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Abstract 
 

We present methods employed in COORDINATE, a 
prototype service that supports collaboration and 
communication by learning predictive models that 
provide forecasts of users’ presence and availability. 
We describe how data is collected about user activity 
and proximity from multiple devices, in addition to 
analysis of the content of users’ calendars, the time of 
day, and day of week. We review applications of 
presence forecasting embedded in the PRIORITIES 
application and then present details of the COORDINATE 
service that was informed by the earlier efforts.  

 

1   Introduction 
 

Despite the common use of online calendar systems for 
storing reminders and creating contracts with others about 
meeting times and locations, a great deal of collaboration is 
based on opportunistic communication arranged under 
uncertainty.  Such informal coordination often hinges on 
peoples’ shared intuitions about current and future locations 
and activities of friends and colleagues. Even with the use 
of online group calendar systems, people may be 
challenged with understanding how available others are for 
various kinds of collaborations [2,10].   

We describe methods employed in an automated presence 
and availability forecasting service named COORDINATE.  
COORDINATE is targeted at supporting real time, peri-real 
time, and longer-term coordination for messaging and 
collaboration by providing predictions about the current 
and future states of users to authorized people and 
applications.  States of interest include a user’s current and 
future presence at one or more locations, availability for 
interruptions, and other situations including meeting status, 
receipt of communications, and device access.   

Presence and availability forecasting extends existing 
computational tools that support awareness of people via 
sharing a user’s current state (e.g., online presence). 
Research on user modeling over the last decade has focused 
largely on applications that center on reasoning about a 

user’s current activities, intentions, and goals [1,4,5,7,8].  
The difficulty of determining the goals of users has 
stimulated interest in representing uncertainty with 
probabilistic user modeling. Uncertainty plays an even 
more central role in reasoning about the future states of 
people; even perfect knowledge about a user’s current 
activities and intentions does not typically extinguish 
uncertainty about the future.  

COORDINATE learns forecasting models from observational 
data that can be enhanced with user input. Although the 
inferences of COORDINATE may be shared directly with 
users via direct queries or through applications that support 
planning and coordination, the motivation and main focus 
of COORDINATE centers on providing forecasts to automated 
collaboration, communication, and notification services. 
Research on presence and availability forecasting evolved 
within the Attentional User Interface (AUI) effort at 
Microsoft Research [7], in support of the PRIORITIES, 
NOTIFICATION PLATFORM, and BESTCOM projects.  

We shall first describe an initial implementation of 
presence forecasting in the PRIORITIES email prioritization 
and message relay system and review features that relied on 
the forecasts. We describe the approach we used in 
PRIORITIES to collect and leverage presence data for 
generating conditional distributions about a user’s future 
presence. Then, we then move to COORDINATE, a networked 
Bayesian forecasting service that accesses data from 
multiple devices and that provides predictions about 
presence and availability in response to queries. We first 
describe the system’s data collection, model construction, 
and presence-forecasting capabilities and then dive into 
details about COORDINATE’s interruptability and meeting-
analysis subsystems. Finally, we describe the relevance of 
COORDINATE’s reasoning to the NOTIFICATION PLATFORM 
and BESTCOM projects. 

2   Forecasting Presence and Availability 
Popular online instant messaging (IM) and calendar 
systems have relied primarily on a user’s explicit statements 
or actions to reveal presence and availability to colleagues.  
Several systems sense the presence of users and use this 
information for a variety of services. For example, the 



PRIORITIES messaging system [7] and its commercialized 
descendant, Outlook Mobile Manager [12], examine the 
amount of time a desktop system has been idle. If this 
period exceeds a prespecified amount of time, the system 
relays reminders, appointment information, and email 
messages that have been assigned a sufficient level of 
urgency to a mobile device.  

Later versions of PRIORITIES and related research prototypes 
[7] consider richer notions of presence beyond desktop 
activity, including information on users’ calendars, 
computer vision analysis, and ambient acoustical analysis, 
configured to identify nearby conversations.  Fusing 
multiple channels of evidence allows a computing system to 
identify a user’s presence, as well as to make assessments 
about a user’s attention and intentions, even in the absence 
of explicit interaction with a computer.   

Whether presence is determined via explicit user assertions 
or by automated processes, the focus to date in real-world 
systems that attempt to share presence has been on 
determining and sharing with authorized colleagues a user’s 
current status.  With presence and availability forecasting, 
we generalize the focus of attention to include methods and 
machinery that can predict a user’s future situations, given 
multiple evidential clues.   

