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We study the properties of a quantum dot coupled to a topological superconductor and a normal lead and
discuss the interplay between Kondo-and Majorana-induced couplings in quantum dots. The latter appears
due to the presence of Majorana zero-energy modes localized, for example, at the ends of the one-
dimensional superconductor. We investigate the phase diagram of the system as a function of Kondo and
Majorana interactions using a renormalization-group analysis, a slave-boson mean-field theory, and
numerical simulations using the density-matrix renormalization-group method. We show that, in addition
to the well-known Kondo fixed point, the system may flow to a new fixed point controlled by the Majorana-
induced coupling, which is characterized by nontrivial correlations between a localized spin on the dot and
the fermion parity of the topological superconductor and the normal lead. We compute several measurable
quantities, such as differential tunneling conductance and impurity-spin susceptibility, which highlight
some peculiar features characteristic to the Majorana fixed point.
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I. INTRODUCTION

Topological superconductors have recently attracted
enormous theoretical and experimental interest [1–3]
because they can host certain exotic defects (e.g., vortices)
that bind Majorana zero-energy modes. This excitement
stems from the fact that such defects obey non-Abelian
braiding statistics [4–7] and can be utilized for topological
quantum computing [8]. Among the many proposed
realizations of topological superconductivity [9–17],
a particularly promising one involves a quasi-one-
dimensional semiconductor covered by an s-wave super-
conductor [13,14]. Such a system effectively realizes the
so-called Majorana quantum wire [18] with Majorana zero-
energy modes appearing at the opposite ends of the wire.
First, experimental signatures for Majorana zero-energy
modes in a semiconductor or superconductor heterostruc-
ture were shown by Mourik et al. [19] using tunneling
transport measurements. The appearance of a zero-bias
conduction peak characteristic for Majorana zero-energy
modes (Majoranas) was observed at a finite magnetic field
in agreement with theoretical predictions [20–30]. This
observation has excited the physics community since
Majoranas can be manipulated in network structures of

quasi-1D wires [31–35], which opens up the possibility for
topological quantum computing [8,36,37].
Inspired by this recent experimental progress [19,38–45],

we consider here a topological-superconductor (TSC)
quantum-dot (QD) normal-lead (NL) junction. Such struc-
tures might naturally form in the semiconductor-nanowire
experiments [19,39,41,42] or can be purposely engineered
using other potential experimental realizations ofMajoranas
(e.g., the domain walls on the edge of a 2D topological
insulator [10]) in order to control and manipulateMajoranas
[34,46–50]. We consider here the regime where the dot is
occupied by a single electron, such that, in the absence of the
Majorana coupling, the system flows to the celebrated
Kondo fixed point [51], which has been of paramount
importance to condensed-matter physics [52]. It appears
in many mesoscopic systems where an effective impurity
spin is coupled to a wide range of contact materials [53–72].
In this setup, where Majorana and Kondo interactions
compete at low energies, it is thus a natural and fundamental
question to ask what the resulting physics is. Furthermore,
previous work in Refs. [68,69] has shown that the com-
petition between the superconducting proximity effect and
Kondo correlations leads to the emergence of zero-bias
conduction peaks at certain values of the magnetic field.
Therefore, in interpreting the results of experiments on
TSC-QD-NL systems, it is important to understand and
distinguish the origin of zero-bias peaks.
Transport properties of TSC-QD-NL nanostructures

have been investigated theoretically in Refs. [65–67].
The authors of Ref. [65] investigated transport properties

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 4, 031051 (2014)

2160-3308=14=4(3)=031051(18) 031051-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.4.031051
http://dx.doi.org/10.1103/PhysRevX.4.031051
http://dx.doi.org/10.1103/PhysRevX.4.031051
http://dx.doi.org/10.1103/PhysRevX.4.031051
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


of a TSC-QD-NL junction in the high-temperature limit
using perturbative (in the normal-metal coupling) master
equations. However, in order to understand the low-
temperature properties of the TSC-QD-NL system, one
needs to take into account dot-lead tunneling nonperturba-
tively. This aspect of the problem has been investigated by
Golub et al. [66], who concluded that Kondo correlations
have a decisive effect on the transport properties. They
obtain a strong temperature dependence of the zero-bias
conductance, which is different from a normal-metal (NM)
Majorana bound state (MBS) system [73–75]. On the other
hand, a related numerical work [67] considering a quantum
dot coupled to two normal leads and to one end of a TSC
concluded that the MBS significantly modifies the low-
energy transport properties of the system in the limit of
small Majorana hybridization energy. The fact that two
previous publications [66,67] reached opposite conclusions
indicates that low-energy properties of TSC-QD-NL nano-
structures are not yet fully understood.
In this paper, we revisit this problem and investigate the

fate of the Kondo fixed point in a TSC-QD-NL nano-
structure using both analytical and numerical techniques.
We show that in a wide range of physical parameters, the
Majorana-induced coupling is the leading relevant pertur-
bation and drives the system to a new infrared fixed point;
i.e., the Kondo fixed point becomes unstable in the
presence of Majorana-induced couplings. Thus, our con-
clusions regarding this issue are the opposite of those of
Ref. [66], as discussed in more detail below. We also show
that transport properties of the QD-based junctions involv-
ing topological and nontopological superconductors are
very different. Given that quantum dots constitute relatively
simple model systems with high tunability, we suggest
using them as a diagnostic tool for detecting the presence or
absence of localized Majorana zero modes.

II. THEORETICAL MODEL

We consider a nanostructure consisting of a QD with a
single spin-degenerate level coupled to a Majorana mode in
a topological superconductor and an SU(2)-invariant nor-
mal lead (TSC-QD-NL junction). Our setup is sketched in
Fig. 1. Since we are interested in the low-energy theory
valid at the energies E ≪ Δ, with Δ being the induced
superconducting gap, the topological superconductor can
be effectively described by the two Majorana zero-energy
modes γ1 and γ2 localized at its ends. Therefore, the
effective low-energy Hamiltonian for the TSC QD NL
junction reads

H ¼
X
σ

εd†σdσ þUn↑n↓ þ V þHNL; ð1Þ

V ¼ iλγ1ðd↑ þ d†↑Þ þ
X
σ

jtj½d†σψσð0Þ þ ψ†
σð0Þdσ�; ð2Þ

HNL ¼ − t0
X
x;σ

½ψ†
σðxÞψσðxþ 1Þ þ H:c:�

þUb

X
x

n↑ðxÞn↓ðxÞ; ð3Þ

where dσ and d†σ are annihilation and creation operators on
the dot, and nσ ¼ d†σdσ. Here, ε is the chemical potential of
the QD, U is the strength of the electron-electron inter-
action on the QD, t (λ) is the tunneling coupling between
the lead (TSC) and the QD. We assume that the TSC is
much longer than the coherence length ξ and, therefore,
neglect for now the coupling to other Majorana modes [i.e.,
γ2 in Fig. 1(a)], which is exponentially small in L=ξ. The
effect of a finite ground-state-degeneracy splitting in the
TSC will be considered in Sec. III C. Our model defined in
Eq. (1) describes the competition between Kondo and
Majorana couplings. Indeed, when the coupling to the TSC
λ is 0, the system flows to the Kondo fixed point. Turning
on finite Majorana coupling, λ also breaks, in addition to
U(1) symmetry, time-reversal symmetry in the dot and,
thus, competes with Kondo correlations.
In recent experiments [19], the semiconductor nanowire

was made of InSb, which has a very large g factor of
gInSb ∼ 50. The topological-superconducting phase in this
setup is predicted to appear at B > Bc ≈ 100 mT, which
corresponds to a Zeeman energy on the order of a kelvin.
Thus, even if there is any accidental formation of a QD in
the experiment [19], such a large magnetic field would

FIG. 1. Schematic picture of the device: a quantum dot coupled
to a localized Majorana zero mode and a normal lead. The
localized Majorana mode can be realized using (a) a 1D
topological superconductor or (b) a FM-SC domain wall on
the edge of a quantum spin Hall insulator. The electrochemical
potential of the dot can be controlled with the gate voltage Vg. We
assume that the superconductor is grounded, and one can probe
the low-energy properties of the system through tunneling
transport measurements. Here, V is a source-drain voltage.
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suppress Kondo physics in the QD. However, the situation
is less clear in InAs nanowires [39,41] where gInAs ∼ 10 is
smaller, and the Zeeman splitting at B ∼ Bc might be
comparable with the Kondo scale [68]. In this case, it
becomes nontrivial to distinguish the origin of zero-bias
features, as Kondo and Majorana physics compete. To
study this scenario, we consider a setup where the semi-
conductor nanowire has a much larger g factor than the
normal lead and the QD, so that the magnetic field
necessary to induce topological superconductivity has very
little effect on the lead and the QD. Alternatively, one can
consider a localized Majorana zero-energy mode being
realized at a ferromagnetic or superconducting domain wall
on the edge of a quantum spin Hall (QSH) insulator; see
Fig. 1(b). In this case, the time-reversal symmetry is
explicitly broken by a local exchange field induced by
the proximity to a ferromagnetic insulator. The effect of the
magnetic field generated by the ferromagnetic insulator on
the QD and the lead is negligible, and one can assume that
the Hamiltonian for the QD and the lead is SUð2Þ
symmetric. The model Hamiltonian describing the QSH
setup shown in Fig. 1(b) is identical to the one defined
in Eq. (1).
The Hamiltonian HNL, defined on a lattice with hopping

t0, models a semi-infinite (x ≥ 0) single-channel lead.
Here, ψ†

σðxÞ and ψσðxÞ are fermion-creation and
fermion-annihilation operators with spin σ. In the case
of nanowire-based realizations of this setup [19,39–42], it
might be important to take into account electron-electron
interactions Ub in the lead. In the continuum limit, the
normal-lead Hamiltonian (3) corresponds to a spinful
Luttinger liquid:

HNL ¼
X
j¼σ;ρ

vj
2π

Z
∞

0

dx½Kjð∇θjÞ2 þ K−1
j ð∇ϕjÞ2�;

where vρ=σ and Kρ;σ are the velocity and the Luttinger-
liquid parameter for charge and spin modes, respectively.

We follow a bosonization convention where ψ r;σ ¼
e−ði=

ffiffi
2

p Þ½ðrϕρ−θρÞþσðrϕσ−θσÞ�=
ffiffiffiffiffiffiffiffi
2πa

p
with r ¼ �1 and σ ¼

�1 for right- or left-moving fermions with ↑ or ↓ spin
[76]. Here, Γσ is a Klein factor and a is the ultraviolet cutoff
of the theory. We are interested in the limit when ε < 0 and
U þ ε > 0, favoring single occupation on the dot, and jλj
and jtj are both small compared to the excitation gap in the
dot minðjεj; U − jεjÞ. Thus, for a noninteracting lead
(Kρ ¼ Kσ ¼ 1) and λ ¼ 0, the Hamiltonian (1) corresponds
to a canonical single-channel Kondo problem.
In the limit of a large charging energy on the dot, one can

simplify Eq. (1) by projecting out states with zero and
double occupancy on the dot. The projection can be done
using a Schrieffer-Wolff transformation [77]; see
Appendix A for details. The effective Hamiltonian becomes
H ¼ HNL þHb with the boundary Hamiltonian Hb being

Hb ¼ −jλj2ξ−Sz þ iλjtjγ1
�
ξ−
2
½ψ↑ð0Þ þ ψ†

↑ð0Þ�

þ ξþf½ψ↑ð0Þ þ ψ†
↑ð0Þ�Sz þ ψ†

↓ð0ÞSþ þ ψ↓ð0ÞS−g
�

þ jtj2ξþsð0Þ · S: ð4Þ

Here, S and sðxÞ ¼ ψ†
αðxÞσαβψβðxÞ=2 are the impurity-

spin and electron-spin operators at x; ξ� ¼
1=jε0j � 1=ðU − jε0jÞ. Different terms in Eq. (4) have very
clear physical interpretations: The Zeeman term is gen-
erated by virtual hopping between the TSC and the QD.
Since the Majorana is only coupled to a spin-up electron on
the dot, such a process lowers the energy of ↑ electrons.
The second term describes tunneling of electrons between
the TSC and the NL through a virtual state of the QD.
The third term is the familiar Kondo interaction. One can
notice that when ε ¼ −U=2 (i.e., ξ− ¼ 0), the boundary
Hamiltonian has an additional symmetry—particle-hole
symmetry. We first analyze the generic situation ξ− ≠ 0
and then discuss this special case.
In the limit λ → 0, where the system flows to the Kondo

fixed point characterized by the formation of a spin-singlet
state between the localized spin on the dot and a spin of the
Fermi sea, the boundary conditions for fermions in the
leads are modified. In the strong-coupling limit, one finds
that ψRð0Þ ¼ e2iδψLð0Þ, with δ being a scattering-phase
shift, equal to δ ¼ π=2 in the unitary limit [78]. On the
other hand, the Majorana coupling λ favors charge
fluctuations by forming an entangled state with the
fermion parity in the lead. It has been recently shown
that, in the absence of a quantum dot, such a coupling
drives the system to a perfect Andreev-reflection fixed
point characterized by the different boundary conditions
ψRð0Þ ¼ ψ†

Lð0Þ [73] for electrons in the lead. Clearly,
Kondo and Majorana couplings compete with each other
and drive the system to different infrared (IR) boundary
fixed points.

