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Abstract

We study recommendation in scenarios where there’s
no prior information about the quality of content in the
system. We present an online algorithm that continually
optimizes recommendation relevance based on behav-
ior of past users. Our method trades weaker theoretical
guarantees in asymptotic performance than the state-of-
the-art for stronger theoretical guarantees in the online
setting. We test our algorithm on real-world data col-
lected from previous recommender systems and show
that our algorithm learns faster than existing methods
and performs equally well in the long-run.

1 Introduction
The market for online content consumption and the rate at
which content is produced has experienced immense growth
over the past few years. New content is generated on a daily
or even hourly basis, creating an incredibly fast turn-over
time for relevant content. While traditional search and rec-
ommendation engines have the ability to discover quality
content in an offline manner, services such as news aggre-
gators need to constantly adjust their recommendations to
cater to current hot topics. For example, articles about the
U.S. presidential inauguration may be quite popular on Jan-
uary 21st, the day of the inauguration, but they’re likely to
fall out of favor on the morning of the 22nd. In the face of
such rapid changes in relevance, online algorithms which
continually optimize recommendations based on user usage
data provide an attractive solution.

We propose a simple online recommendation algorithm
which learns quickly from user click data to minimize aban-
donment, the event that a user does not click on any articles
in the recommended set (also known as %no in the infor-
mation retrieval community). Our algorithm operates with
minimal assumptions and no knowledge of features of users
or articles, and thus is well-suited to address changing en-
vironments induced by frequent turn-over in the set of po-
tential articles and shifts in user preferences. We focus on
content such as news articles, jokes, or movies, where users
have varying tastes but there’s no notion of a single “correct”
recommendation.
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Recommending relevant content is a key challenge for
search engines and recommendation systems and has been
extensively studied in the information retrieval community.
The early guiding principle in the IR literature was the prob-
ability ranking principle (PRP) (Robertson 1977), stating
that articles should be ranked in decreasing order of rele-
vance probability. (Chen and Karger 2006) noted that opti-
mizing with PRP in mind may yield sub-optimal outcomes,
particularly when the objective is minimizing abandonment.
In recent years, the concept of “diversity” in recommended
sets of content has emerged as a guiding principle which
better serves in addressing goals such as abandonment min-
imization. The intuitive goal behind a diverse set of content
is to use each article in the set to satisfy a different type of
user. This approach is particularly applicable to the canoni-
cal problem of handling a variety of user intents; when a user
searches for a term such as “jaguar” their intended meaning
could be the car, the animal, the American football team, or
a number of different meanings.

This paper compares the PRP and diversity principle from
an online algorithm perspective. We compare our online al-
gorithm, which is implicitly based on the PRP, with the
Ranked Bandit Algorithm (RBA) of (Radlinski, Kleinberg,
and Joachims 2008), which is based on the diversity princi-
ple. While the diversity principle yields superior offline per-
formance, our approach has stronger theoretical guarantees
in the online case. Our empirical work focuses on a funda-
mentally different sort of user preference than the previous
diversity work. Instead of intent, we cater to a heterogeneity
of users tastes, i.e. does the user find this joke funny or will
the user like this news article. Surprisingly, we find that ex-
plicitly incorporating diversity in this setting doesn’t yield a
large gain; the offline PRP-based solution gives nearly the
same performance as the offline diversity-based solution.

At the heart of our method is the use of a stochastic multi-
armed bandit algorithm to control the trade-off between ex-
ploration and exploitation of articles. A multi-armed bandit
problem is an abstract game where a player is in a room
with many different slot machines (slot machines are some-
times called one-armed bandits), with no prior knowledge
of the payoffs of any machines. His goal is to maximize
his total reward from the slot machines and in doing so,
he must explore machines to test which machine has the
highest average payoff but also exploit those he knows to



have high rewards. Similar to (Radlinski, Kleinberg, and
Joachims 2008), the primary contribution of our algorithm is
the method by which we combine instances of several MAB
algorithms to efficiently approximate this combinatorial set
recommendation problem.

