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Abstract

Emergent phenomena of interacting quantum many-body systems arguably pose
some of the greatest challenges to modern theoretical physics. Many of these
systems are characterized by drastic changes in their properties as they are driven
into a regime where quantum effects and interactions become relevant. Examples
are the fractional quantum Hall effect and high-temperature superconductors, to
name just two. New theoretical tools are necessary to study such systems, as
even simple model Hamiltonians are not fully understood after decades of intense
research. Numerical simulations are emerging as an indispensable tool alongside
more traditional analytic approaches and have seen immense progress in recent
years.

In this thesis, we study tensor network states, a new class of numerical methods
that have been developed in recent years drawing on insights from quantum infor-
mation theory. Combining renormalization group methods with knowledge about
the entanglement structure of ground states of quantum systems, tensor network
states aim to efficiently describe ground states of strongly correlated quantum
systems.

Center stage is taken by the projected entangled-pair states. This ansatz for
two-dimensional systems is discussed in detail and its capabilities are assessed by
comparison to established methods and by exploring a frustrated system. We then
develop a general formalism to exploit Abelian symmetries in a tensor network
algorithm and demonstrate its application to projected entangled-pair states.

A large part of this thesis is devoted to the discussion of a class of supersym-
metric models for interacting lattice fermions. After introducing the concept of
supersymmetry in quantum mechanics and an extensive overview of conformal field
theory and its relation to numerical simulations, we study the critical theory of the
supersymmetric model on the square ladder. We use two tensor network state al-
gorithms, the density-matrix renormalization group and multi-scale entanglement
renormalization along with exact diagonalization to explore this challenging sys-
tem.

In the final two chapters, we discuss two applications of tensor network states,
namely simulations of the SU(3) Heisenberg model in two dimensions using two
different tensor network state algorithms with the goal of illuminating the nature of
its ground state, and the indistinguishability, a measure to detect phase transitions
and classify wave functions which is particularly suitable for calculations based on
tensor network states.





Zusammenfassung

Das Verhalten wechselwirkender Quantenvielteilchensysteme stellt eine der größ-
ten Herausforderungen an die moderne theoretische Physik dar. In Bereichen, in
denen Quanteneffekte sowie Wechselwirkungen relevant werden, ändern sich die
makroskopischen Eigenschaften solcher Systeme oft drastisch. Zwei Beispiele sind
der fraktionale Quanten-Hall-Effekt sowie Hochtemperatur-Supraleitung. Neue
theoretische Zugänge sind nötig, um diese Systeme zu verstehen, da selbst einfache
Modellsysteme auch nach Jahrzehnten intensiver Forschung nicht vollständig ver-
standen sind. Numerische Simulationen stellen sich zunehmend als unverzichtbares
Verfahren neben den traditionellen analytischen Zugängen heraus, insbesondere da
in den letzten Jahren rapide Fortschritte in diesen Methoden erreicht wurden.

In der vorliegenden Arbeit werden Tensornetzwerkzustände diskutiert, welche
in den letzten Jahren insbesondere aus der Quanteninformationstheorie heraus
entstanden sind. In diesen numerischen Verfahren werden Renormierungsgruppen-
methoden mit Einsichten in die Verschränkung in Quantensystemen kombiniert,
um effiziente Ansatzzustände für die Grundzustände stark korrelierter Quanten-
systeme zu erhalten.

Im Mittelpunkt der Arbeit stehen die sogenannten Projected Entangled-Pair
States (PEPS). Dieser Ansatz für zweidimensionale Systeme wird detailliert vorge-
stellt, und anhand von Vergleichen mit etablierten Verfahren werden Genauigkeit
und Anwendbarkeit eingeschätzt. Weiterhin entwickeln wir einen sehr allgemeinen
Formalismus, um abelsche Symmetrien in Tensornetzwerken zu verwenden. Als
Anwendungsbeispiel wird der Formalismus in PEPS eingeführt.

Einen weiteren Schwerpunkt bildet eine Klasse von supersymmetrischen Mod-
ellen für wechselwirkende Gitterfermionen. Zunächst werden Supersymmetrie in
nicht-relativistischer Quantenmechanik sowie konforme Feldtheorie eingeführt, wo-
bei besonders auf die Berührungspunkte zwischen numerischen Rechnungen und
konformer Feldtheorie eingegangen wird. Zur Untersuchung der kritischen Theorie
des Modells auf einem Leitergitter werden zwei Tensornetzwerkmethoden, Matrix-
Product States (MPS) und Multi-Scale Entanglement Renormalization Ansatz
(MERA), mit exakter Diagonalisierung kombiniert.

In den letzten Kapiteln werden zwei Anwendungen von Tensornetzwerkzu-
ständen diskutiert: zum einen Simulationen des SU(3)-Heisenberg-Modells in zwei
Dimensionen, dessen Grundzustand durch die Kombination zweier Tensornetzw-
erkmethoden charakterisiert wird, und zum anderen die Ununterscheidbarkeit,
welche zur Identifizierung von Phasenübergängen sowie zur Klassifizierung von
Wellenfunktionen dient.
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Chapter 1

Introduction

There are many examples of systems that undergo a drastic change in macroscopic
properties due to effects of low temperature and interactions. A prime example is
the fractional Quantum Hall effect discovered in 1982 [10]. The influence of this
remarkable discovery on condensed matter theory can hardly be overestimated, as
it has extended the traditional understanding of phase transitions based on Lan-
dau’s symmetry breaking theory and lead to the development of a completely new
class of theories evolving around topological order [11]. Interestingly, numerical
simulations were an essential part already of the first theoretical developments in
this area [12].

Another discovery of arguably even greater influence is high-Tc superconduc-
tivity in cuprates [13]. Effective models for cuprate superconductors, like the
Hubbard model, were proposed very quickly after the experimental discovery [14]
– but to this date, it is neither clear whether these models are appropriate, nor
has their phase diagram been fully understood. Nonetheless, their investigation
has triggered many developments in computational and analytical methods for
interacting fermion systems.

These are just two out of a growing body of problems where conventional ap-
proaches such as effective single-particle theories fail. Consequently, numerical
approaches are receiving more and more attention and have seen rapid progress
in recent years. Examples include path-integral quantum Monte Carlo methods,
which are an essential part in understanding experiments performed on cold atomic
gases, time-dependent density matrix renormalization group calculations, which
are central to understanding thermalization in open quantum systems, and dy-
namical mean-field theory, which, in particular when used in conjunction with
density functional theory, is starting to play a central role in materials science.

In this thesis, we explore a new class of numerical methods, tensor networks
states, which are a recent development that draws from renormalization group
theory and quantum information theory to develop efficient ansatz states for the

1



1.1 Some insights from quantum information theory

ground states of strongly correlated quantum systems in one and higher dimen-
sions. One example of a tensor network state algorithm, the density matrix renor-
malization group (DMRG), is a well-established method for studying the ground
states of one-dimensional and quasi-one-dimensional systems. Since it was first
developed by White in 1992 [15], it has been applied in many different contexts
and has seen many extensions, for example to time evolution and thermal systems.
DMRG will serve as starting point of our discussion of tensor network states.

The first proposal of a tensor network state to receive widespread attention were
projected entangled-pair states [16]. Many other tensor network states have been
proposed since, for example tree tensor networks [17], multi-scale entanglement
renormalization [18, 19], string-bond states [20], scale-renormalized matrix product
states [21], entangled plaquette states [22], correlator product states [23], graph-
enhanced tensor network states [24], concatenated tensor network states [25], and
plaquette renormalized states [26].

While the theoretical foundations for DMRG are well-understood, this is not
the case in higher dimensions. We therefore have to resort to numerical calculations
to confirm the validity of these approaches. A first focus of this thesis is therefore
to assess the accuracy of projected entangled-pair states by comparison against
established methods for a number of systems. Another important aspect of this
thesis are applications of tensor network states. A large part of this work is devoted
to a class of interacting fermion models on one- and quasi-one-dimensional lattices,
which are studied using two tensor network states, the multi-scale entanglement
renormalization ansatz and matrix-product states.

A detailed overview of this thesis is given in Section 1.3. In the following sec-
tion, we will illustrate some concepts of quantum information theory and renormal-
ization group theory that will naturally lead to matrix-product states, the simplest
example of a tensor network state.

1.1 Some insights from quantum information the-

ory

A plethora of numerical methods exist for the simulation of quantum many-body
systems and it is beyond the scope of this introduction to list them. To this date,
however, no method has been found that allows the numerically exact1 simula-
tion of generic quantum many-body systems with a classical computer, where the
amount of resources needed scales only with a polynomial of the number of degrees
of freedom. All known methods are either based on some approximation, limited

1By this we mean that errors can in principle be reduced to the numerical accuracy of floating-
point calculations on a computer.
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Introduction

to certain classes of problems or become prohibitively expensive for a large number
of degrees of freedom.

Understanding the origin of this limitation, and deciding whether it is of funda-
mental nature or just a result of our inability to devise a proper method, is clearly
an important problem. Advances in quantum information theory have shed some
light on this question; for a recent review article, see Ref. [27]. Some of these
ideas have been influential to the development of tensor network states as effective
representations of quantum many-body systems.

In this section, we will first survey the difficulties associated with representing
the state of a quantum system on a classical computer. Some methods, such as
Path Integral Quantum Monte Carlo, do not even attempt to represent the state
(or possibly density matrix) of a system, but instead aim to calculate only the
expectation values of specific observables by sampling, e.g., the partition function
of the system. While being free of systematic errors for some systems, these
methods become prohibitively expensive for a wide range of systems due to the
infamous sign problem. The origin of this limitation is not related in an obvious
way to the difficulties of representing states of quantum systems discussed below.
In fact, it has been shown to be intimately related to difficulties also present in the
simulation of classical systems [28] — in these systems, representing the ground
state is trivial, but finding it for a given Hamiltonian is an unsolved problem.

1.1.1 Exponential scaling of naive approaches

The state of a classical system can always be stored with an amount of memory
that is proportional to the number of degrees of freedom of that system, although
the number of possible states may be exponentially large. Consider, for example,
a classical Ising system on a lattice, where with each site i of the lattice, a spin
variable σi ∈ {0, 1} is associated. The number of possible states for this system
is 2N , where N is the total number of sites, but to represent the state of such a
system on a classical computer, only N bits have to be stored.

Consider now the case of a quantum Ising model on the same lattice. It is
the nature of a quantum system that it can be in a superposition of states, that
is, its state can be the linear combination of any number of the classical states.
Therefore, to fully describe a quantum state, the coefficients for all 2N classical
states have to be stored. The space of such states forms a Hilbert space, with the
states of the classical Ising system as one possible choice of basis.

The most straightforward approach to numerically solve a quantum system is to
fully enumerate the basis of the system, express the Hamiltonian of the system in
this basis, and diagonalize it numerically. While being the only numerical method
that can always be applied, it is of course limited to a very small number of degrees
of freedom in the system, so that gaining insights into the behavior of the system

3



1.1 Some insights from quantum information theory

in the thermodynamic limit is extremely difficult.

1.1.2 Ground state entanglement and area laws

An important question is whether the ground state of a realistic Hamiltonian will
actually explore all of its exponentially large Hilbert space — in other words, how
far away from a classical state will such a ground state be? A common measure
to quantify the ”quantumness” of a system is the entanglement entropy. Consider
a system, C, which is split into two subsystems A,B, such that A ∪ B = C. Let
the state of the full system be described by a pure state |ψ〉. We can form reduced
density matrices for each subsystem,

ρA = TrB|ψ〉〈ψ| (1.1)

ρB = TrA|ψ〉〈ψ|. (1.2)

These encode the full information about each subsystem, in the sense that the
expectation value of an operator OA (OB) that has support only in A (B) can
be calculated as 〈OA〉 = TrρAOA (〈OB〉 = TrρBOB). It can be shown that these
reduced density matrices have the same spectrum λα, and that the state of the full
system can be written as

|ψ〉 =
∑
α

λα|uα〉|vα〉, (1.3)

where |uα〉 and |vα〉 are the eigenvectors of ρA and ρB, respectively. This is known
as the Schmidt decomposition.

If the state of the full system is a classical state, only one of the coefficients λα
will be nonvanishing. In the other limit, if all the basis states contribute equally to
the wavefunction of the whole system, the number of relevant coefficients will grow
exponentially with the size of the subsystems. To quantify where a given state is
found in between these two extremal cases, the entanglement entropy, given by

S1 = −
∑
α

λα log λα (1.4)

is used. Evidently, it is 0 for a classical state and logN in the case where all
N possible basis state give an equal contribution. The maximum entropy that a
system can have therefore grows with the system’s volume, as one would expect
from the analogy to the (extensive) thermodynamic entropy.

As we will see below, most physical systems do not exploit the maximum
amount of entropy; instead, the entropy is bounded by a constant or grows much
weaker than the volume. Studying how the entanglement entropy grows with
system size may give an intuition about how much of the Hilbert space is exploited,
and in some cases establish a connection to the simulability of the system. This

4



Introduction

field has received a significant amount of attention in recent years. A good overview
is given in Ref. [29]; in the following, we will first discuss some key results about
the entanglement entropy and then discuss their relation to simulability in the
next section.

One dimension

In one dimension, several strong results for the scaling of entanglement entropy
have lead to a classification of physically reasonable systems into two scenarios,
namely i) gapless systems where the entropy diverges with the system size and ii)
gapped systems where the entropy is bounded by a constant. Few exceptions are
known; for an example of a local Hamiltonian that has a volume law, see Ref. [30].
This classification was first obtained by Vidal et al [31], who numerically studied
a one-dimensional system close to a critical point and found that the entropy as a
function of system size saturates away from criticality, while diverging at criticality.
More rigorously, Hastings [32] has shown that the entropy in the ground state of
a local Hamiltonian in one dimension has a bound that is related only to the
correlation length and not the size of the system.

