
Type inference for correspondence types

Andrew D. Gordon1

Microsoft Research
Cambridge, United Kingdom

Hans Hüttel and Rene Rydhof Hansen2,3

Department of Computer Science
Aalborg University

Selma Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

Abstract

We present a type and effect system for proving correspondence assertions in a π-calculus with polarized
channels, dependent pair types and effect terms. Given a process P and a type environment E, we describe
how to generate constraints that are formulae in the Alternating Least Fixed-Point (ALFP) logic. A
reasonable model of the generated constraints yields a type and effect assignment such that P becomes
well-typed with respect to E if and only if this is possible. The formulae generated satisfy a finite model
property; a system of constraints is satisfiable if and only if it has a finite model. As a consequence, we
obtain the result that type and effect inference in our system is polynomial-time decidable.

Keywords: π-calculus, correspondence assertions, type inference.

1 Introduction

We develop a type and effect system for guaranteeing authenticity in protocols
described in a polarized π-calculus. We develop a type inference system for the
calculus and show how it can be implemented by generating constraints over the
Alternating Least Fixed-Point logic [4,5,15] and using the Succinct Solver [16].

Woo and Lam [19] propose correspondence assertions as a method for checking
authenticity properties of cryptographic protocols. Points in a protocol are anno-
tated by labelled assertions begin(L) and end(L). A protocol is then safe if, in any
run, an end(L) is always preceded by a corresponding begin(L).

Gordon and Jeffrey [10,11] show how to base type and effect systems for the spi
calculus [2] on this idea. The effect of a spi calculus process is an over-approximation
of the set of outstanding end-assertions. If a process has empty effect, then it is

1 Email: adg@microsoft.com
2 Email: hans@cs.aau.dk
3 Email: rrh@cs.aau.dk

c©2008 Published by Elsevier Science B. V.

file:adg@microsoft.com
file:hans@cs.aau.dk
file:rrh@cs.aau.dk

Gordon, Hüttel and Rydhof Hansen

safe. The approach proposed uses type checking ; one must specify types and effects
of all processes in the protocol specification and check that it becomes well-typed
with respect to the type and effect assignment. Gordon and Jeffrey’s type systems
are the basis for the Cryptyc tool [7], which has been applied to analyze a range of
cryptographic protocols.

Blanchet [3] proves correspondences for processes by abstracting their behaviour
using Horn clauses, and then applying a resolution-based algorithm; he implements
his technique in the ProVerif tool and has evaluated it successfully against many
examples. The correctness proof relies on generating a type system for the under-
lying process calculus (much as in previous work on secrecy [1]). Hence, although
it does not expose the type system to its users, ProVerif proves correspondences by
inferring types for processes.

Focardi, Maffei and Placella [8] present an inference algorithm for a system of
authentication types. Their algorithm infers tags and types for processes in the ρ-
spi calculus [6]. They evaluate their algorithm on a series of security protocols. The
ρ-spi type system is based on the idea that explicit tags within ciphertexts record
the intended meaning of fields such as nonces; hence, the ρ-spi algorithm does not
adapt simply to the calculus considered here, which does not use tags.

A series of papers by Nielson and others [4,5,15] has developed a different ap-
proach to static analysis of cryptographic protocols expressed in a process calculus,
namely via so-called control flow analysis. Here, the approach is to annotate pro-
tocol descriptions with process points and define an over-approximation of the sets
of names that may appear at each process point. This is done by generating a set
of constraints in the ALFP logic, which is a fragment of first-order logic. There
exists a polynomial-time satisfiability algorithm which constructs a finite model if
one exists and an ALFP tool, the Succinct Solver [16,17] has been developed.

In this paper we combine these approaches and describe a method for type
inference for a correspondence type system: Given a polarized π-calculus and a
type system with dependent pairs and effect terms, one may, given a process P and
an a priori type environment E generate constraints that are ALFP formulae, which
can then be solved to provide a type and effect assignment if one exists.

In a recent paper [13], Kobayashi and Kikuchi describe another correspondence
type system for a π-calculus (without pairs) and a type inference algorithm. Their
approach is fundamentally different from ours; effects are rational numbers and
constraints are inequalities over rational numbers.

The remainder of our paper is organized as follows. In section 2 we introduce
our polarized π-calculus, and in section 3 our type system. Next, in section 4, we
describe how constraints can be captured in the ALFP logic. Then, in section 5
we show that a model of the constraints generated will lead to a type and effect
assignment such that P becomes well-typed with respect to E. Finally, we show
that type inference now becomes possible since the formulae generated satisfy a
finite model property; a system of constraints is satisfiable if and only if it has a
finite model.

2

Gordon, Hüttel and Rydhof Hansen

2 A polarized π-calculus with pairs

We consider an asynchronous π-calculus with polarized channels, dependent pairs
and effect terms. The polarized π-calculus, introduced in [18], allows for simple
encodings of cryptographic primitives, as exemplified in [12].