1.1 Our Contributions
We present an online algorithm for the minimization of
abandonment. Our method uses several instances of a multi-
armed bandit algorithm working (almost) independently to
recommend a set of articles. Although the independence be-
tween bandit instances carries all the drawbacks of the PRP,
we use a stochastic optimization concept known as the cor-
relation gap (Agrawal et al. 2010) to prove that our algo-
rithm has near-optimal performance in the online setting.
Furthermore, the independence between bandit instances al-
lows for a faster learning rate than online algorithms based
on the diversity principle. Our second contribution is an em-
pirical study of bandit-based recommendation algorithms on
real-world datasets collected from previous recommenda-
tion algorithm research. We find that while in theory the
diversity-based solutions yield superior offline solutions, in
practice there are only small differences between the of-
fline diversity-based solution and the offline PRP-based so-
lution. We also empirically verify that the learning rate of
our method is faster than that of existing methods.

2 Previous Work
Previous work in information retrieval and machine learn-
ing has addressed recommendation to heterogenous popu-
lations via the goal of maximizing diversity in search re-
sults but the literature varies widely in modeling assump-
tions. In some work, diversity refers to increasing the set
of topics that a recommended set of articles or search re-
sults may cover (Agrawal et al. 2009) and (Panigrahi et al.
2012). Other works assume users intrinsically value diver-
sity; (Raman, Shivaswamy, and Joachims 2012) and (Yue
and Guestrin 2011) both assume a rich feature model and use
online learning techniques to learn user utility functions. (Li
et al. 2010) give an online approach for news recommen-
dation using a user’s profile as a feature vector. (Chen and
Karger 2006) prove in a general sense that the standard sub-
modular greedy algorithm is the optimal way to incorporate
diversity into search result rankings.

By contrast, our work carries little assumptions. In this
sense, our work is closer to the literature on online stochas-
tic submodular maximization, particularly in the bandit set-
ting. (Calinescu et al. 2011) prove that a continuous version
of the standard submodular greedy algorithm yields an opti-
mal approximations for all matroid constraints and (Streeter,
Golovin, and Krause 2009) give a similar method (though
less general) which can be extended to the online setting.

The work most closely related to ours is (Radlinski,
Kleinberg, and Joachims 2008) and (Slivkins, Radlinski, and
Gollapudi 2010), although the latter work makes strong use
of a similarity measure between documents whereas we as-
sume no such construct. Their “ranked bandit algorithm”
serves as our baseline in this paper and we discuss the re-
lationships between our methods in later sections.

3 Problem Formalization

We consider the problem of minimizing abandonment for
an article recommendation system. At the beginning of the
day, n articles are submitted to the system. When a user vis-
its our site, they’re presented with a set of k articles; if the
user finds any of the articles relevant, he clicks on it and we
receive a payoff of 1. If the user finds no articles relevant,
we receive a payoff of 0. We receive no additional payoffs if
the user clicks on more than one article. Each user j can be
represented by a {0, 1}n-vector Xj , where a Xj

i = 1 indi-
cates that the user j finds article i relevant. These relevance
vectors Xj are distributed according to some unknown dis-
tributionD. These relevance vectors can be thought to repre-
sent the type of a user. This type structure allows for a large
degree of correlation between article relevances.

At each time period t, a random user arrives, correspond-
ing to choosing a vector Xt i.i.d. from D, and we present
a set of k articles St. Let F (St, Xt) denote the payoff for
showing set St to a user with relevance vector Xt. We’ll re-
fer F as the set relevance function and it has the following
form

F (St, Xt) =

{
1 if Xt

i = 1 for some i ∈ St

0 otherwise
(1)

The user’s relevance vector Xt is not observed before the
algorithm the set is chosen. Thus the value of displaying a set
St is the expected value E[F (St, X)] where the expectation
is taken over the realization of the relevance vector X from
the distribution D. When it is clear, we will write E[F (S)]
as shorthand for E[F (S,X)]. In words, E[F (S)] is the frac-
tion of users who will be satisfied by at least one article in
S. The problem of minimizing abandonment is equivalent
to the problem of maximizing E[F (S)] subject to |S| ≤ k.
For the remainder of this paper, we’ll focus on maximizing
expected set relevance E[F (S)].

