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ABSTRACT 
We present data-driven methods for supporting musical 
creativity by capturing the statistics of a musical database. 
Specifically, we introduce a system that supports users in 
exploring the high-dimensional space of musical chord 
sequences by parameterizing the variation among chord 
sequences in popular music. We provide a novel user 
interface that exposes these learned parameters as control 
axes, and we propose two automatic approaches for 
defining these axes. One approach is based on a novel 
clustering procedure, the other on principal components 
analysis. A user study compares our approaches for 
defining control axes both to each other and to an approach 
based on manually-assigned genre labels. Results show that 
our automatic methods for defining control axes provide a 
subjectively better user experience than axes based on 
manual genre labeling. 

Author Keywords 
Creativity, music, chords, genre, PCA, clustering, transition 
matrix, HMMs 
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INTRODUCTION 
Artists in a variety of creative disciplines are implicitly 
guided by statistical principles learned through training and 
experience. For example, musicians develop an intuition for 
the “rules” of rhythm and harmony, painters learn brush 
strokes and color patterns, and writers acquire characteristic 
vocabularies and linguistic motifs. These statistical 
elements may be defined across entire disciplines (e.g. 
canonical rules of musical harmonization) or may represent 
an individual artist’s style and technique (e.g. Monet’s 
characteristic short brush strokes). 

While computers systems will likely never equal an 
experienced artist’s ability to shape characteristic patterns 
into expressive media, the use of machine learning and 
data-driven methods to capture the statistics that guide 

artists holds tremendous potential to expand computer 
support for creativity. Applying learned statistics may offer 
novices the ability to explore new artistic disciplines, may 
provide insight into the cognitive foundations of artistic 
expression, and may accelerate and diversify the work of 
even experienced artists by offering “intelligent 
scratchpads” for creative exploration. 

The synthesis of musical chord sequences is an excellent 
domain in which to explore these possibilities. In many 
types of music, a chord sequence is an essential structural 
component that defines much of the identity of a piece of 
music. For instance, musicians frequently represent jazz 
and pop songs by a lead sheet, which describes a song as a 
melody, lyrics, and a chord sequence. The process of 
developing chord sequences is deeply creative: chords offer 
a powerful vocabulary for musical expression, and 
musicians continue to expand their mastery of chord 
sequences throughout years of training experience. 
However, this process is also loosely governed by a set of 
statistical rules and common patterns, including variations 
on those patterns that are characteristic of genres or eras of 
music. This domain, therefore, represents an ideal setting 
for exploring for data-driven support for artistic processes. 

This paper thus explores data-driven exploration of musical 
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Figure 1: Example instantiations of our polygon slider 
based on different parameterizations of the chord sequence 
space. Manipulating any of the “handles” adjusts the 
weight of the corresponding control axis. Applications 
include the generation of chord sequences based on the 
statistics of (a) genres or (b) artists. Axes need not be driven 
by underlying labels: abstract axes, such as those computed 
by our PCA- and randomly-seeded-clustering approaches, 
are also described and evaluated. 



chord sequences. We present a system that enables users to 
generate a variety of chord sequences to accompany a 
melody by manipulating control axes on an intuitive 
graphical widget. Each axis defines the weight assigned to a 
learned dimension of variability in musical chord 
sequences. This weight-adjustment interaction is simple for 
novices with limited musical experience to understand, but 
is also useful for experts: the manipulation of weights is 
much quicker than manually modifying individual chords in 
a chord sequence, and allows experts to explore variations 
outside of their own characteristic chord patterns.  

More specifically, using databases of music in different 
genres, we investigate algorithms for blending together 
genre-specific statistical information and for deriving new 
statistical dimensions that are independent of musical genre. 
The process of blending genres or other control dimensions 
is controlled in real-time by the user, facilitating intuitive 
exploration of a very high-dimensional state space. 

In this paper, we make the following four contributions: 

1) We describe two approaches for extracting axes of 
variation from musical genre databases: one based on 
maximizing the distance among musical models, and 
one based on principal components analysis. 

2) We introduce a novel user interface component (the 
polygon slider) for controlling several related 
parameters, and we demonstrate its application to our 
learned parameterization of musical chord sequences. 

3) We discuss the results of a user study supporting the 
hypothesis that an automatic approach to defining 
control axes provides a better user experience than the 
direct use of genre labels to define control axes. 

4) We make our learned statistics available to other 
researchers in an online repository. 

While we present this work in the context of musical chord 
sequences, we expect that the user interaction paradigm 
developed here has broad applicability in domains requiring 
user-guided creative exploration.  

