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Many-body localization, the persistence against electron-electron interactions of the localization of
states with nonzero excitation energy density, poses a challenge to current methods of theoretical and
numerical analyses. Numerical simulations have so far been limited to a small number of sites, making it
difficult to obtain reliable statements about the thermodynamic limit. In this paper, we explore the ways in
which a relatively small quantum computer could be leveraged to study many-body localization. We show
that, in addition to studying time evolution, a quantum computer can, in polynomial time, obtain
eigenstates at arbitrary energies to sufficient accuracy that localization can be observed. The limitations of
quantum measurement, which preclude the possibility of directly obtaining the entanglement entropy,
make it difficult to apply some of the definitions of many-body localization used in the recent literature.
We discuss alternative tests of localization that can be implemented on a quantum computer.
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I. INTRODUCTION

Since the seminal contributions of Gornyi et al. [1] and
Basko et al. [2,3], the question of whether Anderson
localization can persist against interactions at nonzero
excitation energy density has been revisited. The possible
existence of such a phenomenon, dubbed many-body
localization (MBL), is closely intertwined with other open
fundamental questions in quantum statistical mechanics:
whether the eigenstate thermalization hypothesis [4,5] holds
for generic quantum systems and whether isolated quantum
systems can equilibrate [6]. In studying these questions,
significant theoretical and numerical evidence [7–23] has
been assembled indicating that a many-body localized phase
exists; for a recent review, see Ref. [24]. More recently, the
existence of a many-body localized phase has been proven
rigorously in a class of spin chains [25].
However, the numerical simulation of putative many-

body localized systems has remained extremely challeng-
ing: While these states have low entanglement and should
be well approximated by tensor-network states [21], the
known methods to find such states are best suited for
finding ground states, and they become inefficient when
targeting states at generic energies in the spectrum, where
the gaps to nearby states are exponentially small in the
system size. Another approach has been to study the time
evolution of such systems from easily prepared initial
states, which is limited to small systems by the unbounded

growth of entanglement [11]. This has limited accurate
computations of the properties of many-body localization
to systems of approximately 20 sites or smaller.
In this paper, we ask how a quantum computer of

moderate size could be used to break through this barrier.
Quantum computers are naturally suited to simulating the
dynamics of quantum systems; indeed, the idea was first
conceived in this context [26]. However, the devil is in the
details: On a “digital” quantum computer operating within
the gate model [27], the evolution of a quantum system is
mapped to a series of one- and two-qubit gates chosen from
a finite, but computationally universal, set. This mapping
can induce enormous overhead in practice. Moreover, one
does not have access to the full resulting quantum wave
function but, rather, to information that can be extracted
from projective measurements of individual qubits,
although one has the freedom to choose the basis in which
these measurements are done. Recently, it has become
evident that while there are quantum algorithms that have
exponential speedup over their classical counterparts, many
of these algorithms have such an advantage only in an
asymptotic regime that is unlikely to be reached on a
quantum computer in the foreseeable future, even without
taking into account additional overhead necessitated by
quantum error correction. Consider two examples: Shor’s
celebrated algorithm for factoring [28,29] and the simu-
lation of quantum chemistry [30]. In the first case, a
quantum computer would require thousands of qubits to
factor a number that cannot be factored using the most
efficient classical algorithms. In the second case, a mod-
erate number of qubits is required, but the mapping of the
unitary evolution into the gate model requires the coherent
execution of a very large number of gates [31–33].
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In this paper, we will discuss how the power of a
quantum computer can be brought to bear on understanding
the phenomenon of many-body localization. We demon-
strate that even a relatively small quantum computer will
have significant advantages over a classical computer in
analyzing Hamiltonians that may exhibit many-body
localization.
In doing so, we address another important question: Are

the hypothesized properties of MBL eigenstates observable
in experiments? An exact eigenstate of the Hamiltonian
with nonzero excitation energy density cannot be prepared
efficiently—i.e., in a time that scales only polynomially
with system size—since the time required depends
inversely on the required energy resolution, and the
energy-level spacing in the middle of the spectrum is
exponentially small in the system size [34]. Even though
our main interest in this paper is not analog simulation but,
rather, quantum computation of the properties of MBL
states with a general-purpose quantum computer, it is
useful to momentarily regard a quantum computer as an
experimental system, albeit a very idealized one. Then, our
results demonstrate that the characteristic properties of
exact energy eigenstates can, indeed, be observed in
approximate eigenstates that can be prepared in polynomial
time. Hence, these properties are likely also observable in
other, less idealized, experimental setups.
In Sec. II, we first review briefly how the time evolution

of a quantum system is mapped into the gate model using a
Trotter-Suzuki decomposition, since this is a basic building
block for all that follows. We show that typical features of
many-body localized Hamiltonians, such as short-ranged
interactions and on-site disorder, make this decomposition
feasible for system sizes of interest. A quantum computer
can thereby determine the time evolution of an easily
prepared initial state such as a random product state. This
may be viewed as a computation of the global quench
dynamics of the system where the system is, at least
initially, very far away from equilibrium. Such a compu-
tation would allow us to probe the equilibration and
thermalization properties of the system, which can reflect
its localization properties.
We then explore how random energy eigenstates of the

