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I
mmersive teleconferencing has been an

attractive research topic for many years,

aiming to produce ‘‘a videoconferenc-

ing experience that creates the illusion

that the remote participants are in the same

room’’ as the user.1 An ideal immersive telecon-

ferencing system should be able to replicate the

light and sound field that a user might experi-

ence in a face-to-face meeting, all in real-time,

which is a nontrivial task.

In the past few years, several commercial

group-videoconferencing systems have emerged,

such as Hewlett-Packard’s Halo and Cisco’s Tel-

epresence. These systems feature life-size video,

spatial audio, and a virtualized environment by

providing furniture, lighting, and even wall col-

ors to maximize the conference experience. Al-

though they provide a substantially improved

conference experience over traditional Internet

video chatting, they cannot faithfully preserve

the mutual gaze between attendees and are

thus still far from being truly immersive.2 Re-

search has shown that feeding videos of multi-

ple cameras directly into multiview displays at

the remote party improves the efficiency of

group conferencing because it roughly pre-

serves the gaze.3 Nevertheless, many challenges

and inflexibleness in group videoconferencing

still exist, such as the low visual quality of mul-

tiview displays, the limited view position of the

user, and the lack of full 3D rendering and mo-

tion parallax.

In this article, we propose a fully distributed

immersive teleconferencing system that assumes

there is only one user at each station during the

conference. Such a system would allow users to

conduct meetings in their own offices for great-

est convenience. Compared with group confer-

encing systems, fully distributed systems let us

render the light and sound fields from a single

user’s viewpoint at each site, which demands

less of the system hardware. (See the ‘‘Related

Work in Immersive Teleconferencing’’ for pre-

vious approaches.)

To create faithful eye contact in remote

meetings, we present Viewport, a fully distrib-

uted immersive teleconferencing system with

virtual seating. With the help of infrared (IR)

dot patterns, we can reconstruct high-quality

3D models for each user in real time and

embed these 3D models into a common virtual

environment. Thanks to our virtual-seating algo-

rithm and a careful calibration scheme, Viewport

can faithfully maintain the seating geometry of

face-to-face meetings, leading to accurate mu-

tual gaze between meeting participants.

Immersive Teleconferencing Systems

To create an immersive experience, we need to

support several aspects of teleconferencing:

� A flexible number of participants for the

conference. When the number of cameras

at each site is fixed, a full 3D reconstruction

is necessary to ensure correct mutual gaze

when the number of participants is larger

than the number of cameras.

� Conference seating geometry identical to

face-to-face meetings (see Figure 1). This

implies that we calibrate all the equipment

at each site, including cameras that capture

the person, display, table height, and so on.
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� 3D audio and video rendering of remote par-

ticipants, with motion parallax. For audio,

spatial audio rendering is needed as well as

multichannel echo cancelation. Video

demands high-quality 3D reconstruction to

support motion parallax.

� Real-time operation and low network band-

width and latency between participants.

Figure 1 illustrates three people attending a

virtual meeting from offices in three separate

locations. A capture device at each location

captures users in 3D with high fidelity (in

both geometry and appearance). The system

then places the users into a virtual room as if

they were seated at the same table. The camera

tracks the users’ eye positions so that the virtual

room is rendered appropriately at each location

from the user’s perspective, reproducing the mo-

tion parallax that a user would see in the real

world. The mutual gaze between remote users

is maintained by creating a consistent geometry

and tracking the user’s eye positions.

In Figure 1, users A and C are looking at each

other, and B will understand that A and C are

looking at each other because B sees only their

side views. Furthermore, the audio is also spa-

tialized, so the voice of each remote person

comes from his or her location in the virtual

room. The display at each location can be 2D
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Related Work in Immersive Teleconferencing
The pursuit of fully distributed immersive teleconferencing

has been ongoing for many years. Early representative

works include the Tele-immersion Portal,1 the Virtue proj-

ect,2 and the Coliseum.3 Due to limitations in computation

capability, the rendering quality of these systems was often

limited.