RELATED WORK 
Creative domains are by nature open to a wide range of 
expression: as a result, there are typically many degrees of 
freedom that can be manipulated in the creative process. 
This limitless variety can be difficult even for professional 
artists to manage, and as such there have been efforts in 
various domains to reduce the complexity to allow for 
easier control. Some of these efforts have been manual, as 
in sound synthesis, where early systems requiring moving 
patch cables, and hundreds of parameters were often 
reduced to only the most commonly used [4]. More 
recently, there have been computational efforts to make 
simplifications in a variety of domains. For instance, in 
computer animation, there are hundreds to thousands of 
motion controls for a complex figure; recent work has 

attempted to simplify this space. For example, Liu et al. [7] 
present a method for learning “style” parameters from 
motion capture data, which can then be used to control the 
nature of characters’ motion paths.  

Looking specifically at the space of music composition, 
there have been several efforts to parameterize musical 
style to allow for easier exploration of the range of musical 
creations. One natural set of controls has is that of emotion, 
and there has been a variety of work on mapping emotional 
parameters for music synthesis. For instance, Wallis et al. 
[13] create an explicit mapping between emotional 
parameters (arousal and valence) and musical attributes; 
they can then choose or move between arbitrary points in 
this space to generate new music appropriate to this setting. 
Legaspi et al. [6] first learn a perceptual model of how each 
user maps musical features to emotional states; users can 
then specify emotional states and have the system generate 
appropriate music.  

Our approach is more data-driven: we attempt to learn a 
parameterization of styles from existing pieces of music. 
Furthermore, we are restricting our notion of style to a 
model of the chord transitions therein. This notion has been 
developed in a variety of past research: Simon et al. [11] 
present an automatic accompaniment system that learns 
chord transition models from a small database of songs and 
allows for a heuristically-assigned axis of style variation (a 
major/minor factor). Chuan and Chew [2] present a system 
for learning a style from a small number of examples by 
using a combination of transition statistics and musical 
knowledge; they then use this model to generate new 
accompaniments. Allan and Williams [1] make use of a 
chord model learned from Bach chorales to provide 
automatic harmonization of melodies in the style of Bach. 
Cope [3] uses music theory and Augmented Transition 
Networks to compose music in the style of pieces in a hand-
selected source database. Cope also demonstrates a 
provocative example of database-blending in the piece 
“Mozart in Bali”, which uses data-driven methods to 
generate not only melody and harmony, but entire works. 

SYSTEM AND USER INTERFACE 
The goal of the present work is to enable rapid exploration 
of musical chord sequences using a high-level abstraction 
of this large and complex space. We achieve that goal by 
extracting meaningful axes of variation from a database of 
music; those axes are controlled by a user to create new 
chord sequences to accompany a vocal melody. 

In subsequent sections, we will explore two methods for 
extracting these axes of variation from a database of music. 
Before we introduce these methods, however, we will 
describe the software system and user interface that are 
used to explore chord sequences for any set of control axes. 
The system and user interface described here are used 
throughout our evaluation. 



Chord Generation 
We adapt the method of Simon et al. [11] as our basic 
framework for generating a chord sequence to accompany a 
vocal melody. This method uses a first-order Hidden 
Markov Model (HMM) to model a chord sequence, where 
nodes in the model are chords in the sequence, and the 
model’s observations are fragments of a vocal melody. 
Given observations (a sung melody), this method uses the 
Viterbi algorithm to select optimal chords for 
accompanying that melody. This method was selected as 
our starting point (over related methods by Allan and 
Williams [1], Chuan and Chew [2], and others) for its 
straightforward use of a Markov transition matrix as its core 
data representation, which – as we will discuss shortly – 
offers a natural mechanism for describing control axes. This 
method has also been demonstrated to work with vocal 
melodies, allowing us to build an experimental environment 
that simulates a songwriting experience better than a system 
which depends on symbolic melodies. 

We compute observation probabilities (the relationship 
between chords and melody) according to Simon et al. 
However, we introduce novel mechanisms for determining 
and manipulating transition probabilities among chords 
using high-level control axes that are learned from data. 
The remainder of this paper will assume that our goal is to 
derive these control axes, construct Markov transition 
matrices (describing chord transition rules) from them, and 
intuitively present these axes to a user. For a more detailed 
description of the complete algorithm for generating chords 
given a transition matrix and a melody, see [11].  

The Polygon Slider 
Given a model parameterized by several continuous-valued 
control axes, a user manipulates these control axes through 
the interface component shown in Figure 1, which we refer 
to as a polygon slider. If we have N parameters, we draw N 
axes emanating from a central circle, spaced equally around 
the circle. Each axis functions as a traditional slider control: 
the small “handle” on each axis can be dragged along the 
axis from the inner circle to the larger outer circle. We use 
the position of the handle along the axis to determine the 
value of the associated parameter. The slider positions on 
neighboring axes are connected to form a polygon, and the 
interior of that polygon is filled with color to give a concise 
visual representation of the current settings. 