Beyond basic notions of presence at a specific computer or 
presence on a computer network, several different classes 
of events may be of value to people and applications 
seeking to arrange interactions and communications. For 
example, we may wish to predict when users will return to 
their offices if they are currently away.  We may wish to 
reason about notions of availability. For example, given 
that a user is working at a desktop system, or at a meeting 
somewhere, when might they be free to review a 
notification, or to receive a communication without being 
significantly disrupted? We also may wish to know when a 
user will be available to collaborate for some specified 
period of time. We may be interested in knowing whether 
someone will be at a meeting that is listed in their online 
calendar. Alternatively, we may wish to predict when a user 
will likely next review their email so as to receive an 
important message, or next have access to a full desktop 
computing system for reviewing a document that is being 
developed collaboratively or to engage in a 
videoconference.  Although queries about a person’s future 
state may vary in sophistication, the methods for making 
these kinds of predictions are similar. The COORDINATE 
service was built to handle such queries, and to elucidate 
core challenges and research issues with forecasting a 
user’s future situations. 

2.1  Presence Forecasting in Priorities  
We shall first describe an early implementation of presence 
forecasting that was used to endow PRIORITIES with the 
ability to store  and  provide  probability  distributions  over 

 

 

 

 

 

 

 
 

 
 

Figure 1. PRIORITIES client displaying unread messages 
sorted by urgencies and scoped by time. The message 
received most recently is highlighted by the system. 

the period of a user’s absence based on logs of activity on 
or near a single primary computing device.   

The PRIORITIES project has centered on the use of classifiers 
to learn the urgencies of email messages from multiple 
distinctions gleaned from the header and body of the 
messages, and the coupling of these inferred urgencies with 
context-sensitive desktop and mobile alerting policies. The 
initial PRIORITIES system was distributed for internal use 
and testing at Microsoft Corporation in 1998 and the 
prototype system is still in use, even after the system’s core 
functionality was commercialized as the Outlook Mobile 
Manager.  

As background, the current system employs a Support 
Vector Machine (SVM) classifier with probabilistic output 
[11] to learn to assign a probability distribution over 
message urgencies. Training sets are built via explicit 
labeling or automatically via a set of heuristics (shared with 
users) for labeling email, based on email review activity. 
The probability distribution over urgency is used to 
compute a measure of the expected cost of delayed review 
[7].  The classifier considers multiple attributes of messages 
including organizational relationships between the recipient 
and senders, the proximity of the message composition time 
to key times and dates gleaned from messages, the length of 
messages, and multiple textual distinctions in the header 
and body of messages, including words, predefined phrases, 
the existence of questions, the use of past, present, and 
future tense, text patterns, such as capitalization of words, 
and Boolean combinations of features, such as the 
recognition of questions in messages from a manager or 
direct reports.  A view of the desktop client for PRIORITIES 
is displayed in Figure 1. As displayed in the figure, the 
system provides a view of unread email, scoped by time 
and sorted by urgency.  Beyond the desktop, PRIORITIES 
makes decisions about if and when to send messages to a 
user’s mobile device, such as a pager, PDA, or cell phone.  

PRIORITIES considers multiple features of a user’s context to 
modulate desktop and mobile notifications about urgent 
messages. We integrated into PRIORITIES an application 
monitoring capability, harnessing the EVE event monitoring 
system [5], which enables the system to sense user activity.  

 



 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Forecasts for time until return at different 
probabilities (labeled), conditioned on time away. 

 

PRIORITIES allows users to specify context-sensitive urgency 
thresholds for desktop and mobile alerting about incoming 
messages.  In desktop settings, these thresholds are 
specified as functions of different kinds of desktop activity 
(e.g., user has been typing within a predefined time 
horizon) and the status of an ambient acoustical analysis, 
configured to capture whether the user is having a 
conversation. The system also considers the user’s meeting 
status as represented in their Outlook calendar. Users can 
set thresholds on the minimal urgency required for alerting 
for background no-meeting situations as well as for the 
cases where they are having a normal or a specially marked 
meeting. The system examines the current meeting status 
and may hold an alert about an urgent message until a 
meeting ends and the alerting threshold returns to the lower 
no-meeting urgency setting.  

For mobile settings, PRIORITIES seeks to minimize the 
liklihood that a user, working at or near a desktop system, 
will receive messages on their mobile device.  Incoming 
messages surpassing the context-sensitive threshold are 
relayed to a mobile device via an SMTP connection only if 
the system detects that the message has been waiting for at 
least some user-specified period of time, referred to as a 
user-away period. User-away periods are segments of time 
where no computer or conversational activity has been 
detected at the user’s main desktop system.  