Before turning to the online version of this problem, we
consider optimization in the offline setting. In the offline set-
ting, an algorithm would have access to the distribution but
even with such assumptions the problem is NP-hard1 De-
spite this intractability, we can take advantage of the struc-
ture of F (S), namely that it is submodular, and use the
greedy algorithm of (Nemhauser, Wolsey, and Fisher 1978).
This yields a (1− 1

e ) approximation, which is the best possi-
ble approximation under complexity theoretic assumptions.
(Chen and Karger 2006) argue this greedy approach yields
an optimally diverse set of articles.

A set function G is said to be submodular if, for all ele-
ments a and sets S, T such that S ⊆ T , G(S ∪a)−G(S) ≥
G(T ∪ a) − G(T ). The set relevance function F (S,X), as
defined in equation 1, is submodular and this property forms
the theoretical basis for the online approaches given in the
next section.

1This can be shown by a standard reduction from the max cov-
erage problem. See (Radlinski, Kleinberg, and Joachims 2008) for
details.



4 The Online Problem
We now turn to the online version of this problem, which
presents a classic explore-exploit tradeoff: we must balance
the need to learn the average relevance of articles with no
feedback against the need to exploit the good articles that
we’ve already discovered. We solve this problem using theo-
retical results from the multi-armed bandit (MAB) literature,
a class of algorithms which solve exploration-exploitations
problems. Bandit problems can be distinguished by the as-
sumptions made on the rewards. In the stochastic bandit
problem, rewards for each option are drawn from a station-
ary distribution while in the adversarial setting, payoffs for
each option are determined by an adversary who has knowl-
edge of past play, history of rewards, and the strategy that
the player is using.

The objective of an online algorithm is the minimization
of regret, where the regret of an algorithm is defined as the
expected difference between the accumulated rewards of the
single best option and the rewards accumulated by that algo-
rithm. In our context, this is the difference between the frac-
tion of users satisfied by the optimal set of articles and the
fraction of users satisfied by the recommendation algorithm.
However, as we noted in the previous section, maximiza-
tion of E[F (S)] is intractable, so we follow the approach of
(Streeter, Golovin, and Krause 2009) and (Radlinski, Klein-
berg, and Joachims 2008) and use (1− 1

e )OPT as the offline
benchmark. The regret after time t is defined as

R(T ) = (1− 1

e
)

T∑
t=0

E[F (S∗)]−
T∑

t=0

E[F (St)]

There are known bandit algorithms which achieve
provably-minimal regret (up to constant factors), but direct
application of these bandit algorithms requires exploring all
possible options at least once. In our setting, each subset
of articles is a potential option and hence there are expo-
nentially many options, making standard MAB algorithms
impractical. In the next section we present two approaches,
one from previous work and our algorithm, for combining
several instances of a bandit algorithm to yield a low-regret
and computationally efficient solution to this recommenda-
tion problem.

4.1 Ranked Bandit Approach
The work of (Radlinski, Kleinberg, and Joachims 2008) and
(Streeter, Golovin, and Krause 2009) introduced the “ranked
bandit” algorithm to solve the problem of minimizing aban-
donment. The pseudocode is given in algorithm 1. The idea
behind the ranked bandit algorithm is to use k instances
of a MAB algorithm to learn the greedy-optimal solution
(which is also the diversity-optimal solution). Specifically,
k instances of a bandit algorithm are created, where ban-
dit i is responsible for selecting the article to be displayed
in slot i. The algorithm is designed such that the bandit in
slot i attempts to maximize the marginal gain of the article
in slot i. In the context of minimizing abandonment, bandit
i attempts to maximize the click-through-rate of the article
in slot i given that the user has not clicked on any earlier
articles.