2.1 Syntax

In the polarized π-calculus that we consider, we allow composite messages built from
names. Names must be equipped with a polarity κ in order to be used as subjects
of communication prefixes. Messages that do not contain the projection operations
fst and snd are called values and are ranged over by v. The set of messages is
ranged over by M and its elements are given by

κ ::= + | −
v ::= a, b,m, n, x, y . . . | ok | pair(v1, v2) | vκ

M ::= a, b,m, n, x, y... | ok | pair(M1,M2) | fst(M1) | snd(M1) |Mκ

where ok is a special effect term; its only purpose is to populate ok-types (see e.g.
[9]), introduced in section 3. The type system assigns effects to these ok -terms.

The set of process terms contains the standard process constructs of the π-
calculus [14] together with local declarations and conditional expressions. Moreover,
there are three constructs that do not affect behaviour, namely the correspondence
assertions begin `(M) and end `(M) and the construct exercise(M);P which
allows us to introduce the effects associated with M . The set of process terms is
defined by

P,Q,R ::= in(M,a);P | !in(M,a);P | out(M,N) | new a : T ;P | (P |Q) | 0
| let x = M in P | if v1 = v2 then P else Q
| exercise(M);P | begin `(M) | end `(M)

2.2 Semantics

The semantics of our calculus is a standard reduction semantics in the spirit of [14],
defined using structural equivalence and the reduction relation →.

Message Reduction: M > N

Let M > M ′ be the least relation on messages closed with respect to:
fst(pair(M1,M2)) > M1 (Red Fst)

snd(pair(M1,M2)) > M2 (Red Snd)

and closed under message constructors.

We write M ↓ v if M >∗ v where v is a value.
The definition of the structural congruence relation ≡ over process terms is that

of [14].
The reduction relation for processes is defined below; we write κ1 � κ2 if κ1 = +

and κ2 = −. Also note that begin `(M) and end `(M) have no reductions.

3

Gordon, Hüttel and Rydhof Hansen

Reduction Semantics for Processes: P → P ′

P ≡ Q,Q→ Q′, Q′ ≡ P ′ ⇒ P → P ′ (Red Struct)

P → P ′ ⇒ P | Q→ P ′ | Q (Red Par)

P → P ′ ⇒ new a;P → new a;P ′ (Red Res)

M ↓ m,κ1 � κ2 ⇒ (Red Comm)

out(Mκ1 , N) | in(mκ2 , a);P → P{N/a}
M ↓ m,κ1 � κ2 ⇒ (Red Repl)

out(Mκ1 , N) | !in(mκ2 , a);P → P{N/a} | !in(mκ2 , a);P
M ↓ v ⇒ let x = M in P → P{v/x} (Red True)

if v = v then P else Q→ P (Red True)

v 6= v′ ⇒ if v = v′ then P else Q→ Q (Red False)

exercise(M);P → P (Red Exc)

We write P →∗
≡ Q if P →∗ Q or P ≡ Q.

2.3 Safety

In this paper, we shall consider safety. A process is safe with respect to the corre-
spondence assertions of the annotated protocol if every end-assertion encountered
has been preceded by a begin-assertion with the same label.

Definition 2.1 A process P is safe if whenever P →∗
≡ new a; (end `(M) | P ′) we

have M ′,P ′′ with P ′ ≡ begin `(M ′) | P ′′ and M ≡M ′.

The extension of our results to robust safety where an opponent process can
interfere with P , is a topic of ongoing work.

3 A Type and Effect System for Safety

We now define a correspondence type and effect system for statically verifying that
a given process is safe.

3.1 Effects and types

Definition 3.1 [Effects] A simple effect is a labelled message `(M). A ground effect
is a set of simple effects and is ranged over by S. We let Effects denote the set of
ground effects and denote inclusion of effects by S1 ≤ S2.

In general, effects may contain effect variables.

Effects

S ::= effects
`(M) effect with label `
S1, S2 composite effect
R effect variable

Our type system contains the following: channel types, for names that are used as
communication channels; dependent pair types and ok-types, used to carry an effect.

4

Gordon, Hüttel and Rydhof Hansen

Dependent pairs are needed when modelling protocol messages in order to formalise
dependencies between message parts. Ok-types are convenient in that they provide
a clear separation between types and effects in our system and allow for flexibility;
using ok-terms it is straightforward to encode effect type systems with latent effects
such as that of [13] by using ok-types and exercise (see section 6 for more detail).

The set Types denotes ground types (the set of type expressions that have no
occurrences of type variables).

Types and Type Variables

T ::= Type
U, V,W type variable
Chκ(T) polarized channel type
Ch(T) channel type
Ok(S) ok-type
Pair(x : T1, T2) dependent pair type
T (x) parameterized type

3.2 Type and effect assignments

In our type system, all typings assume that the types are defined by a type and
effect assignment :

Definition 3.2 A type and effect assignment ∆ is a pair of functions (∆T ,∆S)
such that ∆T : TVar → Types and ∆S : EVar → Effects

Here TVar and EVar denote the set of type variables and effect variables respec-
tively.