system can be prepared with sufficient accuracy to observe
signatures of many-body localization with a polynomial-
depth quantum circuit. This is done using the quantum
phase estimation algorithm. However, unlike in many
applications in which one is interested in finding ground
states, a generic eigenstate that results from quantum phase
estimation is relevant to the study of many-body localiza-
tion. This key step of preparing eigenstates greatly enhan-
ces the usefulness of a quantum computer since it opens up
the study of situations other than global quenches and, in
particular, gives access to the dynamical response of the
system to weak perturbations. Examples include transport
measurements or local quenches in systems prepared at

fixed energy. This may also allow more quantitative
connections to experiments, such as states of ultracold
atoms in optical traps.
However, preparing a state—either through quench

dynamics or through quantum phase estimation—is only
half the battle. We are now faced with extracting informa-
tion from this state. In contrast to classical simulations, we
cannot simply examine the wave function directly and
deduce all of its properties. In particular, measuring the
entanglement entropy in the state is difficult, if not
impossible, within the constraints of our setup. Instead,
we are limited to performing unitary operations on the state
and then performing local, projective measurements,
thereby obtaining a string of zeros and ones—as many
classical bits of information as measured qubits. The
question thus arises as to how we can characterize
the eigenstates. In Sec. III, we discuss in more detail the
limitations of the measurement process and propose sce-
narios for how the eigenstates can be characterized, where
we focus mostly on measurements of transport properties at
finite energy densities. The setups we consider are local
quench dynamics, as well as probing the response of the
system to a “tilt.” Finally, we analyze the possible effects of
errors, such as decoherence and discretization errors, on the
computation of MBL states and their properties.

II. STATE PREPARATION

A. Models, representation, and time evolution

The models that we focus on here are (1) a spinless-
fermion model with nearest-neighbor hopping in one
dimension, nearest-neighbor interactions, and on-site dis-
order, and (2) an XXZ spin chain with a random Zeeman
field in the z direction. The first model has the Hamiltonian

Hf ¼ −tXL−1
i¼1

ðc†i ciþ1 þ c†iþ1ciÞ þ
XL
i¼1

wini þ V
XL−1
i¼1

niniþ1;

ð1Þ

where c†i creates a spinless fermion on site i, and ni ¼ c†i ci.
The wi are uniformly chosen from wi ∈ ½−W;W�. The
second model has

Hs ¼ −J⊥
XL−1
i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ

þ
XL
i¼1

wiS
z
i =2þ Jz

XL−1
i¼1

SziS
z
iþ1: ð2Þ

For open boundary conditions, these models have the same
spectrum for J⊥ ¼ t and V ¼ 2Jz, while for closed (i.e.,
periodic or antiperiodic) boundary conditions, more care
must be taken when relating them to each other through a
Jordan-Wigner transformation.
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We would like to compute time evolution due to these
Hamiltonians on a general-purpose quantum computer
operating under the circuit model. Therefore, the unitary
evolution U ¼ expð−iTHÞ must be mapped to a series of
gates chosen from a given set of available gates. We will
call this procedure compiling below, in analogy to the well-
known classical procedure of compiling a program in a
high-level programming language into the assembly code,
i.e., machine language, of the target hardware platform.
While many approaches to achieve this are known (for
some recent improvements, see, e.g., Refs. [35–37]), by far
the most widely used is the Trotter-Suzuki decomposition
[38,39]. First, the time evolution is broken up into a series
of time steps δt ¼ T=N:

U ¼ e−iδtH…e−iδtH: ð3Þ

Then, we write H ¼ P
m
i¼1 Hi, where the Hi are chosen

such that UiðδtÞ ¼ expð−iδtHiÞ can be compiled into a
series of gates exactly. Then, if we use a first-order Trotter-
Suzuki decomposition, we write

e−iδtH ¼
�Ym

j¼1

e−iδtHj

�
þOðδt2Þ: ð4Þ

This decomposition is only accurate to order δt2, but a more
elaborate decomposition can be found that is accurate to
any given order in δt. However, the number of terms in the
decomposition grows quickly with the order. Therefore, the
optimal order depends on the desired accuracy ϵ (in trace-
norm distance on the final state), the total time T, and the
norm of the Hamiltonian operator. Reference [40] gives an
upper bound on the total number Nexp of separate expo-
nentials UiðδtÞ ¼ expð−iδtHiÞ that must be executed to
achieve a given accuracy in trace norm distance, as well as
an estimate for the optimal order of Trotter decomposition.
In order to determine the number of elementary gates
required to perform the evolution U, we multiply Nexp by
the number of elementary gates needed to perform each of
the UiðδtÞ.
In the models that are relevant to many-body localiza-

tion, both kinetic and interaction terms are generally local.
Consider, for example, the Hamiltonian given in Eq. (1). It
can be expressed as a sum of three noncommuting terms:

H1 ¼ −t XðL−2Þ=2
i¼1

ðc†2ic2iþ1 þ c†2iþ1c2iÞ

H2 ¼ −t
XL=2
i¼1

ðc†2ic2i−1 þ c†2i−1c2iÞ

H3 ¼
XL
i¼1

wini þ V
XL−1
i¼1

niniþ1; ð5Þ

Here, we have taken L to be even. More generally, the
number of noncommuting terms is m ¼ 1þ z on a regular
lattice in d dimensions with coordination number z, where
1 accounts for the diagonal terms (interaction and on-site
potential), and z accounts for the kinetic terms. Crucially,
this is independent of the size of the system; however, ∥H∥
is extensive [41], and thus the overall scaling is slightly
faster than L · T.
The individual terms in the Trotter expansion of U still

need to be expressed in the available gate set. At this stage,
the fermionic (1) and spin (2) Hamiltonians are equivalent,
so we use terminology appropriate to the latter. We
write Hi ¼

P
jh

j
i , where h

i
j is a product of Pauli matrices,

and use

exp ð−iδtHiÞ ¼
Y
j

exp ð−iδthjiÞ: ð6Þ

These gates can be transformed into a basic gate set (see
Refs. [31,42] for details). We find the following parallel
gate counts, i.e., assuming that gates that operate on
different qubits can be executed simultaneously: (i) For
H1 and H2, we need 10 gates each. (ii) For H3, we again
need 1þ z gates, where z is the coordination number of the
lattice. If the original Hamiltonian is fermionic then, for
dimensions d > 1, there will be additional Jordan-Wigner
strings, but their overhead can be greatly reduced
[32,43,44].
For how much time T must we evolve the system to

observe physical manifestations of many-body localiza-
tion? It has been shown that within the scenario of a global
quench, certain properties, such as the saturation of
entanglement entropy to a volume law [11], can be
observed only after time that is exponentially large in
the system size. This makes it experimentally unfeasible to
observe these properties and ultimately renders them
unphysical. A more appealing scenario may be that of a
local quench [22]. In the MBL phase, the perturbation only
propagates a finite distance, and the long-time behavior is
observed after a time that does not scale with system size.
As the numerical studies described in the following

sections show, the Trotter error need not be kept extremely
small for the purpose of detecting MBL physics; instead,
other sources of error, such as limitations on the time to
which quantum phase estimation can be run, are more
relevant. If, however, a quench or transport scenario
requires very low error bounds on the unitary evolution,
the methods recently put forward in Ref. [37] may be
favorable over a Trotter decomposition.

B. Quantum phase estimation

In order to make our discussion self-contained, we
briefly review some essential features of the quantum
phase estimation algorithm; see also Fig. 1. More detailed
pedagogical discussions can be found in, for instance,
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Refs. [45–47]. Let us suppose that we would like to find an
eigenvalue and corresponding eigenvector of a unitary
operator U acting on a Hilbert space of dimension 2N .
For us, the unitary operator will be the exponential of a
Hamiltonian, U ¼ e−iTH, that we wish to test for many-
body localization. To perform quantum phase estimation,
we consider a system ofN þ k qubits, where we refer to the
first N qubits as the data qubits, on which the operator U
acts, and the next k qubits as ancillas. We will assume that
we can perform Hadamard gates, controlled-U gates, and
arbitrary controlled-phase gates. Controlled-Uk gates can
be implemented by applying the controlled-U gate k times
in succession. Suppose that our ancillas are all initially in
the state j0i and the N data qubits are in an arbitrary initial
state jψ0i, chosen at random. Then, we perform Hadamard
gates on each of the ancillas, thereby putting each in the
state ðj0i þ j1iÞ= ffiffiffi

2
p

. We then act with a controlled-U gate
in which the first ancilla is the control and the N data qubits
are the target on which the unitary operator acts when the
ancilla is in the state j1i. We act with a controlled-U2 gate
in which the second ancilla is the control and the data qubits
are the target. We continue similarly with each ancilla so
that the jth ancilla is the control for a controlled U2j−1 . The
resulting state is

X
fin¼0;1g

Ui1þ2i2þ���þ2k−1ik jψ0i ⊗ ji1; i2;…; iki:

If T is the integer whose binary expansion is i1i2…ik, then
this can be written in the form

X2k−1
T¼0

UT jψ0i ⊗ jTi: ð7Þ

Expanding the initial state of the data qubits in terms of the
eigenstates of U, jψ0i ¼

P
ncnjni, where jni has eigen-

value eiEn , we can rewrite Eq. (7) in the form

X
n

�
cnjni ⊗

�X2k−1
T¼0

eiEnT jTi
��

: ð8Þ

We now apply the (inverse) quantum Fourier transform on
the ancillas, which acts on a basis vector according to

jTi →
X2k−1
J¼0

e−2πiT
J
2k jJi: ð9Þ

This results in the state

X
n

�
cnjni ⊗

�X2k−1
J¼0

g

�
En − 2πJ

2k

�
jJi

��
; ð10Þ

where gðxÞ ¼ ð1 − e−i2kxÞ=ð1 − e−ixÞ. The function gðxÞ is
peaked around x ¼ 0. If we increase k so that 2kEn=2π
approaches an integer, then it becomes more strongly
peaked. If En=2π is a k-bit binary number modulo integers,
then 2kEn=2π is an integer and gðxÞ ¼ δ2kx;0. Then,
we have