More recently, a few immersive teleconferencing systems

have attracted much attention. For instance, Andrew Jones

and his colleagues adopted a phase-unwrapping-based struc-

tured light approach for real-time facial geometry reconstruc-

tion.4 Ram Vasudevan and his colleagues used 48 cameras

and 12 computers at each station for a multiresolution-

mesh-based reconstruction, which greatly improved render-

ing quality.5 Andrew Maimone and Henry Fuchs presented

a teleconferencing system using six Kinect sensors at each

site.6 They merged and processed depth maps to improve

rendering quality. Hybrid Kinect and regular camera systems

could also be used for immersive teleconferencing,7 thanks

to their near-real-time performance.

All these systems shared the same vision: once the 3D

models of the users are reconstructed, they can be placed

in a common virtual environment to be rendered immer-

sively. However, none of these works paid much attention

to the seating geometry in the virtual world. Consequently,

the mutual gaze between attendees has usually been poor in

multiparty conferences.
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Figure 1. Distributed three-way videoconferencing

that preserves the same relative seating geometry as

a face-to-face meeting. Users A and C are looking at

each other, and B will understand that A and C are

looking at each other because B sees only their side

views.
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or 3D, flat or curved, single or multiple, trans-

parent or opaque, and so forth—the possibilities

are numerous. In general, the larger the display,

the more immersive the user’s experience.

System Overview

Our Viewport system uses a camera rig for

scene capture at each site. The rig consists of

three IR cameras, three color cameras, and

two IR projectors (see Figure 2a). The IR projec-

tors are identical to those in the Kinect device,

although we did not build the system with

multiple Kinect sensors because they cannot

be reliably synchronized and their color

image quality is poor. We use PointGrey

Flea2 as IR and color cameras, synchronized

with an external trigger and operating at

1,024 � 768 pixel resolution. For the IR cam-

eras, we removed the IR filter in Flea2 and

added a visible light filter (a cheap, black

acrylic plastic) to increase contrast. Figure 2b

shows some example images captured by the

rig. The system also uses a Kinect camera for

audio capture and head tracking, although

the laser in the Kinect camera is blocked to

avoid interference.

Figure 3 shows the overall workflow of our

system. At the sender site, a sparse point

cloud of the user is first reconstructed from

the camera rig. After compression, the point

cloud is sent over the network, together with

the three color video streams and three binary

mask videos obtained from the IR video. At

the receiver site, multiple sparse point clouds

and video streams are decompressed. The

sparse point clouds are interpolated into

dense point clouds with a regression algorithm.

We also use the binary masks in this step to im-

prove quality. The dense point clouds are then

converted into triangular meshes.

Once the system has processed all remote

parties’ point clouds, the receiver runs a virtual-

seating algorithm to arrange the meshes in

their correct positions to maintain the confer-

ence geometry of a face-to-face meeting. After-

ward, all the meshes are rendered to the user

for an immersive videoconferencing experience.

We set up a three-site immersive teleconfer-

encing system to test the Viewport system.

Each site is equipped with two high-end work-

stations: one for capturing and sparse-point-

cloud generation (the capture workstation) and

the other for dense-point-cloud generation,

meshing, and rendering (the rendering

workstation). The workstations have dual Intel

Xeon Six-Core X5690 CPUs (3.46 GHz), 24

Gbytes of memory, and an NVIDIA GeForce

GTX 580 graphics card. At the capture worksta-

tion, the sparse-point-cloud reconstruction

takes approximately 40 ms. The remaining
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Figure 2. The Viewport camera rig. (a) The configuration of the camera rig.

The Kinect camera in this setup handles audio capture and head tracking for

motion parallax. The laser in the Kinect camera is disabled to avoid

interference. (b) The top three example images are from the infrared (IR)

cameras, and the bottom three examples are from the color cameras.