We write a type and effect assignment as a set of equations

∆ = {Xi = Ti | 1 ≤ i ≤ m} ∪ {Sj = sj | 1 ≤ j ≤ n}

Conversely, any such set of equations defines a type and effect assignment if every
type and effect variable occurring is defined exactly once.

In what follows we always tacitly assume type judgments are relative to some
type and effect assignment.

3.3 The type system

Type judgements are relative to a type environment, which may contain name
typings, effect assumptions and term assignments. Term assignments are required,
since local declarations may appear and since locally declared variables may occur
in types.

E ::= ∅ | E, a : T | E,S | E, x = M

Environments:

dom(∅) 4= ∅ dom(E, a : T) 4= dom(E) ∪ {a}

5

Gordon, Hüttel and Rydhof Hansen

dom(E,S) 4= dom(E) dom(E, x = M) 4= dom(E)

effect(∅) 4= ∅ effect(E, a : T) 4= effect(E)
effect(E,S) 4= effect(E) ∪ S
effect(E, x = M) 4= effect(E)

Environment induced by a process: begins(P)

begins(begin `(M)) 4= `(M)
begins(end `(M)) 4= ∅
begins(new a;P) 4= S1, . . . , Sn

where {S1, . . . , Sn} = {S ∈ begins(P) | a /∈ fv(S)}
begins(P1 | P2) = begins(P1), begins(P2)
begins(P) = ∅ for any other P

Definition 3.3 [Substitution] A substitution β is a finite sequence of assignments
x1 = M1, . . . , xk = Mk, The domain of β is the set of variables dom(β) =
{x1, ..., xk}. ; We write βx = M if x = M ∈ β. We assume fv(M) ⊆ dom(β).

Substitution induced by an environment: subs(E)

subs(∅) 4= ∅ subs(E, a : T) 4= subs(E)
subs(E,S) 4= subs(E) subs(E, x = M) 4= subs(E), x = M

We only consider good substitutions. A good substitution β can be seen as a
function, introduces no undefined variables and has no circular dependencies.

Good Substitution: ` β

(Subs Empty)

` ∅

(Subs Let)

` β x 6∈ dom(β) x 6∈ fv(M)

` β, x = M

In a nested local declaration let x1 = M1 in let x2 = M2 in P , M2 may contain
occurrences of x1. In our definition of a substitution acting on a term, we therefore
need to iterate the substitution. This is expressed in the first clause of the following.

Substitution acting on term: Mβ

xβ
4= v where Mβ ↓ v if βx = M

xβ
4= x if x 6∈ dom(β)

fst(M)β 4= v where fst(Mβ) ↓ v
snd(M)β 4= v where snd(Mβ) ↓ v
pair(M1,M2)β

4= v where pair(M1β,M2β) ↓ v

Substitution acting on effect: Sβ

{`1(M1), . . . , `k(Mk)}β
4= {`1(M1β), . . . , `k(Mkβ)}

6

Gordon, Hüttel and Rydhof Hansen

An environment is good if every occurring name is also defined in it:

Good Environment: E ` �

(Env Empty)

∅ ` �

(Env Typing)

E ` � a /∈ dom(E), fv(T) ⊆ dom(E)

E, a : T ` �

(Env Effect)

E ` � fv(S) ⊆ dom(E)

E,S ` �

(Env Assign)

E ` � fv(M) ⊆ dom(E) x ∈ dom(E) ` β x 6∈ dom(β) β = subs(E)

E, x = M ` �

The type rules for messages are given in Table 1; in (Msg Ok) we instantiate all
names occurring in the effect with respect to the substitutions in the environment.

Typed Message: E `M : T

(Msg Var)

E ` � E `M : X ∆(X) = T

E `M : T

(Msg Name)

E ` � E = E′, a : T,E′′

E ` a : T

(Msg Fst)

E `M : Pair(x : T, T ′(x))

E ` fst(M) : T

(Msg Snd)

E `M : Pair(x : T, T ′(x))

E ` snd(M) : T ′(fst(M))

(Msg Capa)

E `M : Ch(T)

E `Mκ : Chκ(T)

(Msg Pair)

E `M : T E `M ′ : T ′(M)

E ` pair(M,M ′) : Pair(x : T, T ′(x))

(Msg Ok)

E ` � S ≤ (effect(E))β β = subs(E)

E ` ok : Ok(S)

Table 1
Type rules for messages

The type system for guaranteeing safety for processes is specified in Table 2.
Note that in the (Proc If) rule terms M and N need not have the same type; they
may contain different effects but have the same syntactic structure. To capture this,
we require that M and N are unifiable.