III. RESULTS AND DISCUSSIONS

A. RG analysis

In order to identify the IR fixed point the systems flow
to, we study the RG flow of the boundary couplings. The
minimal system of renormalization group (RG) flow
equations involves four couplings hð0Þ ¼ −jλj2ξ−,
J1ð0Þ ¼ λjtjξ−, J2ð0Þ ¼ λjtjξþ, and J3ð0Þ ¼ jtj2ξþ; see
Eq. (4). In the weak-coupling limit t → 0, we impose open
boundary conditions for lead electrons and then identify a
leading relevant operator that drives the system away from
the unstable fixed point. Henceforth, we assume that the
normal lead has spin SU(2) symmetry, i.e., Kσ ¼ 1. Then,
the RG equations up to quadratic order in couplings are
given by
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dh
dl

¼ h − J1J2
4πvσ

ð1þ K−1
ρ Þ;

dJ1
dl

¼
�
3

4
− 1

4Kρ

�
J1;

dJ2
dl

¼
�
3

4
− 1

4Kρ

�
J2 − J3J2

2πvσ
;

dJ3
dl

¼ J23
2πvσ

; ð5Þ

with l being the logarithmic length scale. One can see that h
is relevant and tends to polarize the spin on the dot. The
couplings J1 and J2 are relevant when Kρ > 1=3, whereas
the Kondo coupling J3 is marginal. The competition
between Majorana and Kondo interactions is reflected in
the RG flow of J2ðlÞ; see the second-order correction
proportional to J3J2. However, in the weak-coupling limit,
we have J3=πvσ ≪ 1 and the Majorana coupling domi-
nates. Thus, we conjecture that the strong-coupling fixed
point is governed by the Majorana rather than the Kondo
interaction. At the length scales l� where the Zeeman
coupling becomes dominant [i.e., hðl�Þ ≫ J2ðl�Þ], the spin
on the QD is completely polarized along the ẑ axis, and,
thus, the IR fixed point corresponds to the Andreev-
boundary condition (ABC) for spin-up electrons and to
the normal-boundary condition for spin-down electrons, a
situation that we denote as an A ⊗ N fixed point [i.e.,
ψ†
R↑ð0Þ ¼ ψL↑ð0Þ and ψR↓ð0Þ ¼ ψL↓ð0Þ]. The tunneling

conductance through such a system is quantized in units of
2e2=h, similar to a TSC and Luttinger-liquid junction
[73,74]. One can also understand the temperature and
voltage corrections to the tunneling conductance using
the previous results for TSC and Luttinger-liquid junctions
[75]. From the structure of the lead-Majorana couplings in
Eq. (4), one can immediately notice that the broadening of
the zero-bias conductance peak gets renormalized by the
charging energy U. The decrease of the resonance width
can be understood as a competition between the charging
energy U suppressing charge fluctuations on the dot and
the coupling to the Majorana mode γ1 favoring charge
fluctuations.
The above analysis relies on perturbative RG equations

that are, strictly speaking, not valid at strong coupling.
Therefore, in order to access the strong-coupling fixed
point, we perform numerical simulations for our model. If
the predictions based on the aforementioned weak-coupling
analysis hold in the strong-coupling limit, the system would
flow to Andreev- and normal-boundary conditions for spin-
up and spin-down, respectively. The difference in the
boundary conditions for spin-up and spin-down electrons
should be visible in various static correlation functions,
such as, for example, the superconducting-triplet correla-
tion function defined as

TσðxÞ ¼ hψ†
σðxÞ∂xψ

†
σðxÞψσðx0Þ∂x0ψσðx0Þijx0→0

∝ he2i½θðxÞ−θðx0Þ�ix0→0: ð6Þ

One can show that at the A ⊗ N fixed point, TσðxÞ
decays as TσðxÞ ∝ jxjdσ , where d↑ ¼ −1=2ðK−1

ρ þ 1Þ
and d↓ ¼ −3=2ðK−1

ρ þ 1Þ. Within a bosonization perspec-
tive, the difference in the decaying exponents can be
understood as follows: Andreev-boundary conditions for
spin-up electrons lead to the suppression of θ↑ fluctuations
at the boundary; hence, the decay of spin-triplet correla-
tions is slower than in the bulk, where Tσðx; x0Þ ∝ jx −
x0j−ðK−1

ρ þ1Þ [76]. On the contrary, θ↓ fluctuates strongly at
the boundary, and, therefore, the correlation function T↓ðxÞ
decays much faster than in the bulk. This drastic difference
in the spin-up or spin-down correlation function should be
contrasted with the one at λ ¼ 0, where the system flows to
the Kondo fixed point with d↑ ¼ d↓.
To corroborate this picture, we perform simulations

using the density-matrix renormalization-group (DMRG)
method [79–82]. This method has previously been applied
with enormous success to many one-dimensional models,
including models for the Kondo effect [83–88]. We perform
simulations directly for the Hamiltonian (4), with a real-
space discretization with constant hopping for the normal
lead; see Eq. (3). Such a setup allows easy access to real-
space correlation functions. DMRG simulations can be
systematically refined by increasing a parameter of the
simulation, the so-called matrix size M. We perform
simulations with matrix sizes up toM ¼ 800, also ensuring
accurate results for the gapless lead. We use system sizes
with an odd number of sites in the lead to allow for the
ground state of the entire system to be an SU(2) singlet. Our
system sizes are up to 127 sites in the lead. For the purpose
of this paper, we fix the lead to half filling and setUb ¼ 0 to
avoid any charge density wave or pairing instabilities in
the lead.
Numerical results for the superconducting-triplet corre-

lation function, defined in Eq. (6), are shown in Fig. 2. As
one can see from the figure, the correlation function TσðxÞ
for spin-up and spin-down electrons decays with different
exponents d↑ and d↓. From the scaling analysis with the
system size L, shown in the inset of the figure, we extract
d↑ ≈ −1 and d↓ ≈ −3, which is in excellent agreement with
the predictions for A ⊗ N-boundary conditions; see the
discussion above. Thus, we confirm that the strong-
coupling fixed point is indeed controlled by the
Majorana interaction rather than the Kondo interaction,
which is one of the main results of the paper.
We now emphasize the difference in transport properties

for nanostructures involving topological and nontopolog-
ical superconductors. In the absence of the Majorana
coupling, one needs to take into account Andreev scattering
at the junction H ∝ JABψσð0Þψ−σð0Þ þ H:c: Indeed, in the
free-fermion limit (K ¼ 1), both Andreev- and Kondo-
boundary couplings are marginal and compete with each
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other. Thus, low-energy transport properties of the junction
involving a nontopological superconductor depend on the
microscopic details, i.e., the ratio of J3=JAB; see also the
discussion in Sec. III D.

B. Exact solution at the particle-hole-symmetric point

In this section, we focus on the particle-hole-symmetric
point corresponding to a vanishing Zeeman term, i.e.,
ξ− ¼ 0. The resulting boundary Hamiltonian is given by

Hb ¼ iJ2
X

a¼x;y;z

γ1Saηað0Þ þ J3S · sð0Þ; ð7Þ

where ηað0Þ are Majorana operators at x ¼ 0 defined
as ηx ¼ ψ↓ð0Þ þ ψ†

↓ð0Þ, ηy ¼ i½ψ†
↓ð0Þ − ψ↓ð0Þ�, and

ηz ¼ ψ↑ð0Þ þ ψ†
↑ð0Þ. One can see that J2 flows to strong

coupling, and, as a result, the system forms an entangled
state involving fermion parity shared between the γ1 and
ηað0Þ modes and the impurity spin. However, the nature of
the boundary conditions for fermions at x ¼ 0 is quite
nontrivial since the spin on the dot is strongly fluctuating.
Vanishing of the spin polarization can be understood from
an emergent symmetry of the system. Indeed, at this special
point, the effective Hamiltonian is invariant under the
following antiunitary symmetry:

~T ¼ CK: ð8Þ
Here, K is the complex conjugation and C is the charge
conjugation, under which dσ → d†σ and ψσ → ψ†

σ. One can
show that ½ ~T ; Hb þHNL� ¼ 0. When acting on the QD
impurity spin, ~T is similar to the time-reversal symmetry
~T S ~T −1 ¼ −S, which implies that hSi ¼ 0. Away from the

particle-hole-symmetric point, both terms proportional to
ξ− explicitly break ~T symmetry and induce a polarization
of the impurity spin along the z axis.
Some insight regarding the IR fixed point in this case can

be obtained when leads are noninteracting and J3 ¼ 0. By
introducing Majorana-fermion operators Γa ¼ 2γ1Sa, the
problem can be mapped to a fermion bilinear Hamiltonian
that admits an exact solution. One can show that the
operators Γa satisfy canonical commutation relations
and anticommute with all other fermion operators, i.e.,
fΓa; cσg ¼ 0. We now consider the Hilbert space these
matrices act upon. The Hilbert space of the original
problem is given by a tensor product of the topological
superconductor and the quantum dot, which is described by
4 × 4 matrices forming a Clifford algebra. On the other
hand, after the mapping, we also have a Clifford algebra
fγ2;Γx;Γy;Γzg. The uniqueness of the Clifford algebra up
to a unitary transformation ensures that the matrix repre-
sentations of γ1Sa and Γa are equivalent. Using this
mapping, one can set up a standard transport calculation
[89]. We first compute the unitary scattering matrix SðEÞ
defined as

SðEÞ ¼ 1þ 2πiŴ†ð−E − πiŴŴ†Þ−1Ŵ; ð9Þ

where the matrix W describes the coupling of Majorana
modes ðΓx;Γy;ΓzÞ to the lead degrees of freedom:

Ŵ ¼

0
B@

0 iJx 0 iJx
0 Jy 0 −Jy
iJz 0 iJz 0

1
CA: ð10Þ

Here, the propagating electron and hole modes in the
normal lead are described in the basis ðψ↑;ψ↓;ψ

†
↑;ψ

†
↓Þ.