Kinect camera

IR cameras

Color cameras

IR laser projectors

(a)

(b)

Figure 3. Overview of the Viewport system. The sender site reconstructs a

sparse point cloud of the user, and then the receiver site runs a virtual-seating

algorithm to arrange the meshes in their correct positions.
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cycles are used for frame grabbing, Bayer pattern

demosaicing, and compression of three HD

color videos (1,024 � 768), three IR masks, and

the sparse point cloud. At the rendering worksta-

tion, the dense-point interpolating and meshing

take approximately 15 ms for each remote party.

The remaining cycles are used for audio capture

and compression, decoding all compressed

streams, and audio and video rendering.

There is no dedicated audio/video synchroni-

zation across the two machines, and they both

run in a best-effort mode. The overall system

runs at approximately 10 to 12 frames per sec-

ond (fps). All components except mesh render-

ing are currently implemented on the CPUs

only. Implementing these algorithms on the

GPU is relatively straightforward, and we expect

a much faster frame rate in the near future.

3D Video Processing

After capturing and reconstructing the sparse

point cloud of the user in real time, we trans-

mit it along with the three color video streams

to all remote parties. This solution is computa-

tionally efficient and generates satisfactory 3D

rendering results.

Camera Rig Calibration

As Figure 2 shows, the camera rig in our system

contains three color and IR camera pairs, spaced

approximately 35 cm apart. Because the subject

is only 50 to 120 cm from the camera rig, the

baseline between cameras is relatively large. Con-

sequently, we found it difficult to reconstruct the

full geometrybasedsolelyon the cameras. To rem-

edy the problem and minimize the number of

cameras, we also calibrate the dot patterns of the

laser projectors, giving additional information

for reconstructing the side of the face and body.

The first step is to calibrate all the color and IR

cameras. For this standard procedure, we adopted

Zhang’s calibration algorithm4 to determine all

the cameras’ intrinsic and extrinsic parameters.

The laser projectors are calibrated using a

planar white board (such as a 122 � 91 cm

white form board). For each laser projector,

we capture two pairs of images of the planar

board from two IR cameras. The dot pattern

positions in the images are then estimated

with subpixel accuracy by fitting a Gaussian

to the pixel intensities of a small patch around

the dot. Since the two IR cameras are already

calibrated, with some manual help,5 it is possi-

ble to reconstruct the planar board’s position

(and thus, all 3D points) in 3D. Because we cap-

ture two pairs of images of the board and we

know the homography between all four

images, we effectively know a large set of laser

beams in 3D. The center of the laser projector

can be computed by finding the 3D point

that minimizes its distance to all laser beams.

Furthermore, we can compute all the light-ray

directions of the laser projector.

During 3D reconstruction, we treat the IR

projectors as IR cameras. Given the projectors’

centers of projection and their light-ray direc-

tions, a synthesized 2D IR image is generated

by spreading a small Gaussian kernel along

the intersection of the light rays and the virtual

imaging plane of the IR projectors. These syn-

thesized IR images are combined with the IR

and color images captured by the real cameras

for sparse-point-cloud reconstruction.

Sparse 3D Point Cloud Reconstruction

Using the camera rig, we could adopt tradi-

tional dense multiview-stereo algorithms to re-

construct the user’s 3D geometry, but that

would be computationally expensive. In our

system, we only reconstruct a sparse point

cloud to represent the scene geometry. The

key idea is to match only the dot patterns in

the IR images. Because the dot patterns are

sparse, we can perform the task quickly.

Figure 4 illustrates the proposed algorithm’s

workflow. For each IR image, we first extract an
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Figure 4. The workflow
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cloud reconstruction

algorithm. After
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of the foreground and

the dot patterns in the

IR images, multiple
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followed by several

rounds of post-filtering

to remove outliers in
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IR mask that represents the foreground using a

simple threshold, as Figure 5a shows. Comput-

ing the IR mask has two benefits. First, it

improves the reconstruction speed because

dot patterns outside the masks belong to the

background and can be ignored during recon-

struction. Second, the masks are used as a sil-

houette constraint during dense depth-map

interpolation and rendering at the receiver

site, which is critical for achieving high-quality

rendering.