Example 3.4 Let E = b : B for some type B and let

∆ = {T = Ch(Pair(x : B,Ok({`(x)})))}
P = new a : T ; (begin `(b) | out(a+, (b,ok))
| in(a−, x); exercise(snd(x)); end `(fst(x)))

7

Gordon, Hüttel and Rydhof Hansen

Good Process: E ` P

(Proc In) (µ either ! or nothing)

E `M : Ch−(T) E, a : T ` P

E ` µin(M,a);P

(Proc Out)

E `M : Ch+(T) E ` N : T

E ` out(M,N)

(Proc Par)

E, begins(P2) ` P1 E, begins(P1) ` P2

E ` P1 | P2

(Proc Zero)

E ` �

E ` 0

(Proc Res)

E, a : T ` P T generative

E ` new a : T ;P

(Proc Begin)

E ` � fv(M) ⊆ dom(E) E `M : T

E ` begin `(M)

(Proc End)

E ` � fv(M) ⊆ dom(E) `(M) ≤ effect(E)

E ` end `(M)

(Proc Exercise)

E `M : Ok(S) E,S ` P

E ` exercise(M);P

(Proc Let)

E `M : T E ` P{M/x}

E ` let x = M in P

(Proc If)

E ` v1 : T E ` v2 : T ′ (mgu(v1, v2) exists ⇒ E ` P (mgu(v1, v2))) E ` Q

E ` if v1 = v2 then P else Q

Table 2
Type rules for processes

Then E ` P . Notice the use of a dependent pair type for typing the pair (b,ok);
the effect of ok depends upon b.

Typability implies safety; here, we say that a type is generative iff it is a channel
type. An environment E is generative iff E(x) is generative for all x ∈ dom(E).

Theorem 3.5 (Safety) If E ` P and E is generative and effect(E) ≡ ∅ then P

is safe.

Note that our type system is stronger than systems with latent effects such as
[13]. In these systems, all channels have a latent effect. In our case, since we allow
dependent pair types and effect terms, the usage of a channel a with type Ch(T)[S],
where S is a latent effect can be encoded as

[[out(M,N)]] = out(M, (N,ok))

[[µin(M,x);P]] = µin(M,x); exercise(snd(x)); [[P{fst(x)/x}]]

8

Gordon, Hüttel and Rydhof Hansen

4 Type inference

We now show how to extract information from a process expression P and a type
environment E that lets us construct a type and effect assignment ∆ such that P
is well-typed in E iff this is possible.

4.1 The type inference problem

Given a process P and a type context E, is it possible to construct a type and
effect assignment ∆ such that E ` P?

Type inference consists in ‘running the type system backwards’ and collecting the
set of constraints that arise from the conditions that must be satisfied in order for
the typing rules to apply.

4.2 Expressing constraints

We first express our constraints in a high-level constraint language that corresponds
to the side conditions of the typing rules.

High-level constraints

φ ::= atomic high-level constraint
S1 ≤ S2 effect inclusion
S1 = S2 effect equality
T1 = T2 simple type equality
T = Um(x) abstracted type equality
T = U(n) applied type equality
M1 = M2 term equality
Fresh(x,N) x is a fresh name with respect to N
M ∈ Pair(M1,M2) witness of pair type
M ∈ Ch(N) witness of channel type

ϕ ::= composite constraint
ϕ1 ∧ ϕ2 conjunction
ϕ1 ⇒ ϕ2 implication
∀x.ϕ1 universal quantification

These constraints are then translated into the ALFP logic, which is a fragment of
first-order logic introduced in [17]. In the syntax below we assume a fixed countable
set of variables X , and a finite set R of relation symbols.

t ::= c | x
φ ::=R(x1, . . . , xk) | ¬R(x1, . . . , xk) | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x : φ | ∀x : φ
ψ ::=R(x1, . . . , xk) | t | ψ1 ∧ ψ2 | φ ⇒ ψ | ∀x : ψ

Here R(x1, . . . , xk) is a arbitrary k-place relation symbol. Formulae ψ are called
clauses, while formulae φ are called preconditions; here, ∃ is allowed.

ALFP formulae are interpreted over first-order structures.

Definition 4.1 A first-order structure is a triple M = (U , ρ, σ) where U is a finite
universe of values and ρ : R →

⋃
k≥0 P(Uk) and σ : X → P(U) are interpretations

9

Gordon, Hüttel and Rydhof Hansen

of relation symbols and variables. We often omit mention of the universe and write
a first-order structure as a pair (ρ, σ).

Theorem 4.2 ([17]) Given a σ, the least solution of a ψ = ψ1 ∧ . . . ψm can be
found in time O(

∑m
i=1 niN

ri) where ni is the size of ψi, ri is the maximal depth of
quantifiers in ψi and N is the size of the universe.

4.3 Encoding terms and types

The translation of high-level constraints into ALFP makes use of an encoding of
message terms, types and effects.