This saturation of the entanglement entropy is commonly referred to as area law
or boundary law; the origin of this terminology will become clear when considering
higher-dimensional systems. The existence of such an area law for a huge class
of systems is at the heart of the density matrix renormalization group algorithm,
which will be studied in some detail in this thesis.

The divergence of the entanglement entropy for critical one-dimensional sys-
tems can be related to results from conformal field theory [33, 34]. These calcu-
lations show that asymptotically, the entropy in the center of an open spin chain
scales as

S(L) =
c

6
logL. (1.5)

Here, c denotes the central charge of the conformal field theory that describes the
critical point. As we will see in Chapter 6, this formula is extremely useful in
determining the central charge from entropies for finite-size systems.

Higher dimensions

In higher dimensions, the situation is more complicated. The question that is
commonly asked is how the entropy between two subsystems scales with the area
of the boundary and the volume of the two blocks. For an illustration, consider
Fig. 1.1: If an area law or boundary law is present, the entanglement entropy should
be purely a function of L — as opposed to a scaling in L and W , as one might
naively expect.

5



1.1 Some insights from quantum information theory

W

L

Figure 1.1: In this example of a two-dimensional system, an area law would be
present if S ∼ L. Naively, one could expect a scaling S ∼ L ·W .

The existence of an area law for all gapped two-dimensional systems has been
conjectured, but a general proof, like the one given by Hastings for one-dimensional
systems, has not been found. Furthermore, the inverse, i.e. that a gapless system
will in general violate the area law, is not true.

Strong results exist for non-critical harmonic (i.e., bosonic systems whose in-
teractions are quadratic in canonical coordinates) lattice systems [35], where an
area law holds. Fermions present a more complicated case: Wolf [36] was able to
relate the presence of an area law in quasi-free (quadratic) fermionic systems to
the volume of the Fermi surface. If the Fermi surface has a finite volume,

S ∼ L logL (1.6)

is found, whereas an area law holds in the cases where the Fermi surface has
vanishing volume. For free fermions, the existence of an area law therefore depends
on the lattice: on a two-dimensional square lattice, the area law would be violated,
while for the honeycomb lattice, an area law holds.

For more general interactions, the case is still unclear. The case of gapless anti-
ferromagnetic spin systems, such as the paradigmatic spin-1

2
Heisenberg model, has

been under debate recently. While these systems can be studied to high accuracy
using Monte Carlo simulations, the entanglement entropy is difficult to extract
from such simulations. The valence bond entanglement entropy was put forward
in Ref. [37] as a quantity that could be extracted from Quantum Monte Carlo
simulations and that should give some insight into the behavior or the standard
entanglement entropy; based on this, Ref. [38] argued that gapless antiferromag-
nets show a logarithmic correction to the area law, similar to the case of fermions

6



Introduction

with a finite Fermi surface. More recent results [39], which employ both Quantum
Monte Carlo and the Density Matrix Renormalization Group algorithm (which
allows a direct calculation of the entanglement entropy) challenge this result and
strongly indicate the presence of an area law without corrections.

1.1.3 Hardness results

In light of the above discussions, one realizes that the states which are actually
realized as ground states of local Hamiltonians explore only a small subset of the
full Hilbert space, namely that of low-entanglement states, which in some sense
are close to classical states. This may lead to some optimism about the possibility
to represent such states on a classical computer: maybe it is not as hopeless as the
naive picture of an exponentially growing Hilbert space suggests?

Obtaining rigorous statements about this has been a challenging topic in quan-
tum information in the last few years and so far, only the situation in one dimension
has been resolved to a certain extent. It was generally believed that for gapped one-
dimensional states, a good approximation in terms of a so-called matrix-product
state, which would have only polynomially many parameters, can be found. A
recent proof showed that this holds for states that have an area law for the von
Neumann entropy and for certain Renyi entropies [40]. This is a slightly tighter
condition, which however is met for many systems of interest.

This result has strong implications for the simulation of one-dimensional quan-
tum systems: it proves the ground states of gapped one-dimensional systems can
be efficiently represented on a classical computer! For these systems, the exponen-
tial amount of memory required to store the state using naive approaches is merely
an artefact of working in the wrong representation of the state – and a better rep-
resentation is known, the matrix-product state, which will be discussed in the next
section. Of course, we have only discussed the question of representing the ground
state of such a system – the question of whether the optimal state within the class
of matrix-product states can be found must be answered separately [41, 42]. One
of the big open questions is how to obtain similar results in higher dimensions.

There exist also a number of systems which have been proven to be hard even
for quantum computers; more precisely, finding their ground state has been shown
to be hard for Quantum Merlin Arthur (QMA). QMA is an important complex-
ity class in the field of quantum complexity and can be regarded as quantum
generalization of the well-known NP complexity class.2 After a seminal work by

2Some colloquial definitions: NP is the class of all problems where a potential solution can be
verified in polynomial time. MA is the class of problems where a proper solution will be accepted
in polynomial time with probability 2/3, and a wrong solution will be accepted with probability
at most 1/3. QMA is the extension of this to solutions given as quantum states, and verifiers
that are quantum circuits that run in polynomial time. Being complete for one of these classes
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Kitaev [43], hardness has been shown for a number of systems. Physically relevant
examples include fermions with Coulomb interaction [44] and local spin Hamil-
tonians [45, 46]3; recently, it has been shown even for a translationally invariant
one-dimensional system [47]. For these systems, we cannot expect to find an effi-
cient classical algorithm to solve all instances; nevertheless, it may be possible to
obtain reasonable and generic approximation schemes for most instances.

1.2 Renormalization group

The Density Matrix Renormalization Group Method (DMRG) was invented in
1992 by Steve White [15]. At the time, the relation to entanglement was not real-
ized; instead, it was mainly regarded as an improvement over Wilson’s Numerical
Renormalization Group scheme [48]. The problems encountered in this method
were described by White and Noack in the same year [49]; a pedagogical overview
is also given in Ref. [50].

Traditionally, renormalization group (RG) has been applied in the context of
critical systems. The most intriguing feature of such systems is universality, i.e.
that the behavior of macroscopic parameters of the system can be characterized
by a universality class, which encompasses many different microscopic realizations.
Within a certain range of parameters, the microscopic details of the Hamiltonian do
not affect the behavior of macroscopic observables near the critical point. Renor-
malization group has been the first method that allowed a quantitative explanation
of the phenomenon of universality.

While there are many different RG schemes, they have in common that local
degrees of freedom are being integrated over to obtain an effective description in
terms of fewer variables. Usually, this RG transformation is iterated to obtain a
description of macroscopic features of the system. In a critical system, there is
no characteristic length scale; in particular, fluctuations occur on all length scales.
It can be expected that after integrating over the microscopic details of such a
system by means of an RG transformation, further iterations of the RG procedure
will not change the description of the system fundamentally — the system can be
described by a fixed point of the RG transformation. Different universality classes
correspond to different fixed points of the RG transformation.

At the heart of such a renormalization group procedure is the definition of
the RG transformation which maps the original system to a system with fewer
degrees of freedom. Examples include Wilson’s real-space renormalization group
procedure, which became famous by its successful application to the Kondo prob-
lem, and the Kadanoff block spin transformation, which can be applied to the

means that if that problem can be solved, all other problems in the class can be solved.
3Note that the notion of locality in Ref. [45] is not the geometric locality one would expect.
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An

A†n

=

Figure 1.2: Illustration of an isometry An : HA ⊗HB → H̃ acting on two Hilbert
spaces. These isometries are the building block for the RG procedure described in
Section 1.2 and shown in Fig. 1.3.

two-dimensional (classical) Ising model; both are discussed in detail in Ref. [48].

1.2.1 Real-space renormalization

In the following, we will rephrase real-space renormalization for a finite chain in
terms of a simple tensor network state, which will lead to the definition of the
class of matrix-product states. We denote the Hilbert space of site i of our original
lattice as Hi; for simplicity, we will assume that dimHi = d for all i. The Hilbert
space of our full system is H =

⊗L
i=1Hi.

We can write a generic transformation acting on a set of degrees of freedom on
the lattice as a unitary transformation A between two Hilbert spaces, A : H → H̃.
For a useful RG procedure, we desire dim H̃ < dimH. In this case, the unitary
transformation becomes an isometric transformation, that is a n×m matrix with
orthogonal rows, where n < m; the defining property is that AA† = 1 (see also
Fig. 1.2). To specify the RG procedure, we need to decide which part of the system
we want this isometric transformation to act on in each step. We choose to have
an isometry acting on the two left-most sites of a chain, reducing them to a single
effective site:

A1 : H1 ⊗H2 → H1
1. (1.7)

After the RG step, this effective site should have a Hilbert space with a dimension
that meets the condition

dimH1
1 ≤ dim (H1 ⊗H2) . (1.8)

The Hilbert space of the effective system after one RG step is H1
1 ⊗H3 ⊗ . . .. We

iterate this procedure with isometries

An : Hn−1
1 ⊗Hn+1 → Hn

1 (1.9)

Iteratively applying this to a chain of length L reduces the system to a single
effective site after L−1 RG steps. By restricting the transformations to isometries,
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H1 H2 H3 H4 H5 H6

A1

A2

A3

A4

A5

Figure 1.3: A tensor network for the renormalization of a chain of length L = 6.
The orange circles indicate physical sites of the system, which carry Hilbert spaces
Hi. The blue circles denote isometries that perform the RG transformations.
Taken as an ansatz state, this is equivalent to a matrix-product state.

we have enforced normalization and orthogonality of the state. The procedure is
graphically represented in Fig. 1.3.

1.2.2 Choosing the RG transformation

We are left with the task of identifying appropriate isometries An. A possi-
ble prescription is to take An as the projection onto the lowest-energy states in
Hn−1

1 ⊗Hn+1; this requires the (numerical) diagonalization of the Hamiltonian in
this Hilbert space, which should be feasible if the Hilbert space dimension of the
effective sites is kept within reasonable bounds. This procedure is in fact equiv-
alent to Wilson’s renormalization group procedure, which yields excellent results
in specific cases, such as the Kondo impurity problem. However, for many other
lattice systems, even including a single free particle, it fails to reach sufficient
accuracy.

As shown by White in 1992 [15], a much better approximation to the ground
state is obtained if instead of the lowest-energy states, the states with the most
important contribution to the reduced density matrix are kept. Some knowledge
about the rest of the system is required to determine these states; the iterative
procedure used to solve this is a key part of the Density Matrix Renormalization
Group. We postpone the discussion of this procedure to a later point; now, we
focus on understanding the reasons why this will lead to a good approximation.

Let us describe the RG transformation suggested by White in more detail.
Following the notation of Section 1.1.2, we refer to the two leftmost sites of our
(possibly renormalized) lattice as A and the rest of the system as B. Consider the
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eigenvalue decomposition of ρA,

ρA =
N∑
α=1

λα|uα〉〈uα|, (1.10)

where the λα are sorted such that λα ≥ λα+1, and N = dimHA. Let us take as
isometry A the projection onto the M eigenvectors of the reduced density matrix
with the largest eigenvalues,

A =
M∑
α

|α〉〈uα| =


〈u1|
〈u2|

...
〈uM |

 (1.11)

where the |α〉 are canonical basis vectors in a Hilbert space of dimension M , which
will be smaller than the dimension of the Hilbert space of the subsystem A. Due
to orthonormality of the eigenvectors of ρA, this is an isometry.

Consider now the expectation value of an operator O, which has support only
in A:

〈O〉 = TrρAO =
N∑
α=1

λα〈uα|O|uα〉. (1.12)

Performing the RG transformation ρ̃A = AρAA
†, Õ = AOA†, we obtain

〈Õ〉 ≈
M∑
α=1

λα〈uα|O|uα〉. (1.13)

Note that the sum now runs only up to M ≤ N . Assuming that |〈uα|O|uα〉| ≤ Ō,
this implies that

|〈O〉 − 〈Õ〉| ≤ Ō

N∑
α=M+1

λα ∼ O
(

N∑
α=M+1

λα

)
. (1.14)

The error made by choosing the isometry A is therefore related to the sum of the
discarded eigenvalues of ρA.

This establishes an important relation to the entanglement entropy: the maxi-
mally entangled state corresponds to the state where all eigenvalues of the reduced
density matrices are equal – which means that the basis cannot be truncated with-
out making a significant error. A weakly entangled state, on the other hand, is
characterized by a single large eigenvalue corresponding to the mean-field solution
and a quick decay of the spectrum below this state; we can therefore truncate at
a relatively small value of M without sacrificing too much accuracy.
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1.3 Outline

In the first part of this thesis, tensor network states are introduced in some de-
tail. Chapter 2 explains algorithms based on matrix-product states (MPS), pro-
jected entangled-pair states (PEPS) and multi-scale entanglement renormalization
(MERA); furthermore, fermionization of a tensor network and complete-graph ten-
sor network states (CGTNS) are discussed. In Chapter 3, a general formalism for
symmetric tensor networks is introduced. Finally, Chapter 4 discusses some as-
pects of the implementation of tensor network states with C++.

A central part of this thesis is contained in Chapter 5, where the accuracy
of projected entangled-pair states is systematically assessed in comparison to es-
tablished methods. For a number of non-frustrated spin systems, we compare
the results of the iPEPS algorithm to Quantum Monte Carlo calculations. We
then proceed to study a frustrated system which cannot be simulated with Quan-
tum Monte Carlo methods. Finally, we confirm the validity of our approach for
symmetric tensor networks by analyzing the accuracy of a symmetric version of
iPEPS.

Another important part of this thesis is the discussion of a class of supersym-
metric models for interacting lattice fermions in Chapter 6. We first introduce the
concept of supersymmetry in non-relativistic quantum mechanics. Furthermore,
we discuss in some detail conformal field theory and its relation to critical one-
dimensional quantum systems, where we emphasize in particular the connections
to numerical results on finite lattices and with numerical renormalization group
approaches such as the MERA. Results for the model on the chain and the square
ladder are discussed. In the case of the chain, we obtain an expression for the
corrections to the entropy due to open boundary conditions. In the case of the
square ladder, the critical theory is investigated using several different approaches.