Parameter manipulation could have been implemented as a 
series of linear sliders, but the polygon slider offers several 
benefits over linear sliders: 

1) Rapid editing: our goal is to enable rapid exploration of 
the chord sequence space; placing the control axes in a 
single compact widget allows rapid manipulation of the 
available parameters with minimal mouse movement. 

2) Dynamic layout: this widget adapts its layout 
dynamically to varying numbers of axes, without 
changing its required screen space. This is important in 

a scenario where a user dynamically adds clusters 
based on available data or personal preference. 

3) Integrated visualization: Parameter editing is tightly 
linked to a descriptive visualization of the current 
parameter space (the area and shape of the polygon). 

System Integration 
The chord generation procedure and the polygon slider for 
manipulating control axes are integrated into the system 
shown in Figure 2. A vocal melody is recorded or loaded 
from a file, and accompanying chords are selected and 
shown to the user in a central display area. Manipulating 
the polygon control, which is shown in the lower-right, 
changes the chord sequence in real-time. Users can listen to 
the voice along with the current chord sequence, which is 
rendered as an instrumental accompaniment using a 
commercial accompaniment engine [9]. The two “save 
variation” buttons allow the user to save two chord 
sequences for the current melody; this feature is used in our 
evaluation, which is described below. 

ASSIGNING CONTROL AXES 
In this section, we describe two approaches to 
implementing the control axes (i.e., defining transition 
matrices based on the control axes) for the system described 
in the previous section. One approach is based on model-
driven clustering, the other on principal components 
analysis. Before presenting these novel approaches, 
however, we will discuss a simpler scheme: using 
manually-assigned genre labels to build models for 
different genres. The drawbacks of this simple scheme will 
motivate our novel solutions. 

Manually-Assigned Genre Labels 
An obvious method for building statistical models that can 
enable user-driven exploration is to use hand-assigned 
genre labels. At a high level, one might build a statistical 
model for “country” music, a statistical model for “rock” 

 

Figure 2: The user interface presented to participants 
during our evaluation. Participants could see the current 
chord sequence and used the polygon-slider (lower-right) 
to explore chord sequence variations. During our 
evaluation, the control axes were given “anonymized” 
labels such as “Axis A”. 



music, etc., then assign each of these models to a control 
axis and blend the models according to the axis values. 

More formally, given a set of N genre-specific databases, 
we compute the transition probability matrix for each 
database by counting all chord transitions in that database1 
(as per Simon et al.). Then each element in our transition 
matrix is a linear combination of the corresponding 
elements in the genre-specific transition matrices: 
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Here P(cicj) is  the probability of chord j following chord 
i in a sequence (for example, the probability of a “C major” 
chord following an “E minor” chord), d is the set of genre-
specific databases, and wd is the user-defined weight for 
database d (i.e. the value from 0 to 1 of the corresponding 
polygon slider axis). Weights are normalized such that they 
sum to one, to ensure that manipulating the control always 
maintains a valid Markov transition matrix. 

This would ideally provide a user experience like that 
shown in Figure 1a, for instance, where a user can blend 
among five different genres. However, there are two major 
drawbacks to this approach: 

1) Most importantly, while chord transition statistics 
differ among genres, there is also a great deal of 
commonality among genres, corresponding to the 
traditional patterns of musical harmony. Therefore, if 
we prepare our control axes according to this scheme, 
all axes primarily supply the same statistics, making it 
difficult to explore a variety of chord sequences. Pilot 
experiments confirmed this: users were able to create 
very little variation among chord sequences by 
manipulating solely the genre-based axes. This 
motivates an approach that emphasizes the differences 
among genres more than the similarities. 

2) Furthermore, this approach also requires labeling of the 
entire database, which is potentially tedious and is 
itself subjective and unreliable. This motivates a fully-
automated approach. 

Automatic Clustering 
We would like to preserve the intuitive nature of genres as 
axis labels yet still create enough variation among axes to 
allow for interesting exploration (i.e., solve drawback (1) 
above). We therefore propose an approach that takes the 
initial clusters of songs labeled by genre (as used in the 
previous section) but allows songs to move among the 
clusters to maximize the variability among the derived 
control axes. This results in control axes that emphasize the 
most prominent characteristics of each initial cluster. 

                                                           
1 Throughout this paper, all songs are transposed to the key of C 
before analysis, so all analyses are independent of key.  