Terms
We encode a message term by representing its abstract syntax tree. Each

term constructor has a corresponding relation, so we introduce the relations
Name,TermPair, OkTerm, Capa, Fst and Snd.

For every term M the encoding [[M]] is a pair (m,ψ) where m is called the root
name and ψ is a constraint that describes which relation m must inhabit along with
any constraints caused by subterms of M . We can then encode an equality M = N

as [[M = N]] = m = n ∧ ψ ∧ ψ′ where [[M]] = (m,ψ), [[N]] = (n, ψ′), and we encode
the congruence rules for message terms by the conjuction of the following clauses:

∀m.∀n.∀n1.∀n2.m ∈ Fst(n) ∧ n ∈ TermPair(n1, n2) ⇒ m = n1

∀m.∀n.∀n1.∀n2.m ∈ Snd(n) ∧ n ∈ TermPair(n1, n2) ⇒ m = n2

Types
We encode types as relations such that a term M has type T if and only if the

relation T is inhabited by the root name of M .
We introduce three relation constructors, Pair, Ch, and Ok, that correspond

to the type constructors. The set of type relation symbols is given by the syntax

R ::= U | PairX1,X2 | ChX1 | OkR

where U ∈ TVar and R ∈ EVar.
For type environment E we let the relation Ee stand for the effects in E.

Dependent pair types
To every dependent type UM (x) obtained by abstracting out a termM of type T ,

we associate a relation Um(x), where m is the root name of M . Um(x) is inhabited
by elements whose type is found by replacing all occurrences of m in the definition
of U by an arbitrary element m′ of type T . For any type U we can capture this by
the clause

∀n.∀n′.∀m.∀m′.(m ∈ T) ⇒ (m′ ∈ T)

⇒((n ∈ U ⇒ n′ = n{m′
/m} ⇒ n′ ∈ Um(x))

∧(n′ ∈ Um(x) ⇒ n′ = {m′
/m} ⇒ n ∈ U))

10

Gordon, Hüttel and Rydhof Hansen

Here, n = n′{m′
/m} is syntactic sugar for a four-place relation R(n, n′,m,m′), de-

fined by a set of auxiliary clauses. The intended meaning is that n = n′{m′
/m} if n

and n′ are root names of terms M and M ′ such that E ` M : T and E ` M ′ : T ′

where T ′ = T{m′
/m}.

We encode the application V (n) of a dependent type to a term by a conjuc-
tion of auxiliary clauses for each type abstraction UM (x) found in the constraints
generated; note that V must be a dependent type for the application to make sense.

∀n.∀m′.∀m.∀m1.∀m2.∀m3.[[V = UM (x)]] ⇒
(m3 = m2{m

′
/m} ∧m3 ∈ Um(x)) ⇒

m1 = m2{n/m} ⇒ m1 ∈ V (n)

∀n.∀m′.∀m.∀m1.∀m2.∀m3.[[V = UM (x)]] ⇒
(m1 ∈ V (n) ∧m1 = m2{m/n}) ⇒
m3 = m2{m

′
/m} ⇒ m3 ∈ Um(x)

4.4 Translating high-level constraints into ALFP

Type and effect constraints
If T1 and T2 are type relation symbols, we translate a type equation as follows:

[[T1 = T2]] = ∀y.(y ∈ T1 ⇒ y ∈ T2) ∧ (y ∈ T2 ⇒ y ∈ T1)

If R1 and R2 are effect relation symbols, we translate effect inclusions as:

[[R1 ≤ R2]] = ∀x.∀`.(`, x) ∈ R1 ⇒ (`, x) ∈ R2

For equations on the form V = Ok(S) we construct the formula

[[V = Ok(S)]] = (∀`.∀x.(`, x) ∈ V ⇒ (`, x) ∈ S)
∧(∀`.∀x.(`, x) ∈ S ⇒ (`, x) ∈ V)

4.5 Generating constraints

We describe constraint generation by two big-step semantics, whose transition rules
are found in Table 3.

Constraints from messages
In the judgment E ` M ; T ;ψ; Ũ, ψ denotes the generated constraint. T

denotes the primary relation symbol introduced (corresponding to a type variable)
and Ũ denotes the set of auxiliary relation symbols introduced.

In the constraints generated for messages, we record the witnesses in (Msg Pair),
where the subterms must inhabit the witness relation Pair for pair types. This is
needed in the account of dependent types.

11

Gordon, Hüttel and Rydhof Hansen

Constraints from processes
In the judgment E ` P ; ψ1; Ũ, ψ1 denotes the constraint generated. We again

let Ũ denote the set of auxiliary relation symbols introduced.
In the rules (Proc In) and (Proc Out) we record the witness in the witness

relation Chan. This, too, is needed in our account of dependent types.