In Chapter 7, the SU(3) Heisenberg model in two dimensions is studied using
projected entangled-pair states and the density matrix renormalization group. We
discuss the nature of the ground state of the model, which is found to break
SU(3) symmetry and form a three-sublattice order for the case of the square and
triangular lattice. We estimate the local moment using both techniques.

In Chapter 8, we put forward a measure called indistinguishability as simple
way to detect phase transitions and identify ansatz wavefunctions without recourse
to explicit order parameters. The approach is tested for two one-dimensional spin
systems, the Ising model in transverse field and the spin-1 bilinear-biquadratic
chain, as well as a model of topological order, the Toric code.
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Chapter 2

Tensor network states

Tensor network states aim to generalize matrix-product states in various ways.
The most important goal is to find states that are directly applicable to two-
dimensional systems, in the sense that two-dimensional systems that obey an area
law can be described by a number of parameters that grows at most polynomially
in the system size. Other possible extensions include better descriptions for critical
systems, which enables a very precise relation to fixed points of RG procedures,
or the description of systems which completely lack geometrical structure, which
are found for example in quantum chemistry.

In this chapter, we will discuss, in addition to a more detailed discussion of
matrix-product states, examples for ansatz states that aim to meet one or more of
the above goals. Much of this thesis will be devoted to projected-entangled-pair
states (PEPS), which are the straightforward extension of MPSs to more general
graphs or lattices. Another important class of states we discuss is the multi-
scale entanglement renormalization ansatz (MERA), which can be advantageous
in both one and two dimensions. We then discuss how to apply tensor network state
algorithms to fermionic systems. Finally, we will discuss the complete-graph tensor
network state, which is appropriate for problems lacking geometric structure.

To simplify the following discussion, we will explain some notational and foun-
dational issues at this point. Our discussion will concern quantum systems on a
lattice, where on each site a physical system with a Hilbert space Hp of dimension
d lives – the physical Hilbert space. We will usually use |σi〉 to denote the basis
of the physical Hilbert space on site i; for now, the degrees of freedom will be
bosonic. The full Hilbert space is usually the tensor product of the physical spaces
on each site; we will see examples where this is not the case in Chapter 6.

A tensor network state is a representation of the coefficients c(σ1, σ2, . . .) of the
full wave function,

|ψ〉 =
∑

c(σ1, σ2, . . .)|σ1〉|σ2〉 . . . (2.1)
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Figure 2.1: Diagrammatic representation of tensors. From top to bottom: i) vector,
ii) matrix, iii) rank-4 tensor, iv) contraction of a rank-3 with a rank-4 tensor.

where the sum runs over all states in the full Hilbert space. The coefficients are
expanded into a set of tensors which are connected to a network; the connections
indicate indices that have to be summed to yield the scalar value. A very simple
example of such a contraction is shown in Fig. 2.1. In the following, we will
usually not express the network in equations, but instead in diagrams with the
building blocks of Fig. 2.1, as such a notation proves to be much more readable.
A more precise definition of the tensors will be given in Chapter 3 in the context
of symmetries in tensor network states.

2.1 Matrix-product states

Based on the discussion in Section 1.2.1, we can immediately define the class of
so-called matrix-product states. These states were first identified as the states
obtained from DMRG in the thermodynamic limit in Ref. [51], but in fact look
back to a long history of similar states, e.g. [52, 53]. Let us denote the components
of the isometry A1 of Fig. 1.3 acting on H1 and H2 as

Aα2
1 (σ1, σ2) = 〈α2|A1|σ1σ2〉, (2.2)

where |α2〉 ∈ H1
1, |σ1〉 ∈ H1, |σ2〉 ∈ H2. We can formally write this as

Aα2α1
1 (σ2)Aα1

0 (σ1), (2.3)

where we imply summation over the indices occurring twice, and where A0 can
be chosen as Aα1

0 (σ1) = δα1σ1 . Similarly, we can denote the components of all
isometries as Aαnαn−1

n (σn), where |αn〉 ∈ Hn−1
1 . A coefficient of the full wave
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Figure 2.2: Diagrammatic representation of a matrix-product state |ψ〉 defined
on a chain of length L = 5 with open boundary conditions, given by tensors A1,
A2, ... The picture shows the diagrammatic representation of the weight of a
configuration, 〈σ1σ2 . . . |ψ〉.

function can then be expressed as

〈σ1σ2 . . . |ψ〉 = Aαn−1
n (σn)A

αn−1αn−2

n−1 (σn−1) . . . Aα1
0 (σ1). (2.4)

Identifying A
αkαk−1

k (σn), for fixed k and σk, as a matrix, it becomes clear that
the above expression is the product of these matrices, which justifies the name.
To make the product a scalar, we require that dimHn

1 = 1, so that the left- and
right-most matrices are in fact just vectors.

We now discuss some important properties of MPSs:

. If the An are chosen to be unitary, i.e. if the dimension of Hn
1 is chosen to

equal the dimension of Hn−1
1 ⊗Hn+1, the matrix-product state becomes an

exact representation of the full state. Of course, this leads to a matrix di-
mension which grows exponentially with the system size, rendering practical
calculations impossible. One therefore introduces the cutoff parameter M ,
commonly referred to as bond dimension, and chooses dimHn

1 ≤M for all n.
This cutoff parameters permits the systematic refinement of the variational
ansatz.

. It is not necessary to restrict the An to be isometric; a general MPS can
however always be brought to a form where the matrices are isometric. It
is therefore not necessary to perform an optimization only over isometric
matrices, which would be more difficult to perform.

. MPSs are not unique: introducing a resolution of the identity on a bond will
change the values of matrices, but not the physical state. This freedom can
be used to enforce different normalizations which are advantageous to the
algorithm.

. Algorithms based on MPSs generally have a low-order polynomial scaling in
the bond dimension, usually O(M3), where M is the bond dimension defined
above. The details will be discussed below.
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Figure 2.3: ”TV screen” mapping for a 4× 4 system to a one-dimensional system.
This allows the simulation using a one-dimensional ansatz, but introduces long-
range operators.

. As we discuss in more detail in the next section, the amount of entanglement
that a matrix-product state of a given bond dimension M can contain is
bounded by

S ≤ logM. (2.5)

This makes it plausible that a gapped state, which has bounded entanglement
for any system size, can be described accurately by an MPS of fixed bond
dimension. For a critical system, we find using Eqn. (1.5) that the bond
dimension should grow like

M ≥ Lc/6. (2.6)

This indicates that while we cannot approach the thermodynamic limit with
a fixed bond dimension, the growth is usually sufficiently weak that system
sizes much larger than exact diagonalization can be accessed.

. To simulate a higher-dimensional system with DMRG, it must be mapped
to a chain. An example of such a mapping is shown in Fig. 2.3. The problem
with such a mapping is twofold: firstly, it creates long-range interactions.
These can be dealt with in such a way that the algorithm becomes only
slightly more costly. A more severe problem is that there inevitably exists a
way to cut though the system such that the two parts are only connected by
a single bond of the MPS, but such that the boundary – and correspondingly
the entropy that has to be described by this bond – scales at least linearly
with the system width. To accommodate this at fixed precision, the bond
dimension has to grow exponentially with the width (but not the length) of
the system. This was first observed in Ref. [54].

Nevertheless, MPS can be used to describe higher-dimensional systems, as
the system size that can be reached is still larger than in exact diagonaliza-
tion. For a short review of applications of DMRG in two dimensions, see
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Figure 2.4: Top panel: Coefficients of the reduced density matrix as defined in
Eqn. (2.9), where A includes sites 4 and 5 and B contains sites 1through 3. Middle
panel: Normalization constraints that make the calculation of the density matrices
feasible. Bottom panel: With this normalization, the reduced density matrix for
A can be written as a matrix of size M ×M , which can be obtained in a simple
way from A3.

Ref. [55]. An application of DMRG to a challenging two-dimensional system
is shown in Chapter 7.

Relation to density matrices

An important property of MPSs is that reduced density matrices for a block A of
spins can be expressed as matrices of dimension Mn×Mn, where n is the number
of interfaces that region A has with the rest of the system. In particular, the
reduced density matrix for a block of sites at the boundary of the system has size
M ×M , and for any other contiguous block of sites has size M2 ×M2.

To obtain this result, consider a quantum system given in a state |ψ〉 =∑
σ c(σ)|σ〉. Splitting the system into parts A and B, with basis |u〉, |v〉, respec-

tively, we can rewrite the state as |ψ〉 =
∑

u,v c(u, v)|u〉|v〉. The reduced density
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matrix for part A is given by

ρA =TrBρ (2.7)

=
∑
ṽ

〈ṽ|

∑
u,u′

v,v′

c(u, v)c(u′, v′)∗|u〉|v〉〈u′|〈v′|

 |ṽ〉 (2.8)

=
∑
u,u′

(∑
v

c(u, v)c(u′, v)∗
)
|u〉〈u′|. (2.9)

The coefficients
∑

v c(u, v)c(u′, v) are easily expressed as tensor network state as
shown in Fig. 2.4 for the example of a chain of length 5, with B being the leftmost
3 sites. With this choice, the rank of the reduced density matrix is bounded by
M , but the naive evaluation of the tensor network would nevertheless yield an
exponentially large object. If, however, the normalization is enforced such that all
tensors except those at site 3 are isometric in the way that is shown in the second
panel of Fig. 2.4, the contraction simplifies greatly: the two leftmost pairs of
tensors are contracted to yield the identity, and the two rightmost tensors are only
isometric basis transformations which do not affect the spectrum of the density
matrix. The density matrix can therefore be obtained simply by evaluating the
tensor network shown in the third panel of Fig. 2.4.

Expectation values and matrix-product operators

As mentioned before, the contraction of an MPS can be performed in polynomial
time. The most simple contraction is the evaluation of the norm 〈ψ|ψ〉; the tensor
network to represent this is shown in the upper panel of Fig. 2.5. The evaluation
can be performed in O(M3d), where M is the bond dimension and d the dimension
of the local physical Hilbert spaces.

To evaluate the expectation value of some operator O, 〈ψ|O|ψ〉, it is useful to
work with matrix-product operators (MPOs). These are reminiscent of MPS, but
instead of having one physical index, they have two separate physical indices. They
can be used to encode arbitrary operators into a simple tensor network. Analogous
to matrix-product states, the tensors, which we will refer to as W n, are connected
by bonds, whose dimension we will denote as D. The bond dimension necessary
to exactly encode a physical operator depends on the type of operator:

. A simple product of single-site operators can be represented with D = 1.
Such an MPO can be used to measure local observables.

. To calculate the sum of a list of strictly local operators, it is not necessary
to calculate the expectation value for all operators separately. Instead, a
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Figure 2.5: Diagrammatic representation for the expectation values calculated
from an MPS, as shown in Fig. 2.2. Top panel: Expectation value of the norm,
〈ψ|ψ〉. The stars indicate complex conjugation. Bottom panel: Expectation value
of an operator O, 〈ψ|O|ψ〉, where O is given as a matrix-product operator made
from tensors W i. The computational cost of contracting these networks is usually
dominated by the bond dimension and scales as O(M3). Stars indicate complex
conjugation.

single MPO can be constructed, which will usually have bond dimension
D = 2. Evaluating it will be computationally more efficient than evaluating
all single-site operators separately.

. Local Hamiltonians for systems on a chain can usually be represented with a
bond dimension in the range from 5 to 10. In the case of higher-dimensional
systems, the bond dimension will grow with the system size. This is also the
case for systems with long-range interactions.

The tensor network necessary to evaluate the expectation value 〈ψ|O|ψ〉 of a
matrix-product state with a matrix-product operator is shown in the lower panel
of Fig. 2.5. The most expensive steps of the contraction scale as O(M3dD) and
O(M2d2D2).

2.1.1 Variational optimization of matrix-product states

Two approaches are commonly used to find the best approximation to the ground
state of a physical system within the space of matrix-product states: a direct
variational optimization and imaginary time evolution. The first approach is more
commonly used, in particular for finite systems; for infinite systems, on the other
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Figure 2.6: Effective single-site Hamiltonian for site 3. The two leftmost matrices
are isometric such that contracting their physical and left indices with the complex
conjugate yields the identity; for the two rightmost matrices, the normalization
is chosen such the identity is obtained when contracting the physical and right
indices.

hand, imaginary time evolution has become more and more popular. In this thesis,
we will describe an example of both methods: i) The variational optimization of
a finite MPS as described by White [15] in the first DMRG paper. ii) The time
evolution scheme proposed by Vidal in Refs. [56, 57] for finite and infinite systems.
The second approach will play an important role as building block of the PEPS
algorithm.

In this description of the variational optimization, we will follow the description
of Ref. [58]. The most important difference to the original description of White
is that we proceed with a single-site optimization instead of performing the op-
timization for two sites simultaneously. We follow this approach since it appears
more natural in the language of matrix-product states; from an RG perspective,
the other approach may seem more natural.

The optimization proceeds in the following steps:

1. Construct an initial state. This state can be either random or constructed
using some knowledge about the physics of the ground state. In the latter
case, one has to make sure that it does not bias the simulation strongly
towards a particular solution. In the first case, one should ensure that the
final result does not show a strong dependence on the initial state (random
seed).

2. Enforce normalization. For the purpose of this optimization, it is advisable
to work in the normalization shown in Fig. 2.6. In this example, we consider
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the optimization of the tensor associated with the center site, A3. In this
case, we would ensure that A1 and A2 are isometric when multiplied on the
left, while A4 and A5 are isometric when multiplied on the right. This is
depicted in the right panel of Fig. 2.6; we here depict the MPS as a tree
to indicate such a choice of normalization. To achieve this normalization, a
singular-value decomposition can usually be used.