Distance metric 
In order to maximize the variability among control axes, 
our clustering procedure maximizes the distances among 
clusters according to a metric directly tied to the transition 
matrices derived from those clusters. Specifically, the 
metric we use to compute the distance between two clusters 
is the sum of absolute differences between the normalized 
matrices of chord transition counts: 
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Here A and B are the matrices of chord transition counts 
corresponding to each cluster. That is, each row in A 
corresponds to a chord ci, each column in A corresponds to 
a chord cj, and the value of A(i,j) is the total number of 
times ci is followed by cj in all the songs in this cluster. A is 
then normalized so the sum of all elements is 1. Note that 
this is not the same as the transition matrix derived from A, 
where individual rows sum to 1. In other words, we use the 
joint probabilities of chord transitions for clustering, rather 
than the conditional probabilities that are actually used to 
generate new chords. This is important, as the joint matrices 
take into account the relative frequency of a given transition 
with respect to other transitions in other rows, whereas in 
the conditional matrices each row is normalized, so this 
information is lost. 

We also experimented with a metric that maximized KL 
divergence among normalized count matrices, rather than 
the absolute difference, but the results were empirically 
very similar and slightly slower to compute, so we use the 
AbsDiff metric shown in Equation 2 for our evaluation. 

Cluster seeding 
We use genre labels to define initial clusters; i.e. songs 
labeled as “rock” are assigned to one cluster, songs labeled 
“country” to another cluster, etc. For the remainder of this 
paper, we will refer to clustering using the AbsDiff metric 
and this seeding approach as “Genre+AbsDiff” clustering. 

We highlight that this approach fundamentally still depends 
on genre labels to initialize clusters, and therefore does not 
solve drawback (2) above. I.e., this approach is only semi-
automatic. We can also begin with random clusters instead, 
and we hypothesized that this would lead to interesting 
control axes as well, though axes derived from random 
seeds can no longer be described with intuitive, genre-based 
labels. In order to assess the potential for a fully-automated 
approach to defining control axes, we also include this 
“Random+AbsDiff” clustering approach in our evaluation.  

Clustering Algorithm: Summary 
We summarize our clustering procedure in pseudocode as 
follows. Note that throughout this description, we will refer 
to “computing the distance between two clusters”. We write 
this to be concise, but this refers more precisely to 



“computing the distance between the transition matrices 
derived from two clusters”, as per Equation 2. 
 

Start with a collection of songs where each  is assigned to 
one of N clusters. This initialization may use genre labeling 
(for Genre+AbsDiff clustering) or  random partitioning  (for 
Random+AbsDiff clustering). 

For each cluster C1 

Compute  the  total  distance  between  all  pairs  of 
clusters, according to the AbsDiff metric (Equation 2). 
This is our “baseline axis variability” Vbase. 

For each song S1 in cluster C1 

For each other cluster C2 != C1 

Temporarily re‐assign S1 from C1 to C2 

Re‐compute  the  total distance between  all  pairs 
of  clusters,  according  to  the  AbsDiff  metric 
(Equation 2). This is our “modified axis variability” 
Vmod(C2).  

Assign  song  S1  to  the  cluster  that  maximizes 
variability  (Vmod).  If  all  Vmod  values  are  less  than 
Vbase, leave this song in cluster C1. 

Iterate  until  clusters  are  stationary  (i.e.,  Vbase  is  always 
greater  than  Vmod)  or  the  total  change  in  Vbase  over  a 
complete  loop  over  all  clusters  is  less  than  a  minimum 
threshold. 
  

The clusters generated from this variability-maximization 
procedure are treated in the same way as the genre-based 
clusters described in the previous section: each axis controls 
the blending weight of one cluster, and transition matrices 
derived from the clusters are blended as per Equation 1.  

This clustering scheme is similar in spirit to previously-
described clustering methods that attempt to maximize the 
minimum distance between two points in different clusters 
[5]. However, unlike typical clustering applications, we are 
not ultimately interested in the assignments of individual 
points (songs) to clusters. Rather, the property we are 
interested in – expressive variability of control axes – is a 
property of all points in a cluster (the chord transition 
matrix). Therefore, our clustering method is unique in that 
it maximizes a function of entire clusters, not individual 
points. Consequently, conventional algorithms for 
maximizing more standard metrics do not apply, motivating 
the greedy scheme described above. 

Principal Components Analysis 
Another fully automated approach to implementing the 
control axes uses principal components analysis (PCA), 
instead of using the blending equations of Equation 1. 

To create PCA-based control axes, we compute a chord 
transition probability table (by counting all chord 

transitions) for each individual song in our entire database 
(independent of genre). If there are m chords in our 
dictionary, we “unroll” each m × m transition matrix into a 
vector of length m2 so that each song is represented as a 
vector in m2-dimensional space. Then we perform PCA on 
this set of vectors, and extract the top N principal 
components, where N is the desired number of control axes.  