Algorithm 1 Ranked Bandit

1: MABi : Bandit algorithm for slot i
2: for t = 1...T do
3: si ← selectArticle(MABi, N)
4: St ← ∪i si
5: Display St to user, receive feedback vector Xt

6: Feedback:

zi =

{
1 if article si was the first click
0 otherwise

7: update(MABi, zi)
8: end for

While RBA works with any bandit algorithm, the regret
of RBA depends on the choice of bandit algorithm. (Radlin-
ski, Kleinberg, and Joachims 2008) use an adversarial ban-
dit algorithm known as EXP3 in their work and show that
RBA inherits the regret bounds guaranteed by EXP3. How-
ever the adversarial assumption is overly pessimistic in this
problem and ideally we could make use of the stochastic na-
ture of user behavior. Stochastic bandit algorithms such as
UCB1 have better theoretical and practical performance but
the dependence between slots in RBA violates the neces-
sary independence assumptions for the stochastic setting. In
their work, (Radlinski, Kleinberg, and Joachims 2008) show
RBA to have regret on the order of O(k

√
Tn lg(n)). Our

approach, discussed in the next section, is able to leverage
the stochastic nature of the problem without complication
and thus achieves a provable regret of O(kn lg(T )).

In addition to the lack of theoretical guarantees, the learn-
ing rate of RBA can be quite slow because of “wrong” feed-
back. The “correct” value of an article in slot i + 1 is the
marginal value of that article given that slots 1 to i are dis-
playing the “correct” articles, that is the first i articles in
the greedy solution. In any time period where those articles
aren’t displayed, the marginal value of any article in slot i+1
will not necessarily be correct. Although early slots should
display the correct articles most of the time, later slots can’t
begin learning correctly until the earlier slots converge. This
effectively induces sequential learning across slots and back
of the envelope calculations suggest that “correct” learning
will only begin in slot k + 1 after Ω(nk), time steps have
past.

4.2 Independent Bandit Approach
In this section we describe our method which we call the in-
dependent bandit algorithm (IBA) which is implicitly based
on the probability ranking principle. Rather than learning the
marginal values as in the ranked bandit algorithm, the inde-
pendent bandit algorithm optimizes the click-through-rate of
each slot independently of the other slots. Using tools from
stochastic optimization theory, we prove that the indepen-
dent bandit algorithm has near-optimal regret and our simu-
lations demonstrate that IBA converges to its offline-optimal
solution much quicker than RBA.

The pseudocode for the independent bandit algorithm is
given in algorithm 2. Line 5 ensures that the bandit algo-



rithms don’t select the same articles by temporarily remov-
ing articles already displayed from the set of potential arti-
cles for bandits in later slots. The main difference between
the independent and the ranked bandit algorithm is the feed-
back; IBA gives a reward of 1 to any article that was clicked
on while RBA only gives a reward of 1 to the first article that
was clicked on. This independence between bandit instances
in IBA allows for learning to happen in parallel, enabling a
faster rate of learning for IBA.

To analyze the regret of IBA, we must first derive an ap-
proximation guarantee for what the offline version of the
independent algorithm would compute. The independent-
optimal solution consists of the k articles with the highest
click-through-rates. If article relevances were all indepen-
dent then the independent-optimal solution is the optimal
solution, however the independent-optimal solution will be
sub-optimal when there are correlations between article rel-
evances. We use the correlation gap result of (Agrawal et al.
2010) to show that the independent-optimal solution yields a
(1− 1

e ) approximation to the optimal solution for any distri-
bution over user relevance vectors. The correlation gap is a
concept in stochastic optimization which quantifies the loss
incurred by optimizing under the assumption that all random
variables are independent. Formally let G(S,X) be some
function where S is the decision variable and X is a vector
of {0, 1} random variables, whereX is drawn from some ar-
bitrary distribution D. Let DI be the product distribution if
each Xi were an independent bernoulli variable with proba-
bility equal to its marginal probability under D. When G is
a nondecreasing, submodular function the correlation gap is
quite small.