3. The optimization of a single tensor can be mapped to solving for the lowest
eigenvalue of the effective Hamiltonian operator, which is given by the tensor
network shown in the left panel of Fig. 2.6. In general, one has to ensure
correct normalization of the state, which may require to solve a generalized
eigenvalue problem. It is advantageous to fix the normalization shown in
the right panel of Fig. 2.6, such that the norm of the full state equals the
standard 2-norm of the elements of the tensor that is being optimized and
the generalized eigenvalue problem turns into a standard eigenvalue problem.
As only the lowest eigenpair is needed, the eigenvalue problem should be
solved with some iterative diagonalization method such as Lanczos or Jacobi-
Davidson [59, 60]. Since these only require a matrix-vector product and not
the full matrix, the optimization will scale as O(M3). If one were to set
up the full matrix and solve it with an iterative method, the scaling would
become O(M4); solving it with a dense method would lead to O(M6).

4. After solving the local eigenvalue problem, one moves to the next site. The
tensor resulting from the previous step should be normalized properly,
which is usually achieved by a singular-value or QR decomposition. The
optimization should be swept back and forth until convergence of the energy
is reached.

To improve convergence of the method, the enhancement described in Ref. [61].
We will use this optimization method to obtain the results discussed in Chapter 6.

2.1.2 Time evolution

A simple procedure for performing time evolution with a matrix-product state was
proposed by Vidal in Ref. [62] and later extended to infinite systems in Ref. [57].
At the same time, several other approaches to simulate time evolution with MPS
were put forward [63, 64, 65]. The approach of Vidal was discussed in more detail
and extended to more general classes of operators in Ref. [66].

All these methods are based on the decomposition of the full time evolution
operator into a product of operators that perform the evolution over a very small
time step ∆t = t/N and are therefore close to the identity. For a Hamiltonian that
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Ã1 = U
√
S Ã2 =
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Figure 2.7: Evolution for a finite MPS which is not given in the canonical form.
For the procedure to be exact, it is necessary that the other tensors are normalized
as shown in Fig. 2.6, but with two sites at the center. The two adjacent tensors
are multiplied together with the evolution operator, then a singular value decom-
position is performed to obtain the new tensors. The square root of S can trivially
be obtained as it is diagonal and positive.

is a sum of time-independent local terms, H =
∑
〈i,j〉 hij, where the sum runs over

pairs of nearest neighbors on the lattice, a very simple decomposition is given by

U = exp (−iHt) (2.10)

=
N∏
k=1

exp

−i∑
〈i,j〉

hij∆t

 (2.11)

=
N∏
k=1

∏
〈i,j〉

exp (−ihij∆t) +O(∆t) (2.12)

=
N∏
k=1

∏
〈i,j〉

Uij. (2.13)

Higher-order formulas can be used to reduce the discretization error. In the case of
imaginary time evolution, discretization errors do not accumulate and can easily
be eliminated by decreasing the time step ∆t during the simulation.

The key part of a time evolution method is to efficiently perform the optimiza-
tion problem

min
|ψ′〉
‖ |ψ′〉 − Uij|ψ〉 ‖, (2.14)

where the desired state |ψ′〉 is again a matrix product state, usually of the same
or just slightly larger bond dimension as |ψ〉. The procedure proposed in Ref. [62],
referred to as time-evolving block decimation (TEBD), is shown in Figure 2.7.
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The method is only accurate if the normalization is chosen similar to the one of
Fig. 2.6, i.e. such that the tensors to the left and the right of those being optimized
are chosen isometric. In some cases, in particular for imaginary time evolution, it
may not be necessary to enforce such a normalization explicitly, as the SVD will
yield tensors sufficiently close to an isometry (indeed, performing TEBD without
truncation would yield correctly normalized states).

Another update procedure, which works also for more general (long-range)
operators and if the normalization cannot be enforced, was proposed by Verstraete
et al in [63]. Let

ε =‖ |ψ′〉 − Uij|ψ〉 ‖2 (2.15)

= 〈ψ′|ψ′〉+ 〈ψ|U †ijUij|ψ〉 − 2 Re〈ψ′|Uij|ψ〉. (2.16)

Note that U †ijUij = 1 if the evolution is unitary. The terms in this sum can all be
calculated from simple tensor networks analogous to those shown in Fig. 2.5. To
solve for a minimum, we should solve for a root of the gradient ∇ε with respect to
the entries of the matrices, where normalization should be enforced. Since solving
this for the entire state simultaneously is not feasible, the algorithm proceeds site
by site, sweeping back and forth until convergence is reached. The algorithm
therefore also proceeds locally and can be performed at roughly the same cost as
TEBD, if partial contractions of tensor networks from earlier steps are re-used in
each step of the simulation.

Let us denote the elements of a single tensor as ~x, which we assume to be real.
We will make use of the tensor network for the effective Hamiltonian shown in
Fig. 2.6, but replace the MPO by local evolution gates. If we refer to this network
as M(O), where O is a local (or two-site operator), and define Neff = M(1),
Ueff = M(U), and U2

eff = M(U †U), we can express ε as

ε = (x′)TNeff x
′ + xTU2

eff x− (x′)TUx− xTUT (x′). (2.17)

Deriving this, we find that we have to solve

x′ = (Neff)−1Ux. (2.18)

By choosing the normalization of Fig. 2.6, Neff can be made equal to the identity,
in which case solving the above problem becomes trivial. If normalization is not
fixed, several numerical approaches exist that efficiently solve this linear problem.
The computational cost for the inverse scales as O(M6) if performed via a naive
dense solver. This can be reduced to O(M4) by using some iterative method such
as conjugate gradient, and can be further reduced to O(M3) if the matrices are
not constructed explicitly, but instead only the matrix-vector product required by
the conjugate gradient solver is used. It should be noted that in this approach, an
operator combining several terms can be applied at once.
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〈vL| |vR〉T T (O) T

O

Figure 2.8: Illustration of the transfer operators that form the building blocks
of an infinite MPS algorithm. We here assume an ABAB structure, i.e. two
independent tensors; the transfer operator T is then formed by contracting those
two tensors with their complex conjugate. Single-site and two-site operators can
be included to form the transfer operator T (O).

2.1.3 Infinite matrix-product states

Although the original description of DMRG by White contained an algorithm for
infinite systems, calculations are commonly carried out for finite systems. This is
mainly because the original infinite size algorithm does not converge very well; it
is however widely used to obtain initial states for the finite-size algorithm. An-
other restriction is that a truly infinite system can only be studied if translational
invariance is assumed (this is however not the approach of the original infinite
size DMRG). Recently, infinite MPS algorithms have become more popular; this is
partly due to an efficient and accurate algorithm for (imaginary) time evolution of
infinite states due to Vidal [57], and partly because such states form an important
building block of algorithms for higher-dimensional tensor networks.

Let us discuss in more detail how to operate on infinite, translationally invariant
MPSs. In the simplest case, all tensors would be chosen to be the same; in most
situations, however, it is advantageous to choose a larger unit cell, for example
two inequivalent tensors, leading to an . . . ABABAB . . . structure. Two of these
tensors (and their complex conjugates) can then be contracted together to obtain
a transfer operator T ; if one wants to evaluate a local operator O, this can be
achieved by placing an operator in this small tensor network to yield T (O) (T is
only a special case of this, T = T (1)). Both of these are shown in Figure 2.8.

To extract an expectation value, one now finds the dominant (i.e., with largest
eigenvalue) left and right eigenvectors of the transfer operator T , which we will
denote as 〈vL| and |vR〉. An expectation value can then be calculated as

〈O〉 =
〈vL|T (O)|vR〉
〈vL|T |vR〉

. (2.19)

Similarly, a two-point correlation function with distance n is calculated by

〈OiPi+n〉 =
〈vL|T (O)T nT (P )|vR〉
〈vL|T n+2|vR〉

. (2.20)
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Figure 2.9: Top panel: Canonical form for an infinite matrix-product state. Lower
panel: Transfer operators that can be used for a consistent normalization. When
inserting these into Eqns. (2.19) and (2.20), care has to be taken to have connect
them with an additional λA.

Γ1 Γ2

λ1 λ2 λ3

U
θ = Γ̃1λ̃2Γ̃2

(λ1)−1Γ̃1 Γ̃2(λ3)−1

λ1 λ̃2 λ3

Contraction

Singular value decomposition

Figure 2.10: Time evolution for an MPS in canonical form. The evolution is equiv-
alent to that shown in Fig. 2.7 for a finite system up to a choice of normalization.

To ensure numerical stability for large n, it is advisable to rescale A and B such
that the largest eigenvalue of T is 1.

It turns out to be useful to define a canonical form for infinite matrix product
state as shown in Fig. 2.9. On the bonds of the MPS, we introduce diagonal
matrices λi, which will be chosen to have only non-negative values. A useful
normalization is obtained by choosing a gauge where the left eigenvector (right
eigenvector) of the transfer operator shown in the lower left (right) panel of Fig. 2.9
is the identity. Details on how to enforce this gauge will not be explained here,
but can be found in [66].

In this gauge, the update procedure shown in Fig. 2.10 becomes exact also for
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infinite systems. It is extremely similar to the one shown for finite systems in
Fig. 2.7, with the difference being the treatment of the weight matrices λ. This
is necessary to obtain a consistent gauge condition also in the thermodynamic
limit, as the normalization shown in Fig. 2.6 cannot be chosen for an infinite MPS
because tensors cannot simultaneously be left- and right-normalized. When taking
the inverse of the matrices λ, a pseudo-inverse should usually be taken. In this
case of diagonal matrices, this is obtained by replacing 1/λi → 0 for λi < ε, where
ε is some suitably chosen cutoff, usually close to the machine epsilon.

2.2 Projected entangled-pair states

Projected entangled-pair states have been suggested in different variations by sev-
eral authors. The first proposal was by G. Sierra and M. A. Martin-Delgado under
the name of vertex matrix product ansatz [67], which was subsequently applied
to evaluate the partition function of a 3D classical model by Nishino and Oku-
nishi [68, 69]. A first application to infinite, homogeneous quantum systems is
found in Ref. [70]. A formalism for inhomogeneous, finite systems was proposed
by Verstraete and Cirac [16], where the name of projected entangled-pair states
was first used. In Ref. [71], infinite systems were reconsidered from the point of
view of extending Verstraete and Cirac’s formalism.

Many variations of the method have been proposed [72, 73, 74, 75, 76, 77, 78,
79, 80, 81]. Applications have been focused on non-frustrated [82, 83, 84] and
frustrated [85, 86, 87, 88, 89] spin systems; an application to real time evolution
of a two-dimensional system is found in [90]. Later in this chapter, we will discuss
extensions to fermionic systems.

In principle, a PEPS can be constructed on arbitrary graphs; in this thesis, we
will discuss the case of the square lattice. Furthermore, we restrict the discussion
to systems where the degrees of freedom on all sites are the same, so that with
each site a Hilbert space Hphys of dimension d is associated, and where the full
Hilbert space is the tensor product of the local Hilbert spaces. We will denote
the basis on site i as |φi〉 and the basis for the full system as {|φ〉 = |φ1〉|φ2〉 . . .}.
Similar to matrix-product states, our goal is to approximate the coefficients c(φ)
of a wave function |Ψ〉 =

∑
c(φ)|φ〉

PEPS can be understood as direct extension of MPSs to arbitrary graphs: while
the tensors of an MPS have three legs – one enumerating the state in the local
physical Hilbert space, and two connecting to the neighbors – a PEPS is made
up of tensors of rank z + 1, where z is the number of nearest neighbors. Again,
one of these indices is the physical index, while the others connect to tensors on
the adjacent sites. The coefficient c(φ) is then given as the trace over all auxiliary
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Figure 2.11: Pictorial representation of a projected entangled-pair state (PEPS).
Left panel: For the square lattice, a tensor of rank 5 will be associated with
each site in the bulk of the system. The index pointing down connects to the
physical system, while the other indices connect to neighboring tensors in the
state. Right panel: The panel shows the PEPS decomposition of a coefficient
c(φ) for a state |Ψ〉 =

∑
c(φ1 . . . φ9)|φ1 . . . φ9〉 on a 3× 3 square lattice with open

boundary conditions.

indices in the network. A graphical representation is shown in Figure 2.11. The
dimension of the bonds connecting to the nearest neighbors will again be referred
to as bond dimension and denoted as M . Its role is analogous to the matrix size
in an MPS:

. For M = 1, they are equivalent to static mean-field theory.

. For sufficiently large bond dimension, they cover the full Hilbert space of the
problem.

The most important difference to matrix-product states is that they can cap-
ture the entanglement properties of systems obeying an area law at fixed bond
dimension. To see this, consider the reduced density matrix for a block of sites
in a PEPS as shown in Fig. 2.12. The number of bonds connecting to the rest
of the system grows linearly with the size of the boundary, which means that
the upper bound on the rank of the reduced density matrix grows exponentially.
Therefore, in principle the entanglement entropy can grow linearly with the size
of the boundary, hence satisfying an area law with a fixed bond dimension.
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2.2 Projected entangled-pair states

Figure 2.12: Approximate reduced density matrix of a block of 4 sites described by
a PEPS. In contrast to the situation in MPS, cf. Fig. 2.4, there is no normalization
that could be imposed on the rest of the state to make this the exact reduced
density matrix. Nevertheless, an upper bound on the rank of the reduced density
matrix can be derived from this picture.