Example 4.3 For the process P = new a : T ;P1 and environment E from Exam-
ple 3.4, we have E ` P ; ψP ; Ũ, where ψP = [[N = n(P1)]] ∧ ∀a.(Fresh(a,N) ⇒
ψ1; Ũ1;T) where E, a : T ` P1 ; ψ1; Ũ1. Conjuncts from ψ1 include

ψ12 = [[a+ ∈ Chan+(m)]] ∧ [[m = (b,ok)]] ∧ [[m ∈ T2]]
∧ [[T = Ch+(T2)]] ∧ ψ121

The constraints tell us that the polarized channel a+ must carry terms of type T
and that m, the root name of (b,ok) inhabits this type.

4.6 Constraints representing unification conditions

A solution must respect the normal requirements of term unification, namely that
composite types are equal if and only if their corresponding immediate constituents
are. For this reason we introduce additional clauses for each type constructor.

As an example, for every pair of relation symbols Chκ(T1),Chκ(T2) introduced
in ψ we introduce the clauses

[[ChT1 = ChT2]] ⇒ [[T1 = T2]] ∧ [[T1 = T2]] ⇒ [[ChT1 = ChT2]]

We represent failure of unification by a relation Fail which is inhabited when a
name inhabits types with different type constructors. A sample clause is

∀x.x ∈ PairT1,T2 ∧ x ∈ ChT3 ⇒ x ∈ Fail

Given the total constraint ψP that has been generated, the conjuction of ψP and
the auxiliary clauses is called the saturation of ψP , denoted S(ψP).

Example 4.4 For the process P = new a : T ;P1 and environment E from Exam-
ple 3.4, we have E ` P ; ψP ; Ũ, we have ψP = [[N = n(P1)]] ∧ ∀a.(Fresh(a,N) ⇒
ψ1; Ũ1;T) where E, a : T ` P1 ; ψ1; Ũ1. Conjuncts from ψ1 include

ψ12 = [[a+ ∈ Chan+(m)]] ∧ [[m = (b,ok)]] ∧ [[m ∈ T2]]
∧ [[T = Ch+(T2)]] ∧ ψ121

The constraints tell us that the polarized channel a+ must carry terms of type T
and that m, the root name of (b,ok) inhabits this type. Other constraints in ψ1

are

ψ121 = [[b ∈ B]] ∧ [[S ≤ E2
3]] ∧ [[V = Ok(S)]] ∧ [[E2

e = {`(b)}]] ∧ [[X = Pair(B,U ′)]]

∧ [[U ′ = V b(x)]] ∧ [[(b,ok) ∈ Pair(b, ok)]]

that describe that (b,ok) must be well-typed. Here, E2 = b : B, a : T,begin `(b).

12

Gordon, Hüttel and Rydhof Hansen

Horn Clause Constraints from Messages: E `M ; T ;ψ1; Ũ

(Msg Name)

E ` � E = E′, x : T,E′′

E ` x ; T ;x ∈ T ; ∅

(Msg Ok)

E ` � n fresh Ee fresh

E ` ok ; V ;n ∈ V ∧ [[S ≤ Ee]] ∧ [[V = Ok(S)]] ∧ [[Ee = effects(E)]] ∧ [[subs(E)]];S,Ee

(Msg Pair)

E `M ; T ;ψ1; Ṽ, E ` N ; U ;ψ2;W̃

E ` pair(M,N) ; X;
[[X = Pair(x : T, U ′)]] ∧ ψ1 ∧ ψ2 ∧ [[U ′ = UM (x)]]∧
([[N ∈ U ′]] ∧ [[(M,N) ∈ X]] ∧ [[(M,N) ∈ Pair(M,N)]])

; Ṽ,W̃

(Msg Fst)

E `M ; T ;ψ1; Ũ

E ` fst(M) ; V ;ψ1 ∧ [[T = Pair(V,W2)]]; Ũ,W1

(Msg Capa)

E `M ; T ;ψ1; Ũ

E `Mκ ; V ;ψ1 ∧ [[T = Ch(U)]] ∧ [[V = Chκ(U)]]; Ũ, U

(Msg Snd)

E `M ; T ;ψ1; Ũ

E ` snd(M) ; V ;ψ1 ∧ [[T = Pair(W1,W2)]] ∧ ∀y.([[y = snd(M)]] ⇒ [[V = W2(y)]]); Ũ,W1,W2

Horn Clause Constraints from Processes: E ` P ; ψ1; Ũ

(Proc In) (where µ either ! or nothing)

E `M ; T ;ψ1; Ũ E, x : V ` P ; ψ2; Ũ V fresh

E ` µin(M,x);P ; ψ1 ∧ ∀x(ψ2 ∧ ([[M ∈ Chan−(x)]] ⇐⇒ x ∈ V)) ∧ [[T = Ch−(V)]];V, Ũ

(Proc Out)