X
n

½cnjni ⊗ j2kEn=2πi�: ð11Þ

By measuring the ancilla, we obtain 2kEn=2π with prob-
ability jcnj2 and the data qubits are left in the state jni.
While the eigenvalue En is the primary goal for applications
to period finding, our main goal here is to obtain the state
jψni. Moreover, one is often interested in finding the
ground state of a Hamiltonian and, therefore, needs to
choose an initial state jψ0i with high overlap with the
ground state, so that jc0j2 is not too small. In the present
application to many-body localization, however, we are
interested in generic states, so we can take a random
initial state.
If 2kEn=2π is not an integer, then when we measure the

ancillas, we obtain an approximate eigenvalue Eapprox that
is 2π=2k times a k-bit integer. The data qubits are in the
state

jΨfi ¼
X
n

cngðEn − EapproxÞjni; ð12Þ

which is not an energy eigenstate but has amplitude that is
sharply peaked at eigenstates that are near Eapprox. We can
make it more sharply peaked, thereby obtaining an eigen-
state to within any desired accuracy, by increasing the
number of ancillas.
In practice, it may be favorable to use an iterative

quantum phase estimation (IQPE) algorithm, as described
in Ref. [48], which effectively performs the same calcu-
lation as outlined above but requires only one ancilla
qubit. This is particularly useful in the context of classical
simulation of the quantum computer for validation

FIG. 1. Overview of the quantum phase estimation algorithm
discussed in the main text for k ¼ 4 ancilla qubits. The lowest
line in the figure indicates the N qubits used for the physical
system. Here, QFT denotes the quantum Fourier transformation.
After the measurements, the readout on the k ancilla qubits
contains an estimate for the energy, whereas the N qubits for the
physical system contain the final state jΨfi of Eq. (12), which is
an approximation to an eigenstate and can be processed further to
obtain measurements on the physical system.
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purposes, as the classical simulation time scales exponen-
tially in the number of qubits, unless an approximate
method is used.
It remains to be confirmed that (i) we obtain all states

with sufficient probability, and (ii) we can prepare these
states to sufficient accuracy to observe signatures of many-
body localization with a total computation time that scales,
at most, polynomially in the system size L even near the
middle of the spectrum, where gaps to adjacent states are
exponentially small in L.
Other approaches of obtaining eigenstates on a quantum

computer seem possible: For example, one could attempt
to adiabatically cool towards the ground state of
A ¼ ðH − λ1Þ2, for some λ ∈ ½−∥H∥;þ∥H∥�, or adiabati-
cally move from an eigenstate of the diagonal part of the
Hamiltonian, which can easily be prepared, to an eigenstate
of the full Hamiltonian. However, these approaches have
major drawbacks: In the first approach, the evolution must
be performed under a nonlocal Hamiltonian. Furthermore,
in both cases, the accuracy depends on whether the
adiabatic evolution is performed slowly enough compared
to the relevant energy scale, which is hard to control.

C. Gate counts

We now test the procedure outlined above in a numerical
simulation. Our goals are (i) to confirm that we sample
from the correct distribution of eigenstates, (ii) to determine
the number of gates that need to be executed to obtain an
eigenstate with a given energy standard deviation, and
(iii) to confirm that we can obtain eigenstates to sufficient
accuracy to be able to probe signatures of many-body
localization. The last point will be deferred to the next
section.
In our numerical simulations, we study the Hamiltonian

(1) on an open chain of L sites. We perform IQPE on
U ¼ exp ð−iHTÞ. To keep eigenvalues from wrapping
around the unit circle, we need to ensure that T∥H∥ < 1
and thus set T ¼ ½Lð2þ V þWÞ�−1 < ∥H∥−1. For small
systems, we perform the unitary evolution exactly; for
larger systems and to assess the effect of Trotter errors, we
perform a first-order Trotter decomposition. We find that
for the system sizes and evolution times considered here,
the Trotter error is not very significant; for larger systems, a
higher-order Trotter decomposition may be favorable. In
this setup, the number of gates (assuming parallel execution
of nonoverlapping gates) necessary to evolve the system to
a time τ is given by

Ng ¼ 23τ=δt: ð13Þ

Here, the number 23 is how many gates are needed to ex-
ecute expð−iδtH1Þexpð−iδtH2Þexpð−iδtH3Þ [see Eq. (5)].
To obtain k bits of the desired eigenvalue, we need to

evolve for a total time

T tot ¼ T
Xk
i¼0

2i ¼ Tð2kþ1 − 1Þ: ð14Þ

This total time effectively determines the absolute accuracy
as well as computation cost of IQPE; the same accuracy
can, in principle, be achieved by reducing T and, accord-
ingly, increasing k, or vice versa. We therefore plot all
results against T tot.
We first confirm that we obtain states with the correct