2.2.1 Contraction of PEPS

Unlike matrix-product states, however, the exact evaluation of expectation values
can not be performed in polynomial time [91]. Therefore, approximate methods
are required. Several such methods have been proposed:

. In the original proposal of Ref. [16], finite systems with open boundary condi-
tions were treated. The method is based on the insight that the coordination
is less at the boundary of the system: if the physical indices are traced over to
form an expectation value, the tensors at the boundary form matrix-product
states (see lower right panel of Fig. 2.13, and Fig. 2.14). The other columns
or rows can be regarded as matrix-product operators after tracing over phys-
ical indices. This can be exploited by adapting a time evolution method for
MPS. Performing one step of such an evolution maps a system of size N ×N
to a system of size (N − 1)×N . Iterating this, the N ×N system can be re-
duced to a quasi-one-dimensional system of size 2×N . This system can then
be treated with standard methods. Assuming that the bond dimension of
the boundary MPS is taken to be at most the square of the bond dimension
of the PEPS, the key parts of this algorithm scale as O(M12).

. The generalization of this approach to infinite systems is conceptually simple.
Given a system with an infinite number of equivalent rows (or columns), we
can iterate the evolution procedure of applying a row or column as MPO to
some boundary MPS many times, which will converge to some steady state if
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the operator given by such a row or column has a gap in the spectrum below
the largest eigenvalue. Such an eigenvector can be interpreted as representing
the infinite lattice. In general, the number of iterations necessary to reach
converge should be related to the correlation length of the system. This
approach was first pursued by Jordan et al. in Ref. [71].

. A different approach to contracting PEPS, in particular (but not exclusively)
in the infinite case, is the corner-transfer matrix (CTM) method. This ap-
proach was first described by Baxter as a method to trace over the partition
sum of a classical system [52]. It was introduced into the field of tensor net-
work states by applications to two-dimensional and three-dimensional classi-
cal systems in Refs. [92, 68]. A variant of the CTM method, the directional
CTM, was used to perform the contraction of an infinite PEPS in Ref. [79].
The original approach was revisited and slightly generalized in [93]. The
scaling of this approach is the same as the MPS-based method.

. A very different approach is taken in the tensor renormalization group method [76].
Instead of contracting the state by obtaining a boundary that represents the
full system, this scheme is based on a coarse-graining procedure which ap-
proximately maps the original tensor network state to a new state given on
a lattice with fewer sites, which is expected to capture the properties of the
original state well. The procedure is iterated until a sufficiently small system
which can be summed exactly is reached.

2.2.2 Optimization of PEPS

For the optimization of a PEPS, there are in principle two possibilities: direct
energy minimization and imaginary time evolution. With a few exceptions such
as [94], imaginary time evolution is used for most PEPS simulations. The reason
why imaginary time evolution is usually preferred lies in its numerical stability:
the change to the state is in general of the order of the time step and thus very
small. If the optimization is performed one tensor after another, this helps to avoid
instabilities in the optimization between different tensors and may also avoid local
minima, as all tensors are slowly converged to their optimal values.

We therefore now describe two time evolution schemes for the PEPS, termed
full and simplified update. The full update was described in Refs. [16, 71]; the
simplified update was first shown by Jiang et al [76] and later described, e.g.,
in [6]. Furthermore, we will propose a new update scheme which can be applied
to optimize PEPS for more general operators, such as next-nearest neighbor or
plaquette interactions. For a discussion of the application of the simplified update
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Figure 2.13: To obtain an expectation value, the state has to be contracted with
itself (top right panel). For many purposes, it will be useful to draw the product
of a PEPS tensor with itself, contracted over the physical index (top left panel),
as a single tensor (bottom left panel). This gives a simpler picture which does not
explicitly show physical bonds (bottom right panel).

Figure 2.14: First step in the reduction of a finite PEPS of size 6×6. After summing
over the physical indices, the leftmost column (green rectangle) is a matrix-product
state, the second column from the left is a matrix-product operator. Applying this
MPO with one of the standard techniques available for MPO-based time evolution
yields a new system of size 5× 6 with an updated left column (right panel).
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Figure 2.15: PEPS environment obtained from the corner transfer matrix method.

to next-nearest neighbor interactions, see [93].

Full update

The full update is analogous to the second update described in Section 2.1.2 for
matrix-product states, i.e. we have to solve a minimization problem of the form

ε = (x′)TNeff x
′ + xTU2

eff x− (x′)TUx− xTUT (x′), (2.21)

where we use the notation introduced in Eqn. (2.17). This minimization must be
performed for the tensors on all sites involved in the time evolution operator; for
simplicity, we will focus on the case of bond operators, such that only two tensors
A and B are involved. Together, these form the vector x above. The effective
operators have to be calculated from a local PEPS environment, cf. Fig. 2.15,
which must be obtained from one of the contraction methods described in the
previous section; note also that if we perform imaginary time evolution, U is not
unitary.

If x is taken to contain the elements of both A and B, the effective operators
above have dimension M8 × M8, which makes the numerical solution of (2.21)
intractable. Therefore, the problem is solved for A and B separately, and the
optimization is iterated until convergence is reached for both tensors.
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Figure 2.16: For better convergence of both the full and simplified update schemes,
the PEPS tensors A, B can be split into the tensors A′, A′′ and B′, B′′, respectively,
by a singular-value decomposition. The optimization can then be performed only
on A′′ and B′′, which have fewer parameters.

As opposed to the case of MPS, we have no way of enforcing an appropriate
normalization such that Neff becomes the identity; to complicate matters more, it
is quite often close to singular. It is therefore advisable to solve the inverse via a
Moore-Penrose pseudo inverse. For a matrix M with singular value decomposition
M = USV , this is given by M−1 ≈ V †S−1U †, where S−1 is obtained by taking
the inverse of all elements which are larger than some appropriately chosen cutoff
ε, and taking 0 otherwise. The cost of calculating this inverse scales as O(M12);
however, since previous steps of the algorithm have the same scaling but with a
larger prefactor, this is not a limitation in practice. In the case of infinite PEPS,
the update sweeps over all tensors in the unit cell until convergence is reached.

Both the convergence and the computational cost can be improved by perform-
ing a decomposition shown in Fig. 2.16. The PEPS tensors A, B involved in the
update are split as shown in the figure and the optimization is performed on the
new tensors A′′, B′′, which have as legs only the physical leg, the leg connecting to
the other tensor that is being updated, and an external leg connecting to A′, B′,
respectively. After the update, A′ and A′′, as well as B′ and B′′, are contracted
again to go back to the original form of the PEPS. This reduces the scaling of the
pseudo-inverse to O(M3d3).

Simplified update

The simplified update is very similar to the update of the TEBD scheme for infinite
matrix-product states. The aim is to reduce the computational cost by performing
an update that does not fully take into account the environment tensors, whose
contraction is very time-consuming, but instead make further approximations to
obtain an effective environment.

32



Tensor network states

In the case of matrix-product states, this can be achieved without approxima-
tion by enforcing the canonical form described above. In the case of PEPS, this
is not possible, as there is no known normalization on parts of the PEPS such
that their contraction would yield the identity and could therefore be ignored for
the purpose of a local optimization. It is therefore not possibly to define a local
update scheme comparable to TEBD that does not explicitly handle the environ-
ment. However, it turns out that the scheme simplified update scheme works well
in practice.

In analogy to the canonical form for MPS, we introduce weights on the bonds
between each tensor, which we will denote as λ and which should be chosen pos-
itive. In this case, no formal justification for the weights can be given; however,
numerical calculations show that the algorithm is much more robust if formulated
to include the weights. The update scheme is shown in Fig. 2.17: the two tensors,
the operator and the weights on the adjacent bonds are contracted together to
obtain the tensor Γ̃. By first performing a singular-value decomposition and then
applying the inverses of the adjacent weights, the state is brought back to the old
form.

Gradient update

The full update described above is based on linearizing Eqn. (2.21) and solving
the optimization problem for each tensor separately. While this usually works
well for bond operators, the procedure may become very unstable in the case
of e.g. plaquette operators involving four tensors. We propose another update
scheme where the optimization is solved directly for all tensors using a gradient
minimization algorithm such as conjugate gradient.

The key insight is that while inverting the effective operator for several tensors
at once is prohibitively expensive, the gradient has only as many elements as there
are variational degrees of freedom, namely nM4d, where n is the number of tensors
involved in the update (n = 2 for a bond operator, n = 4 for a plaquette operator).
The gradient can be efficiently calculated by obtaining the gradient separately for
each tensor keeping the other tensors fixed, and concatenating this into a single
vector. This implies that the gradient does not correspond to a simple bilinear
form, as a naive inspection of Eqn. (2.21) would suggest; instead, it depends in a
nonlinear way on the elements of all other tensors. While this will slow down the
convergence of optimization methods such as conjugate gradient, it does not pose
a fundamental limitation.

The gradient update scheme is numerically slightly more expensive than the full
update, despite having the same leading cost. It is therefore useful in particular in
situations where the full update does not converge properly, such as models with
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Figure 2.17: Simplified update: in the first step, the PEPS tensors, bond weights
and the operator acting on the physical sites are contracted to yield θ. In the
second step, this is split by means of a singular-value decomposition which yields
tensors U , V , and the new bond weight λ̃c. In the last step, the state is brought
back to the old form by contracting U , V with the inverses of their adjacent bond
weights to yield new Γ̃0, Γ̃1.
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Figure 2.18: Tree tensor network representing a coarse-graining procedure that
renormalizes two sites into one effective site.

operators involving more than two sites.

2.3 Multi-scale entanglement renormalization

Both matrix-product states and projected entangled-pair states share the property
that they emphasize local properties of the system. One could argue that the
information necessary to describe a correlation function over a distance of n sites
accurately must be distributed over O(n) different tensors, making it difficult to
describe long-range correlations.

A natural way to overcome this limitation would be a tree structure, where a
correlation function of distance n would generically involve only O(log n) different
tensors. Such a structure should be much better suited to describe long-range
properties of systems. This is particularly relevant in situations where the physical
behavior of a system is dominated by its long-range correlations, such as systems
at or close to criticality, where the length scales diverge.

In the following section, we will describe such an ansatz state, the multi-scale
entanglement renormalization ansatz, which is a tree-like tensor network state
introduced by Vidal [18, 19]. As we will see below, it has many favorable properties,
most importantly that i) in one dimension, it can describe critical states with a
logarithmic divergence of the entanglement entropy with a fixed bond dimension,
ii) in higher dimensions, it can describe the ground states of systems obeying an
area law, and iii) it can be contracted exactly in polynomial time.

As its name indicates, the MERA has an interpretation in terms of a renormal-
ization procedure. The renormalization scheme that lead to the formulation of the
density matrix renormalization group method is inspired by Wilson’s numerical
renormalization group scheme, which performs the renormalization starting from
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Figure 2.19: Contraction scheme for a tree tensor network. Top left: full tensor
network for the identity. Top right: first step of the contraction obtained by using
the isometric property of the bottom-left tensor of the state with its complex
conjugate. Bottom panel: tensor network (light cone) for a local operator after
isometries have been contracted to yield the identity wherever possible.

a small system and adding a number of sites to this system at each step. Picto-
rially, this can be described by a one-sided tree as shown in Fig. 1.3. A different
class of renormalization schemes are coarse-graining procedures; an early example
is the Kadanoff block spin method [48]. In these schemes, one starts with a large
lattice, and in each step joins a block of sites together to form an effective site,
which should have fewer degrees of freedom than the original sites. Iterating this
procedure, one either reaches a fixed point for critical systems that lack a charac-
teristic length scale, or reaches some trivial state after a sufficiently large length
scale is reached. A tensor network that performs such a procedure is shown in
Fig. 2.18.

As for matrix-product states, an important question is how to appropriately
choose the RG transformation from the block of sites to an effective site. We will
postpone this topic and assume that an algorithm to variationally optimize a tree
or MERA structure is known. At a later point, we will revisit the RG picture
again and discuss the nature of the coarse-graining transformation induced by the
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Figure 2.20: Binary MERA structure. L0 corresponds to the physical system.

MERA.
Let us discuss in some more detail the tensor network shown in Fig. 2.18.

In order to enforce normalization of the state, we require that all tensors are
isometric. This is sufficient to enforce that the norm of the state is trivially 1, as
each tensor is contracted with its complex conjugate to yield the identity. The
first step in the procedure to obtain this result is shown in the top left panel of
Fig. 2.19. Furthermore, it is also this property which makes the calculation of
local observables possible in polynomial time, as shown in the bottom panel of
Fig. 2.19: if an operator is inserted anywhere in the state, the isometric property
of the tensors that are not affected by this operator can still be used and only a
tensor network of finite width remains to be contracted; this can be achieved in
polynomial time. This network will be referred to as light cone of the operator.

The shortcoming of such a tensor network state is that it cannot represent an
area law for the entanglement entropy at fixed bond dimension. Remember that
to capture an area law, the number of bonds that are being cut by a bipartition
of the system must grow linearly in the length of the boundary between the two
parts. For the tree tensor network, there are always bipartitions that violate this
requirement; this is particularly obvious for a binary tree as shown in Fig. 2.18,
where the system can always be split in two parts that are only connected at the
top of the tree. This argument holds for all dimensions.

In the MERA, this shortcoming is resolved by introducing an additional tensor
between each pair of (physical and effective) sites that are not connected by an
isometry, as shown in Fig. 2.20. These tensors are referred to as disentanglers, for
reasons that will become clear later in the discussion. This introduces additional
bonds which have to be cut when partitioning the system, so that a larger amount
of entanglement can be captured. In one dimension, the number of bonds that has
to be cut for a bipartition is now proportional to the height of the tree, such that
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the entanglement entropy is bounded by O(logL), where L is the length of the
system. In higher dimensions, the number of bonds is linear in the size of the block
and an area law is recovered. The disentanglers should be chosen to be unitary
in order to enforce normalization and allow contraction in polynomial time; the
light cone scheme developed for the tree tensor network can also be applied to the
MERA with unitary disentanglers, although with slightly increased computational
cost.

Note that for a given dimension and lattice, there is no unique choice of the
MERA. The construction shown above is based on a binary tree; even in one
dimension, generalizations such as a ternary tree are obvious. In higher dimensions,
there are even more possibilities of constructing a MERA. This flexibility permits
the optimization of the structure to well describe the physical properties of the
system.

