procedure: (1) for each model, for each SNP, we used a
one-tailed Mann-Whitney test to test the null hypothesis that the model
ranked cis hypotheses no better than trans hypotheses, for hypotheses invol-
ving that SNP, (2) for each pair of models compared we used a two-tailed,
paired Wilcoxon sign-rank test, on the p-values for all SNPs from Step 1,
to test the null hypothesis that the median difference in the Mann-Whitney
test p-values for each SNP is zero.

Data Sets. Our experiments were based on two datasets. The first was the
Caucasian subset of the tissue-specific human liver cohort eQTL dataset
reported and released in ref. 29. DNA samples were genotyped on the
Affymetrix 500K SNP and Illumina 650Y SNP genotyping arrays. RNA samples
were profiled on a customAgilent 44,000 feature microarray. Expression data
was processed as in ref. 29, with an additional step of median-imputing the
gene-expression data, and filtering out SNPs with call rates less than 90%.
Thus in total, our dataset contained 39,296 probes in the expression data
and 571,229 SNPs. We used only those samples predicted as Caucasian in
ref. 29, resulting in 378 individuals. All microarray data associated with

the human liver cohort were previously deposited into the Gene-Expression
Ominbus database under accession number GSE9588.

The second dataset was an eQTL dataset from 16 classical and 3 wild-
derived inbred strains and reported and released in ref. 30. We used a total
of 188 male individuals, with on average, 10 individuals per strain, and never
fewer than 7 nor more than 11. Strains selected represented the distinct
genealogies of inbred mice and includes eight Castle’s mice (129S1/SvImJ,
A/J, AKR/J, BALB/cByJ, C3H/HeJ, DBA/2J, NZB/BlNJ, and SM/J), three C57-
related strains (C57BL/6J, C57BLKS/J, and C57L/J), four Swiss mice (FVB/NJ,
NOD/LtJ, and SJL/J, SWR/J), three wild-derived inbred strains (CAST/EiJ,
CZECHII/EiJ, and PERA/EiJ,) and one other inbred strain (LG/J). All microarray
data are available in the NCBI GEO database under accession number
GSE13870 and contains data for 40,639 probes. SNP data was obtained from
the Broad Institute. SNPs with a minor allele frequency of less than 15% in
the 16 classical inbred strains were removed. The resulting genotype dataset
consists of 48,186 markers.
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