Turning to the central focus of this paper, early versions of 
PRIORITIES considered preferences about prespecified, 
deterministic user-away periods required before messages 
would be sent to mobile devices.  However, in later 
systems, we introduced a version containing a presence-
forecasting component. This subsystem maintains a log of a 
user’s presences, and can make mobile-messaging decisions 
based on identifying the probability distribution over the 
duration of the user-away period.  Rather than waiting a 
fixed amount of time before sending messages, the 
presence-forecasting component forwards urgent messages 

to mobile devices when the user is likely to be away for 
some user specified period of time.  Thus, urgent messages 
may be transmitted earlier than with use of the fixed policy. 

PRIORITIES continues to collect data about a user’s activity 
on a computer, as well as ambient acoustics near the 
computer. The system logs events and durations  
representing a user’s time at and away from the computer.  
In addition to observing keyboard, mouse, and acoustic 
events, we also record the time of day and note the status of 
a user’s calendar during the current period, using the 
Outlook Collaborative Data Objects (CDO) and Active 
Directory interfaces to access appointment information.  
PRIORITIES considers patterns of presence at different times 
of day and days of the week, by decomposing days into a 
set of prototypical time periods for weekdays and 
weekends, including durations of several hours representing 
morning, lunchtime, afternoon, evening, and night.  

PRIORITIES issues queries to its growing database of 
presence and absence periods to generate cumulative 
probability distributions via direct conditioning on 
reference classes defined by automated queries. A reference 
class includes cases consistent with the current context, 
including a specification about the period of time a user has 
already been away so far, the time of day, day of week, and 
calendar status. The system outputs a cumulative 
distribution for the time a user will return, p(return by t | 
time away, time of day, day of week, calendar status).  

As part of PRIORITIES research on presence forecasting, we 
explored the influence of time away, time of day, and day 
of week on cumulative distributions for return to a desktop 
computer.  Figure 2 shows a set of curves, built from the 
presence database of a PRIORITIES user, representing the 
times until the user will return to their main desktop system, 
given that they have been away for different periods of 
time. The figure shows distinct curves for different 
probabilities of arrival by the time indicated. Figure 3 
displays smoothed curves, representing forecasts for the 
same user, of the likelihood of returning to a main desktop  

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Probability of a user returning within 15 minutes 
given time away for all weekday data (bold), and for data 
segmented into prototypical segments of a weekday. 
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computing system within 15 minutes, given that he has been 
away for periods of time extending up to 40 minutes. The 
darker curve represents the forecast considering only the 
amount of time away. The dashed curves represent 
forecasts conditioned more tightly on data segmented into 
different prototypical regions of time, including morning, 
lunchtime, afternoon, evening, and night. As highlighted in 
the Figure 3, we discovered that considering the time of day 
is valuable in forecasting presence. Other studies showed 
the value of additionally conditioning on the day of week.  

We found that there was enough data after several  weeks 
of monitoring users to compose informative cumulative 
distributions about presence in an on-demand manner via 
direct conditioning over the PRIORITIES presence log. 
Nevertheless, we sought to develop methods for handling 
the potential problem of having inadequate data about 
particular queries.  To address this challenge, we integrated 
a procedure that increases the number of cases considered 
as relevant by progressively broadening the reference class 
used to define cases as the quantity of data diminishes. 
With increasing amounts of data, the reference class is 
tightened into increasingly finer contexts, according to a 
heuristic sequencing of attributes that condition cases on 
increasingly precise details of the time of day, day of week, 
and meeting status. 

In the deployed system, we worked to minimize the 
complexity of user controls and to make policies 
understandable to users.  PRIORITIES allows users to specify 
a probability of being away for time t as an assertion that 
the user is “away for at least t” for simplifying controls. For 
example, for the mobile alerting function, a user can specify 
that a probability of 0.85 or more of being gone for some 
prespecified time t can be used to turn on the forwarding of 
urgent mobile messages immediately rather than waiting for 
an urgent message to age 30 minutes.   

In summary, the presence-forecasting subsystem of 
PRIORITIES formulates predictions at run time about the  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. TIMEWAVE posting of a user-away forecast  
(shaded segment at bottom) on a shared calendar. 

probability distribution over periods of forthcoming 
absence for the appropriate reference class by accessing 
data for periods of absence conditioned on the amount of 
time away so far, the relevant time of day, and the day of 
the week. 