As we discussed before, the MERA can be understood as a renormalization
group procedure, where each layer of the tree represents a coarse-grained system;
in Fig. 2.20, we denote these layers as Li, where L0 corresponds to the microscopic
physical system we started with. A layer of the MERA will be denoted as Mi; it
induces two transformations, namely

. the ascending superoperator, which maps an operator from layers Li−1 to Li,

. the descending superoperator, which maps a reduced density matrix from
layers Li to Li−1.

These ascending and descending superoperators play a central role in the algorithm
and will be discussed later.

Some important properties of the renormalization group transformation Mi

are:

. It is known that a critical system should represent a fixed point of a renormal-
ization group transformation [95, 96]. This is also the case for the MERA,
which implies that one can take a limit of infinite system size by choos-
ing Mi = M∞ for some i > i0. Usually i0 is chosen to be larger than 0.
This implies that Li = L∞ for i > i0, i.e. that coarse-grained operators
and reduced density matrices reach a fixed point. As we will discuss below,
a one-dimensional system for which such a fixed-point transformation can
be obtained is described by a conformal field theory; the fixed-point ascend-
ing and descending superoperators contain important information about this
theory.

. For a gapped system, which has finite correlation length χ, it is intuitive
that only O(logχ) layers of the MERA should be necessary to capture this
correlation. Therefore, for sufficiently large i, the reduced density matrices
ρi should correspond to product states and Mi can be understood as a trans-
formation which reduces entanglement. This explains the name disentangler

38



Tensor network states

Figure 2.21: The ternary MERA structure used for the numerical calculations
throughout this thesis for a chain of 18 sites with periodic boundary conditions
(dashed lines are those that wrap around the boundary).

for the unitary operators: their task is to locally remove entanglement from
the system, which makes it possible to obtain a product state as limit of the
RG transformation.

Different classes of MERA structures are possible:

. In a finite, non-translational-invariant MERA, all tensors are allowed to
have different values.

. By taking all equivalent tensors on a layers to be equal, one obtains a finite,
translationally invariant MERA. This is only useful for periodic systems.
Note that the state will not be translationally invariant on the physical level,
as the physical sites are inequivalent if the whole network is considered.

. In addition, one can take the thermodynamic limit by assuming that all
tensors above a certain layer are equal. This scale-invariant ansatz is ap-
propriate only for critical systems.

For the purpose of this thesis, we will be interested mostly in the scale-invariant
MERA, which permits a direct connection to critical one-dimensional systems
described by a conformal field theory. We will consider this topic in more detail
in Section 6.

2.3.1 Superoperators

We have mentioned before the concept of ascending and descending superoperators.
These play a central role in the construction of the MERA algorithm and should
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2.3 Multi-scale entanglement renormalization

Figure 2.22: Ascending superoperators for the ternary MERA shown in Fig. 2.21.
The operator on lattice Li is shown in red; the renormalized operator on lattice Li+1

corresponds to the sum of the three contributions. The descending superoperators
are easily obtained from these as described in the text.

therefore be discussed at this point. The specific form of these superoperators
depends on the MERA structure that is being used. Numerical calculations in
this thesis were carried out using a ternary MERA, which is shown in Fig. 2.21.
A detailed discussion of technical aspects of the MERA can be found in Ref. [97].

The three contributions to the ascending superoperator of the ternary MERA
are shown in Fig. 2.22. These correspond the three inequivalent ways in which an
operator on layer Li influences the operator on layers Li+1. The renormalization
of an operator is therefore given by the sum of the three contributions.

The descending superoperator is trivially obtained from the ascending super-
operator: the operator on Li is removed from the network, and instead the legs
that are shown open in Fig. 2.22 are contracted with the density matrix on Li+1 to
obtain the density matrix on Li. The three contributions again have to be summed
up. The computational cost of evaluating these diagrams scales as O(χ8) for this
particular MERA structure..

2.3.2 Optimization of a MERA

The expectation value of the energy of the MERA is bilinear in the elements of each
tensor, and normalization is implied by imposing that the tensors must be isometric
or unitary. However, the optimization of one tensor is coupled to all other tensors,
making it a highly nonlinear problem to perform a global optimization. Similar to
the approach used for the optimization of the PEPS, the optimization is performed
for each tensor separately, which is iterated until convergence is reached. There
is of course no guarantee for this procedure to converge to the absolute ground
state, but similar to the case of the PEPS, good convergence behavior is usually
observed.

For a finite MERA without translational invariance, i.e. where all tensors are
different, the energy is bilinear in the tensor W due to a contribution from the
state and its complex conjugate. Considering the tensor and its complex conjugate
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as separate variables, we have for the energy

〈E〉 = Tr eW (2.22)

where W denotes the tensor we aim to optimize, and e denotes the rest of the tensor
network (environment), including the complex conjugate of W . This network can
be efficiently evaluated since the light cone is finite.

We aim to find a new W ′ such that 〈E〉 becomes minimal (with fixed environ-
ment e) and such that W †W = 1. To this end, we calculate the singular-value
decomposition of the environment, e = USV . Choosing W ′ = −V †U †, we obtain

〈E〉′ = Tr eW ′ (2.23)

= −Tr USV V †U † (2.24)

= −Tr S, (2.25)

where we have used the cyclic property of the trace. The magnitude of the energy
after optimization is therefore equal to the sum of singular values of the envi-
ronment; also, W ′ is isometric. It remains to be shown that this indeed is the
minimum. Since the product of two unitaries is unitary, it is sufficient to consider
(with U , V unitary)

min
V

Tr USV = Tr (V U)S (2.26)

=
∑
i

Si(V U)ii (2.27)

where (V U)ii denotes the diagonal elements of the matrix product V U , which is
also unitary. As the orthonormality of the rows and columns of a unitary matrix U
dictates that |Uij| ≤ 1, the optimal choice is (V U)ii = −1, which we achieve by the
above choice. Note that with this prescription, the energy is necessarily negative
or zero; the physical Hamiltonian should therefore be shifted by some appropriate
constant such that all eigenvalues are negative.

This recipe for optimizing a linearized problem of the form (2.22) is the basic
ingredient for the optimization of a tensor: starting from some initial guess for W
and its conjugate W †, we obtain a W ′ using the above procedure and replace W † →
(W ′)†; this is usually iterated several times. This procedure is then repeated for
all tensors of the network. For translationally invariant or scale-invariant MERA
states, the optimization has to be performed only once for each layer. In these
cases, the optimization problem is not bilinear in each tensor, but instead a coupled
problem of much higher order; the same approach based on linearization must be
applied and usually converges reasonably.

For computing the environment e of some tensor W , the contributions from
all light cones containing W must be summed up. In the case of the ternary
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MERA, there are six contributions to the environment of an isometry, and three
contributions to the environment of a disentangler; for details, we refer to Ref. [97].
For the optimization of a scale-invariant MERA, the contributions from all higher
layers must be summed up as described in [97].

2.4 Fermionic tensor networks

Up to this point, we have only discussed tensor networks for systems where op-
erators on different sites commute, such as spin systems and bosonic systems.
However, the natural degrees of freedom in a condensed matter systems are usu-
ally fermions, which obey anticommutation relations. Many of the most relevant
models are indeed fermionic models and it is a natural question to ask whether
tensor network states can also be applied in this situation.

For one-dimensional systems, the answer is clear: by means of a Jordan-Wigner
transformation, the fermionic system can be mapped to a spin system which can
be treated using standard methods. In higher dimensions, such an approach is
possible only for finite systems, as a naive Jordan-Wigner transformation will
introduce non-local interaction terms with an interaction range of the order of the
linear system size. A more systematic approach is therefore needed.

In 2009, several approaches were put forward that allow the definition of
fermionic tensor network states that can be treated numerically at a cost com-
parable to that of bosonic tensor networks. In this thesis, we will focus on the
approach described in Refs. [98, 99, 6]; other approaches are found in Refs. [100,
101, 102, 94, 103].

Consider spinless fermions on the lattice with annihilation and creation oper-
ators ci, c

†
i , where i denotes the site on the lattice, and which obey the standard

anticommutation relations

{ci, cj} = {c†i , c†j} = 0 {c†i , cj} = δij. (2.28)

The Jordan-Wigner transformation is given by

ci =
∏
j<i

(−2Szj ) S−i (2.29a)

c†i =
∏
j<i

(−2Szj ) S+
i , (2.29b)

where Sα, α = x, y, z,+,− are spin-1
2

operators. The product over j must be
taken along some uniquely chosen path. It can easily be confirmed that these
operators fulfill the required anticommutation relations. Consider now a hopping
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Figure 2.23: Examples of fermionic contractions.

term, where for simplicity we assume i < j; a short calculation shows that

c†icj = S+
i

(∏
i<l<j

(−2Szl )

)
S−j (2.30)

where we have used the commutator [Sz, S+] = S+.
For a one-dimensional system with nearest-neighbor hopping only, this confirms

that the spinless fermions can be mapped to bosons without additional operators;
for long-range hopping terms, it implies a chain of diagonal operators between the
two sites. In higher dimensions, such a chain of operators may also be present for
nearest-neighbor hopping and will depend on the ordering chosen for the sites. In
most cases (with the notable exception of DMRG), this will render tensor network
state simulations much less efficient and accurate.

Consider now the contraction of two rank-3 tensors shown in the center panel
of Fig. 2.23:

Mio =
∑
jkmn

AijkBmnoδjmδkn (2.31)

We can formally associate with each bond a Hilbert space whose dimension
equals what we commonly refer to as bond dimension. For the purpose of this
discussion, let us restrict the Hilbert space dimension to 2. We can then define
either bosonic or fermionic operators that create these two basis states. We will
denote these as a†[i], where the subscript indicates which bond the operator is
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associated with. The tensors A, B then become

Aijk →
∑
ijk

Aijk(a
†
[i])

i|0〉〈0|(a[j])
j(a[k])

k (2.32)

Bmno →
∑
mno

Bmno(a
†
[m])

m(a†[n])
n|0〉〈0|(a[o])

o (2.33)

Now the purpose of the arrows drawn in the figure become clear: they indicate
whether operators act on the left or right side of |0〉〈0|. Also, note that we draw
legs on the tensor in a fixed order; by convention, we choose a clockwise ordering.
Implying summations over all indices, we can write the contraction as

Mio(a
†
[i])

i|0〉〈0|(a[o])
o (2.34)

=AijkBmno(a
†
[i])

i|0〉〈0|(a[j])
j (a[k])

k(a†[j])
m︸ ︷︷ ︸(a†[k])

n|0〉〈0|(a[o])
o. (2.35)

Using the property 〈0|(a[i])
k(a†[i])

l|0〉 = δkl, we can perform some of the sums and
recover the original form of the contraction. To this end, we must now commute
(a[k])

k and (a†[j])
m, indicated by the brace. It is at this point where we can introduce

the fermionization of a tensor network: if we take the operators a, a† to obey
fermionic anticommutation rules instead of bosonic commutation rules, additional
signs will be introduced in this contraction. The two possible outcomes are given
below:

Mio(a
†
[i])

i|0〉〈0|(a[o])
o (2.36)

(bosonic) = AijkBmno(a
†
[i])

i|0〉〈0|

δjm︷ ︸︸ ︷(
(a[j])

j(a†[j])
m
)

(2.37)(
(a[k])

k(a†[k])
n
)

︸ ︷︷ ︸
δkn

|0〉〈0|(a[o])
o

(fermionic) = AijkBmno(a
†
[i])

i|0〉〈0|

δjm︷ ︸︸ ︷(
(a[j])

j(a†[j])
m
)
s(m,n) (2.38)(

(a[k])
k(a†[k])

n
)

︸ ︷︷ ︸
δkn

|0〉〈0|(a[o])
o

where

s(m,n) =

{
−1 if m = 1 and n = 1
+1 otherwise

(2.39)

The key observation is that using a tensor network where all operators are
fermionic implies also that the physical operators are fermionic! Therefore, such
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a network allows the simulation of fermionic Hamiltonians without recourse to a
Jordan-Wigner transformation.

The appearance of the sign depends on the specific contraction. For example,
consider the contraction shown in the bottom panel of Fig. 2.23,

M ′
io =

∑
jkmn

AijkBmnoδjnδkm. (2.40)

Expressing this in the form of (2.35), one observes that no commutation of opera-
tors is necessary and that the contraction can be performed regardless of whether
the operators are bosonic or fermionic. As a general rule, additional signs are
introduced if lines cross in the tensor network (it is for this reason that the order
of legs on the tensor, i.e. the clockwise ordering, is important). We can formally
introduce these signs into the tensor network by inserting the swap gate s(m,n) at
every line crossing of the tensor network. In the implementation of the tensor net-
work, the swap gate can applied as part of each contraction with only sub-leading
cost.

The generalization to bond dimensions higher than 2 is possible using a parity-
symmetric basis for each auxiliary Hilbert space such that each state in the Hilbert
space corresponds to either an even or odd number of fermions, and restricting each
tensor to be parity-symmetric (which they must be for a sensible fermionic theory,
as parity is a good quantum number). Symmetric tensor networks will be discussed
in more detail in Chapter 3. In terms of the parity quantum number, the swap
gate s(m,n) equals −1 if and only if both m and n denote odd-parity states, which
corresponds to an exchange of an odd number of fermionic operators.

Another reason for using parity-preserving tensors is that this implies an even
number of fermionic operators to be associated with each tensor. Therefore, the
tensors that make up the tensor network commute and the order in which contrac-
tions are performed does not matter.

We can now formulate the rules for fermionizing tensor networks, which were
first given in Ref. [99]:

i) Use parity-preserving tensors.

ii) After drawing the tensor network as planar graph, insert swap gates at each
line crossing.