Using the particle-hole components of the scattering matrix
PheðEÞ, one finds that the dc current through the system is
given by

IðVÞ ¼ 2e
h

Z
dE½fðE − eVÞ − fðEÞ�AðEÞ; ð11Þ

AðEÞ ¼
X
i

jPheP
†
hejii; ð12Þ

where AðEÞ is the probability of Andreev reflection, fðEÞ is
the Fermi function, and V is an applied bias voltage. The
tunneling conductance through the junction G ¼ dI=dV at
zero temperature reads

GðVÞ
2e2=h

¼ W2
z

ðeVÞ2 þW2
z
þ ðWx −WyÞ2ðeVÞ2
½ðeVÞ2 þW2

x�½ðeVÞ2 þW2
y�
:

ð13Þ

FIG. 2. Triplet pairing correlation function TσðxÞ for the
couplings h ¼ 0.2=t, J1=t ¼ 0.2, J2=t ¼ 1, and J3=t ¼ 0.5,
where t is the hopping in the lead. The upper set of lines shows
the correlation function for spin-↑ fermions, while the lower set
of lines shows the data for spin-↓ fermions. Dashed lines indicate
fits to a power-law decay. The inset shows the exponents d↑
(black line) and d↓ (blue line) extracted from these fits.
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Here, the broadening width due to the coupling to Majorana
modes Γi is Wi ¼ πJ2i νF with i ¼ x; y; z and νF being the
density of states in the lead. Since Jx ¼ Jy ¼ Jz ¼ J2 [see
Eq. (7)], the second term in the above equation vanishes,
and we find that the low-bias conductance is equal to
Gð0Þ ¼ 2e2=h at zero temperature, similar to the NMMBS
case [73,74]. The quantization of the conductance in units
of e2=h corresponds to Andreev-boundary conditions for
spin-up electrons and normal-boundary conditions for the
spin-down electrons. Indeed, the spin-down electrons are
coupled to two Majoranas Γx and Γy that effectively
annihilate each other; i.e., the contribution to the conduct-
ance from Γx and Γy is 0. Using Eqs. (11) and (13), one
finds that the temperature and voltage dependence of the
conductance GðV; TÞ at the particle-hole-symmetric point
is similar to that of the NM MBS junction [75] with the
width being determined byW. We note here that our results
on the conductance at the particle-hole-symmetric point are
different from those of Ref. [66], the authors of which find
that the zero-bias tunneling conductance has a temperature
dependence that is distinct from that of the simpler NM
MBS tunnel junction [90].
Further insight about the strong-coupling fixed point can

be obtained by studying the dynamics of the impurity
spin. Consider, for example, the dynamical spin-spin
correlation function hSzðtÞSzð0Þi. The impurity-spin oper-
ator can be written in terms of Majorana operators Γa:
Sa ¼ −2iεabcSbSc ¼ −ði=2ÞεabcΓbΓc. Then, the correla-
tion function hSzðtÞSzð0Þi can be written as

hSzðtÞSzð0Þi≡− 1

4
hΓxðtÞΓyðtÞΓxð0ÞΓyð0Þi: ð14Þ

The correlation functionGðtÞ ¼ hΓaðtÞΓað0Þi can be easily
obtained by taking the Fourier transform of

GaðωÞ ¼ ðωþ πiWW†Þ−1aa ¼ 1

ωþ iWa
; ð15Þ

where a ¼ x; y; z. Since Jx ¼ Jy ¼ Jz, we defineW ≡Wa.
In the long-time limit, the spin-spin correlation function
reads

hSzðtÞSzð0Þijt→∞ ≈
1

4W2t2
: ð16Þ

Clearly, the impurity-spin operator acquires a nontrivial
scaling dimension equal to 1 at the strong-coupling fixed
point, and, thus, Kondo coupling J3 becomes an irrelevant
perturbation in the RG sense. We confirm our results using
DMRG calculations and show that the system flows to
A ⊗ N-boundary conditions when J3 ≠ 0; see Fig. 3. One
can see that for λ ¼ 0, the decay of the triplet correlation
functions is described by the same exponent for spin-up and
spin-down electrons d↑ ¼ d↓. However, as soon as λ ≠ 0,

the exponents become different and eventually saturate at
d↑ ≈ −1 and d↓ ≈ −3 for noninteracting leads. These
numerical results corroborate our conjecture that in the
presence of particle-hole symmetry, the strong-coupling
fixed point is described by a new fixed point dictated by J2
coupling. This fixed point corresponds to a situation where
the spin on the dot is strongly entangled with the combined
fermion parity of the topological superconductor and the
normal lead.
Another interesting feature of the above fixed point is the

dependence of the polarization of the impurity spin on the
position of the energy level ε on the dot. At the particle-
hole-symmetric point ε ¼ ε0 ¼ −U=2, the impurity spin is
strongly fluctuating, i.e., hSzi ¼ 0. If the gate voltage is
detuned by Vg, such that ε ¼ ε0 þ Vg, the spin shows a
nontrivial behavior that allows us to distinguish between
Majorana and Kondo physics. As the Kondo coupling does
not break the ~T symmetry, the impurity spin has an
expectation value hSi ¼ 0 for all values of Vg in the
absence of a coupling to the Majorana mode λ ¼ 0. If,
on the other hand, the coupling to the Majorana mode is
present λ ≠ 0, the spin polarizes along the ẑ axis for
Vg ≠ 0; see the discussion after Eq. (8). The perturbation
Hamiltonian proportional to the detuning away from the
particle-hole-symmetric point Vg is given by

HV ¼ eVg

�
− 8jλj2

U2
Sz þ

4iλjtj
U2

γ1ηzð0Þ
�
: ð17Þ

Using linear-response theory, one can now compute
the spin susceptibility ∂hSzi=∂VgjVg¼0. Consider the
imaginary-time dynamical spin-response function:

FIG. 3. Dependence of the exponent dσ on the Majorana
coupling J2 for a fixed Kondo coupling J3=t ¼ 0.5 and
J1 ¼ h ¼ 0. Solid lines correspond to d↑, dashed lines to d↓.
System sizes are L ¼ 32, 64, 96, 128, and an extrapolation to
L → ∞ is shown as a dotted line.
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χðτÞ ¼ − 8eλ2

U2
hTτSzðτÞSzð0Þi

þ 4ieλjtj
U2

hTτSzðτÞγ1ð0Þηzð0; 0Þi: ð18Þ

Using the relations Sz ¼ −ði=2ÞΓxΓy and γ1 ¼ −iΓxΓyΓz,
one obtains

χðτÞ ¼ 8e
U2

ðλ2 − iλjtjhΓzηzð0ÞiÞGxyðτÞGxyð−τÞ; ð19Þ

where the Green’s function GxyðτÞ ¼ −hTτfðτÞf†ð0Þi with
f ¼ ð1=2ÞðΓx þ iΓyÞ. Using the equations of motion,
one can find GxyðiωÞ ¼ ðiωþ iWsgnωÞ−1. After some
manipulations, we obtain the static spin susceptibility
∂hSzi=∂VgjVg¼0 ≡ χðω → 0Þ:

∂hSzi
∂Vg

����
Vg¼0

¼ e
2π2νFt2

�
1 − 4νFt2

U
ln

Λ
W

�
; ð20Þ

with Λ being the UV cutoff corresponding to the bandwidth
in the lead and ξþ ¼ 4=U. Close to the particle-hole-
symmetric point, the susceptibility ∂hSzi=∂Vg has a non-
trivial dependence on the tunneling rates λ and t. This
dependence is very distinct from the Kondo case, sug-
gesting that studies of impurity-spin fluctuations in TSC
QD NL structures might be used to help in identifying
Majorana zero-energy modes.
To numerically confirm this behavior, we resort to

DMRG simulations of the system. We simulate systems
up to L ¼ 64 sites described by Hamiltonian (4), where we
set U ¼ 8 and t ¼ 1. For our simulations, we useM ¼ 400
states and we measure hSzi on the impurity. We slightly
detune the chemical potential on the quantum dot from the
particle-hole-symmetric point and perform simulations in
the range Vg ∈ ½−0.05; 0.05�, allowing us to numerically
extract the derivative ∂hSzi=∂Vg. To gain additional insight
into the crossover between Kondo- and Majorana-
dominated physics, we modify the Hamiltonian (4) by
multiplying the Kondo-coupling term by an additional
factor K to either suppress or enhance the Kondo energy
scale. Our results are shown in Fig. 4. We find that for
intermediate values of λ and, in particular, the physical limit
K ¼ 1, the susceptibility can be well fit by a log λ2, as
suggested by Eq. (20). If λ ∼ 1 or λ is much smaller than the
level spacing in the lead, finite-size effects become sig-
nificant and our previous calculation in the thermodynamic
limit is no longer applicable. We have checked that a
modified theory on finite-size lattice systems reproduces
the numerical data very well. We observe that enhancing
the Kondo coupling suppresses the spin susceptibility,
which is easily understood by considering that in the
Kondo-dominated strong-coupling fixed point, i.e., for

λ ≪ t, the impurity spin forms a singlet with lead electrons,
i.e., hSi → 0, and, thus, the susceptibility vanishes.

C. Results away from the particle-hole-symmetric
point: Slave-boson mean-field theory

The results discussed in the previous section are valid
close to the particle-hole-symmetric point. We now develop
a theory away from this point in the large-U limit. In this
case, one can use a slave-boson approximation [91,92]
proven to successfully capture the strong correlation effect
in the Anderson impurity models; see, e.g., Ref. [93]. In
order to take into account the interplay between the Kondo
correlation and the Majorana coupling, we go back to the
initial Anderson-type model of the TSC-QD-NL junction
and project out the doubly occupied state using a mean-
field slave-boson approximation. A similar study was
carried out in Ref. [66], but, as explained below, the
nontrivial mean-field solution corresponding to the
Majorana-dominated regime, which is the main result of
our paper, was not treated there. To make this section self-
contained, we briefly review the slave-boson approach and
discuss mean-field solutions in different parameter regimes.
Technical details are presented in Appendix C.
We begin by writing the Anderson Hamiltonian for the

TSC-QD-NL junction:

H ¼ iδγ1γ2 þ
X
σ

εd†σdσ þ Un↑n↓ þ V þHNL; ð21Þ

V ¼ iλγ1ðd↑ þ d†↑Þ þ
X
kσ

jtjðd†σψkσ þ H:c:Þ; ð22Þ

FIG. 4. Impurity-spin susceptibility for a system of L ¼ 64
sites with U ¼ 8 and t ¼ 1, where different dashed lines
correspond to simulations where we have multiplied the Kondo
term of Eq. (4) by K ¼ 0, 0.5, 1, 1.5, 2 (from top to bottom).
The blue line (round points) thus represents the unmodified
Hamiltonian (4). The solid lines show a fit to a logðbλ2Þ [see
Eq. (20)], with a and b as fit parameters over a regime of
intermediate λ. The dotted yellow line is a comparison to results
obtained in linear response for the case without Kondo coupling.

INTERPLAY BETWEEN KONDO AND MAJORANA … PHYS. REV. X 4, 031051 (2014)

031051-7



HNL ¼
X
kσ

ξkψ
†
kσψkσ; ð23Þ

where ψkσ are fermion-annihilation operators in the normal
lead and δ is the ground-state-degeneracy splitting in the
TSC due to finite-size effects. In the infinite-U limit, double
occupancy of the QD is suppressed. To this end, we
introduce new operators dσ → fσb† and d†σ → f†σb, where
b and fσ represent unoccupied and singly occupied states,
respectively. Double occupancy is excluded by introducing
the constraint b†bþP

σf
†
σfσ ¼ 1. Thus, the effective

action of the system reads

SSB ¼
Z

dτ

�X
σ

f†σð∂τ þ εÞfσ þ
X
kσ

ψ†
kσð∂τ þ ξkÞψkσ

þ iλγ1ðf↑b† þ f†↑bÞ þ
X
kσ

jtjðf†σψkσbþ H:c:Þ

þ
X
i¼1;2

γi∂τγi þ iδγ1γ2 þ η

�
b†bþ

X
σ

f†σfσ − 1

�	
;

ð24Þ

where the last term enforces the constraint on the Hilbert
space. We now make a mean-field approximation and
replace boson operators by their expectation value
hbi ¼ hb†i ¼ b, which together with the Lagrange multi-
plier η are going to be determined self-consistently by
minimizing the action SSB:

∂SSB
∂η ¼ 0 → b2 þ

X
σ

hf†σfσi ¼ 1;

∂SSB
∂b ¼ 0 → 2bηþ t

X
kσ

ðhf†σψkσi þ c:c:Þ þ iλhγðf†↑ þ f↑Þi

¼ 0: ð25Þ

The calculation of the above correlation functions is
presented in Appendix C. Here, we highlight our main
results.
The general solution can be obtained numerically as well

as, in some cases, analytically. We first consider the case of
no splitting δ¼0. In the single-occupancy limit where ε<0
and jεj ≫ λ; jtj, the probability of a QD being empty b2 is
small. Thus, one can solve the self-consistency equations,
assuming b → 0. From the first equation above, we find
that jεþ ηj ∼ Γb4 with Γ ¼ πjtj2νF being the lead-induced
broadening in the dot. Using the expression for η and
evaluating the integrals in the second equation, one finds