A new transition matrix can be generated by adding the 
mean transition matrix to a linear combination of the 
principal components. We map the weight of each 
component to an axis of the polygon slider. The axes are 
defined to represent values from  to  (instead of 0 to 
1 as in the cluster-blending approach), where  is the 
standard deviation for component k. Generating a transition 
matrix to use for chord generation is then again a simple 
linear blending of vectors in m2-dimensional space: 
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Here i ranges from 1 to m2, V is the resulting blended vector 
(length m2), wk is the user-defined weight for axis k, Vk is 
the kth principal component derived from the database 
(length m2), and V0 is the mean transition matrix, unrolled 
into a vector (length m2). For PCA we also remove the 
constraint that weights sum to 1. 

We then compute a transition matrix P by simply 
performing the opposite of our “unrolling” procedure, i.e. 
we create an m × m transition matrix by taking elements 
column-wise from V, enforcing a small minimum 
probability ε, and finally normalizing rows to sum to 1. 

EVALUATION: METHODOLOGY 
We conducted a usability study to evaluate our approaches 
to defining control axes for creative exploration of chord 
sequences. We sought to evaluate the relative benefits of 
using genre labels alone to define control axes vs. using 
either our clustering-based or PCA-based approaches. 

Demographics 
10 participants volunteered for a one-hour experiment, and 
received a $10 gift coupon as compensation for their time. 
All participants indicated some familiarity with musical 
chord sequences; this was a recruiting criterion.  

Experimental Procedure 
Eight short, original melodies were recorded by the same 
singer prior to the study. For each melody, participants 
were asked to use the software to generate two chord 
sequences to accompany that melody which were 
subjectively appropriate for the melody but as different as 
possible from each other.  

Participants selected accompaniments by manipulating the 
polygon slider in the software shown in Figure 2. 
Participants were given 5 minutes to use the software for 
each melody, and they could play and stop the song 
(melody and accompaniment) as many times as they chose 



within that period. Two buttons were provided to save the 
two variations for each melody required for the task. 

For each participant, we randomly divided the songs into 
four groups of two songs per group. For each pair of songs, 
the software was configured into one of four experimental 
conditions (see below). Experimental conditions differed 
only in the mechanism by which the polygon slider’s 
control axes were defined. 

Experimental Conditions 
We used four different versions of the program, where axes 
controlled the relevant parameters for the following 
approaches to defining control axes: 

1) Clusters based on manual genre labels (“Genre”) 

2) Genre seeding, AbsDiff clustering (“Genre+AbsDiff”) 

3) PCA 

4) Random seeding, AbsDiff clustering (“Random+ 
AbsDiff”) 

We remind the reader that “Genre+AbsDiff” refers to 
seeding clusters using genre labels, then maximizing 
distances among clusters using the AbsDiff metric. 
“Random+AbsDiff” refers to performing the same 
procedure but with random initial clusters. 

Axes were labeled “anonymously” in all conditions, i.e. 
participants did not how the polygon slider axes were 
derived, and axis names were simple “Axis A”, “Axis B”, 
etc. For consistency in evaluation, we used four axes in 
each condition. Control axes in all four conditions were 
built from the same database: a private collection of 2556 
MIDI files, hand-labeled as one of four types (798 Pop, 
1444 Rock, 97 Country, 217 Beatles). We highlight that 
although there is a significant difference among the sizes of 
our initial genre sets, none of our approaches demand 
consistency in number of songs in each database, nor would 
that be reasonable to expect from any real database of 
labeled music. We also note that although we have referred 
to “genre” throughout this paper for convenience, there is 

no need that initial labels correspond to “genre” in a 
traditional sense, nor is “genre” objectively defined. In 
order to explore a reasonably stylistic range of axis types, 
we included one artist label (“Beatles”) in addition to our 
labels based purely on genre (“pop”, “rock”, “country”).  

Chord labels were extracted from MIDI sequences using the 
method of Sleator and Temperley [8]. 

Data Collection 
After each condition (two songs) was completed, 
participants filled out a condition-specific questionnaire 
eliciting subjective responses to the tool they had just used. 
At the end of the session, they filled out an overall 
questionnaire comparing all four versions of the program. 
The software was instrumented to log all polygon slider 
manipulations and all chord sequences generated. 

EVALUATION: RESULTS 

Questionnaire Responses 
Questionnaire responses confirm that participants felt they 
were able to produce good chord sequences using the 
polygon slider, and strongly preferred the axes generated 
with our semi-automated (Genre+AbsDiff) and fully-
automated (Random+AbsDiff) approaches to those 
generated using genre labels alone. PCA-based axes were 
scored at an intermediate level of preference. This is 
illustrated by responses to both Likert-scale questions and 
explicit preference ranking. 