Theorem (Agrawal et al. 2010) 1. Let G be a nondecreas-
ing, submodular function. Let S∗ and S∗I be the optimiz-
ers for ED[G(S,X)] and EDI [G(S,X)] respectively. Then
ED[G(S∗I , X)] ≥ (1− 1

e )ED[G(S∗, X)].

Now we consider the independent bandit algorithm. The
key property of IBA is that individual bandit instances do not
affect each other and this allows us to prove that IBA inherits
the low regret of the underlying stochastic bandit algorithms,
yielding better regret bounds than RBA. For the purposes of
the next theorem, we use the UCB1 algorithm (details are
given in section 5), which has regret O(n lg(T )).

Theorem 1. When UCB1 is used as the bandit algorithm
for IBA, the accumulated rewards satisfy

E[

T∑
t

F (St, X)] ≥ (1− 1

e
)OPT −O(kn lg(T ))

Proof. The high level is to first show that IBA has low re-
gret when compared with the independent-optimal set. We
then apply the correlation gap of (Agrawal et al. 2010) to
conclude the regret is close to (1− 1

e )OPT .
For a given document displayed in slot i, let pi denote

the marginal probability of relevance, that is pi = EX [Xi].
Assume for now that all Xi are independent. Using this in-
dependence assumption, for a given set St we can write the

Algorithm 2 Independent Bandit

1: MABi : Bandit algorithm for slot i
2: for t = 1...T do
3: St

0 = ∅
4: for i = 1...k do
5: St

i ← selectArticle(MABi, N \ St
i−1)

6: end for
7: Display St to user, receive feedback vector Xt

8: Feedback:

zi =

{
1 if article si was clicked on
0 otherwise

9: update(MABi, zi)
10: end for

expected valued of F (St, X) as follows

E[F (St)] =

k∑
i=1

i−1∏
j=1

(1− pj)pi (2)

(note, this equation gives the same value for any permutation
of St). Let S∗I denote the set which maximizes the above
function under the assumption that all Xi are independent.
Trivially, this set consists of the k articles with the largest pi.
Label these elements p∗i for i = 1...k. At a given time t let
St denote the set played and let St

i represent the ith element
of this set. Define δi = p∗i−pi, that is the difference between
the relevance probability of the best article and the relevance
probability of the article actually played at time t.

E[F (St)] =

k∑
i=1

i−1∏
j=1

(1− (p∗j − δj))(p∗i − δi)

≥
k∑

i=1

i−1∏
j=1

(1− p∗j )(p∗i )− δi

= E[F (S∗I)]−
∑
i

δi

Now taking the sum of the f(St, X) over time yields

E[
∑
t

F (St, X)] ≥
∑
t

F (S∗I)−
∑
i

∑
t

δti

The term
∑

t δ
t
i is the regret incurred in slot i. (Auer,

Cesa-Bianchi, and Fischer 2002) proves that the regret of
UCB1 is bounded by O(n lg(T )), so

∑
t δ

t
i ≈ O(n lg(T ))

for each slot.
In the above analysis, we assume that the probability of

an article being relevant was independent of each other Xi,
which is usually a faulty assumption. However, the work of
(Agrawal et al. 2010) shows that optimizing under the inde-
pendence assumption yields a provable approximation. Let
S∗ denote the set which maximizes E[f(S,X)]. Then the
correlation gap impliesE[f(S∗I)] ≥ (1− 1

e )E[f(S∗)]. Com-
bining this with the above regret bound yields the result

E[
∑
t

F (St, X)] ≥ (1− 1

e
)OPT −O(kn lg(T ))



Figure 1: Movie-Lens-100 dataset with relevance threshold
θ = 2, the low threshold. The Ranked-εGreedy method
starts performing better after t = 10000 but fails to achieve
the theoretical optimum performance within 100000 time
steps. The Independent-εGreedy algorithm achieves its of-
fline optimum after 50000 time steps.