ηþ 2Γ
π
ln
Γb2

Λ
− λ

2
ffiffiffi
2

p
b
¼ 0: ð26Þ

Here, we keep only leading terms in the expansion in small
b; Λ is a UV cutoff corresponding to the bandwidth in the

lead. When λ ¼ 0, we recover the solution for the Kondo
model

b2 ≈
Λ
Γ
exp

�
− πjεj

2Γ

�
; ð27Þ

and Γb2 ¼ Λe−ðπjεj=2ΓÞ ≡ TK corresponds to the Kondo
temperature TK . When λ is large, the second term in
Eq. (26) is more important since it is more divergent.
Thus, an approximate solution reads

b ≈
λ

2
ffiffiffi
2

p jεj : ð28Þ

This is a new mean-field solution of the self-consistency
equations which was not considered in Ref. [66]. Once
again, we see that the Majorana coupling is a more relevant
perturbation than the Kondo coupling and, thus, determines
the low-energy properties of the system. The crossover
between the two regimes can be determined by matching
the two solutions for b:

λc ∼
ffiffiffiffiffiffi
TK

Γ

r
jεj ¼

ffiffiffiffi
Λ
Γ

r
jεj exp

�
− πjεj

4Γ

�
: ð29Þ

Thus, the Majorana-dominated regime corresponds to
λ ≫ λc with the value of b determined by the Majorana
coupling, whereas λ ≪ λc corresponds to the Kondo-
dominated regime.
Wewill now discuss finite-size effects in the nanowire by

assuming that Majorana-degeneracy splitting δ is nonzero.
In this case, we find solutions of Eqs. (25) numerically.
A plot of b as a function of the rescaled parameters
~δ ¼ δ=Γ and ~λ ¼ λ=Γ is shown in Fig. 5. One can see that
when δ is large, the value of b closely tracks Eq. (27). As δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0
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2.5
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0
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0.050

0.075

0.100

0.125

FIG. 5. The mean-field solution for b as a function of ~λ and ~δ
obtained by numerically using Eqs. (25). We have set ε ¼ −6Γ
and the bandwidth Λ ¼ 30Γ in the calculation.
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is increased, there is a crossover between the Majorana-
dominated regime and the Kondo-dominated regime. As
expected, the splitting energy δ reduces the parameter space
corresponding to the Majorana-dominated regime.

D. Quantum-dot tunneling experiments

Having solved the mean-field equations for b and η, we
can now compute experimentally observable quantities. In
this section, we study the differential tunneling conduct-
ance, having in mind a setup similar to that of Ref. [19]; see

Fig. 1. At the qualitative level, one can already see that,
once the parameters η and b are determined within the
mean-field slave-boson approximation, the dynamics of
spin-up and spin-down electrons decouple. Spin-down
electrons do not contribute to Andreev reflection since
they are not coupled to the Majorana mode γ1 [94]. Thus,
the mean-field results are consistent with the boundary
conditions A↑ ⊗ N↓. Using the scattering-matrix formal-
ism outlined in Sec. III B [see Eq. (9)], one can find the
probability of Andreev reflection:

AðEÞ ¼ b8Γ2E2λ4

b4E2λ4ðΓ2b4 þE2Þ− 2b2E2λ2ðE2 − 4δ2ÞðΓ2b4 þE2 − ~ε2Þ þ ðE2 − 4δ2Þ2½ðΓ2b4 þ ~ε2Þ2 þE4 þ 2E2ðΓ2b4 − ~ε2Þ� ;

ð30Þ

where ~ε ¼ εþ η. The differential tunneling conductance
can be obtained with the help of Eq. (11) and is given by
GðVÞ ¼ ð2e2=hÞAðeVÞ at zero temperature. One can see
that the functional dependence GðVÞ is different from the
Lorentzian form characteristic to the simpler TSC NL
structures and has a much richer structure. At zero splitting
δ ¼ 0, the conductance is still quantized at zero bias
Gð0Þ ¼ 2e2=h but the broadening of the resonance is a
nontrivial function of various parameters:

GðVÞ¼ 2e2

h
b8Γ2λ4

½ðeVÞ2þΓ2b4�f½ðeVÞ2−λ2b2�2þðeVÞ2Γ2b4g :

ð31Þ

The value of b in Majorana- and Kondo-dominated regimes
is b ≈ λ=

ffiffiffi
8

p jεj and b ≈
ffiffiffiffiffiffiffiffiffiffiffi
TK=Γ

p
, respectively. At small bias

V → 0, one can estimate the effective width of the
resonance Γeff to be

Γeff ≈

( Γλ2
8jεj2 for λ ≫ λc

minfTK; λ
2

Γg for λ ≪ λc:
ð32Þ

These results can be understood as follows. In the
Majorana-dominated regime, the physics of the QD is
determined by the Majorana strong-coupling fixed point.
Therefore, the width of the resonance is proportional to
t2λ2νF=jεj2 ∼W. This is consistent with the results at the
particle-hole-symmetric point; see Sec. III B. The Kondo-
dominated regime corresponds to the small-λ limit, where
the Majorana mode γ1 is localized in the TSC and is only
weakly coupled to the QD. The effective width of the zero-
bias peak is determined by the smaller of the two rates TK

and λ2=Γ and, therefore, is much sharper than in the
Majorana-dominated regime, where the width of the
resonance is suppressed only as a power law in jεj.
Another interesting feature in the tunneling conductance

is the appearance of the sidebands, as shown in Fig. 6(a).
These sidebands originate from the splitting of the Kondo
resonance by the induced Zeeman term [Eq. (4)]. In our
model, coupling to the TSC breaks the U(1) charge
conservation as well as the time-reversal symmetry. Both
these effects lead to the suppression of the Kondo effect. In
the Majorana-dominated regime, finite-bias resonances
appear at eV ¼ �λb ∼ λ2=jεj [95]; the width of these
resonances is of the order of W.
We note that the aforementioned dependence on λ is very

different from the one in the s-wave superconductor
(SC)-QD NL junction [63,68,69] where Majorana inter-
action is absent (λ ¼ 0). This can be understood most easily
in the limit of a large superconducting gap Δ → ∞ (i.e.,

FIG. 6. Zero-temperature tunneling conductance GðVÞ as a
function of various parameters. Here, all energies are rescaled by
Γ and G0 ¼ 2e2=h. (a) δ ¼ 0, ε ¼ −3.5, and λ ¼ 0.05 (solid
line), λ ¼ 0.5 (dashed line), and λ ¼ 1.0 (dash-dotted line).
(b) The same as (a) but δ ¼ 0.1. (c) λ ¼ 1, ε ¼ −3.5, and
δ ¼ 0.05 (solid line), δ ¼ 0.1 (dashed line), and δ ¼ 0.2
(dash-dotted line). (d) λ ¼ 0.5, δ ¼ 0.1, and ε ¼ −1 (solid line),
ε ¼ −3 (dashed line), and ε ¼ −5 (dash-dotted line).
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Δ ≫ ΓS;Γ; TK), where one can integrate out SC degrees of
freedom. In the low-energy approximation, the effect of an
s-wave superconductor can be represented as the Andreev-
scattering term HP ¼ ΓSd

†
↑d

†
↓ þ H:c: This term breaks

U(1) symmetry and competes with the Kondo singlet state.
It has been shown that the Abrikosov-Suhl resonance in the
tunneling conductance, present at small ΓS ≪ Γ, gets
gradually suppressed with the increase of the coupling to
a superconductor; see Refs. [96–98] for details. This
behavior should be contrasted with GðVÞ, shown in
Fig. 6, where the zero-bias peak becomes more pronounced
with an increase of the coupling to TSC. We note, however,
that in the nonperturbative regime (i.e., Δ ∼ ΓS;Γ; TK), the
situation is more complicated due to the possible appear-
ance of the Shiba-like bound states induced by an unpaired
electron spin in the QD [99]. If Shiba levels are close to the
Fermi energy, one would expect to observe an enhancement
in the subgap tunneling conductance. Thus, it is important
to control the coupling and keep it small ΓS ≪ Δ, so that
the contribution of the Shiba states to the zero-bias
tunneling conductance is suppressed. Overall, we find that
there is a wide parameter regime TK ≪ ΓS=λ ≪ Δ, where
the dependence of the zero-bias peak on the coupling to the
superconductor is very different for topological and non-
topological states, allowing one to distinguish between
Kondo and Majorana physics.
We now discuss the effect of the splitting energy δ ≠ 0

due to the finite size of the TSC. Analytical results are not
particularly illuminating in this case, and we present a
numerical solution instead. The plots of the tunneling
conductance as a function of various parameters are shown
in Fig. 6(b)–6(d). Overall, many qualitative features can be
understood as a convolution of the local density of states in
the TSC and the QD. At small λ, the splitting energy leads
to the emergence of the two sharp peaks at energies�δ [see
Fig. 6(b)] and the width of these peaks becomes larger with
the increase of λ. Eventually, when λ2=jεj ≫ δ, the shape of
the conductance GðVÞ changes qualitatively: Two sideband
peaks located at eV ∼ λ2=jεj emerge. In this limit, the
position of the peaks and their width are weakly dependent
on δ; compare Figs. 6(a) and 6(b). The splitting, however,
strongly affects the zero-bias feature and eliminates the
zero-bias peaks entirely.
So far, we have considered the zero-temperature limit

T ¼ 0. Using Eqs. (11) and (30), we now calculate the
temperature dependence of the differential tunneling con-
ductance. The plot of GðV; TÞ is shown in Fig. 7. The
triple-peak structure in Fig. 7(a) gets smeared by the
temperature, and one might have to go to very small
temperatures in order to observe this feature, especially
in the small-λ limit (i.e., Kondo-dominated regime). In the
case of a finite splitting δ ≠ 0, the width of the peak
becomes more narrow. As a result, tunneling conductance
is suppressed even faster by thermal fluctuations; see
Fig. 7(c).

IV. CONCLUSIONS

In this paper, we study physical properties of a quantum
dot in the Coulomb-blockade regime coupled to a 1D
topological superconductor and a normal lead. In the
experimentally relevant parameter regime, the low-energy
theory for such a system involves Kondo- and Majorana-
induced interactions. We study the competition between
Kondo and Majorana couplings and show that they drive
the system to different many-body ground states. In the
universal limit, where the splitting of the ground-state
degeneracy δ associated with the topological superconduc-
tor is 0, we show that the infrared fixed point is governed
by a Majorana-induced coupling rather than the Kondo
one. When δ ≠ 0, we discuss the crossover between the

FIG. 7. Dependence of the tunneling conductance GðV; TÞ on
temperature and voltage bias. (a) The solution of the variational
parameter b as a function of temperature T. Here, all the energy
scales are rescaled by Γ; the parameters are ε ¼ −3.5, λ ¼ 0.5,
and δ ¼ 0 (solid line) and δ ¼ 0.1 (dashed line). The other
variational parameter η is weakly dependent on temperature. (b),
(c) The plots of the tunneling conductance GðV; TÞ as a function
of temperature T and voltage bias V for δ ¼ 0 and δ ¼ 0.1,
respectively.
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Kondo-and Majorana-dominated regimes as a function of
various physical parameters, such as couplings between the
quantum dot and the superconductor and normal lead, the
splitting energy δ, as well as the gate voltage determining
the single-particle energy in the dot.
By considering the impurity-spin susceptibility and the

differential tunneling conductance in the TSC-QD-NL
junction, which are both experimentally accessible quan-
tities, we show how one can distinguish between Kondo
and Majorana physics in the lab. In particular, we predict
that when a coupling to the Majorana mode is present, the
impurity-spin polarization hSi exhibits a strong dependence
on tuning the gate voltage away from the particle-hole-
symmetric point: While it vanishes at the particle-hole
symmetric point, the spin becomes polarized as the gate
voltage is detuned. This dependence on the gate voltage has
to be contrasted with the Kondo-dominated regime where
the impurity spin is disordered for all values of detuning
from the particle-hole-symmetric point. Quantitatively, the
spin susceptibility shows a nontrivial dependence on the
Majorana coupling. Furthermore, Majorana signatures in
the TSC-QD-NL junction should also manifest themselves
in various time-dependent experiments; see, for example, a
recent proposal on how to detect universal nonequilibrium
signatures of Majoranas in quench dynamics [100].
We also discuss the zero-bias anomaly in the tunneling

conductance and show how one can distinguish between
the Kondo and Majorana features in realistic experimental
settings. Although both Kondo and Majorana correlations
might lead to a zero-bias anomaly in dI=dV, we show that
the dependence of the zero-bias peak on various parame-
ters, such as, for example, the coupling between the QD and
the superconductor, is quite different. Our results have
important implications for the experiments trying to detect
Majorana zero modes since the nature of the many-body
ground state for a quantum dot coupled to topological and
nontopological superconductors is very different. We
believe that the exceptional degree of the parameter control
in quantum-dot experiments might prove to be very useful
for disentangling different phenomena in the laboratory.
In particular, the present setup where the transmission
between TSC and NL can be tuned by the charging energy
as well as the couplings to the lead and superconductor
might be quite useful to reduce the subgap density of states,
also known as the “soft-gap” problem, which appears due
to the hybridization of the states in the nanowire with the
NL; for more details, see, e.g., Ref. [101].
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APPENDIX A: DERIVATION OF AN
EFFECTIVE HAMILTONIAN FOR A
TOPOLOGICAL-SUPERCONDUCTOR
QUANTUM-DOT NORMAL-LEAD