We then extract the dot patterns in the IR

images and use a 15 � 15 pixel patch sur-

rounding each dot as its descriptor. Multiple

plane-sweeping procedures are then

launched: a two-view plane sweeping be-

tween the left most IR camera and the

virtual image of the left laser projector, a

three-view plane sweeping between all

three IR images, and another two-view

plane sweeping between the right-most IR

camera and the virtual image of the right

laser projector. The three IR images are

used as references in the three plane-sweeping

routines, respectively. Although the IR projec-

tors can interfere with each other near the

frontal facing region of the user, the three-

view plane sweeping is insensitive to such in-

terference and can help the overall system to

perform robustly.

The plane-sweeping algorithm imple-

mented in our system is similar to the tradi-

tional scheme,6 except that it focuses only

on the dot patterns. That is, given the refer-

ence frame, only the pixels that coincide

with the detected dots are used for multiple

depth hypothesis testing. Moreover, because

a dot in one image must match with a dot in

another image, the system can quickly reject

many hypothesized depth values, leading to

significant speedup. When a hypothesized

depth value satisfies the dot-dot-matching cri-

teria, a score is computed based on normalized

cross-correlation of the descriptors, which is

commonly used in the stereo-matching

literature.

After plane sweeping, for each dot in the

reference image, we obtain a score vector,

with each element corresponding to one

hypothesized depth value. The higher the

score, the more likely that the scene object

resides at that depth. We further apply a filter-

ing approach to encourage nearby dots to

have similar depth values. Denoting the

score vector of a dot x as s(x), we filter the

score vector as

sf xð Þ ¼
X

xi2N xð Þ
wis xið Þ ð1Þ

where N xð Þ is a predefined neighborhood

of x—for example, x’s k nearest neighbor
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Figure 5. Results illustrating different steps during sparse-point-cloud

reconstruction for the input images in Figure 2b. (a) The IR masks. (b) Raw

sparse point clouds of the three plane sweeping (see Figure 4), using

collaborative filtering in score volume. (c) Post-filtered sparse point clouds.

(d) Two views of the merged sparse point cloud. (e) Rendering results from

various viewpoints based on the sparse point cloud.

(a)

(b)

(c)

(d)

(e)
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(including x itself) in 2D coordinate in the ref-

erence image. The weights wi are determined

by the distance between x and xi. For example,

wi ¼ exp � xi � xk k2

2�2

( )
ð2Þ

where s is a constant. The depth value corre-

sponding to the highest element in sf(x) is

chosen as the output (see Figure 5b).

We then conduct another round of postfil-

tering to remove outliers in the point cloud.

Given a dot x and its k nearest neighbors

N xð Þ, we require that a certain percentage of

the dots in the neighborhood have depth val-

ues similar to the depth of x. Otherwise, the

dot will be excluded from the final output. This

post-filtering scheme is effective, as Figure 5c

shows. Finally, the three point clouds are

rotated and translated into the center IR cam-

era’s coordinate system for merging. During

the process, the 3D points are also projected

onto the three color images to make sure they

are consistent in color projection.5 Figure 5d

shows the merged point cloud.

For a typical scene, we reconstruct 8,000 to

12,000 sparse points. Each point is also associ-

ated with three binary flags, indicating which

images were used to obtain the highest score.

These flags record visibility information about

the sparse points, which is helpful for rendering.

Together with the binary flags, the 3D points

are quantized and transmitted to the remote

sites for rendering (see Figure 5e).

3D Video Rendering

The rendering workstation receives multiple

sparse point clouds and their related color vid-

eos and IR masks. The goal is to render them

with high quality and be consistent in seating

geometry with face-to-face meetings. For this

purpose, we need to generate a 3D mesh

from the input sparse point cloud. The most

straightforward way of performing meshing is

to use Delaunary triangulation on the sparse

point cloud directly. However, due to noises

during the reconstruction, such a scheme

does not produce satisfactory results. To ad-

dress this, we propose the rendering algorithm

in Figure 6.