Likert-scale questions 
After each of the four conditions, participants were 
presented with three statements about the exploratory 
power of the condition they had just completed: 

 “I was able to flexibly explore chord sequences using 
this tool” 

 “I was able to generate interesting variations in chord 
sequences using this tool” 

 “I was able to produce good chord sequences using this 
tool”.  

 

Figure 3: Mean responses to Likert-scale questions by experimental condition (1 = strongly disagree, 5 = strongly agree). The 
Genre+AbsDiff approach was preferred according to all three Likert-scale questions. Error bars indicate 95% confidence. 
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Participants were asked to respond to each question on a 5-
point Likert scale (1 = strongly disagree, 5 = strongly 
agree). Mean responses are presented in Figure 3. 

Differences among mean responses to Likert-scale 
questions were analyzed using t-tests at the 95% 
significance level, with correction for multiple comparisons 
using Holm’s sequential Bonferroni procedure. 

After correction for multiple comparisons, participants 
reported significantly higher agreement with all three 
statements after using the “Genre+AbsDiff” condition than 
the “Genre” condition. In other words, our AbsDiff 
procedure for maximizing variability among axes improved 
participants’ subjective experience relative to the hand-
assigned genre labels.  

Agreement with the statement “I was able to flexibly 
explore chord sequences using this tool” was also 
significantly higher for the randomly-seeded clusters 
enhanced with our AbsDiff maximization procedure than 
for the hand-labeled genre clusters. 

In addition to this relative analysis, we also specifically 
highlight the absolute values of the mean responses to the 
statement “I was able to produce good chord sequences 
with this tool” for the “Genre+AbsDiff” and 
“Random+AbsDiff” conditions: 3.9 in both cases. The 
median response was “agree” (4) for this question in both 
conditions. This establishes that participants felt they could 
produce good chord sequences with this system; i.e. that the 
underlying infrastructure was sufficient for the task. In fact, 
for the Genre+AbsDiff condition, no participants 
“disagreed” or “strongly disagreed” with this statement. 

Preference ranking 
At the end of the session, participants were asked to rate the 
four conditions – identified only as “A”, “B”, “C”, and 
“D” – according to their overall preference. Mean rankings 
(where 1 is “most preferred”) are shown in Figure 4. 

Importantly, no participants chose the basic genre clusters 
as their most-preferred or even second-most-preferred 
condition, supporting our core hypothesis that traditional 
metadata is insufficient to allow compelling genre-specific 
exploration. The variability-maximized genre clusters 
(Genre+AbsDiff) were the most popular choice as “most 
preferred”. 

Differences among preference rankings were analyzed 
using the Kruskal-Wallis nonparametric one-way ANOVA, 
which allowed us to reject the null hypothesis that 
preference rankings were random at a confidence level of 
p < 0.0001. Post-hoc testing with correction for multiple 
comparisons revealed significant differences in the ranking 
of the basic genre clusters and the rankings of the AbsDiff-
based conditions (i.e., participants significantly preferred 
the clusters that had been subjected to our AbsDiff 
variability-maximizing procedure). Furthermore, the 
“Genre+AbsDiff” condition was also significantly preferred 
over the PCA condition. 

Number of Sequences Explored 
Another metric for comparing the four conditions (i.e., the 
four systems for defining control axes) is the total number 
of unique sequences explored during the session for each 
condition. We hypothesize that making more unique 
sequences available will maximize the system’s potential 
for creative exploration. We therefore computed the number 
of total sequences explored for each condition. To avoid 

Figure 4: Mean preference ranking (lower rank is more 
preferred) for each experimental condition. The 
“Genre+AbsDiff” approach to generating control axes was 
the most preferred by participants.  
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Figure 5: Mean numbers of unique sequences explored in 
each condition. Participants explored fewer sequences 
using the purely-genre-based transition matrices than 
using the matrices derived from our automated or semi-
automated approaches. 
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transient states that were not considered by the participant, 
we did not count sequences that were displayed on-screen 
for less than three seconds. Results are shown in Figure 5. 

Differences among numbers of unique sequences explored 
were analyzed using t-tests at the 95% significance level, 
with correction for multiple comparisons using Holm’s 
sequential Bonferroni procedure. 

After correction for multiple comparisons, participants 
explored significantly more unique sequences with all 
automated or semi-automated methods (“Genre”, 
“Genre+AbsDiff”, and PCA) than with the genre-based 
clusters alone (all p < 0.01), confirming our hypothesis that 
using genre-based clusters alone does not capture enough 
musical variation for interesting exploration. 