JUNCTION

In this section, we derive an effective Hamiltonian for a
topological-superconductor quantum-dot normal-lead junc-
tion; see Fig. 1. We assume that the quantum dot is in the
Coulomb-blockade regime, and the Hamiltonian for the
system is given by Eq. (1). The charging energy on the dot
can be tuned with the gate voltage Vg. In order to study the
Kondo effect, we will focus on the regime of a single-
electron occupancy on the dot, i.e., ε0 < 0 and ε0 þ U > 0,
as measured with respect to the Fermi energy in the lead.
To derive the low-energy Hamiltonian of the system, we
perform a Schrieffer-Wolff transformation [77] and elimi-
nate zero- and double-occupancy sectors. The projectors
to the subspace of n electrons on the quantum dot Pn are
given by

P0 ¼ ð1 − n↑Þð1 − n↓Þ; ðA1aÞ

P1 ¼ ð1 − n↑Þn↓ þ ð1 − n↓Þn↑; ðA1bÞ

P2 ¼ n↑n↓: ðA1cÞ

Then, the effective Hamiltonian for the system can be
formally written as

Heff ¼ H11 þ
X
n¼0;2

H1n
1

E −Hnn
Hn1: ðA2Þ

We assume here that the typical energies involved have
jEj ≪ minðjε0j; U − jε0jÞ. After some algebra, one finds
explicit expressions for H01 and H12:

H01 ¼ P0HP1 ¼
X
σ

ðtψ†
σ þ iλσγÞð1 − n−σÞdσ; ðA3aÞ

H12 ¼ P1HP2 ¼
X
σ

ðtψ†
σ þ iλσγÞn−σdσ: ðA3bÞ

Using Eqs. (A3), one obtains the following contributions to
the effective Hamiltonian:
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H12

1

E −H22

H21 ≈
X
σ;σ0

�ðt2ψ†
σψσ0 þ λσλ

�
σ0 Þdσn−σd†σ0n−σ0

U − jε0j

þ itγðλ�σ0ψ†
σ þ λσψσ0 Þdσn−σd†σ0n−σ0

U − jε0j
	
;

ðA4Þ

H10

1

E −H00

H01 ≈ − 1

jε0j
X
σσ0

½t2ψσψ
†
σ0 þ λ�σλσ0

− itγðλ�σψ†
σ0 þ λσ0ψσÞ�d†σn̄−σdσ0 n̄−σ0 :

ðA5Þ

Here, we approximate E −H22 ≈ jε0j −U and E −H00 ≈−jε0j in the denominator for the virtual intermediate
states, assuming that the couplings jtj; jλσj are small
jtj; jλσj ≪ minðjε0j; U − jε0jÞ. Given that the lead
Hamiltonian is SUð2Þ spin invariant, one can, without loss
of generality, simplify the above expressions by choosing a
quantization axis for the coupling between the Majorana
and the QD. By setting λ↓ ¼ 0 and λ↑ ¼ λ, the effective
boundary Hamiltonian becomes

Hb ¼ ξ−
�
itλ
2
γðψ↑ þ ψ†

↑Þ − jλj2Sz
	
þ ξþt2sð0Þ · S

þ ξþtλ½iγðψ↑ þ ψ†
↑ÞSz þ iγðψ↓Sþ þ ψ†

↓S
−Þ�; ðA6Þ

where S and sð0Þ ¼ ψ†
αð0Þσαβψβð0Þ=2 are the impurity-

spin and electron-spin operators at x ¼ 0. The coefficients
ξ� are defined as

ξ� ¼ 1

jε0j
� 1

U − jε0j
: ðA7Þ

The effective Hamiltonian (A6) is the main result of this
section. The physical meanings of different terms in
Eq. (A6) have been explained in the main text.

APPENDIX B: DERIVATION OF THE
RG FLOW EQUATIONS

In this Appendix, we provide details of the derivation of
the RG equations. The imaginary-time partition function of
the Hamiltonian defined in Eq. (4) can be written as a path
integral:

Z ¼
Z

DθρDθσe−ðS0þSbÞ: ðB1Þ

The effective action S0 for the boundary field θσ=ρðτÞ at
x ¼ 0 is obtained by integrating bulk degrees of freedom

S0 ¼
X
λ¼ρ;σ

Kλ

2π

Z
dω
2π

jωjjθλðωÞj2: ðB2Þ

The boundary action Sb is given by

Sb ¼
Z

dτ

�
hSz þ iJ1γ1Γ↑ffiffiffiffiffiffiffiffi

2πa
p cos

�
θρ þ θσffiffiffi

2
p

�

þ 2iγ1ffiffiffiffiffiffiffiffi
2πa

p
�
Γ↑J

z
2S

z cos

�
θρ þ θσffiffiffi

2
p

�

þ J⊥2
2
Γ↓ðSþeði=

ffiffi
2

p Þðθσ−θρÞ þH:c:Þ
	

þ Jz3S
z

2
ffiffiffi
2

p
πvσ

i∂τθσ þ
J⊥3
4πa

ðSþΓ↑Γ↓ei
ffiffi
2

p
θσ þH:c:Þ

�
:

ðB3Þ

Here, Γσ are Klein factors and a is the ultraviolet cutoff
length scale. We introduce different notations for Jz3, J

⊥
3 , J

z
2,

and J⊥2 for convenience of deriving RG equations.
However, because of symmetry in the microscopic model,
we set Jz2 ¼ J⊥2 and Jz3 ¼ J⊥3 at the end of the calculation.
One should keep in mind that Kσ ¼ 1 for the SUð2Þ-
invariant normal lead.
We now perform weak-coupling RG analysis in the

frequency domain. We first separate the fields θλ into fast
and slow modes: θλ ¼ θ<λ þ θ>λ with θ<λ and θ> containing
the modes with frequencies 0 < jωj < ðΛ=bÞ and
Λ
b < jωj < Λ, respectively. After integrating over the fast
modes, the new effective action can be calculated using
cumulant expansion:

Seff ½θ<� ¼ S0½θ<� þ hSbi − 1

2
ðhS2bi − hSbi2Þ: ðB4Þ

Here, the angled brackets denote integrating out the fast
modes. The first-order term hSbi in the expansion gives a
familiar renormalization of the couplings at the tree level.
We skip the details for brevity since the results can be easily
obtained and concentrate on second-order corrections to Ji
instead. The derivation of these corrections is rather
lengthy, so we break this Appendix into several subsec-
tions. To simplify the notations, we define

hhA;Bii≡ hABi − hAihBi: ðB5Þ

1. Evaluation of the contribution from the J⊥3 Jz2 term

Let us consider the contribution originating from the
J⊥3 Jz2 term:
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δSðaÞ ¼ − 1

2

iJ⊥3 Jz2
ð2πaÞ3=2

Z
dτdτ0SþðτÞΓ↑ðτÞΓ↓ðτÞγ1Γ↑ðτ0ÞSzðτ0Þ




e

ffiffi
2

p
iθσðτÞ; cos

θρðτ0Þ þ θσðτ0Þffiffiffi
2

p
��

¼ − 1

2

iJ⊥3 Jz2
ð2πaÞ3=2

Z
dτdτ0SþðτÞΓ↑ðτÞΓ↓ðτÞγ1Γ↑ðτ0ÞSzðτ0Þ

e
ffiffi
2

p
iθ<σ ðτÞ

2

× ½eði=
ffiffi
2

p Þ½θ<σ ðτ0Þþθ<ρ ðτ0Þ�heði=
ffiffi
2

p Þθ>ρ ðτ0Þihhe
ffiffi
2

p
iθ>σ ðτÞ; eði=

ffiffi
2

p Þθ>σ ðτ0Þii
þ e−ði=

ffiffi
2

p Þ½θ<σ ðτ0Þþθ<ρ ðτ0Þ�he−ði=
ffiffi
2

p Þθ>ρ ðτ0Þihhe
ffiffi
2

p
iθ>σ ðτÞ; e−ði=

ffiffi
2

p Þθ>σ ðτ0Þii�: ðB6Þ

Using the following identities

hSaðτÞSbðτ0Þi ¼ 1

4
δab þ

i
2
εabcScsgnðτ − τ0Þ; ðB7Þ

hΓðτÞΓðτ0Þi ¼ sgnðτ − τ0Þ; ðB8Þ

the expressions for the spin and Majorana operators can be
simplified to

SþðτÞΓ↑ðτÞΓ↓ðτÞγΓ↑ðτ0ÞSzðτ0Þ ¼
1

2
SþγΓ↓: ðB9Þ

Next, we evaluate the following correlation functions:

heði=
ffiffi
2

p Þθ>ρ ðτÞi ¼ e−1=4hθ>ρ ðτÞ2i ¼ e−ð1=4KρÞ ln b ¼ b−1=4Kρ

ðB10Þ

and

hhe
ffiffi
2

p
iθ>σ ðτÞ; e�ði= ffiffi

2
p Þθ>σ ðτ0Þii

¼ e−hθ>σ ðτÞ2i−1=4hθ>σ ðτ0Þ2iðe∓hθ>σ ðτÞθ>σ ðτ0Þi − 1Þ: ðB11Þ

Let us study the expression for hθ>λ ðτÞθ>λ ðτ0Þi, where λ can
be ρ or σ:

gλðτ − τ0Þ≡ hθ>λ ðτÞθ>λ ðτ0Þi

¼ 1

Kλ

Z
Λ

Λ=b

dω
ω

cos ½ωðτ − τ0Þ�

×

(
≈ 1

Kλ
K0

�
Λjτ−τ0j

b


jτ − τ0j ≫ b=Λ

¼ 1
Kλ
ln b τ ¼ τ0;

ðB12Þ

where K0ðτÞ is the zeroth-order modified Bessel function.
The function K0ðτÞ is peaked at jτj ≪ b=Λ and decays
exponentially for jτj ≫ b=Λ. Therefore, it is reasonable to
limit the integral over jτ − τ0j by an upper cutoff b=Λ. We
then make a change of the variables and define

T ¼ τ þ τ0

2
; s ¼ τ − τ0: ðB13Þ

Now, Eq. (B6) becomes

δSðaÞ ¼ −iJ⊥3 Jz2
8ð2πaÞ3=2

Z
β

0

dTγ1Γ↓Sþe
ffiffi
2

p
iθ<σ ðTÞ

Z
b=Λ

−b=Λ
ds½eði=

ffiffi
2

p Þ½θ<σ ðTÞþθ<ρ ðTÞ�b−ð1=4KρÞ−ð5=4Þðe−gσðsÞ−1Þ

þe−ði=
ffiffi
2

p Þ½θ<σ ðTÞþθ<ρ ðTÞ�b−ð1=4KρÞ−ð5=4ÞðegσðsÞ−1Þ�: ðB14Þ

Since gσðsÞ is strongly peaked at s ¼ 0, we replace the integrand e�gσðsÞ with e�gσð0Þ.
Collecting all the terms, one finds that the term in Eq. (B6) is evaluated to

δSðaÞ ¼ −iJ⊥3 Jz2
8ð2πaÞ3=2

2b
Λ

b−ð1=4KρÞ−ð5=4Þ
Z

β

0

dTγ1Γ↓Sþ½eði=
ffiffi
2

p Þ½θ<σ ðTÞ−θ<ρ ðTÞ�ðb − 1Þ − eði=
ffiffi
2

p Þ½3θ<σ ðTÞþθ<ρ ðTÞ�ðb−1 − 1Þ�: ðB15Þ

The second term in the integrand corresponds to the generation of a new term, which is irrelevant under RG and thus can be
ignored. Thus, the second-order correction reads as

δSðaÞ ¼ fðbÞ
Z

β

0

dT
−iJ⊥3 Jz2γ1Γ↓Sþ

8π
ffiffiffiffiffiffiffiffi
2πa

p
vσ

eði=
ffiffi
2

p Þ½θ<σ ðTÞ−θ<ρ ðTÞ� þ H:c: ðB16Þ

Here, we use aΛ ¼ vσ; the function fðbÞ is defined as

fðbÞ ¼ b−ð1=4Þ½1þð1=KρÞ�ðb − 1Þ: ðB17Þ
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We note that in order to obtain the RG flow of J⊥2 , one has
to take into account a factor of 2 in Eq. (B16) coming from
switching τ and τ0 in Eq. (B6).
One can compute the contribution of the S−Sz term in a

similar fashion. As expected, it is given by the Hermitian
conjugate of Eq. (B16). Finally, the sum of these two terms
gives the second-order correction to the J⊥2 term.