The approach has been applied to the MERA [98, 99] and the PEPS [6]. In
the latter reference, a number of models were studied, including a solvable model
for spinless fermions, a model for interacting spinless fermions and the t-J model,
where a comparison to variational Monte Carlo simulations was presented. A more
recent demonstration of the usefulness of the approach is found in [104], where the
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t-J model was studied in more detail. In an unfinished study, we are currently
applying fermionic PEPS to interacting spinless fermions on different lattices and
exploring extensions to spinful fermions.

2.5 Complete-graph tensor network states

As we mentioned quickly in Section 2.1 (Fig. 2.3) for the case of a two-dimensional
lattice, any system can be mapped to a one-dimensional system in order to perform
a simulation based on a matrix-product state. Of course several ordering schemes
are usually possible, which may vary greatly in how the system’s entanglement is
distributed over the bonds of the MPS. In the case of two-dimensional systems,
most schemes can be ruled out as they obviously lead to detrimental entanglement
properties for the MPS – but for systems that lack geometric order, it is usually
impossible to guess a priori which orderings should be preferred.

The most common situation where this occurs are applications in quantum
chemistry. Consider the standard electronic Hamiltonian for a molecule,

H =
∑
i,j
σ

hija
†
iσajσ +

1

2

∑
i,j,k,l
σ,σ′

Vijkla
†
iσa
†
jσ′akσ′alσ, (2.41)

which contains one-electron integrals hij over spatial orbitals φi(~r) given in non-
relativistic theory by

hij =

∫
φ∗i (~r)

(
−1

2
∇2 −

∑
I

ZI
rI

)
φj(~r) d

3r, (2.42)

with nuclear charge number ZI of atomic nucleus I and electron–nucleus-I distance
rI = |~r − ~RI |, and the two-electron integrals Vijkl defined as

Vijkl =

∫ ∫
φ∗i (~r1)φ∗j(~r2)φk(~r2)φl(~r1)

r12

d3r1 d
3r2. (2.43)

The nucleus-nucleus repulsion term is suppressed for the sake of brevity. For a
reference, see [105].

The single-particle orbitals φi(~r) are generally obtained from some preparatory
numerical calculation for the specific molecule. These orbitals completely lack
geometric structure in the sense that they cannot be regarded as being distributed
over sites of a lattice and the mapping to the chain becomes arbitrary. While
DMRG calculations based on arranging the orbitals on a chain have nevertheless
proven to be accurate [106, 107, 108] and despite many attempts to systematically
improve the ordering (for examples see Refs. [109, 110, 111, 112]), a reliable way
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to determine a good ordering is not known and the approach is conceptually not
satisfying.

In Ref. [4], we have put forward an ansatz that does not rely on a geo-
metric structure for the orbitals, but instead treats all correlations on an equal
footing. The ansatz can be regarded as special case of the correlator product
states [23], which are generalizations of string-bond states [20] and entangled-
plaquette states [22].

The Complete-Graph Tensor Network approximates the coefficients of the wave
function in an occupation-number basis by a network of tensors that connects all
orbitals with each other:

〈n1n2 . . . nk|Ψ(N)
CGTN〉 =

k∏
α

∏
β≤α

f
nαnβ
αβ (2.44)

where α, β run over the orbitals, nα and nβ denote their respective occupation. The
variational parameters are contained in the f

nαnβ
αβ . For a given pair of orbitals α, β,

fαβ is a matrix that encodes the correlation between these two orbitals. A similar
ansatz was used by Huse and Elser [113] for a two-dimensional antiferromagnet.

In contrast to the tensor network states discussed so far, the CGTN cannot
be contracted by evaluating the trace over a tensor network. Instead, we can
either perform the sum over all basis states explicitly or perform a variational
Monte Carlo simulation, i.e. sample stochastically over the basis states. Such an
approach was first used in the context of tensor network states by Sandvik and
Vidal [114].

A key question in variational Monte Carlo methods is how to optimize the pa-
rameters. While it is usually possible to sample the gradient and perform some line
minimization following its direction, such an approach is very likely to be stuck in
local minima. In [114], a stochastic optimization procedure is proposed which takes
into account only the sign of the gradient for each element, disregarding the mag-
nitude. In our simulations, we go one step further and use a completely stochastic
approach: introducing artificially a temperature T , we can sample configurations f
in the space of variational parameters according to a weight exp(−E(f)/T ), where
E(f) is the energy evaluated for a fixed set of variational parameters. We can then
use a simulated annealing or parallel tempering procedure to obtain the ground
state as limit T → 0. This approach proves to be more reliable in avoiding local
minima than approaches that include gradient information.

In [4], we use this method to study the energy splitting of states of different
spin for methylene and the strongly correlated ozone molecule at a transition
state structure. These benchmark calculations, which we compare against known
results, demonstrate that the ansatz is capable of accurately capturing the energies
of these highly entangled molecules.

47



2.5 Complete-graph tensor network states

48



Chapter 3

Symmetries in tensor network
states

In the previous chapter, we have discussed a number of tensor network state al-
gorithms for one- and higher-dimensional systems. They share the property that
they can be systematically refined by some parameter M , but suffer from a strong
increase of the computational cost. In order to reach large values of M , it is there-
fore necessary to exploit all possible means of reducing the computational cost. A
method to achieve this that is commonly used in exact diagonalization and DMRG
calculations is to exploit symmetries, which may in some cases speed up algorithms
by more than an order of magnitude.

In exact diagonalization, the Hamiltonian can be brought into a block-diagonal
form by rotating to an appropriately chosen basis. The number of blocks equals the
total number of irreducible representations of the symmetry group of the Hamil-
tonian. Since the diagonalization can be performed in each block separately, the
computational cost can be reduced significantly. In some cases, it may also help
to obtain spectral gaps as the quantum numbers of the state can be fixed. In the
case of exact diagonalization, both Abelian and non-Abelian symmetries (includ-
ing spatial symmetries) can be used. In DMRG calculations, Abelian symmetries
are usually exploited [50]. Non-Abelian symmetries have also been considered by
some authors [115, 116, 117, 118, 119, 120, 121].

In the context of two-dimensional tensor network state calculations, symmetries
have been explored only recently. Parity symmetry (Z2) plays a central role in the
definition of fermionic tensor networks [6, 100, 101, 98, 99, 102, 94, 103] but has
also been shown to be useful for spin systems [122]. Continuous groups, such
as U(1), have been used in calculations with the TERG algorithm [123] and the
MERA [124, 125]. A general introduction to the topic without numerical results
is given in Ref. [126]; Ref. [125] contains a detailed introduction to U(1) symmetry
and its use for MERA computations.
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In this chapter, which is based on work published in Ref. [7], we will develop
a general formalism to implement Abelian symmetries for arbitrary tensor net-
work states. Our approach is implemented in the projected entangled-pair states
algorithm and we demonstrate the validity of the necessary approximations by
benchmark calculations for the spin-1

2
Heisenberg model, which will be discussed

in Chapter 5. The approach is also used for the multi-scale entanglement renor-
malization ansatz in one dimension, which will be used in Chapter 6.

3.1 Symmetry groups

In this section, we will review some important elements of group theory and explain
the formalism necessary to define symmetric tensor networks in Section 3.2.

3.1.1 Charge calculus

In the following, we will be concerned with Hamiltonians H with a symmetry group
G, i.e. they commute with the elements of some Abelian group G, [H, q] = 0 ∀q ∈ G.
This implies that eigenstates of H are also eigenstates of q. We require:

. There exists a unitary representation U of the group. For q ∈ G, we have
U †(q−1) = U(q).

. All representations of the group decompose into a direct sum of irreducible
representations Vi, which can be labelled in correspondence to the eigenvalues
of some operator g. We will call these labels ci.

. Consider a state |φ〉 ∈ Vi and q ∈ G. We then have

U(q)|φ〉 = ν(q, ci)|φ〉 (3.1)

with ν(q, ci) ∈ C.

Examples will be discussed in Section 3.1.2.
We can classify eigenstates of the Hamiltonian H into the irreducible represen-

tations of G. The associated labels ci are then called good quantum numbers (for
brevity, we will also call them charges or symmetry sectors).

As we will see below, only few properties of the irreducible representations of the
group are needed to implement symmetric tensor networks. These are intimately
related to the properties of the eigenvalues defined in Eq. (3.1).

Charge fusion Consider two states |a〉 ∈ H1, |b〉 ∈ H2 with associated quantum
number c1 and c2, respectively. Their tensor product in H1 ⊗ H2 also has
a well-defined quantum number c3. We thus define the fusion of quantum
numbers

c1 × c2 = c3. (3.2)
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This corresponds to a labeling of the tensor product of irreducible represen-
tations. For the eigenvalues ν, this corresponds to

ν(q, c1)ν(q, c2) = ν(q, c3). (3.3)

Identity charge There exists an identity charge 1 such that c× 1 = c ∀c. This
implies ν(q,1) = 1.

Conjugate charge For each charge c, a conjugate charge c̄ exists such that

c× c̄ = 1 (3.4)

This imples ν(q, c̄) = 1/ν(q, c).

We can easily generalize the above to products of groups. For G̃ = G1×G2, the
irreducible representations are Ṽij = V1

i ×V2
j , which can be labelled by c̃ij = (c1

i , c
2
j).

These labels correspond to eigenvalues of the operator g̃ = (g1 ⊗ 1,1 ⊗ g2). The
above calculus is then constructed from element-wise operations on the c̃.

3.1.2 Examples

An important example is the U(1) symmetry, which is present in systems with
particle number conservation and many spin models. For benchmarking purposes,
we will apply the symmetric PEPS algorithm to a system of spin-1

2
degrees of

freedom on the square lattice with Heisenberg interaction. This system has an
SU(2) spin rotation symmetry, which in the thermodynamic limit and at zero
temperature is spontaneously broken to a U(1) symmetry. We will exploit this
symmetry and its finite subgroups.

Z2

For Hamiltonians that are invariant under a simultaneous flip of all spins, | ↑〉 ↔
| ↓〉, the operator

gZ2 = (−1)
∑
i σ
z
i =

∏
i

σzi (3.5)

commutes with the Hamiltonian. A unitary representation of the group Z2 is given
by

U(α) = gαZ2
(3.6)

with α ∈ {0, 1}. Its unitarity follows from the unitarity of the Pauli matrix σz.
The two irreducible representations can be labeled as c = ±. The eigenvalues
ν(α, c) are:

ν(0,+) = +1 ν(1,+) = +1 (3.7a)

ν(0,−) = +1 ν(1,−) = −1 (3.7b)
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The fusion rules therefore are:

±×± = + ±×∓ = − (3.8)

This implies + = 1 and c̄ = c.
Due to the very simple structure with only two irreducible representations and

the trivial charge conjugation, the implementation of Z2 symmetry is particularly
easy.

U(1)

The most commonly used symmetry in simulations with exact diagonalization or
DMRG is the U(1) spin symmetry, which is present if the operator

gU(1) =
∑
i

σzi (3.9)

commutes with the Hamiltonian. This is the infinitesimal generator of a represen-
tation of U(1),

U(φ) = exp
(
i2πφgU(1)

)
, (3.10)

where φ ∈ [0, 2π).
The irreducible representations can be labeled with integer numbers, c ∈ Z.

The ν(φ, c) are
ν(φ, c) = exp (i2πφc) . (3.11)

Clearly,

ν(φ, c1)ν(φ, c2) = ν(φ, c1 + c2) (3.12a)

ν(φ, 0) = 1 (3.12b)

ν(φ,−c) = ν(φ, c)−1 (3.12c)

The charge calculus therefore follows the rules of integer addition. The label of
the irreducible representations can be interpreted as magnetization of the state.
Special care must be taken when forming the adjoint of a vector or operator, since
U(φ)|Ψ〉 → 〈Ψ|U(−φ). The Hermitian transpose of a state in the irreducible
representation c therefore falls into the irreducible representation c̄.

Zq

Since for the PEPS, finite groups are easier to deal with, we consider finite sub-
groups of U(1), namely the cyclic groups Zq. We define

gZq = exp

(
i2π

q

∑
i

σzi

)
, (3.13)
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which naturally also commutes with the Hamiltonian if gU(1) does. The irreducible
representations can be labeled with c ∈ {0, . . . , q}, where 0 is the identity. A
unitary representation is, similar to Z2, given by

U(α) = gαZq . (3.14)

where α ∈ {0, . . . , q − 1}. The eigenvalues ν(α, c) are

ν(α, c) =
(
ei

2π
q

)αc
. (3.15)

This implies the cyclic property ν(α, c+ q) = ν(α + q, c) = ν(α, c). The resulting
fusion rule is

c1 × c2 = (c1 + c2) mod q, (3.16)

therefore
c̄ = q − c. (3.17)

For taking adjoints, the same consideration as in the case of U(1) applies. The
implementation of Zq symmetry for q > 2 is more involved than Z2 since charges
are not inverse to themselves. The small number of sectors however reduces the
technical efforts compared to U(1).

3.2 Symmetric tensor networks

3.2.1 Definition and contraction of symmetric tensors

We define a tensor T as a linear map from a tensor product of Hilbert spaces to
the complex numbers:

T : H1 ⊗H2 ⊗ . . .⊗HR → C. (3.18)

Here, R is the rank of the tensor. The elements of the tensor are T (v1, v2, . . .) for
vk ∈ Hk. Equivalently, if we choose a fixed basis {bki } in each Hk, we can define
a tensor as a multidimensional array Ti1i2i3..., where the indices ik run from 1 to
dimHk and

Ti1i2i3... = T (b1
i1
, b2
i2
, b3
i3
, . . .). (3.19)

In this chapter, we are interested in states composed of tensors that are invari-
ant under the operations of a group. To define this, let q ∈ G and Uk(q) unitary
representations in the Hilbert spaces Hk. We then require

T (U1(q)v1, U
2(q)v2, . . .) = T (v1, v2, . . .). (3.20)
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3.2 Symmetric tensor networks

As shown in the Appendix, a tensor element T (v1, v2, . . .) vanishes unless

×
k

ck = 1 (3.21)

where ck is the label of the irreducible representation that vk belongs to. Col-
loquially, this can be understood as conservation of charge at the tensor. As a
direct consequence, if a fixed basis of eigenvectors of the generators is chosen, the
multidimensional array Ti1i2i3... takes a block-sparse form, therefore reducing the
number of non-zero parameters.