E `M ; T ;ψ1; Ṽ E ` N ; U ;ψ2;W̃ V fresh

E ` out(M,N) ; ψ1 ∧ ψ2 ∧ [[U = V]] ∧ [[T = Ch+(V)]] ∧ ([[M ∈ Chan+(N)]] ∧ [[N ∈ U]]); Ṽ,W̃, V

(Proc Res)

E, x : T ` P ; ψ1; Ũ x = dom(E);T,N fresh

E ` new x;P ; [[N = n(E)]] ∧ ∀x(Fresh(x,N) ⇒ ψ1); Ũ, T

(Proc Par)

E, begins(P2) ` P1 ; ψ2; Ũ E, begins(P1) ` P2 ; ψ′2; Ṽ

E ` (P1 | P2) ; ψ2 ∧ ψ′2; Ũ, Ṽ

(Proc Zero)

E ` �
E ` 0 ; t; ∅

(Proc Exercise)

E `M ; T ;ψ1; Ũ E,R ` P ; ψ2; Ṽ R fresh

E ` exercise(M);P ; ψ1 ∧ ψ2 ∧ [[T = Ok(R)]]; Ũ, Ṽ

(Proc Begin)

E ` � fv(M) ⊆ dom(E)

E ` begin `(M) ; t; ∅

(Proc End)

E ` � fv(M) ⊆ dom(E)

E ` end `(M) ; ([[m = M]] ⇒ (`,m) ∈ Ee); ∅

(Proc Let)

E `M ; T ;ψ1; Ṽ′ E, x : T, x = M ` P ; ψ2,W̃′

E ` let x = M in P ; ψ1 ∧ [[x = M]] ∧ ψ2; Ṽ′,W̃′

(Proc If)

E `M ; T ;ψ1; Ṽ′ E ` N ; T ′;ψ′1; Ṽ′′

mgu(M,N) exists ⇒ E ` P (mgu(M,N)) ; ψ2,W̃′ E ` Q ; ψ′2,W̃
′′

E ` if M = N then P else Q ; ψ1 ∧ ψ′1 ∧ ψ2 ∧ ψ′2; Ṽ′, Ṽ′′,W̃′,W̃′′

Table 3
Rules for generating constraints

13

Gordon, Hüttel and Rydhof Hansen

5 Soundness, completeness and finiteness

The constraints generated are sufficient to infer the existence of a type and effect
assignment, if one exists.

Definition 5.1 Let E be a type environment where E ` � and let M = (σ, ρ) be
a first-order structure. We say that M≺ E if dom(σ) = dom(E), and

• M |= x ∈ T iff E(x) = T , and

• ρ(Ee) = {(`,M) | `(M) ∈ effects(E)}
• M |= [[x = M]] if E(x) = M

Theorem 5.2 (Soundness of type inference for processes) Suppose E `
P ; ψP ;U and that E ` P . Then there exists a first-order structure M such
that M≺ E and such that M is a failsafe model of ψ.

Proof. (Sketch) Construct a model where m inhabits the relation T if m is the
root name of M and E′ ` M : T , where E′ ` M : T is a type judgment in the
derivation tree for E ` P . 2

Definition 5.3 Let E be a type environment, and M = (σ, ρ) be a first-order
structure with universe U such that M ≺ E. If M′ = (σ, ρ[Ee 7→ ρ(Ee) ∪ Z]) we
say that M′ is an effect extension of M and write M≤M′.

Let ψ be a constraint. We say that M = (σ, ρ) is failsafe for ψ if ρ(Fail) = ∅.

Theorem 5.4 (Completeness of type inference for processes) Suppose E `
P ; ψ;U. Let ψ = ψP ∧ S(ψP). Whenever a first-order structure M satisfies that
M ≺ E and is a failsafe model of ψ, there exists a type and effect assignment ∆
such that E ` P and such that M′ |= ∆ for some M′ where M≤M′.

Proof. (Sketch) Induction in the derivation tree of E ` P ; ψ;U. As a lemma,
one needs to show the same property for message terms: that if E ` M ; T, ψ;V
and M |= ψ for some failsafe M, then E `M : T . 2

Theorem 5.5 (Finite model property) Suppose E ` P ; ψP ; Ũ. Let ψ =
ψP ∧S(ψP). ψ is satisfiable if and only if ψ has a finite model M such that M≺ E.

Proof. (Sketch) Notice that the model constructed in the proof of Theorem 5.2 is
finite. 2

6 Conclusions

We describe a method for establishing authenticity, namely that of automated type
inference for correspondence types in an effect type system for a polarized π-calculus
with pairs. Given process P and initial type environment E we show how to generate
an ALFP formula ψ such that ψ has a failsafe model if and only if E ` P . The
proof that a model of ψ implies that E ` P is constructive, yielding an algorithm
for finding a type and effect assignment ∆ if one exists. This should be contrasted
with the approach of [3] which does not guarantee termination.