2.2   TimeWave and SmartOOF Services 
Beyond the use of presence forecasting for decisions about 
the timing of mobile alerts, we harnessed the user-away 
forecasts in two other services, named TIMEWAVE and 
SMARTOOF, which were integrated into PRIORITIES.  Both 
services allow users to share with colleagues predictions 
about when they will return to their office if they are away.  
Users can select a probability of return that is taken as the 
time they are “likely to return” for the purposes of 
communication.  As an example, a user can assert that the 
system should relay the time in minutes until they will 
return to the office with a 0.9 probability.  Given such a 
preference, the presence forecasting system identifies the 
period of time until they will have returned with a 0.9 
probability, given the time of day, and the time away so far.  

The TIMEWAVE feature automatically populates a user’s 
free-busy information with a specially marked away 
forecast when the user steps out of the office. Thus, 
TIMEWAVE allows users to share out this period of time as an 
away period that can be viewed by others who have access 
to their online calendar. Figure 4 displays a situation where 
a user has just stepped out of the office for several minutes 
in the afternoon.  The system infers that the user will be 
back within six minutes with a 0.9 probability and posts this 
information on the shared Outlook calendar. TIMEWAVE 
owes its name to the notion that the user-away forecast is 
continually updated, leading to an ebb and flow of the 
predicted away period with changes in time away.  

SMARTOOF allows users to encode preferences about the 
selective emission of out-of-office (OOF) messages based 
on the inferred urgency of incoming messages, and on the 
results of an availability forecast.  A user can encode 
preferences to send the special out-of-office message if he 
or she is likely to be away for some specified time, given 
that an incoming message has at least some threshold value 
of urgency.  The user can also tell the system to include an 
availability forecast within the OOF message. 

 

 

 

 

 

 

 

Figure 5. A message generated by SMARTOOF, relaying a 
presence forecast for the recipient to the sender of an urgent 
message when the recipient is likely to return to their office. 

 
 



Figure 5 displays a typical message used by the SMARTOOF 

service.  In this case, the availability forecast is used to 
communicate with a colleague that the recipient of an 
urgent message will likely return to their desktop system 
within 90 minutes. 

3  Learning and Inference in Coordinate 
 

The experience with presence forecasting in PRIORITIES 
stimulated us to pursue more general Bayesian presence 
forecasting machinery within the COORDINATE project.  As 
the project matured, rather than rely on the progressive 
specialization of reference classes, we sought to employ 
Bayesian learning and inference to discover generalizations 
and to provide a means for fusing multiple distinctions 
about time, activity, and such rich contextual clues as 
details about numerous properties of appointments captured 
on a calendar. Bayesian learning and inference also provide   
a principled method for addressing the potential sparseness 
in data associated with early phases of data collection. 

We also worked to extend the scope of the system’s data 
collection and reasoning.  One limitation of presence 
forecasting in PRIORITIES’ is the reliance for modeling and 
prediction on the collection of data from a single machine. 
To build more general predictive models, we need to 
collect data about a user’s activity and location from 
multiple sources, including data about a user’s activities on 
multiple devices in addition to data from a calendar. We 
also sought to generalize forecasts about presence and 
absence to other events of interest to support collaboration 
and communication.  For example, as we shall see in the 
discussion of applications in Section 6, we wish to 
understand if and when a user will access messages waiting 
in their inbox, or to identify a good future time to interrupt 
the user with a notification.  We also would like to forecast 
when a user will have easy access to computing systems or 
devices with particular capabilities.  For example, we might 
like to know when a user will likely have easy access to a 
computer with full videoconferencing abilities.    

3.1  Coordinate Components  

COORDINATE was built as a server-based service written in 
C# within the Microsoft .NET development environment.   
A schematized overview of the system is displayed in 
Figure 6. The prototype includes a central database, 
networking facilities, device provisioning interfaces, and 
Bayesian machine learning tools. The system was 
engineered primarily to serve as a facility for use by 
automated proxies that provide collaboration and 
communication services to users rather than to be queried 
directly by users.  However, a query interface allows 
researchers to directly query the service. 

COORDINATE is composed of four core components.  The 
data-acquisition component executes on multiple 
computers that a user is likely to use.  The component 
detects computer activity, calendar information, and  video,  
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Figure 6. Schematized overview of COORDINATE. 

acoustical, and position information from 802.11 wireless 
signal strength and GPS data when these channels are 
available.  The data-acquisition component includes a 
signal-processing layer that allows users to configure 
parameters of audio and video sources used to define 
presence. The information is cached locally and sent to a 
COORDINATE data-coalescence component running on a 
central COORDINATE server.  This component is responsible 
for combining the data from the user’s multiple machines 
and storing it in an XML-encoded event database.  