It is worth noting that the independent-optimal solution
is (weakly) worse than the greedy-optimal solution, so RBA
will asymptotically outperform IBA. However, the previous
theorem shows that IBA has the same worst-case guaran-
tee along with a better regret bound that holds uniformly
throughout time. In the next section, we simulate both algo-
rithms using real-world datasets and show that the asymp-
totic performances of the two methods are essentially equal
but IBA performs better in the short term.

5 Experimental Results
In this section, we give the results of experiments we used
to test the empirical difference in performance between the
ranked bandit algorithm and the independent bandit algo-
rithm.

Datasets. We used two publicly available datasets as our
input for user preferences. Our first dataset is from the
Jester project (Goldberg et al. 2001) and is a collection of
user ratings on jokes, ranging from -10.0 (very not funny)
to 10 (very funny). Our second dataset comes from the
MovieLens project (movieslens.umn.edu) and consists of
user ratings assigned to movies, where each rating is from
1 (bad) to 5 (very good). Each dataset consists of a col-
lection of < userID, articleID, rating >-tuples denot-
ing the rating that the user gave to this article (either a joke
or a movie). With the Jester dataset, we used two separate
datasets. Jester-Small consist of 25000 users’ ratings on 10
articles where each user had rated most articles in the set.
Jester-large consists of 25000 users’ ratings on 100 articles
but there many unrated articles for each user. In the case
where a user didn’t rate an article, we assign that article
the lowest score. Movie-Lens-100 consists of ratings by 943

Figure 2: Movie-Lens-100 dataset with relevance threshold
θ = 4, the high threshold. The Independent-εGreedy method
performs the best out of all four methods.

users on a sub-sampled set of 100 articles from the Movie-
Lens dataset. For all datasets, we convert real-valued ratings
to binary relevant-or-not scores by using a threshold rule; if
the rating assigned by a user to an article exceeds a threshold
θ, then that article is deemed relevant to that user. For each
dataset, we tested a high and a low threshold for relevance.2

The data we use is of a fundamentally different nature
than the generated by (Radlinski, Kleinberg, and Joachims
2008). In that work, they model user intent, i.e. is a user
that searches for the term “jaguar” talking about the car, the
animal, or some other meaning? In our work, we care about
user taste, i.e. which joke or movie will a user like? In the
case of intent, there’s generally a correct answer and a single
article rarely satisfies multiple types of users. For the case of
taste, there is rarely a single “correct” answer and a single
article may satisfy many different types of users.

Baselines.In our experiments, we used two well-known
stochastic multi-armed bandit algorithms to test the Ranked
Bandit Algorithm and the Independent Bandit Algorithm.
Both algorithms, UCB1 and ε-Greedy, are examined in de-
tail in (Auer, Cesa-Bianchi, and Fischer 2002) but we briefly
review them here. In each time step t, UCB1 plays the op-

tion which maximizes x̄i +
√

2 lg(t)
ti

where x̄i denotes the
current average reward of option i and ti denotes the num-
ber of times that option i has been played so far. The second
term in this equation naturally induces exploration since this
term grows for options that have not been played in a while.

The second MAB algorithm is the ε-Greedy algorithm.
At each time t, with probability ε a uniformly random arm is
played, and with probability 1−ε the option with the current
highest average reward is played. Note that this algorithm
requires the ε parameter to be tuned; for these experiments,
we set ε = .05, which proved to give the best average per-
formance during initial tests.

2We only show the results for a few different datasets due to
space constraints. These datasets are representative of the qualita-
tive results from the entire set of experiments.