2. Evaluation of the contribution from the J⊥3 J⊥2 term

We now compute the correction proportional to J⊥3 J⊥2 :

δSðbÞ ¼ − i
4

Z
dτdτ0

J⊥3 J⊥2
ð2πaÞ3=2 S

þðτÞΓ↑ðτÞΓ↓ðτÞγ1Γ↓ðτ0Þ

× S−ðτ0Þe
ffiffi
2

p
iθ<σ ðτÞeði=

ffiffi
2

p Þ½θ<ρ ðτ0Þ−θ<σ ðτ0Þ�heði=
ffiffi
2

p Þθ>ρ ðτ0Þi
× hhe

ffiffi
2

p
iθ>σ ðτÞ; e−ði=

ffiffi
2

p Þθ>σ ðτ0Þii
þ the S−Sþ term: ðB18Þ

The correlation function involving spin and Majorana
operators evaluates to

SþðτÞΓ↑ðτÞΓ↓ðτÞγ1Γ↓ðτ0ÞS−ðτ0Þ¼
�
1
2
sgnðτ−τ0ÞþSz

	
γ1Γ↑:

ðB19Þ

The connected correlation function is given by

hhe
ffiffi
2

p
iθ>σ ðτÞ; e−ði=

ffiffi
2

p Þθ>σ ðτ0Þii ¼ b−5=4ðegσðτ−τ0Þ − 1Þ: ðB20Þ

By rewriting the integral (B18) in terms of T and s variables
and integrating over s, one obtains

δSðbÞ ¼−i
Z

β

0

dT
J⊥3 J⊥2 fðbÞ
2πvσ

ffiffiffiffiffiffiffiffi
2πa

p Szγ1Γ↑ cos

�
θ<ρ ðTÞþθ<σ ðTÞffiffiffi

2
p

�
:

ðB21Þ

Once again, one has to take into account a factor of 2 to
obtain the RG flow of Jz2 coming from switching τ and τ0
in Eq. (B18)
We would like to point out that in Eq. (B19), γΓ↑ is also

generated, which, in principle, contributes to the renorm-
alization of J1 coupling. However, due to sgnðτ − τ0Þ, the
integral vanishes. Thus, there are no corrections to J1
coupling at this order.

3. Evaluation of the contribution from the Jz3J
⊥
2 term

We now compute the contribution proportional to Jz3J
⊥
2 :

δSðcÞ ¼ 1

4

Z
dτdτ0

Jz3J
⊥
2

2π
ffiffiffiffiffiffi
πa

p
vσ

SzðτÞγ1Γ↓ðτ0ÞSþðτ0Þ

× hh∂τθσ; eði=
ffiffi
2

p Þ½θσðτ0Þ−θρðτ0Þ�ii: ðB22Þ

The calculation of the connected correlation function can
be done in two steps. First, we introduce fields θ>λ ðτÞ and
θ>λ ðτÞ and find that the relevant correlation function is
given by

hh∂τθσ; eði=
ffiffi
2

p Þ½θσðτ0Þ−θρðτ0Þ�ii
¼ eði=

ffiffi
2

p Þ½θ<σ ðτ0Þ−θ<ρ ðτ0Þ�he−ði=
ffiffi
2

p Þθ>ρ ðτ0Þih∂τθ
>
σ eði=

ffiffi
2

p Þθ>σ ðτ0Þi:
ðB23Þ

Here, we use the fact that h∂τθ
>
σ i ¼ 0. In order to calculate

the correlation function h∂τθ
>
σ eði=

ffiffi
2

p Þθ>σ ðτ0Þi, we use the
following identity:

∂τθ
>
σ ðτÞ ¼ lim

ϵ→0

1

iϵ
∂τeiϵθ

>
σ ðτÞ ðB24Þ

and rewrite the correlation function as

h∂τθ
>
σ eði=

ffiffi
2

p Þθ>σ ðτ0Þi ¼ lim
ϵ→0

1

iϵ
∂τe−1=4½

ffiffi
2

p
ϵθ>σ ðτÞþθ>σ ðτ0Þ�2

¼ iffiffiffi
2

p ∂τhθ>σ ðτÞθ>σ ðτ0Þie−1=4hθ>σ 2ðτ0Þi:

ðB25Þ

Then, Eq. (B22) becomes

δSðcÞ ¼ i

b1=4þð1=4KρÞ

Z
β

0

dTJz3J
⊥
2

16π
ffiffiffiffiffiffiffiffi
2πa

p
vσ

γ1Γ↓Sþeði=
ffiffi
2

p Þ½θ<σ ðTÞ−θ<ρ ðTÞ�

×
Z

dssgnðsÞ∂sgσðsÞ

¼−i
Z

β

0

dT
Jz3J

⊥
2 γ1Γ↓Sþ

8πvσ
ffiffiffiffiffiffiffiffi
2πa

p lnb

b1=4þð1=4KρÞe
ði= ffiffi

2
p Þ½θ<σ ðTÞ−θ<ρ ðTÞ�:

ðB26Þ

The other term SzS− yields the Hermitian conjugate of
Eq. (B26). At the end of the day, we find

δSðcÞ ¼ − ln b

b1=4þð1=4KρÞ

Z
β

0

dTJz3J
⊥
2

8πvσ
ffiffiffiffiffiffiffiffi
2πa

p

× iγ1Γ↓ðSþeif½θ<σ ðTÞ−θ<ρ ðTÞ�=
ffiffi
2

p g þ H:c:Þ: ðB27Þ

One has to multiply the above expression by a factor of 2
due to switching τ and τ0.

4. System of RG equations

To obtain the system of RG equations, we collect all the
terms and then rescale the imaginary-time parameter τ to
τ0 ¼ τ=b, which leads to an additional factor of b in all
corrections. Now, one can expand b in terms of the small
parameter δΛ=Λ, i.e., b ≈ 1þ ðδΛ=ΛÞ. The Taylor
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expansion of the function fðbÞ is fðbÞ ≈ ðδΛ=ΛÞ.
Comparing the original action with the cumulant expan-
sion, we finally obtain the following RG equations for J⊥2
and Jz2:

dJ⊥2
dl

¼
�
3

4
− 1

4Kρ

�
J⊥2 − J⊥3 Jz2

4πvσ
− J⊥2 Jz3
4πvσ

; ðB28Þ

dJz2
dl

¼
�
3

4
− 1

4Kρ

�
Jz2 − J⊥3 J⊥2

2πvσ
: ðB29Þ

In addition to these RG equations, we need to consider flow
of J1 and J3 couplings. As mentioned above, the coupling
J1 is not renormalized by the Kondo interaction. The flow
of Kondo coupling is not affected by the Majorana
couplings at this order of perturbative RG equations.
Using similar calculations, we find second-order correc-
tions to the RG flow of h; see Eq. (5). Finally, combining all
the terms and taking into account the symmetry of the
microscopic Hamiltonian (i.e., Jz2 ¼ J⊥2 and Jz3 ¼ J⊥3 ), we
arrive at Eqs. (5).

APPENDIX C: GREEN’S FUNCTIONS IN THE
SLAVE-BOSON MEAN-FIELD THEORY

The mean-field slave-boson action for the system is
defined in Eq. (24). Within this approximation, the Hilbert-
space constraint enforced by η is satisfied at the mean-field
level, which simplifies the calculation. We now define the
following Green’s functions

G1ðτÞ ¼ −hTτγ1ðτÞf↑ð0Þi;
GfσðτÞ ¼ −hTτf

†
σðτÞfσð0Þi;

GTðkσ; τÞ ¼ −hTτψ
†
kσðτÞfð0Þi ðC1Þ

and compute them using the equation-of-motion technique
to find

G1ðωnÞ ¼
−λb

ω2
n þ δ2 þ 2λ2b2ωnðωnþΓnÞ

ðωnþΓnÞ2þ~ε2

ωn

iωn − ~εþ iΓn
;

ðC2Þ

GfσðωnÞ ¼
1þ iλσbG1ðωnÞ
iωn − ~εþ iΓn

; ðC3Þ

GTðkσ;ωnÞ ¼
tb

iωn − ξk

1þ iλσbG1ðωnÞ
iωn − ~εþ iΓn

; ðC4Þ

where ~ε ¼ εþ η, λ↑ ¼ λ, λ↓ ¼ 0, and Γn ¼ Γb2sgnωn,
with Γ ¼ πjtj2νF. Thus, the self-consistency equations
determining b and η are given by

b2 −
1

β

X
σ;n

GfσðωnÞeiωn0
þ ¼ 1; ðC5Þ

2bη −
2t
β

X
kσ;n

Re½GTðkσ;ωnÞeiωn0
þ�

−
2λ

β

X
n

Re½iG1ðωnÞeiωn0
þ� ¼ 0: ðC6Þ

We now compute these correlation functions at zero
temperature:

X
σ

nσ ¼ − 1

β

X
σ;n

GfσðωnÞeiωn0
þ

¼ − 1

β

X
n

eiωn0
þ
�

2

iωn − ~εþ iΓn
þ iλbG1ðωnÞ
iωn − ~εþ iΓn

	

ðC7Þ

¼1−2

π
arctan

~ε

Γb2
þ8~ελ2b2

×
Z

∞

0

dω
2π

ωðωþΓb2Þ
ðω2þδ2þ 2λ2b2ωðωþΓb2Þ

ðωþΓb2Þ2þ~ε2
Þ½ðωþΓb2Þ2þ ~ε2�2

:

ðC8Þ
Taking into account the above expression, one can show
that the solution of Eq. (C5) is ~ε ≈ C1Γb4, with C1 being a
constant of order 1. Thus, in the limit of small b assumed
here, η ≈ −εþOðb4Þ:

t
X
k

hψ†
kσfσi ¼ − t

β

X
k;n

GTðk;ωnÞeiωn0
þ

¼ − jtj2b
β

X
k;n

1

iωn − ξk

×

�
1

iωn − ~εþ iΓn
þ iλσbG1ðωnÞ
iωn − ~εþ iΓn

	
: ðC9Þ

Let us consider the first term in Eq. (C9):

jtj2b
β

X
k;n

1

iωn − ξk

1

iωn − ~εþ iΓn

¼ −Γb
β

X
n

isgnωn

iωn − ~εþ iΓn

¼ −Γb
π

Z
0

−Λ
dω

ω − ~ε

ðω − ~εÞ2 þ ðΓb2Þ2

≈
Γb
π
ln

Λ
Γb2

; ðC10Þ

where we have introduced the UV cutoff Λ to regularize the
integral. One can show that the second term does not have
any UV divergences and thus is much smaller than the first
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term and can be neglected. Finally, we compute the last
term in Eq. (C6)):

hγ1f↑i ¼ − 1

β

X
n

G1ðωnÞeiωn0
þ

¼ −2iλb
Z

∞

0

dω
2π

×
ωðωþ Γb2Þ�

ω2 þ δ2 þ 2λ2b2jωjðjωjþΓb2Þ
ðjωjþΓb2Þ2þ~ε2


½ðωþ Γb2Þ2 þ ~ε2�

≈
~ε→0− 2iλb

Z
∞

0

dω
2π

ω

ðω2 þ δ2Þðωþ Γb2Þ þ 2λ2b2ω

¼δ→0− 2iλb
Z

∞

0

dω
2π

1

ωðωþ Γb2Þ þ 2λ2b2

¼
8<
:

− 4iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λ2−Γ2b2

p
�
π
2
− arctan Γjbjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8λ2−Γ2b2
p


8λ2 > Γjbj

− 2iλffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2b2−8λ2p ln Γjbjþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2b2−8λ2p

Γjbj− ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2b2−8λ2p 8λ2 < Γjbj:

ðC11Þ

[1] E. S. Reich, A Solid Case for Majorana Fermions, Nature
(London) 483, 132 (2012).