14

Gordon, Hüttel and Rydhof Hansen

It should also be contrasted with the approach of [13], where constraints are
inequalities over the rational numbers. Our type system is stronger; usage of a
channel a with type Ch(T)[S], where S is a latent effect can be encoded as

[[out(M,N)]] = out(M, (N,ok))

[[µin(M,x);P]] = µin(M,x); exercise(snd(x)); [[P{fst(x)/x}]]

Most importantly, our approach is general in nature; the encoding of types and
terms does not depend on the rules of the type system. For this reason, our ap-
proach appears a natural candidate for obtaining similar type inference results for
type systems such as [9], where correspondences concern formulas in an arbitrary
authorization logic and the underlying process calculus includes cryptographic op-
erations, and type systems for secrecy properties such as [12]. The possibility of
such ramifications is currently under investigation.

Finally, and importantly, our approach allows for an implementation of type
inference using the Succinct Solver suite.

An important next step is to consider robust safety. A process is robustly safe P
if for every opponent process O we have that P | O is safe. We can capture robust
safety by introducing the opponent type Un and a set of extra type rules for typing
terms containing subterms of type Un. The type system should then guarantee
that if P is typable under the assumption that all its free names have type Un,
then P will be robustly safe.

Type inference becomes more complicated in the presence of opponent types;
the reconstruction of a type is no longer purely syntax-directed and the constraints
consequently need to express that a term can have either a proper type or an
opponent type. This kind of disjunctive property is not directly expressible in the
ALFP logic. The solution to this problem is the topic of a forthcoming paper.

References

[1] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic programs. Journal
of the ACM, 52(1):102–146, 2005.

[2] M. Abadi and A. Gordon. A calculus of cryptographic protocols: The spi calculus. Inf. and Comp.,
148:1–70, 1999.

[3] Bruno Blanchet. Automatic verification of correspondences for security protocols. Unpublished
manuscript, updating papers at CSFW’01 and SAS’02, October 2007.

[4] Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Static
validation of security protocols. Journal of Computer Security, 13(3):347–390, 2005.

[5] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Security analysis using
flow logics. In Current Trends in Theoretical Computer Science, pages 525–542. World Scientific, 2001.

[6] Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic types for authentication. Journal of
Computer Security, 15(6):563–617, 2007.

[7] The Cryptyc type checking tool. http://www.cryptyc.org.

[8] Riccardo Focardi, Matteo Maffei, and Francesco Placella. Inferring authentication tags. In Proceedings
of the 2005 workshop on Issues in the Theory of Security (WITS’05), pages 41–49. ACM, 2005.

[9] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization policies.
In Shmuel Sagiv, editor, ESOP, volume 3444 of Lecture Notes in Computer Science, pages 141–156.
Springer, 2005.

15

Gordon, Hüttel and Rydhof Hansen

[10] A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal of Computer
Security, 11(4):451–521, 2003.

[11] A. D. Gordon and A. S. A. Jeffrey. Types and effects for asymmetric cryptographic protocols. Journal
of Computer Security, 12(3/4):435–484, 2003.

[12] A. D. Gordon and A. S. A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the pi-
calculus. In Proc. Concur 2005, LNCS 3653, volume 3653 of Lecture Notes in Computer Science,
pages 186–201. Springer-Verlag, 2005.

[13] Daisuke Kikuchi and Naoki Kobayashi. Type-based verification of correspondence assertions for
communication protocols. In Zhong Shao, editor, APLAS, volume 4807 of Lecture Notes in Computer
Science, pages 191–205. Springer, 2007.

[14] R. Milner. The π-calculus. Cambridge University Press, 2000.

[15] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Cryptographic analysis in cubic time.
ENTCS, 62, 2001.

[16] Flemming Nielson, Hanne Riis Nielson, Hongyan Sun, Mikael Buchholtz, René Rydhof Hansen, Henrik
Pilegaard, and Helmut Seidl. The succinct solver suite. In Kurt Jensen and Andreas Podelski, editors,
TACAS, volume 2988 of Lecture Notes in Computer Science, pages 251–265. Springer, 2004.

[17] Flemming Nielson, Helmut Seidl, and Hanne Riis Nielson. A Succinct Solver for ALFP. Nord. J.
Comput., 9(4):335–372, 2002.

[18] Martin Odersky. Polarized name passing. In P. S. Thiagarajan, editor, FSTTCS, volume 1026 of
Lecture Notes in Computer Science, pages 324–337. Springer, 1995.

[19] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In IEEE Symposium on
Security and Privacy, pages 178–194, 1993.

16

	Introduction
	A polarized -calculus with pairs
	Syntax
	Semantics
	Safety

	A Type and Effect System for Safety
	Effects and types
	Type and effect assignments
	The type system

	Type inference
	The type inference problem
	Expressing constraints
	Encoding terms and types
	Translating high-level constraints into ALFP
	Generating constraints
	Constraints representing unification conditions

	Soundness, completeness and finiteness
	Conclusions
	References