Rather than attempting to build a massive static predictive 
model for all possible queries, we instead focus the analysis 
by constructing a set of cases from the event database that 
is consistent with the query at hand.  This approach allows 
us to custom-tailor the formulation and discretization of 
variables representing specific temporal relationships 
among such landmarks as transitions between periods of 
absence and presence and appointment start and end times, 
as defined by the query.    A set of cases is fed to the fourth 
component, a learning and inference subsystem, which 
constructs one or more Bayesian networks that are custom-
tailored for the target prediction.  The Bayesian network 
models are used to compute cumulative distributions over 
events of interest.  We employ the WinMine learning tool, 
developed by Chickering, Heckerman, and Meek [3], to 
perform structure search over a space of dependency 
models, guided by a Bayesian model score to identify 
graphical models with the best ability to predict the data. 

 3.2  Coordinate Analyses 
COORDINATE logs periods of presence and absence in a 
manner similar to logging in the earlier PRIORITIES effort.  
However, in COORDINATE, events are annotated by the 
source device. Descriptions of devices, including 
capabilities and location are maintained in a devices profile.  
For example, a user can specify that a device is based in a 
user’s office and has full videoconferencing abilities. The 
tagging of events by specific devices, indexed into locations 
and capabilities allows the system to forecast a probability 
distribution over the time until the user will have access to 



different kinds of devices.  When these devices are assigned 
to fixed positions, forecasts can be made about location. 

COORDINATE’s event system can monitor the history of a 
user’s interaction with computers, including applications 
that are running on a system, applications that are now in 
focus, and those that have just gone out of focus. As an 
example, the system can identify when a user is checking 
email or reviewing a notification. Thus, moving beyond 
presence and absence, COORDINATE supports such forecasts 
as the time until a user will engage an application or cease 
using an application. Thus, the system can be queried about 
when a user will likely access his or her email inbox to 
review new messages. As the system also detects 
conversations, we have been experimenting with its ability 
to predict when a proximal conversation is likely to end.   

COORDINATE provides forecasts p(te | E, ξ ), where te is the 
time until an event of interest, ξ  is the background state of 
information, and evidence E includes proximal activity 
context, the time of day, day of week, multiple attributes 
representing the nature of active calendar items under 
consideration, and other observations that can be added to 
consideration (e.g., desktop activity). The proximal activity 
context represents one or more salient recent transitions 
among landmark states, based on the query.  Such 
conditioning captures a modeling assumption that times 
until future states are strongly dependent on the timing of 
the most recent key landmarks.  For predictions about the 
time until a user who has been absent will return to their 
office, or return to their office and remain for at least some 
time t, the proximal activity context is the period of time 
since the user transitioned from present to absent. For 
forecasts about how long it will be before a user who is 
present will leave their office, or, more specifically, will be 
away for at least some time t, the proximal activity context 
is taken as the time since the user transitioned from absent 
to present. In response to a query, COORDINATE’s case-
acquisition component identifies a set of cases that fit the 
proximal activity context defined by the query, and 
associates the cases with other concurrent observations 
(e.g., day of week, time of day, appointment properties), 
and constructs Bayesian networks used to make predictions.  

Figures 7 displays COORDINATE’S research interface that 
provides a means for selecting classes of queries and 
formulating queries for real-time or offline analyses.  In the 
case pictured, a query has been entered about the likelihood 
that a user will return to the office for a period of at least 15 
minutes, given that he has been absent for 25 minutes at 
10:15 AM on a weekday.  Relevant cases are gleaned from 
the event database and a Bayesian network is learned. The 
network is used to generate the displayed cumulative 
probability distribution about when the user will return.  
The system also shares a text summary forecast based on a 
predefined confidence threshold (in this case 0.8). Similar 
analyses are performed for other events of interest. In 
Section 5, we describe methods for folding in consideration 

of meetings and the construction of models that provide 
forecasts of a user’s availability. First, we shall review the 
construction of models of meeting attendance, 
interruptability, and location. 

4   Models of Attendance and Interruptability 
A subproject of the COORDINATE effort focuses on methods 
for analyzing properties of meetings and integrating these 
observations into the overall analysis of presence and 
availability. Beyond enhancing predictive models about 
presence, we can learn models that relate attributes of an 
appointment to the likelihood that a meeting will be 
attended, and to the interruptability of meetings.  We can 
also learn models for inferring the location of meetings 
when locations are not clear from location fields.  Such 
inferences can provide useful inputs for shared calendars, 
as well as a set of valuable parameters for automated 
notification and collaboration systems. 

4.1  Learning about Attendance and Interruptability 

COORDINATE logs all meetings stored in a user’s calendar, 
noting the status of properties of appointments noting the 
status of properties of appointments made available in the 
online Outlook calendar in addition to several additional 
computed properties.  The data is used to learn models that 
can predict attendance, interruptability, and location.   