[2] P. W. Brouwer, Enter the Majorana Fermion, Science 336,
989 (2012).

[3] F. Wilczek, Quantum Physics: Majorana Modes
Materialize, Nature (London) 486, 195 (2012).

[4] G. Moore and N. Read, Nonabelions in the Fractional
Quantum Hall Effect, Nucl. Phys. B360, 362 (1991).

[5] C. Nayak and F. Wilczek, 2n-Quasihole States Realize
2n−1-Dimensional Spinor Braiding Statistics in Paired
Quantum Hall States, Nucl. Phys. B479, 529 (1996).

[6] N. Read and D. Green, Paired States of Fermions in Two
Dimensions with Breaking of Parity and Time-Reversal
Symmetries and the Fractional Quantum Hall Effect, Phys.
Rev. B 61, 10267 (2000).

[7] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum
Vortices in p-Wave Superconductors, Phys. Rev. Lett.
86, 268 (2001).

[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian Anyons and Topological Quantum
Computation, Rev. Mod. Phys. 80, 1083 (2008).

[9] L. Fu and C. L. Kane, Superconducting Proximity Effect
and Majorana Fermions at the Surface of a Topological
Insulator, Phys. Rev. Lett. 100, 096407 (2008).

[10] L. Fu and C. L. Kane, Josephson Current and Noise at a
Superconductor/Quantum-Spin-Hall-Insulator/Supercon-
ductor Junction, Phys. Rev. B 79, 161408(R) (2009).

[11] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,
Generic New Platform for Topological Quantum
Computation Using Semiconductor Heterostructures,
Phys. Rev. Lett. 104, 040502 (2010).

[12] J. Alicea,Majorana Fermions in a Tunable Semiconductor
Device, Phys. Rev. B 81, 125318 (2010).

[13] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana
Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys.
Rev. Lett. 105, 077001 (2010).

[14] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev.
Lett. 105, 177002 (2010).

[15] A. Cook and M. Franz, Majorana Fermions in a
Topological-Insulator Nanowire Proximity-Coupled to
an s-Wave Superconductor, Phys. Rev. B 84, 201105
(2011).

[16] J. D. Sau and S. Das Sarma, Realizing a Robust Practical
Majorana Chain in a Quantum-Dot-Superconductor
Linear Array, Nat. Commun. 3, 964 (2012).

[17] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A.
Yazdani, Majorana Fermions in Chains of Magnetic
Atoms on a Superconductor, Phys. Rev. B 88, 020407
(R) (2013).

[18] A. Yu Kitaev, Unpaired Majorana Fermions in Quantum
Wires, Phys. Usp. 44, 131 (2001).

[19] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
Fermions in Hybrid Superconductor-Semiconductor
Nanowire Devices, Science 336, 1003 (2012).

[20] K. Sengupta, I. Žutić, H.-J. Kwon, V. M. Yakovenko, and
S. Das Sarma, Midgap Edge States and Pairing Symmetry
of Quasi-One-Dimensional Organic Superconductors,
Phys. Rev. B 63, 144531 (2001).

[21] C. J. Bolech and E. Demler, Observing Majorana
Bound States in p-Wave Superconductors Using Noise
Measurements in Tunneling Experiments, Phys. Rev. Lett.
98, 237002 (2007).

[22] J. Nilsson, A. R. Akhmerov, and C.W. J. Beenakker,
Splitting of a Cooper Pair by a Pair of Majorana Bound
States, Phys. Rev. Lett. 101, 120403 (2008).

[23] K. T. Law, P. A. Lee, and T. K. Ng, Majorana Fermion
Induced Resonant Andreev Reflection, Phys. Rev. Lett.
103, 237001 (2009).

[24] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and
S. Das Sarma, Non-Abelian Quantum Order in Spin-Orbit-
Coupled Semiconductors: Search for Topological
Majorana Particles in Solid-State Systems, Phys. Rev. B
82, 214509 (2010).

[25] K. Flensberg, Tunneling Characteristics of a Chain of
Majorana Bound States, Phys. Rev. B 82, 180516 (2010).

[26] A. Golub and B. Horovitz, Shot Noise in a Majorana
Fermion Chain, Phys. Rev. B 83, 153415 (2011).

[27] M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C.W. J.
Beenakker, Quantum Point Contact as a Probe of a
Topological Superconductor, New J. Phys. 13, 053016
(2011).

[28] R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Search
for Majorana Fermions in Multiband Semiconducting
Nanowires, Phys. Rev. Lett. 106, 127001 (2011).

[29] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma,
Majorana Fermions in Semiconductor Nanowires, Phys.
Rev. B 84, 144522 (2011).

[30] C. Qu, Y. Zhang, L. Mao, and C. Zhang, Signature
of Majorana Fermions in Charge Transport in Semi-
conductor Nanowires, arXiv:1109.4108.

CHENG et al. PHYS. REV. X 4, 031051 (2014)

031051-16

http://dx.doi.org/10.1038/483132a
http://dx.doi.org/10.1038/483132a
http://dx.doi.org/10.1126/science.1223302
http://dx.doi.org/10.1126/science.1223302
http://dx.doi.org/10.1038/486195a
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(96)00430-0
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.84.201105
http://dx.doi.org/10.1103/PhysRevB.84.201105
http://dx.doi.org/10.1038/ncomms1966
http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1103/PhysRevB.88.020407
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1103/PhysRevB.63.144531
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevB.82.180516
http://dx.doi.org/10.1103/PhysRevB.83.153415
http://dx.doi.org/10.1088/1367-2630/13/5/053016
http://dx.doi.org/10.1088/1367-2630/13/5/053016
http://dx.doi.org/10.1103/PhysRevLett.106.127001
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://arXiv.org/abs/1109.4108


[31] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.
Fisher, Non-Abelian Statistics and Topological Quantum
Information Processing in 1D Wire Networks, Nat. Phys.
7, 412 (2011).

[32] J. D. Sau, S. Tewari, and S. Das Sarma, Universal
Quantum Computation in a Semiconductor Quantum Wire
Network, Phys. Rev. A 82, 052322 (2010).

[33] D. J. Clarke, J. D. Sau, and S. Tewari, Majorana Fermion
Exchange in Quasi-One-Dimensional Networks, Phys.
Rev. B 84, 035120 (2011).

[34] P. Bonderson and R. M. Lutchyn, Topological Quantum
Buses: Coherent Quantum Information Transfer between
Topological and Conventional Qubits, Phys. Rev. Lett.
106, 130505 (2011).

[35] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello,
and C.W. J. Beenakker, Coulomb-Assisted Braiding of
Majorana Fermions in a Josephson Junction Array, New
J. Phys. 14, 035019 (2012).

[36] A. Kitaev, Fault-Tolerant Quantum Computation by
Anyons, Ann. Phys. (Amsterdam) 303, 2 (2003).

[37] M. H. Freedman, P/np, and the Quantum Field Computer,
Proc. Natl. Acad. Sci. U.S.A. 95, 98 (1998).

[38] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Observation of
the Fractional ac Josephson Effect: The Signature of
Majorana Particles, Nat. Phys. 8, 795 (2012).

[39] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Zero-Bias Peaks and Splitting in an Al-InAs
Nanowire Topological Superconductor as a Signature of
Majorana Fermions, Nat. Phys. 8, 887 (2012).

[40] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff,
and H. Q. Xu, Observation of Majorana Fermions in a
Nb-InSb Nanowire-Nb Hybrid Quantum Device, Nano
Lett. 12, 6414 (2012).

[41] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K.
Jung, and X. Li, Anomalous Modulation of a Zero Bias
Peak in a Hybrid Nanowire-Superconductor Device, Phys.
Rev. Lett. 110, 126406 (2013).

[42] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen,
M. T. Deng, P. Caroff, H. Q. Xu, and C. M. Marcus,
Superconductor-Nanowire Devices from Tunneling to
the Multichannel Regime: Zero-Bias Oscillations and
Magnetoconductance Crossover, Phys. Rev. B 87,
241401 (2013).

[43] W. Chang, V. E. Manucharyan, T. S. Jespersen, J. Nygård,
and C. M. Marcus, Tunneling Spectroscopy of Quasipar-
ticle Bound States in a Spinful Josephson Junction, Phys.
Rev. Lett. 110, 217005 (2013).

[44] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M.
Lieber, and S. De Franceschi, Spin-Resolved Andreev
Levels and Parity Crossings in Hybrid Superconductor-
Semiconductor Nanostructures, Nat. Nanotechnol. 9, 79
(2014).

[45] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson,
P. Caroff, and H. Q. Xu, Parity Independence of the
Zero-Bias Conductance Peak in a Nanowire Based
Topological Superconductor-Quantum Dot Hybrid
Device, arXiv:1406.4435.

[46] K. Flensberg, Non-Abelian Operations on Majorana
Fermions via Single-Charge Control, Phys. Rev. Lett.
106, 090503 (2011).

[47] M. Leijnse and K. Flensberg, Quantum Information
Transfer between Topological and Spin Qubit Systems,
Phys. Rev. Lett. 107, 210502 (2011).

[48] Z. Wang, X.-Y. Hu, Q.-F. Liang, and X. Hu, Detecting
Majorana Fermions by Nonlocal Entanglement between
Quantum Dots, Phys. Rev. B 87, 214513 (2013).

[49] D. E. Liu and H. U. Baranger, Detecting a Majorana-
Fermion Zero Mode Using a Quantum Dot, Phys. Rev. B
84, 201308 (2011).

[50] M. Leijnse and K. Flensberg, Hybrid Topological-Spin
Qubit Systems for Two-Qubit-Spin Gates, Phys. Rev. B 86,
104511 (2012).

[51] J. Kondo, Resistance Minimum in Dilute Magnetic Alloys,
Prog. Theor. Phys. 32, 37 (1964).

[52] L. Kouwenhoven and L. Glazman, Revival of the Kondo
Effect, Phys. World 14, 33 (2001).

[53] L. I. Glazman and M. É. Raı̌kh, Resonant Kondo Trans-
parency of a Barrier with Quasilocal Impurity States,
JETP Lett. 47, 452 (1988).

[54] T. Kai Ng and P. A. Lee, On-Site Coulomb Repulsion and
Resonant Tunneling, Phys. Rev. Lett. 61, 1768 (1988).

[55] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D.
Abusch-Magder, U. Meirav, and M. A. Kastner, Kondo
Effect in a Single-Electron Transistor, Nature (London)
391, 156 (1998).

[56] S. M. Cronenwett, T. H. Oosterkamp, and L. P.
Kouwenhoven, A Tunable Kondo Effect in Quantum Dots,
Science 281, 540 (1998).

[57] J. Park et al., Coulomb Blockade and the Kondo Effect in
Single-Atom Transistors, Nature (London) 417, 722
(2002).

[58] A. N. Pasupathy et al., The Kondo Effect in the Presence of
Ferromagnetism, Science 306, 86 (2004).

[59] M.-S. Choi, D. Sánchez, and R. López, Kondo Effect in a
Quantum Dot Coupled to Ferromagnetic Leads: A
Numerical Renormalization Group Analysis, Phys. Rev.
Lett. 92, 056601 (2004).

[60] P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C.
Dekker, L. P. Kouwenhoven, and S. De Franceschi, Orbital
Kondo Effect in Carbon Nanotubes, Nature (London) 434,
484 (2005).

[61] J. R. Hauptmann, J. Paaske, and P. E. Lindelof, Electric-
Field-Controlled Spin Reversal in a Quantum Dot with
Ferromagnetic Contacts, Nat. Phys. 4, 373 (2008).