VISUALIZING CHORD TRANSITIONS 
To give the reader a better sense of the contents of our 
chord transition matrices and the effect of our clustering 
procedure, we present Figures 6 and 7, which depict 
transition matrices for two genres (“pop” and “rock”) 
before and after AbsDiff clustering. 

Figure 6 shows the transition matrices used in the “Genre” 
condition. While some differences are visible (such as the 
higher-probability EBm transition in the “rock” matrix), 
the matrices show a high degree of similarity. 

In contrast, Figure 7 displays the matrices computed after 
“Genre+AbsDiff” clustering. Prominent vertical bands in 
Figure 7 indicate that certain chords in each matrix – chords 
that are characteristic of the original genre clusters – are 
now more likely to be the destination of a transition. For 
example, in the “pop” case, chords characteristic of the 
minor mode are prevalent, including Am, Dm, Em, and E. 
Some study participants (see below) noted that this control 
axis affected the minor feel of the output. 

DISCUSSION 

Summary of Results 
Our results show that providing a series of automatically-
defined control axes provides a useful mechanism for 
exploring the high-dimensional space of chord sequences, 
and that even four axes was enough to allow users a broad 
exploration of this space.  

While one might expect that defining control axes based 
only on genre labels would give an intuitive mechanism for 
exploration, our results show that a more sophisticated 
approach is required to create axes that have interesting 
exploratory behaviors: we specifically show that using a 
clustering mechanism to emphasize differences among 
genres produces a more powerful exploratory tool. In fact, 
even a clustering procedure that begins with random seeds 
yields a more powerful exploratory tool than axes based 
purely on genre, according to participant responses. 

Inferring Axis Definitions 
It is interesting to ask whether participants were able to 
form intuitions for what the axes meant (we remind the 

reader that in all conditions, the axes were labeled with 
“anonymous” strings: “Axis A”, etc.). To address this 
question, we solicited additional data in each of the four 
condition-specific questionnaires. For each condition, 
participants were asked: “Please assign 1-2 word names to 
each axis on the control”. Responses were free-text. 

(a)

(b)

Figure 6: Example transition matrices, before AbsDiff 
clustering: (a) pop, (b) rock. These matrices correspond to 
the “genre” condition; i.e. they represent transition 
probabilities extracted from a hand-labeled database, 
without AbsDiff clustering. Red and blue indicate high- 
and low-probability transitions, respectively. Rows are 
normalized (a transition matrix uses conditional, rather 
than joint, probabilities), so color does not reflect the 
overall probability of an individual chord, but rows and 
columns are sorted by overall chord frequency in the 
database, i.e. “C” was the most common chord, followed 
by “A Minor”, etc. Only the 15 most common chords are 
shown here. All songs are transposed to the key of “C” 
before analysis, so this figure is independent of key. 
Diagonals (self-transitions) are not well-defined in chord 
sequences, so they are set to zero for this visualization. 
This figure is presented to contrast with the post-clustering 
results in Figure 7, and to summarize the data available in 
our online repository. 



The “Genre” condition (using genre labels directly) not 
only failed to elicit genre-specific responses, but generally 
failed to elicit responses at all: i.e., the most common 
response in this condition was either to leave the question 
blank or a null response such as “They all pretty much do 
nothing”. However, the other conditions – based on 
clustering or PCA – resulted in some common responses, 
indicating that participants developed their own intuitions 
for how to navigate chord transition space using the control. 
Some examples responses highlight the type of intuitions 
respondents developed, which ranged from advanced 
music-theoretic concepts (such as “Dorian mode”) to very 
abstract descriptions (such as “dark”): 

Genre: 

 Axis A (Pop): “more of an ending sound”, “relative 
minor/major”, “minor” 

 Axis B (Beatles): “1st repetition sound – expected more 
after” 

 Axis C (Rock): “weirdness”, “more of an ending 
sound”, “variation/consistency” 

 Axis D (Country): “1st repetition sound – expected 
more after”, “major” 

Genre + AbsDiff: 

 Axis A (Pop): “blandness”, “relative minor”, 
“influences the minor feel of the song” 

 Axis B (Beatles): “# of iiIV’s”, “Dorian mode”, 
“tension” 

 Axis C (Rock): “minor”, “adds AABA structure” 
 Axis D (Country): “changed last chord”, “adds some 

minor”, “atonality (chords would be CCm)” 

PCA: 

 Axis A (PC1): “mood progression”, “changes 
variation”, “variation/repetition” 

 Axis B (PC2): “more minors”, “determine which note 
to harmonize within the measure” 