Prior work on probabilistic models for predicting a user’s 
attendance at meetings has relied on handcrafted models.  
In research on the Attentional User Interface system [7], a 
Bayesian network was constructed to consider several 
properties of appointments to predict a user’s location, 
availability, and attention, based on appointment properties. 
In other work, Mynatt and Tullio [9] describe construction 
of a Bayesian network by hand that can be used to estimate 
the likelihood that a user will attend a meeting from 
multiple properties of meetings and setting. 

 

 

 
 

 

 

 

 

 

 

 

Figure 7. Query interface for COORDINATE showing a 
cumulative probability distribution answering a query about 
when a user will return to his primary office for at least a 15 
minute block of time, after an absence of 25 minutes in the 
morning on a weekday, when no meetings are scheduled. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Bayesian network learned from online data that predicts the likelihood of attending 
meetings, and probability distributions over the interruptability and location of the meetings.

For building models of attendance, COORDINATE creates a 
draft training set of appointments and their properties, and 
marks an attendance field for each appointment with 
guesses about attendance made via the use of a set of 
heuristics about attendance based on monitored activity. 
The attendance heuristics consider the sensing of desktop 
activity through a significant portion of a scheduled 
meeting as evidence that a meeting was not attended and, 
likewise, the lack of activity during large portions of a 
meeting as evidence that a meeting was attended.  As the 
activity-based heuristics for annotating meeting attendance 
provide noisy labeling, we take COORDINATE’s guesses 
about attendance as rough guesses about attendance.  The 
system provides a form that allows users to refine the draft 
with manual labeling of attendance. Beyond editing the 
attendance field of appointments, users also can add 
assessments of the physical location of meetings, and how 
interruptible they are during the different meetings. 

COORDINATE can generate a form that lists meetings in 
order of their occurrence and displays an attendance field 
containing the different meetings, specifying whether 
meetings are low, medium, or high interruptability. The 
annotated meeting log is used to construct a model that can 
predict the likelihood that a user will attend a meeting, 
given appointment properties.  Beyond time of day and day 
of week, meeting properties considered at training and 
prediction time include the meeting date and time, meeting 
duration, subject, location, organizer, number and nature of 
the invitees, role of the user (user was the organizer versus 
a required or optional invitee), response status of the user 
(responded yes, responded as tentative, did not respond, or 
no response request was made), whether the meeting is 
recurrent or not, and whether the time is marked as busy or 
free  on   the  user’s   calendar.   The system accesses the 
Microsoft Active Directory service to recognize and 
annotate organizational relationships among the user, the 
organizer,  and  the  invitees,  noting  for example,  whether 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 9. Decision tree for predicting the probability that a 
user will attend a meeting, based on properties of the 
meeting encoded in an appointment item. 
 

the organizer and attendees are organizational peers, direct 
reports, managers, or managers of the user’s manager.   

 



We performed several experiments as part of an evaluation 
of the accuracy of the predictive model for calendar 
attendance, interruptability, and location.  Figure 8 displays 
a Bayesian network learned from the data of a single user 
that shows the probabilistic dependencies among variables 
extracted from an online calendar and variables of interest 
represent. The model was constructed by collecting data 
from a six-month period of meetings stored in a user’s 
online calendar between October 2001 and March 2002. 
The data set includes 659 appointments. The initial 559 
appointments were used to train the model, leaving the last 
100 cases as a holdout set for testing. The owner of the 
calendar was asked to annotate cases with information on 
whether meetings were attended, to note the location of the 
meetings, and also to indicate the interruptability of the 
meetings, discretized into low, medium, and high 
interruptability. For the data set, 0.64 of the appointments 
were attended.  The user assigned 0.5 of the cases an 
interruptability property of low, 0.4 of the cases medium, 
and 0.1 of the cases high. The model performs well; the 
classification accuracy on holdout data was 0.92 for 
predicting attendance and 0.81 for assigning 
interruptability.  

Decision trees for predicting meeting attendance and 
interruptibility are displayed in Figures 9 and 10 
respectively.  As displayed in Figure 9, key influencing 
variables for predicting meeting attendance include whether 
the meeting is organized via a mailing list (referred to as a 
group alias) or by an individual, the duration of the 
meeting, the response status, whether the meeting is 
recurrent or not, the number of attendees, whether the 
user’s direct reports have been invited, the information 
included in the location field, and whether the meeting is 
marked as busy time or not. The bar graphs at the leaves of 
the decision tree display the probability of attendance 
versus non-attendance, with the event p(not attend | E,ξ ) at 
the top position, followed by p(attend | E,ξ ). As indicated 
in Figure 10, the main influencing variables for predicting 
the interruptability of meetings is whether a user organized 
by a group alias versus an individual, whether the user 
responded to the appointment, the number of attendees, 
whether the user’s direct reports are invited, and the subject 
of the meeting.  The probability distributions over 
interruptability are displayed as bar graphs at the leaves of 
the decision tree where the states from top to bottom are 
low, medium, and high interruptability. 