probability when starting from random initial product
states. To this end, we compare the density of states
ρðEÞ obtained using the IQPE procedure outlined above
to that obtained from an exact, full diagonalization of the
same Hamiltonians. We consider at least 100 disorder
realizations and average over a total of 10000 states.
Our results are shown in Fig. 2. Clearly, the agreement
between the two approaches is excellent both in the
delocalized (W ¼ 1) and the localized (W ¼ 8) regime.
As a simple measure of how accurately we can prepare

eigenstates, we calculate the energy standard deviation

ΔE ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH2i − hHi2

q
i; ð15Þ

where the outer average is over output states from different
runs of IQPE for different disorder realizations and initial
states. A naive expectation is that ΔE=L · T tot ∼ 1. To
check this, we perform numerical simulations, again
averaging over 10000 states for each choice of T tot, W,
and L. In these simulations, we perform the time evolution
exactly to separate out the effect of Trotter errors. This
limits the system size we can study to L ¼ 12 because we
exponentiate the Hamiltonian exactly. As shown in Fig. 3,
we find ΔE=L ¼ cT−α

tot , where c and α are fit parameters.
The best fit is obtained for α ≈ 0.8, which deviates slightly
from the naive expectation of α ¼ 1. We observe that all
curves for different L but equal W collapse, indicating that

FIG. 2. Dashed lines: Density of states ρðEÞ obtained using full
diagonalization. Points: ρ obtained using IQPE for k ¼ 16 bits.
All results are for L ¼ 12.
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c depends only on W. We observe that in the localized
regime, ΔE=L of the final states is lower than in the
delocalized regime.
At this point, we can also analyze Trotter errors and,

using Eq. (13), obtain the gate count necessary to obtain a
final state with some fixed ΔE=L. For this analysis, we
restrict ourselves to a first-order Trotter decomposition. In
Fig. 4, we show ΔE=L against the gate count for different
choices of the Trotter time step δt. We observe that the time
step has to be decreased roughly as δt ∼ ϵ, where ϵ is the
desired ΔE=L. For example, to achieve ΔE=L < ϵ ¼ 0.01,
a time step δt ¼ 0.025 seems necessary; to achieve
ϵ ¼ 0.005, δt < 0.0147 is necessary.
We note that the total gate counts shown here are on the

order of a few million and thus much more realistic than the
gate counts obtained for quantum chemistry in Ref. [31].
Assuming a logical gate rate of 1 MHz, the preparation of
an approximate eigenstate would require a coherence time
on the order of 1 second.

D. Observation of MBL

Having established the gate counts required to reach a
certain ΔE=L, the question arises as to what ΔE=Lmust be
achieved in order to observe signatures of many-body
localization. Naively, one might expect that ΔE must be
small compared to the mean level spacing δE. As the latter
is exponentially small in the system size, this would imply
an exponential scaling. In the following, however, we will
argue that, in the many-body localized phase, there are
states that can be prepared in polynomial (in system size)
time that display key signatures of many-body localization.
A similar conclusion was reached from a very different
perspective in Refs. [49,50]. As a test of the localization
properties of the final states obtained in our quantum
algorithm, we use the entanglement entropy. The presence
of an area law for the entanglement entropy has been
established previously as a good indicator of many-body
localization in exact eigenstates [21].
It is intuitively clear that even in a many-body localized

phase, where exact eigenstates obey an area law, approxi-
mate eigenstates with ΔE=L > δE, but small compared to
other scales in the problem, may display very different
entanglement properties. A superposition with random
coefficients of exponentially (in the system size) many
eigenstates in a given, small energy window will likely
have volume-law entanglement. On the other hand, a
superposition of a few eigenstates that are far away in
energy can have the same ΔE=L but may still display an
area law.
To explore this quantitatively in the setup described

above, we apply IQPE to different initial product states. In
Fig. 5, we show a comparison between (i) “Z” states that
are initially polarized in the Z basis and (ii) ”ZX” states
where initially half of the spins are polarized in the Z and

FIG. 3. Energy standard deviation density ΔE=L. Dotted lines
are W ¼ 1; solid lines are W ¼ 8. Results have been obtained
using exact time evolution to exclude any Trotter errors.

FIG. 4. Trotter errors for L ¼ 16, averaging over 1000
instances. Here, we use a first-order Trotter decomposition.

FIG. 5. The entanglement entropy at the center of the system as
a function ofΔE=L for various system sizes and initial states used
in the IQPE algorithm. Dashed lines show data for initial product
states in the Sz basis, while solid lines show data for initial states
with a mix of Sz and Sx bases, as explained in the text. System
sizes are, from top to bottom, L ¼ 12, 10, and 8.
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the other half are in the X basis (i.e., an equal-weight
superposition of 2L=2 product states in the Z basis). In
Fig. 5, we observe that for the same ΔE=L, the states
obtained when starting from ZX initial states have drasti-
cally larger entanglement entropy.
The reason for this can be understood in the picture of