The sparse point cloud is first projected to

the three IR cameras, resulting in a sparse 2D

point set on each image. We use each point’s

binary flags to make sure only the visible IR

cameras receive the corresponding points. For

each projected image j, yi denotes the sparse

projections; i = 1, ..., Kj, where Kj is the number

of visible IR dots in the jth image; and their

depth values as d(yi). For each valid pixel y in-

side the IR mask, we perform a regression

style interpolation:

d yð Þ ¼
X

yi2N yð Þ
�id yi

� �
ð3Þ

where N yð Þ represents a 2D neighborhood of

pixel y. The weights ai are related to the dis-

tance yi � y:

�i / exp �
yi � y
�� ��2

2�2

( )
ð4Þ

and Siai ¼ 1. The IR masks are also used in this

step such that no depth value is created out-

side the masks. Figure 7e shows the resulting

dense depth maps. Because the sparse point

cloud is noisy for this particular frame, the

interpolated dense depth maps contain

blobs of outliers that need to be processed
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Figure 6. The workflow of the rendering algorithm.
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before meshing. We run a gradient fill algo-

rithm to cluster the dense depth maps into con-

nected regions. Each region’s area is compared

against a threshold. If the area is too small,

the region will be removed from the dense

depth map. Afterward, we apply a basic hole

filling algorithm to remove holes that are dis-

connected with the background.

The processed dense depth map in Figure 7f

shows that the quality of the dense depth maps

has been significantly improved. The dense

depth maps are then converted into triangular

meshes via a prefixed scan pattern and ren-

dered accordingly (see Figure 7g). Triangles

with large depth gaps are removed during the

process.

Virtual Seating

Although many existing systems have attempted

to reconstruct the 3D geometry of the meeting

participants and place them in a common vir-

tual environment, few have been able to faith-

fully maintain the seating geometry, leading to

poor mutual gaze during the meeting. Indeed,

careful calibration of the camera rig, the moni-

tor, and the table surface is necessary to achieve

such a goal.

Figure 8a illustrates the basic idea of virtual

seating for a three-party meeting. The recon-

structed point clouds are in their respective

camera rig coordinate systems, denoted as

CR0 , CR1 , and CR2 . To place them around a vir-

tual table in the virtual environment, let the

virtual world’s coordinate be CW, and the rota-

tion and translation from rig k’s coordinate sys-

tem to the virtual world’s coordinate system be

RRkW and tRkW . Given a 3D point Xk
i in CRk ,

where i is the index of the points in the point

cloud reconstructed from the kth camera rig,

we have

XW
ki ¼ RRkWXk

i þ tRkW ð5Þ

and the point will be placed in the correct lo-

cation in the virtual world.

During rendering, given the viewer’s eye lo-

cation in the virtual world’s coordinate system

and the screen’s display region in the same co-

ordinate system, our system will render all

point clouds or meshes correctly. Note the

viewer’s eye location is tracked to provide a

sense of motion parallax, which is an impor-

tant effect for immersive teleconferencing.7 Be-

cause Viewport conducts capture and rendering
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Figure 7. Results illustrating different steps during rendering. (a) Input IR

images. (b) Reconstructed sparse point cloud viewed from two different

viewpoints. (c) IR masks. (d) Meshing on the sparse point cloud using

Delaunay triangulation. Edges longer than a threshold are discarded to avoid

artifacts. (Note the resultant mesh is noisy and contains outliers.) (e) Dense

depth map after interpolation. (f) Dense depth map after outlier removal and

hole filling. (g) Rendering results after meshing the dense depth maps.

(a)

(b)

(c)

(e)

(f)

(g)

(d)
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on two separate workstations, we added a Kin-

ect camera on top of the rig (see Figure 2) to

perform head tracking (using the Kinect for

Windows SDK) and audio capture at the render-

ing workstation. Consequently, we must also

calibrate the Kinect camera with respect to

the virtual world.