5  Integrating Attendance and Interruptability  
COORDINATE employs models of attendance and 
interruption in several ways. The system allows direct 
queries about the probability that a user is attending or will 
attend a meeting.  

5.1 Expected Cost of Interruption 

COORDINATE also can share information about the expected 
cost of interruption  (ECI)  for a user at the present moment 

moment or at future times.  Users are provided with a 
facility to 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Decision tree for predicting the interruptability 
of meetings constructed from training data.   

or at future times.  Users are provided with a facility to 
associate a dollar-value cost of interruption for each 
interruptability level.  They also can assess default costs of 
interruption for free periods for prototypical times of day 
and days of week. The system computes an expectation, 
 

ECI= 
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where mA  is the event of attending a meeting, m
ic  is the 

cost of interruption associated with interruptability value i, 
dc is the default cost for the time period under 

consideration, and E represents appointment attributes, the 
proximal context, time of day, and day of week.  Such an 
expectation can be provided to authorized colleagues who 
wish to identify a good time to initiate a communication.  
The cost of disruption can also be used to inform cost–
benefit analyses in automated notification and 
communication systems, such as the BESTCOM service 
described in Section 6. 

5.2 Considering Meetings in Presence Forecasting 

COORDINATE integrates inference about the nature and 
timing of meetings into its predictions about absence and 
presence. The system performs an approximate meeting 
analysis to forego the complexity of considering multiple 
patterns of meetings. In the approximation, we make an 
assumption of meeting independence, and consider each 



meeting separately.  A subset of meetings on the user’s 
calendar are considered to be active for the query based on 
their proximity to the times and transitions dictated in the 
query.  For each active meeting, a distinct Bayesian 
network model and associated cumulative distribution is 
computed for the time until presence or absence over the 
course of the meeting’s scope—a period of time created by 
adding predefined lengths of time before and after the 
explicit meeting boundaries.  In constructing the model for 
each meeting, the case-acquisition component of 
COORDINATE identifies cases that are consistent with the 
proximal context defined by the query. Only meetings that 
had been marked as attended are considered in this phase.   

In the last step, the cumulative distribution for the time until 
return over the scope of each meeting is combined with the 
cumulative distribution for the no-meeting situation for that 
period of time. The system performs this combination by 
first constructing a cumulative distribution for a presence 
transition for the no-meeting situation. This cumulative 
distribution is computed in the manner described in Section 
3, employing cases consistent with the query where no 
meetings were scheduled or where the user indicated that a 
meeting was not attended.  Then, for the span of time 
represented by each meeting’s scope, the cumulative 
distributions for the attend and no-attend situations are 
summed together, weighted by the inferred likelihoods that 
the user will and will not attend the meeting, respectively.  

Figure 11 shows the influence of the integration of 
inferences about the likelihood of attending meetings on the 
forecast of a user’s availability. A query has been submitted 
at 1:20 PM on a weekday seeking a forecast about the 
period of time until a user is expected to return to their 
desktop machine when they have already been absent for 15 
minutes. The gray curve shows the cumulative distribution 
for the time until the user will return for the no-meeting 
situation.  The black curve shows the result of folding in a 
consideration  of  active meetings,  taking  into account  the 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Influence of meeting analysis on a presence 
forecast. Upper curve shows the cumulative distribution for 
the no-meeting situation. Lower curve integrates likelihoods 
of attending meetings found on the user’s schedule. 

likelihood that the user will attend each meeting.  In this 
case, three meetings have been considered, including 
appointments at 1:00-2:00 PM, 2:30-3:30 PM, and 4:00-
5:00 PM. Bayesian network models are constructed 
automatically for each of these meetings. 