 Axis C (PC3): “complexity”, “mood” 
 Axis D (PC4): “minor” 

Random + AbsDiff: 

 Axis A: “complexity”, “dark”, “major vs. minor”, 
“sharp minor chords”, “changes key”, minor chords 

 Axis B: “changes chord sequence”, “traditional”, “mix 
of major/minor” 

 Axis C: “minor”, “sharp minor chords”, “major vs. 
minor”, “traditional/happy”, “major chords” 

 Axis D: “amount of variation in chords”, “not-in-key 
chords”, “weird”, “modulate” 

The breadth of these responses demonstrates that given 
abstract axes for creative exploration, users do build 
intuitions for those axes, even when the axes are defined by 
fairly abstract mechanisms such as PCA. 

The most common theme of responses in all conditions 
involved the notion of major and minor chords. 18 of the 
responses conjectured that an axis controlled something 

related to the distribution of major vs. minor chords in the 
output. This may indicate that these are such strong 
preconceptions of the dimensionality of chord sequences 
that participants specifically sought to assign at least one 
axis to “major-ness”, or it may indicate that these concepts 
are in fact identified by the clustering procedure and 
extracted as meaningful axes. The present work is primarily 
concerned with the process of defining and evaluating 
effective control axes, but future work will explore the 
statistical basis of these axes and their relationship to 
music-theoretic constructs like “major” and “minor”. 

Observations of participants during the study indicated 
some frustration with the “PCA” condition. Many 
participants felt that the sliders were “too sensitive’ in this 
case; deviations from the mean easily seemed to lead to 

(a)

(b)

Figure 7: Example transition matrices, after AbsDiff 
clustering: (a) pop, (b) rock. These matrices correspond to 
the “Genre+AbsDiff” condition in our experiment. See 
Figure 6 for a detailed description of the figure coloring 
and layout. In comparison to Figure 6, we see that AbsDiff 
clustering has made the two matrices more different, and 
– particularly in the pop matrix – has enhanced specific 
characteristic chords, manifested here as vertical banding. 



unpredictable parts of transition matrix space, suggesting 
that clustering leads to more intuitive axes. 

Free responses 
When asked for additional comments or suggestions in free-
response questions throughout the survey, may participants 
indicated the desire to identify which chord to change or 
which chords to hold fixed while varying the parameters; 
e.g. “I’d like to be able to lock in chords for most of the 
song, but just tweak a few measures”, or “I’d like to be able 
to control phrases more independently”. Other interesting 
responses included: 

 “I like the variety of progressions that came out of 
condition 2 [Genre+AbsDiff].” 

 “The axes in condition 3 [PCA] seemed especially 
sensitive, and also very different in action from the 
other variations.” 

When asked the free-response question “Would the ability 
to explore chord sequences with a control similar to this one 
be useful to you?” participants were generally positive: 

 “Yes, possibly… I’d be interested in something [that 
could] suggest tonal possibilities I hadn’t thought of.” 

 “Yes. It’s too easy to fall into patterns and 
predictability.” 

 “Yes, but felt limited in that all changes seemed to 
affect entire song.” 

 “Yes… I can see this being very helpful for filling out 
chords for a jazz tune.” 

 “Definitely.” 
 “Possibly—I’d like control over key and frequency of 

change (not just one chord per measure)” 
 Yes. Gives interesting new ideas for chord 

progressions.” 

Some participants were frustrated, however, at not knowing 
what the axes actually did, due to the blind study. 

DATA REPOSITORY 
In order to facilitate future systems leveraging these 
analyses, future musicological analysis of chords in popular 
music, and replication of our results, we have made our 
transition matrices for all four experimental conditions 
available at: 

http://research.microsoft.com/users/dan/chords 

FUTURE WORK 
Our fully-automatic approaches to axis definition (PCA, 
Random+AbsDiff) do not require manual labeling of 
training data, but also do not naturally allow end-user 
customization. Our semi-automatic approaches, however, 
generalize naturally to a scenario where an end-user directs 
the axis-definition process itself as part of the creative 
process. Future work might include, for example, allowing 
users to define axes by specifying examples that induce 
specific emotions, examples from their favorite artists, etc. 

We are also quite interested in applying this work to 
creative exploration of melodies, in addition to chord 
sequences. Previous work on automatic melody generation 
has also leveraged Hidden Markov Models, so we hope to 
explore applying of our approaches to defining HMM 
parameters for melody generation.  

We are also very interested in applying the principle of 
parameterized exploration to other creative disciplines. 
Future work will include engaging experts from other 
creative domains – such as painting and creative writing – 
to more systematically identify exploratory processes that 
might be appropriate for parameterization. 
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