local conserved constants of motion put forward for MBL
states in Refs. [14,16]: The eigenstates of the effective
Hamiltonian proposed there are simply product states in
some fixed basis. Flipping a single spin in this basis will
incur a large energy penalty; however, by flipping many
spins, one can obtain another product state that is expo-
nentially close in energy to the original state but that can be
locally distinguished from the first state almost anywhere
simply by measuring in the preferred basis. In the setup we
consider, the local constants of motion are likely to be close
to the physical σz operators, as the disorder is diagonal in
this basis. The initial states polarized in the Z basis thus
differ from exact eigenstates only by local fluctuations and
thus have overlap with exact eigenstates that are far apart in
energy. In this case, IQPE is successful at isolating one or a
few eigenstates with high accuracy. The ZX states, on the
other hand, can be thought of as superpositions of Z states
that differ in L=2 spins and thus can have overlap with
eigenstates that are close in energy. IQPE is thus less
efficient at separating these states, and for a given energy
standard deviation, the final state is a superposition of many
nearby eigenstates.
Concentrating on the Z initial states which, as argued

above, give a better approximation to the exact eigenstates
for a fixed evolution time T tot, we can ask how the
entanglement entropy of the final state depends on T tot.
Our results are given in Fig. 6, where we show the
entanglement entropy for a cut in the middle of the system
averaged over 10000 disorder realizations. We find good

agreement with a power-law fit, i.e., that the entanglement
entropy approaches the exact value as T−b for some power
b. In the inset of the figure, we show the same data after
subtracting the constant term on a double-logarithmic scale.
For the small system sizes accessible to our simulations, the
power b appears to grow slowly as L is increased. This
dependence crucially affects how the time T tot necessary to
reach a given error in entropy ε scales in the system size.
Assuming that this growth is sufficiently slow once an
asymptotic regime is reached, we can observe an area law
by evolving for a time that is polynomial in the system size.
To illustrate this, we show in Fig. 7 the entropy vs system
size L for different choices of T tot, and we observe that as
T tot is increased, an area law is observed for an increasing
range of system sizes.

III. MEASUREMENTS

A. General remarks

Suppose now that we have obtained an energy eigenstate
jψEi at some random energy E by quantum phase estima-
tion. What can we do with it to probe many-body
localization? As mentioned in the Introduction, in contrast
to classical simulations, we cannot simply examine the
wave function to deduce its properties, and we are limited
to performing unitary operations and projective measure-
ments. Each such projective measurement yields, at most,
N binary numbers, where N is the number of qubits used
for representing the physical system; the expectation value
is then reconstructed by averaging over many such
measurements.
This gives rise to an additional complication when

characterizing eigenstates obtained with the method
described above: Since this method does not allow us to
target a specific eigenstate, we are unlikely to encounter the

FIG. 6. Entanglement entropy at the center of the system.
Dashed lines indicate a fit to S ¼ S0 þ aT−b

tot , where a and b are
fit parameters. Inset: SðT totÞ − SðT tot → ∞Þ, where Sð∞Þ has
been obtained from the dashed fit in the main panel, on a double-
logarithmic scale.

FIG. 7. The bipartite entanglement entropy for a center cut as a
function of system size L in the strong disorder limit, as obtained
by IQPE to accuracy (from top to bottom) k ¼ 10; 11;…; 20. As
the accuracy is increased, and the state begins to approach an
energy eigenstate, the entanglement entropy decreases.
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same eigenstate more than once, and since we only measure
k < N bits of the energy, we cannot uniquely identify the
state by its energy. We thus average simultaneously over
eigenstates in some energy window, where the width of the
energy window depends on k, and over measurement
outcomes. Notably, within the constraints of this setup,
there is no known way to extract the entanglement entropy
of the resulting eigenstates.
Nevertheless, there are several powerful ways in which

eigenstates can be characterized under these constraints. In
the following, we discuss the examples of transport in
weakly perturbed eigenstates (either with a weak global
perturbation or a local perturbation) and how to adapt
recent spin-echo proposals [23].
If, on the other hand, we consider states obtained by

performing global quenches on easily prepared initial states,
the preparation procedure becomes reproducible: We can
prepare the same initial state over and over and apply the
time evolution for the same time interval t, and thereby
prepare the same final state many times and perform repeated
measurements on this state. Although the signatures of
many-body localization are not as clear in this setup, they
are more easily obtained because of the possibility of
repeated measurements on multiple copies of a state.

B. Linear response and transport
in perturbed energy eigenstates

It is instructive to briefly consider how an isolated
system at fixed energy can be probed in an experiment.
One way is to couple the system to another, better-
understood auxiliary system and see how it reacts. In a
sense, this is similar to coupling it to a heat bath but in the
limit in which the coupling is very small and can be turned
on locally so that the auxiliary system can be used in a
manner analogous to a thermometer. In a many-body
localized phase, we do not expect particles (or energy)
to flow into the auxiliary system.
A second possibility is to “tilt” the system. Having

obtained an approximate eigenstate jEi, we can evolve it
for time T with the Hamiltonian

H ¼ Hf þ
X
j

Vjnj; ð16Þ

where Hf is defined in Eq. (1). This would correspond, in a
cold-atom experiment, to loading atoms into the trap with
fixed energy and then tilting the potential in the trap, as in
Ref. [51]. For small V and if the system is initially prepared
close to an eigenstate, this corresponds to a weak global
perturbation. We can then measure the current iðc†jþ1cj −
H:c:Þ at various locations within the system. Restricting to
one dimension, where no Jordan-Wigner strings need to be
accounted for, this measurement is performed straightfor-
wardly, as shown in Fig. 8. Consider the following input
state with an ancilla in state j0i:

ðaj00i þ bj01i þ cj10i þ dj11iÞj0i: ð17Þ

The first two qubits are the data qubits, which are the
occupation numbers of sites j, jþ 1, and the third qubit is
the ancilla. The circuit in Fig. 8 implements the following
operations:

2CNOTs∶ ðaj00i þ dj11iÞj0i þ ðbj01i þ cj10iÞj1i; ð18Þ

Measure 1∶ bj01i þ cj10i; ð19Þ

CNOT∶ ðbj0i þ cj1iÞj1i: ð20Þ

Here, in the step denoted as “Measure 1,” we measure the
ancilla qubit. If the measurement outcome is 0, the total
measurement is 0 and the remaining steps need not be
performed. If the outcome is 1, then CNOT is performed on
the data qubits, followed by a measurement of the first qubit
in the Y basis.
If the system is in a metallic state, then we expect the

current to grow at short times until it reaches a steady-state
value, at a time on the order of the mean-free time
τ ∼ t=W2. This value persists until the boundaries of the
system reflect the current, at a time T ∼ L2=D∼
L2ðW2=t3Þ, where D is the diffusion constant,
D ∼ t3=W2. (We are working here in units in which the
lattice spacing is 1.) Therefore, so long as L ≫ ðt=WÞ2,
there is a large interval of times over which the steady-state
value can be observed. In a MBL state, on the other hand,
we expect the current to grow at short times and then
rebound at a time on the order of T ∼ ξ2=D, where ξ is the
localization length. After that, it will undergo damped
oscillations, before reaching a vanishing steady-state value.
Therefore, apart from a short time transient, a current
oscillating about and tending to zero will be observed.
Alternatively, we can study a “local quench”: Starting in

an energy eigenstate, we can perturb the system locally,
e.g., by flipping the spins in a small region R (possibly even
a single spin), and study the resulting time evolution.
Unlike a global quench, which is expected to show
unbounded growth of the entanglement, a local quench
of a MBL state is expected to disturb the system only in a
localized region. This can be traced by following the
spreading of correlations in the system and observing,
e.g., a zero-velocity Lieb-Robinson bound [52]. Alter-
natively, we can measure the energy current at distant

FIG. 8. Quantum circuit to measure the current operator
iðc†i cj − c†jciÞ, as described in the main text. Here, the top
two qubits are the qubits corresponding to the physical sites i and
j, and the bottom qubit is an ancilla qubit.
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locations. The energy current (as per Noether’s theorem) on
the link between j and jþ 1 is iðc†jþ2cj − H:c:Þ þ
iðc†jþ1cj−1 − H:c:Þ. This vanishes exponentially with dis-
tance at long times in the MBL phase.

C. Spin echo

One interesting variant on a local quench was suggested
by Serbyn et al. [23]. This is most easily described in the
context of a spin model (2). In their proposal, one begins
with a system in an initial product state in the σz basis,
except for the ith spin, which is in a σxi ¼ þð1=2Þ
eigenstate. The system is evolved for time T. The ith spin
is then reversed by applying σx, and the system is evolved
again for time T. If the Hamiltonian were diagonal in the σz

basis, this would return the ith spin to its initial state. If
spin-flip terms do not change the physics qualitatively, i.e.,
if the system is adiabatically connected to one in which the
Hamiltonian is diagonal in the σz basis, then the ith spin
will not return precisely to its initial state but to a state with
hσxi i > 0. Since this does not distinguish between many-
body localization and single-particle localization, Serbyn
et al. [23] propose that some other spin or set of spins in a
region R far from i is manipulated (e.g., with a π=2 pulse).
In a noninteracting localized state, this would have no
additional effect because of the absence of coupling
between spins in region R and the ith spin. In a many-
body localized state, however, there would be an inter-
mediate range of T values over which hσxi i would show
power-law decay before saturating to a nonzero value at
large T. In a delocalized state, by contrast, hσxi i decays
rapidly to zero with T. It is a straightforward matter to stop
the time evolution of a quantum state to reverse spin i and
to manipulate spins in region R before continuing the time
evolution.