6   Notification Platform and Bestcom 
COORDINATE was designed primarily to support 
NOTIFICATION PLATFORM and BESTCOM, two 
communication services developed at Microsoft Research. 
NOTIFICATION PLATFORM is a general notification 
architecture that provides interfaces and subscription 
mechanisms for integrating multiple sources of 
notifications. Interfaces are also provided for provisioning 
multiple devices.  A notification manager considers the 
urgency of messages and the cost of disrupting users based 
on contextual information that is provided by a context 
server component.  The context server has access to 
presence and availability information, and to encodings of a 
user’s preferences about the value of message information 
and the cost of interruption in different settings.  In 
decision-theoretic variants of the notification manager, a 
probability distribution over the time until a user will 
review a message, in the absence of an explicit notification, 
is used in computing the expected value of relaying an alert. 
COORDINATE provides probability distributions over time 
until the review of information as well as contextual 
information about the expected cost of interruption that is 
consumed by the notification manager.   

COORDINATE’s inferences and query classes have been 
shaped by the needs of BESTCOM, a descendant of 
NOTIFICATION PLATFORM, that centers on automated and 
semi-automated mediation of interpersonal 
communications.  BESTCOM provides people with best-
effort communications based on a consideration of context, 
available channels and preferences about communications.  
In BESTCOM, a communications decision-making agent acts 
as a proxy, and considers the goals and context of a 
contactor and contactee. Although preferences of both 
participants of a communication may be considered, 
incarnations of BESTCOM typically put strong weight on the 
preferences of the contactee, as it is the contactor who 
typically seeks attentional resources from the contactee.  

BESTCOM considers preferences of contactees about how to 
handle incoming communications, based on the identity of 
the contactor, the initial channel selected (e.g., telephone, 
instant messaging, email), and the inferred or annotated 
goal of the contactee. In situations where the BESTCOM 
service is explicitly invoked by the contactor, annotations 
about the nature of the communication may be shared as 
part of a communications metadata schema. For example, a 
contactee may wish to invoke BESTCOM to speak with a 
coauthor about a specific change she wishes to make to a 
shared document by invoking BESTCOM within a particular 
location in a word-processing application. A BESTCOM 



service can share the contactor’s goals and available 
channels with the contactee’s proxy. 

The spirit of BESTCOM is to maintain privacy about a 
contactee’s state. Although contextual information is used 
in deliberating about the situation, the contactor is typically 
aware only of summary decisions about how to handle the 
communication.  Actions include establishing a real-time 
connection on the same channel, shifting to another 
channel, taking a message, and providing the contactor with 
better times for communicating with the contactee, coupled 
with services to schedule and manage the future 
communication.  

BESTCOM efforts have included the development of decision 
models and preference-assessment tools that provide such 
facilities as efficient means for creating and editing groups 
of people that users wish to assign different communication 
priorities, and assessing the cost of interruption in different 
contexts. Some versions of BESTCOM leverage direct 
assessments of preferences about people and context, and 
rely on a direct sensing of contactee’s state. More 
sophisticated versions rely on richer contextual inference, 
such as forecasts about presence and availability provided 
by COORDINATE. In decision-theoretic approaches to 
BESTCOM, a contactee’s communications manager 
considers the expected cost of interruption associated with 
accepting incoming communications and reasons about the 
change in the expected value of the interaction for such 
potential actions as deferring the communication or shifting 
communication channels.  Learning and inference for 
forecasting a user’s presence, availability, and such states 
as location and device access under uncertainty, provide 
BESTCOM services with valuable information for decision 
making about incoming communications. 

7   Summary  
We reviewed research on the challenge of forecasting 
computer users’ presence and availability. We first 
reviewed an earlier forecasting subsystem that was built as 
an embedded component of the PRIORITIES prototype. The 
subsystem was used to extend the system’s mobile 
messaging abilities, as well as to provide new services, 
including SMARTOOF, which provides selective out-of-office 
messaging, and TIMEWAVE which shares a user’s future 
presence via automated updating of a shared calendar. We 
then described the creation of a more general presence and 
availability forecasting service, named COORDINATE, with 
the ability to log events from multiple devices. We 
reviewed the learning of Bayesian models from log data for 
forecasting states of interest. After reviewing basic 
functionalities with regards to forecasting presence, we 
described the learning of Bayesian networks to predict 
meeting attendance and interruptability, and the integration 
of a consideration of meetings into presence forecasts.  
Finally, we reviewed the value of COORDINATE inferences in 
support of decision making in the NOTIFICATION PLATFORM 
and BESTCOM messaging and communication services.  

Research on the COORDINATE project is ongoing.  Our 
experiences with the prototype COORDINATE service have 
excited us about the promise of building richer situation 
forecasting tools and services. They have also heightened 
our awareness of the challenges associated with the effort 
required for data collection and labeling that we need to 
address on the path to general deployment of the system. To 
date, the system has been fielded only within our research 
team. We are working towards refining the system and 
fielding and testing future versions of COORDINATE in a 
larger group setting.   
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