For the jth user, denote CSj as local coordi-

nate system of the screen, and CCj as local coor-

dinate system of the Kinect tracking camera.

Let the user’s eye position with respect to CCj

be YCj . We can transform it to world coordi-

nates as

YW
j ¼ RCjWYCj þ tCjW ð6Þ

where RCjW and tCjW are the rotation and

translation from the Kinect’s local coordinate

system to the virtual world’s coordinate sys-

tem. To perform rendering, it is more

convenient to compute everything in the

screen coordinate system. We can easily trans-

form the point cloud and viewer position to

the screen coordinate system CSj using

X
Sj

ki ¼ RSjW
� ��1

XW
ki � tSjW

� �
ð7Þ

YSj ¼ RSjW
� ��1

YW
j � tSjW

� �
ð8Þ

where RSjW and tSjW are the rotation and

translation from the screen’s local coordinates

to the virtual world’s coordinate. Once in

screen coordinates, the final rendering is sim-

ple (see Figure 8b). The renderer’s look direc-

tion should be the same as the normal

direction of the screen.

To perform virtual seating accurately,

we need the calibration information for the

following:

� the transforms from the camera rig to the

virtual world coordinate RRkW and tRkW .

� the transforms from the tracking camera to

the virtual world coordinate RCjW and tCjW .

� the transforms from the screen to the virtual

world coordinate RSjW and tSjW .

To this end, we introduce an auxiliary pla-

nar pattern and an external camera to help reg-

ister the cameras and the screen. We carved a

pattern with several hollow squares out of an

acrylic board, which can be seen from both

sides by the camera rig, the tracking camera,

and the external camera that is facing the

screen.15 We then positioned the pattern at the

edge of the participants’ table, roughly 80 cm

from the screen. This arrangement helps prop-

erly map everyone around the table because it

automatically aligns all table tops to the same

height when mapping to the virtual world

(more details on this later). We define a local

coordinate system on the pattern, denoted as

CPj . We can compute the transforms from the

camera rig to the pattern coordinates as RRkPk

and tRkPk and the transforms from the tracking

camera to the pattern coordinates as RCjPj and

tCjPj . With the external camera, we also cap-

ture multiple images that include both the

pattern and the screen, thus obtaining the

transforms from the screen to the pattern

coordinates as RSjPj and tSjPj . If we can find

the relationship between the patterns’
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Figure 8. Illustration of virtual seating and its rendering. (a) Virtual seating.

(b) Virtual view rendering in the screen coordinate. (c) 3D spatial audio

rendering.
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coordinates and the virtual world coordinate,

it becomes easy to compute all the transforms

we mentioned earlier.

Not surprisingly, the transforms between the

patterns’ coordinates and the virtual world can

be defined based on the face-to-face meeting

geometry. For instance, for a three-way distrib-

uted teleconference like the one in Figure 8a,

the three transforms can be defined as

RPjW ¼
cos �j

� �
0 sin �j

� �
0 1 0

� sin �j

� �
0 cos �j

� �
2
64

3
75;

tPjW ¼
r sin �j

� �
0

r cos �j

� �
2
64

3
75

ð9Þ

where �0 = 0, �1 = �(2p/3), and �2 = (2p/3). r is

the distance from the center of the virtual

table to the patterns, which is determined

by the virtual table’s size. We assign zero trans-

lation between the patterns and the virtual

world in y axis so all table tops will be aligned

to the same level in the virtual world.

3D Audio Processing

An immersive teleconference would not be

possible without immersive audio. All the par-

ticipants’ positions are computing during vir-

tual seating (see Figure 8c). Given the local

user’s head orientation and location in the vir-

tual world, we can easily compute the relative

angle �i between his or her look direction and

the remote participants. As a result, the remote

participants’ audio can be spatialized to the

correct locations for generating faithful immer-

sive audio.