[62] C. Karrasch, A. Oguri, and V. Meden, Josephson Current
through a Single Anderson Impurity Coupled to BCS
Leads, Phys. Rev. B 77, 024517 (2008).

[63] R. S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K. Yoshida,
K. Shibata, K. Hirakawa, and S. Tarucha, Kondo-
Enhanced Andreev Transport in Single Self-Assembled
InAs Quantum Dots Contacted with Normal and Super-
conducting Leads, Phys. Rev. B 81, 121308 (2010).

[64] A. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M.
Hanl, A. Weichselbaum, J. von Delft, T. Costi, and D.
Mahalu, Spin-1=2 Kondo Effect in an InAs Nanowire
Quantum Dot: Unitary Limit, Conductance Scaling, and
Zeeman Splitting, Phys. Rev. B 84, 245316 (2011).

[65] M. Leijnse and K. Flensberg, Scheme to Measure
Majorana Fermion Lifetimes Using a Quantum Dot, Phys.
Rev. B 84, 140501 (2011).

INTERPLAY BETWEEN KONDO AND MAJORANA … PHYS. REV. X 4, 031051 (2014)

031051-17

http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1103/PhysRevB.84.035120
http://dx.doi.org/10.1103/PhysRevB.84.035120
http://dx.doi.org/10.1103/PhysRevLett.106.130505
http://dx.doi.org/10.1103/PhysRevLett.106.130505
http://dx.doi.org/10.1088/1367-2630/14/3/035019
http://dx.doi.org/10.1088/1367-2630/14/3/035019
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1073/pnas.95.1.98
http://dx.doi.org/10.1038/nphys2429
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1103/PhysRevLett.110.126406
http://dx.doi.org/10.1103/PhysRevLett.110.126406
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/PhysRevB.87.241401
http://dx.doi.org/10.1103/PhysRevLett.110.217005
http://dx.doi.org/10.1103/PhysRevLett.110.217005
http://dx.doi.org/10.1038/nnano.2013.267
http://dx.doi.org/10.1038/nnano.2013.267
http://arXiv.org/abs/1406.4435
http://dx.doi.org/10.1103/PhysRevLett.106.090503
http://dx.doi.org/10.1103/PhysRevLett.106.090503
http://dx.doi.org/10.1103/PhysRevLett.107.210502
http://dx.doi.org/10.1103/PhysRevB.87.214513
http://dx.doi.org/10.1103/PhysRevB.84.201308
http://dx.doi.org/10.1103/PhysRevB.84.201308
http://dx.doi.org/10.1103/PhysRevB.86.104511
http://dx.doi.org/10.1103/PhysRevB.86.104511
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/10.1038/nature00791
http://dx.doi.org/10.1038/nature00791
http://dx.doi.org/10.1126/science.1102068
http://dx.doi.org/10.1103/PhysRevLett.92.056601
http://dx.doi.org/10.1103/PhysRevLett.92.056601
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nphys931
http://dx.doi.org/10.1103/PhysRevB.77.024517
http://dx.doi.org/10.1103/PhysRevB.81.121308
http://dx.doi.org/10.1103/PhysRevB.84.245316
http://dx.doi.org/10.1103/PhysRevB.84.140501
http://dx.doi.org/10.1103/PhysRevB.84.140501


[66] A. Golub, I. Kuzmenko, and Y. Avishai, Kondo Correla-
tions and Majorana Bound States in a Metal to Quantum-
Dot to Topological-Superconductor Junction, Phys. Rev.
Lett. 107, 176802 (2011).

[67] M. Lee, J. Soo Lim, and R. López, Kondo Effect in a
Quantum Dot Side-Coupled to a Topological Supercon-
ductor, Phys. Rev. B 87, 241402 (2013).

[68] E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M.
Lieber, and S. De Franceschi, Zero-Bias Anomaly in a
Nanowire Quantum Dot Coupled to Superconductors,
Phys. Rev. Lett. 109, 186802 (2012).

[69] J.-D. Pillet, P. Joyez, R. Žitko and M. F. Goffman,
Tunneling Spectroscopy of a Single Quantum Dot Coupled
to a Superconductor: From Kondo Ridge to Andreev
Bound States, Phys. Rev. B 88, 045101 (2013).

[70] A. Altland and R. Egger, Multiterminal Coulomb-
Majorana Junction, Phys. Rev. Lett. 110, 196401 (2013).

[71] B. Béri and N. R. Cooper, Topological Kondo Effect with
Majorana Fermions, Phys. Rev. Lett. 109, 156803 (2012).

[72] B. Béri, Majorana-Klein Hybridization in Topological
Superconductor Junctions, Phys. Rev. Lett. 110, 216803
(2013).

[73] L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn,
and M. P. A. Fisher, Universal Transport Signatures of
Majorana Fermions in Superconductor-Luttinger Liquid
Junctions, Phys. Rev. B 85, 245121 (2012).

[74] I. Affleck and D. Giuliano, Topological Superconductor-
Luttinger Liquid Junctions, J. Stat. Mech. (2013) P06011.

[75] R. M. Lutchyn and J. H. Skrabacz, Transport Properties of
Topological Superconductor-Luttinger Liquid Junctions:
A Real-Time Keldysh Approach, Phys. Rev. B 88, 024511
(2013).

[76] T. Giamarchi, Quantum Physics in One Dimension
(Oxford University Press, New York, 2003).

[77] J. R. Schrieffer and P. A. Wolff, Relation between the
Anderson and Kondo Hamiltonians, Phys. Rev. 149,
491 (1966).

[78] I. Affleck, Conformal Field Theory Approach to the
Kondo Effect, Acta Phys. Pol. B 26, 1869 (1995).

[79] S. R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863
(1992).

[80] S. R. White and R. M. Noack, Real-Space Quantum
Renormalization Groups, Phys. Rev. Lett. 68, 3487 (1992).

[81] U. Schollwöck, The Density-Matrix Renormalization
Group, Rev. Mod. Phys. 77, 259 (2005).

[82] U. Schollwöck, The Density-Matrix Renormalization
Group in the Age of Matrix Product States, Ann. Phys.
(Amsterdam) 326, 96 (2011).

[83] E. S. Sørensen and I. Affleck, Scaling Theory of the Kondo
Screening Cloud, Phys. Rev. B 53, 9153 (1996).

[84] S. Nishimoto and E. Jeckelmann, Density-Matrix
Renormalization Group Approach to Quantum Impurity
Problems, J. Phys. Condens. Matter 16, 613 (2004).

[85] E. S. Sørensen and I. Affleck, Kondo Screening Cloud
around a Quantum Dot: Large-Scale Numerical Results,
Phys. Rev. Lett. 94, 086601 (2005).

[86] T. Hand, J. Kroha, and H. Monien, Spin Correlations and
Finite-Size Effects in the One-Dimensional Kondo Box,
Phys. Rev. Lett. 97, 136604 (2006).

[87] A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac,
and J. von Delft, Variational Matrix-Product-State
Approach to Quantum Impurity Models, Phys. Rev. B
80, 165117 (2009).

[88] A. Holzner, I. P. McCulloch, U. Schollwöck, J. von Delft,
and F. Heidrich-Meisner, Kondo Screening Cloud in the
Single-ImpurityAndersonModel: ADensityMatrixRenorm-
alization Group Study, Phys. Rev. B 80, 205114 (2009).

[89] J. Nilsson, A. R. Akhmerov, and C.W. J. Beenakker,
Splitting of a Cooper Pair by a Pair of Majorana Bound
States, Phys. Rev. Lett. 101, 120403 (2008).

[90] We notice that Ref. [66] also derived RG equations for the
samemicroscopicHamiltonianat theparticle-hole-symmetric
point for the noninteracting lead (Kρ ¼ Kσ ¼ 1) but missed
the tree-level scaling termfor the flowofJ2.TheRGequations
in Ref. [66] were obtained using a field-theoretic method
involving the scale invariance of the conductance. The
disagreement with our momentum-shell Wilsonian RG ap-
proach originates from the fact that the coupling J2 has a
nonzero engineering (naive) dimension and should be
rescaled to be dimensionless before computing the RG flow
using the Callan-Symanzik equation. This discrepancy, how-
ever, leads to an incorrect identificationof the strong-coupling
fixed point and invalidates the conclusions of Ref. [66].

[91] P. Coleman, New Approach to the Mixed-Valence
Problem, Phys. Rev. B 29, 3035 (1984).

[92] D. M. Newns and N. Read, Mean-Field Theory of
Intermediate Valence/Heavy Fermion Systems, Adv. Phys.
36, 799 (1987).

[93] N. Nagaosa,Quantum Field Theory in Strongly Correlated
Electronic Systems (Springer, New York, 1999).

[94] Here, we neglect Andreev-scattering terms proportional to
d↓d↓ þ H:c:. which are suppressed by the large super-
conducting gap.

[95] Note thatwehaveneglected the effect of an externalmagnetic
field B here, assuming that the g factor in the QD is small. If
Zeeman splitting due to an external B is larger than the
exchange-inducedone, then the positionof the sidebandswill
be determined by theZeeman term.Webelieve this is the case
in the recent Majorana experiments [19].

[96] A. A. Clerk, V. Ambegaokar, and S. Hershfield, Andreev
Scattering and the Kondo Effect, Phys. Rev. B 61, 3555
(2000).

[97] T. Domański and A. Donabidowicz, Interplay between
Particle-Hole Splitting and the Kondo Effect in Quantum
Dots, Phys. Rev. B 78, 073105 (2008).

[98] A. Martin-Rodero and A. Levy Yeyati, Josephson and
Andreev Transport through Quantum Dots, Adv. Phys. 60,
899 (2011).

[99] R. Zitko, J. Soo Lim, R. López, and R. Aguado,
arXiv:1405.6084.

[100] R. Vasseur, J. P. Dahlhaus, and J. E. Moore, Universal
Nonequilibrium Signatures of Majorana Zero Modes in
Quench Dynamics, arXiv:1405.5865.

[101] T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Soft
Superconducting Gap in Semiconductor-Based Majorana
Nanowires, Phys. Rev. B 90, 085302 (2014).

[102] B. Bauer et al., The ALPS Project Release 2.0: Open
Source Software for Strongly Correlated Systems, J. Stat.
Mech. (2011) P05001.

CHENG et al. PHYS. REV. X 4, 031051 (2014)

031051-18

http://dx.doi.org/10.1103/PhysRevLett.107.176802
http://dx.doi.org/10.1103/PhysRevLett.107.176802
http://dx.doi.org/10.1103/PhysRevB.87.241402
http://dx.doi.org/10.1103/PhysRevLett.109.186802
http://dx.doi.org/10.1103/PhysRevB.88.045101
http://dx.doi.org/10.1103/PhysRevLett.110.196401
http://dx.doi.org/10.1103/PhysRevLett.109.156803
http://dx.doi.org/10.1103/PhysRevLett.110.216803
http://dx.doi.org/10.1103/PhysRevLett.110.216803
http://dx.doi.org/10.1103/PhysRevB.85.245121
http://dx.doi.org/10.1088/1742-5468/2013/06/P06011
http://dx.doi.org/10.1103/PhysRevB.88.024511
http://dx.doi.org/10.1103/PhysRevB.88.024511
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.68.3487
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.53.9153
http://dx.doi.org/10.1088/0953-8984/16/4/010
http://dx.doi.org/10.1103/PhysRevLett.94.086601
http://dx.doi.org/10.1103/PhysRevLett.97.136604
http://dx.doi.org/10.1103/PhysRevB.80.165117
http://dx.doi.org/10.1103/PhysRevB.80.165117
http://dx.doi.org/10.1103/PhysRevB.80.205114
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevB.29.3035
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1103/PhysRevB.61.3555
http://dx.doi.org/10.1103/PhysRevB.61.3555
http://dx.doi.org/10.1103/PhysRevB.78.073105
http://dx.doi.org/10.1080/00018732.2011.624266
http://dx.doi.org/10.1080/00018732.2011.624266
http://arXiv.org/abs/1405.6084
http://arXiv.org/abs/1405.5865
http://dx.doi.org/10.1103/PhysRevB.90.085302
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://dx.doi.org/10.1088/1742-5468/2011/05/P05001