Figure 3: Jester-Large dataset with relevance threshold θ =
7, the high threshold. Ranked-εGreedy and Independent-
εGreedy perform similarly;Independent-εGreedy performs
better until t=20000 but both remain very close, and well
below the offline greedy optimum, for all 100000 time steps.

Our experiment consists of the following steps: at each
time t, we draw a random user from the dataset and the al-
gorithm recommends a set of k = 5 articles to display. We
assume that the user “clicks” on any relevant articles dis-
played. If the user clicks on any articles, we get a payoff of
1 and a payoff of 0 otherwise. Each experiments consists of
T = 100000 time steps and we average our results over 200
repetitions of each experiment. Performance of each algo-
rithm was measured by the percent of sets that contained at
least one relevant article to the user. We show datapoints at
1000 time step increments and each datapoint shown is the
average set relevance over the last 1000 time steps.

Key Results. The results of our experiments are displayed
in figures 1, 2, 3, and 4. Each plot shows the performance
of the online algorithms as well as the offline benchmarks.
The performance of Independent-εGreedy and Independent-
UCB were roughly the same in all cases, so we omit the
results for Independent-UCB for clarity. Our most surpris-
ing finding is the closeness of the greedy-optimal and the
independent-optimal solutions. The largest difference be-
tween the two solutions, shown in figure 1, is 4%; if we
displayed the greedy-optimal set of articles, approximately
92% of users will find at least one relevant article while if we
displayed the independent-optimal set, then 88% of users
will find at least one relevant articles. This finding suggests
that in settings where a recommendation algorithm is cater-
ing to the tastes (as opposed to intents ), explicit considera-
tion of diversity may not be necessary since the independent-
optimal solution yields similar results to the greedy-optimal
solution.

Our second finding, which goes hand in hand with the
previous one, is the favorable performance of the Inde-
pendent Bandit Algorithm versus the performance of the
Ranked Bandit Algorithm. In half of our experiments, either
Independent-εGreedy or Independent-UCB perform strictly
better than Ranked-εGreedy. In the experiments shown in

Figure 4: Jester-Small dataset with relevance threshold θ =
3.5, the low threshold. In this case, the offline greedy and
offline independent solution were the exact same set.

figures 1 and 3, Ranked-εGreedy performs better than the
independent solutions but only begins to perform better af-
ter 10000 or 20000 time steps. The faster learning rates of
IBA compared to RBA demonstrates a key feature of IBA;
the independence between bandit instances in different slots
allows learning to happen in parallel as opposed to the de
facto sequential learning in RBA. This parallel learning al-
lows for a quicker convergence to the independent-optimal
solution. In all cases, the Ranked-εGreedy algorithm doesn’t
converge to the value of the greedy-optimal solution within
100000 time steps.

Lastly, our experiments demonstrate a stark difference
between the performance of Ranked-εGreedy and Ranked-
UCB. As we noted at the end of section 4.1, learning for
later slots in RBA is hindered by exploration in early slots.
This effect is especially pronounced in the UCB1 algorithm
when there are multiple articles that have high average re-
wards. The relatively low exploration rate of the ε-Greedy
algorithm allows for faster convergence in earlier slots and
hence a faster learning rate for later slots. In RBA, low ex-
ploration raises the risk of playing a sub-optimal article in
an earlier slot but the gain from the faster learning rate out-
weighs that potential loss.

6 Conclusion
We’ve presented a simple online algorithm for the problem
of abandonment minimization in recommendation systems
which has near-optimal performance in the online problem.
We have demonstrated, theoretically and empirically, that
our approach trades off a small loss in offline performance
for a faster learning rate and stronger performance in the on-
line setting.

In the future, we would like to investigate the extension of
these MAB techniques to general submodular utility func-
tions. Additionally, we would like to investigate how to run
algorithms such as IBA or RBA when it is only possible to
observe user feedback on the set of articles but not on the
individual articles within the set.
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