If the user is using headphones, the spatiali-

zation task is relatively easy; we convolve

the audio with an appropriate head-related

transform function (HRTF). Otherwise, addi-

tional steps are necessary. For example, on the

capture site, to get the true speaker signal, we

need to use acoustic echo cancelation (AEC)

followed by dereverberation. On the playback

site, if the loudspeakers are close to the user’s

ears, we can simply use the spatialized audio

as is done for the headphones. If the speakers

are reasonably far from the listener, we might

have to compensate for speaker cross-talk and

the room impulse response from the loud-

speakers to the listener.8

For the current implementation, we use the

scheme we described in our earlier work,9

where spatialization is naturally combined

with multichannel AEC using constrained Kal-

man filtering.

Experimental Results

Figure 9 compares the proposed sparse point

reconstruction and interpolation-based ren-

dering scheme with a dense multiview-stereo

algorithm we implemented earlier. The dense

stereo algorithm also performs three recon-

structions using the three IR images as a refer-

ence and involves all the color and IR cameras

and calibrated laser patterns. We combined

the scores from different modalities with the

robust voting scheme presented in earlier

work.10 We also implemented the combined

depth and outlier estimation approach pro-

posed by Christoph Strecha, Rik Fransens,

and Luc J. Van Gool to improve the quality

of the final dense depth map.11 The dense

multiview-stereo algorithm takes approxi-

mately 40 to 45 seconds to reconstruct one

frame, while our proposed method takes only

40 ms for reconstruction and an additional

15 ms to render. Thus, we achieved almost
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Figure 9. Comparison

between dense

multiview stereo and

the proposed scheme.
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three orders of magnitude speedup with the

proposed method.

The rendering quality of the two schemes is

comparable. The dense multiview-stereo

scheme does better in some aspects, such as

eyeglasses, and has fewer holes. On the other

hand, due to the low-resolution of the sparse

point cloud, the proposed method generates

a smoother mesh and has fewer outliers. The

outlier-filtering scheme we described earlier is

aggressive, leading to more holes in the final

rendering results. We hope some of these

holes will be filled once we include the color

images for matching score computation in

our future implementation.

Regarding the network bandwidth required

for our system, we currently transmit three

HD color videos at 1,024 � 768 pixel resolu-

tion, three IR binary masks at 512 � 384 pixels

resolution, and 8,000 to 12,000 sparse points.

At 10 fps, with rudimentary compression of

the sparse point clouds using quantization

and run-length coding for the binary masks,

the total bandwidth is approximately 6 Mbps

for the videos and 4 Mbps for the rest. We are

currently exploring better schemes for com-

pressing the sparse point clouds.

We demonstrated the three-way Viewport

system at a Microsoft internal event with hun-

dreds of visitors to our booth, and the general

feedback was positive. (A demo video of the sys-

tem is available at http://research.microsoft.

com/apps/video/default.aspx?id=169617). Peo-

ple found it had perfect gaze awareness and

were able to tell easily whether a remote party

was paying attention to them. At one of the sta-

tions, we used a 3D display to show that the

rendering algorithm can also output stereo-

scopic video. Visitors enjoyed the 3D con-

ferencing experience and commented that

although the rendering still has artifacts the

artifacts were not as disturbing on a 3D display

as on a 2D display.

Future Work

There is still much room for improvement in

Viewport. In particular, the sparse-point-

cloud-based reconstruction algorithm does

not perform well on hair due to poor IR reflec-

tion or on thin objects due to smoothing. In

addition, when the requested virtual view-

point is far from the camera’s capturing view-

point, the system still cannot guarantee the

rendering quality.

Another interesting research issue is whether

we can apply the presented virtual-seating algo-

rithm on small screens, where faithful seating

geometry could cause the remote participants

to be rendered outside the display. We are

exploring schemes to distort the seating geom-

etry and still maintain the mutual gaze by

tracking the users’ head orientations. MM
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