IV. ERRORS

Thus far, we have assumed that our quantum computer
has infinite coherence time and that all operations can be
performed flawlessly. Obviously, this will not be the case,
and errors must be taken into account in any appraisal of the
prospects for applying a quantum computer. One type of
error that may be relatively benign is Trotterization errors.
Such errors, which are systematic, may be reinterpreted
as a modification of the Hamiltonian. This effective
Hamiltonian will have nonlocal terms induced by higher-
order commutators of the original Hamiltonian terms.
However, such commutators are exponentially suppressed
in their order, and thus the effective Hamiltonian has, at
worst, exponentially decaying terms. If we are interested in
universal properties of MBL states, such a modification of
the Hamiltonian will be unimportant.
Much more serious errors are caused by the environ-

ment. However, of these, bit-flip errors may be far
more problematic than phase errors. Suppose that the

Hamiltonian for a MBL state can be written in terms of
quasilocal conserved quantities τzi [14,16]:

H ¼
X
i

hiτ
z
i þ

X
i;j

Jijτ
z
i τ

z
j þ � � � . ð21Þ

Then, the addition of a coupling to the environment that is
diagonal in this basis (and, therefore, leads only to phase
errors) takes the form

Hsys-env ¼
X
i

τziBðXaÞ: ð22Þ

Here, BðXaÞ is the effective field, which depends on the
environment degrees of freedom, Xa, and, therefore,
entangles them with the quasilocal conserved quantities
τzi . However, such a coupling clearly has no effect on many-
body localization.
Bit-flip errors, on the other hand, may have a rather

drastic effect, in particular, during the final stages of the
quantum phase estimation: Once the state is close to an
eigenstate, a flip of a single spin will change the energy of
the state by a large amount. Because of its recursive nature,
this will lead to failure of the IQPE algorithm, and bit-flip
errors must thus be corrected at a lower level. This may be
achieved by using topological qubits [53] or by performing
some error correction on the physical qubits. If we only
correct bit-flip errors, then we can essentially use a classical
error-correcting code. Consider, for illustrative purposes, a
½7; 4� Hamming code. If we assume flawless error detection
and recovery, then an initial error rate of ε is lowered to an
error rate of 21ε2. In order to perform 106 gates, we would,
thus, need a gate fidelity of 99.99%, at a cost of encoding
four sites in seven qubits, corresponding to a less than
twofold increase in the required number of qubits.

V. CONCLUSION

Since classical computers are limited, for the foreseeable
future, to the study of MBL systems of approximately 20
sites or less, a quantum computer need not be very large to
accommodate a significantly larger system. From the
preceding considerations, it appears that a system of 50
sites could be simulated with fewer than 100 physical
qubits, assuming realistic bit-flip error rates. Moreover, as
we have shown, a quantum computer can, in a straightfor-
ward manner, manipulate such a system in ways that would
be very time-consuming with a classical computer. Two
important features of many-body localization pave the way
to the practical application of a quantum computer: (i) The
Hamiltonian is local and can be written in terms of just
three groups of noncommuting terms. This greatly reduces
the number of gates required for time evolution. (ii) Since
we are interested in dynamical properties and properties of
highly excited states, possibly close to a phase transition
where the states acquire a volume law, classical computers
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are limited to very small systems on the order of 20 sites.
Even deep in the localized phase, where states exhibit an area
law and efficient algorithms exist to find the ground state,
there are no presently known algorithms that efficiently find
highly excited states. (iii) We are primarily interested in
universal features and can, therefore, tolerate certain types of
errors, unlike in the case of Shor’s algorithm or applications
to quantum chemistry. As a result, a relatively small quantum
computer can, in a reasonable time, evolve an initial state to
longer times t than would be possible with a classical
simulation. In addition, a quantum computer can be used to
find an approximation to a typical energy eigenstate of a
Hamiltonian. Both applications of a quantum computer can
give insights into many-body localization.
It is worth emphasizing that these results can be

complementary to those obtained with a classical computer.
We do not have access to a classical representation of a
quantum state prepared with a quantum computer. More-
over, we cannot prepare multiple copies of the same
approximate energy eigenstate. For these reasons, there
is no obvious way to compute the entanglement entropy of
an approximate energy eigenstate. However, we can study
features of MBL systems that would be very difficult with a
classical computer, such as transport, spin-echo effects, and
the long-time approach to a thermal or nonthermal state.
If one regards the quantum computation as a highly

idealized model for an experiment on an isolated quantum
system, our results imply that the properties of eigenstates
can be observed in the laboratory with resources poly-
nomial in the system size. This is a nontrivial insight, as
exact eigenstates cannot generally be prepared to very high
accuracy unless exponentially large resources are used.
This gives additional justification for studying the proper-
ties of a many-body localized phase in its energy eigen-
states but also has implications for experiments.
Indeed, some of the proposals we discuss bear great

similarity to experimental approaches, for example, in cold-
atom systems. For example, the transport scenario of
measuring the response of an energy eigenstate to a weak
tilt is relevant to experiments such as the one reported in
Ref. [51]. In this experiment, fermionic atoms are loaded
into an optical lattice in a trap. A speckle pattern disorders
the potential in the trap. The atoms carry spin 1=2 and
interact via an on-site Hubbard-like interaction. In addition,
the atoms are not in their ground state but have some energy
density that is fixed when they are loaded into the trap. Both
of these conditions indicate that this system is in a regime in
which many-body localization could be observed. The trap
is tilted, and then the momentum distribution is measured.
When the disorder is weak, the momentum distribution is
skewed by the tilt. When it is strong, the momentum
distribution is unaffected. This is broadly consistent with
many-body localization, but it is difficult to distinguish a
transition from a crossover and, therefore, difficult to
determine whether the putative localized phase in the

experiment is, in fact, a metallic phase with small but
nonzero conductivity.
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