If we partition the indices to form two groups I1, I2, we can equivalently express
the tensor as a linear operator

T̃ :
⊗
k∈I1
Hk →

⊗
k∈I2
Hk (3.22)

where (⊗k∈I2vk)†T̃ (⊗k∈I1vk) = T (v1, v2, v3, . . .). We refer to I1 as in-going and I2

as out-going indices. In a pictorial representation, we will associate arrows with
the indices. What are the symmetry properties of this operator? As shown in the
appendix, it commutes with the group action. Schur’s Lemma then implies that
for x ∈ ⊗k∈I1Hk in the irreducible representation labeled c, T̃ x is also in the
representation c. This is true for all possible partitions of the indices.

We are now ready to discuss the algorithms that form the basic building blocks
of any tensor network state algorithm, namely contraction of tensors and mapping
to matrices to perform singular value or eigenvalue decomposition. This will be
based on the results of the previous sections, namely i) the definition of symmetric
tensors in Eqns. (3.19),(3.21), ii) the transformation to a linear operator (3.22),
and iii) the charge calculus of Section 3.1.1. In particular, we have obtained
a way of implementing tensor networks without knowing explicitly the matrix
representations of the group in each (auxiliary) Hilbert space, allowing us to enforce
the symmetry on all bonds.

3.2.2 Tensor contraction

We now discuss the most important ingredient of a tensor network algorithm,
tensor contraction. Fig. 3.1 shows the steps of the contraction of two rank-4
tensors; these are:

1. We first transform the tensors to operators of the form (3.22) (Fig. 3.1 (a)–
3.1 (b)). The choices of in-going and out-going indices are dictated by the
indices that are being contracted: on one tensor, those indices must be the
in-going and on the other the out-going indices. The resulting operators,
which are written as a matrix, have a block-diagonal structure.
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(a)

c = {−1, 0, 1}
c = {−1, 0, 1}

c = {−1, 0, 1}
c = {−1, 0, 1}

c = {−1, 0, 1}
c = {−1, 0, 1}

c = {−1, 0, 1}
c = {−1, 0, 1}

(b)

c = {−1, 0, 1}

c = {−1, 0, 1}

c = {−2,−1, 0, 1, 2}

c = {−1, 0, 1}

c = {−1, 0, 1}

c = {−2,−1, 0, 1, 2}

(c)

c = {−1, 0, 1}

c = {−1, 0, 1}

c = {−2,−1, 0, 1, 2}

c = {−1, 0, 1}

c = {−1, 0, 1}

Figure 3.1: Pictorial representation of the contraction of two rank-4 tensors with
U(1) symmetry. The steps are explained in detail in Section 3.2.2.
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2. The contraction is now equivalent to a matrix multiplication. The blocks
must be contracted in such a way that the resulting tensor still satisfies
(3.20). Therefore, we must match blocks in such a way that

cin × cout = 1. (3.23)

3. The resulting tensor, Fig. 3.1 (c), can be converted back to the form of Eqn.
(3.18).

The conversion between the forms (3.18) and (3.22) also allows the definition of
other linear algebra operations, such as singular value decomposition or eigenvalue
decomposition based on the mapping to a matrix. All these share the block-
diagonal structure.

3.2.3 Symmetric PEPS

As a simple example of a tensor network, the construction of a matrix-product
state invariant under some symmetry group G is shown in Fig. 3.2. On each bond
i of the tensor network, we have a set of charges Ci. For the bonds connecting
to physical degrees of freedom, this set of charges is fixed by the physical Hilbert
space. In the case of a finite MPS with open boundary conditions, the set of charges
possible on an auxiliary bond is unique and has a well-defined physical meaning: if
one were to consider, e.g., a system with particle number conservation, the allowed
symmetry sectors on each auxiliary bond in the construction in Fig. 3.2 are the
possible particle numbers to the left part of the chain. In general, the set of allowed
charges corresponds to the possible fusion outcomes of all physical charges to the
left. In a finite system, a quantum number sector can be selected by appropriately
fixing the allowed charges at the right end of the chain.

In the case of a PEPS, a unique identification of the charges on an auxiliary
bond with the fusion outcomes of a specific region cannot be made. It is therefore
not possible to determine uniquely which symmetry sectors must be kept on the
auxiliary bonds. While for finite groups, it is usually computationally possible to
allow all charge sectors, some choice has to be made in the case of infinite groups.
It is therefore an important task to verify that i) for finite and infinite groups, one
obtains a good approximation to the ground state by using a PEPS constructed
from symmetric tensors, ii) for infinite groups, a reasonable approximation is ob-
tained for computationally feasible choices of the symmetry sectors. Numerical
evidence that this is the case will be shown in Section 5.3.

To understand the nature of the approximation introduced by truncating the
set of allowed quantum numbers, consider the expansion of a state |Ψ〉 =

∑
|φ〉 c(φ)|φ〉.
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T [1]

|φ1〉

C T [2]

|φ2〉

C T [3]

|φ3〉

C

C

C2

C3

Figure 3.2: End of a matrix product state invariant under some symmetry group
G. |φi〉 denote physical states in the local Hilbert space Hloc. By C, we denote
the set of charges associated with sectors in Hloc, and by Cn the set of charges
associated with sectors in

⊗n
i=1Hloc. The first auxiliary bond to the left simply

carries the physical charges of the first site. For the second bond, all possible
fusion outcomes of charges on the first auxiliary bond with the physical charges
have to be considered. This can be continued up to the middle of the chain, such
that each auxiliary bond carries the possible combinations of charges to the left.
Joining such a state with its reflection will yield a finite symmetric MPS.

Using a tensor network ansatz amounts to representing all coefficients c(φ) by a
trace over a tensor network, which will represent the low-entanglement subspace
of the full Hilbert space efficiently. In principle, all basis states are allowed and
could have non-vanishing weight. Imposing restrictions on the quantum numbers,
on the other hand, amounts to a restriction on the allowed basis states: the sum
does not run over the full basis {|φ〉}, but only a subset of states compatible with
the allowed quantum numbers.

In addition to the charge sectors on each bond, the number of states in each
sector has to be chosen. In principle, this could differ between all sectors on
one bond and between bonds. The situation becomes more involved since even
for a translationally invariant PEPS, several different sets of charges have to be
considered, as shown in Fig. 3.3. For the purpose of this chapter, we make the
simplification that we choose the charges to be the same on all equivalent bonds of
the lattice and the environment states. Additionally, for the case of finite groups,
we choose the number of states in each sector the same for all equivalent bonds.

Two points require special attention when applying symmetric PEPS to infinite
lattices: i) On infinite lattices, the ansatz is restricted to states that globally fall
into the sector of the identity charge. For example, using the U(1) symmetry
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T ∗1

T1

T ∗2

T2

Ccorner

Caux

Figure 3.3: Corner of a symmetric PEPS state with an environment as in the
directional corner transfer matrix method.[79] Here, the blue circles denote tensors
Ti of the ansatz state and their conjugate T ∗i , the red squares denote tensors of
the corner transfer matrix and the orange circles represent single-site operators
acting on the physical index of the PEPS tensor. In the infinite case, in general
there are three sets of charges involved: i) the physical charges Cphys carried on the
black, solid lines in the figure, ii) the auxiliary charges Caux on the blue, dashed
bonds, and iii) the charges carried on the bonds of the environment Ccorner. This
reflects the three independent bond dimensions involved in a PEPS: the physical
dimension d, the bond dimension M and the environment dimension χ. Usually,
M > d and χ ∼ M2. Therefore, Cphys ⊂ Caux ⊂ Ccorner. In principle, all charges
could depend on the location in the PEPS or the environment.

of a spin-1
2

system described in Section 3.1.2, only states with vanishing total
magnetization can be studied. In the case of particle number conservation, an
appropriate choice of charges would have to be taken to enforce the desired filling
fraction. On finite lattices, however, selecting specific quantum number sectors
is possible also in the PEPS construction by adding an external bond carrying
the total charge of the system to one of the tensors that make up the PEPS. ii)
Since our construction assumes that the state has a well-defined global quantum
number, systems that spontaneously break the symmetry that is being exploited
cannot be represented. If the possibility of a spontaneous symmetry breaking is
present in the system being studied, the results should therefore be checked against
calculations without enforcing the symmetry.

In order to confirm the validity of our approach, we have numerically studied
the spin-1

2
Heisenberg model using U(1), Z2 and Zq symmetries. Our results clearly

confirm the validity of the approach and in particular for finite groups, a significant
reduction of computational cost while keeping the accuracy fixed is achieved. We
postpone the detailed discussion of these results to Section 5.3.
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3.3 Some proofs

In this section, we show in detail some calculations relevant to the discussion in
Sect. 3.2.1, in particular symmetry properties of a tensor of the form (3.18).

To simplify the notation, we consider the case of a tensor of rank 2, where the
Hilbert spaces are taken to be equal:

T : H⊗H → C (3.24)

T̃ : H → H, (3.25)

where for x, y ∈ H we have T (x, y) = y†T̃ x. Also, let U be a unitary representation
of the group in H.

We would like to show the following equivalence:

(a) [T̃ , U ] = 0 (3.26)

(b) ⇔ T (Ux, Uy) = T (x, y).

First, we show that (b) follows from (a):

T (Ux, Uy) = y†U †T̃Ux (3.27)

= y†U †UT̃x

= T (x, y)

Secondly, we show that (a) follows from (b):

y†[T, U ]x = y†TUx− y†UTx (3.28)

= T (Ux, y)− T (x, U †y)

= T (U †Ux, U †y)− T (x, U †y)

= 0

The above can easily be generalized for all operators of the form (3.22).
We now want to show the validity of (3.21). Let q ∈ G. Then,

T (U(q)v1, U(q)v2, . . .) (3.29)

= T (ν(q, c1)v1, ν(q, c2)v2, . . .)

= ν(q, c1)ν(q, c2) . . . T (v1, v2, . . .)

= ν(q,× ck)T (v1, v2, . . .)

= T (v1, v2, . . .)

where we have used Eqns. (3.20) and (3.3). Therefore, ν(q,× ck) = 1 and× ck =
1.
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Chapter 4

Implementation of tensor network
states

In this chapter, we will sketch how to efficiently implement tensor network states in
C++, possibly including symmetries. The objectives of our approach are two-fold:

. Good run-time efficiency. To achieve this, most of the CPU-intensive
tasks, like matrix multiplication or singular value decomposition, are per-
formed by external libraries which are optimized for the specific architecture.

. Good programming efficiency. Tensor network states are a fast-moving
field with new proposals coming up very frequently, but at the same time,
the programming effort is relatively large. In particular, implementing and
debugging the contractions involved in the higher-dimensional tensor net-
works is very time-consuming. An efficient programming model is therefore
essential.

Our approach is centered on a high-level C++ library which will aid the programmer
in storing and manipulating tensors of arbitrary rank. The interface is constructed
to allow a direct translation from a diagrammatic or mathematical notation into
the source code, allowing the quick implementation of a variety of tensor network
state methods. Also, symmetries can be dealt with at the level of such a library,
so that only slight modifications are necessary to include symmetries in any tensor
network state algorithm.

4.1 Requirements

To achieve the goals described above, we implement a library that meets the
following requirements:

. Compatibility with standard matrix layout. For the CPU-intensive
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tasks, we utilize libraries such as BLAS or LAPACK. To this end, we must
map all operations to matrix operations. This is an important step in par-
ticular for contractions, where instead of summing indices explicitly, we im-
plement the conversion to an appropriate matrix form.

. High-level interface for contractions. The starting point of the imple-
mentation of a tensor network method is a set of diagrams, representing the
contractions necessary to perform each step of the simulation. The most
time-consuming step in the implementation is translating these diagrams
into C++ code. A high-level interface is used to simplify this, where the
programmer only specifies the names of indices that are to be contracted.

. Use of advanced C++ optimizations. Advanced C++ features, such as
template metaprogramming, is used to optimize the computations that are
not being performed by low-level library.

There is currently no C++ library available that addresses these problems, in partic-
ular the problem of efficient tensor contraction based on a mapping to matrix mul-
tiplication, and in the presence of symmetries. Implementations of non-symmetric
tensors and the contraction are available in Matlab and Python’s NumPy package.

4.2 Symmetries

In this section, we outline a few details of the implementation of symmetries in
the tensor library. There are two key elements for symmetric tensors:

. When the tensor is constructed, the allowed charge sectors and their dimen-
sions must be specified for each leg of the tensor. Together with the conven-
tion that all indices are in-going, this completely determines the structure of
the tensor.

. The conversion between a tensor structure and a matrix operator ((3.18) ↔
(3.22)) must be implemented with symmetries. Performing this efficiently
is non-trivial as the correct location within each block of the output matrix
must be determined for each element of the tensor.

The latter operation scales linear with the number of matrix elements N and
is therefore subleading compared to matrix operations, which scale roughly as
O(N3/2). Nevertheless, it has to be implemented very carefully because determin-
ing the correct location for each tensor element may introduce a large prefactor.

In Ref. [125], precomputation is suggested as efficient approach for this problem:
the correspondence between the location of an element in the tensor and the matrix
is calculated once and stored in memory to be reused later. This approach has
several downsides: a) the overhead in memory usage may be significant, b) memory
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bandwidth is one of the bottlenecks of tensor network state simulations and should
therefore be minimized, c) the structure of tensors, in particular for groups such as
U(1) where the number of sectors is chosen dynamically, may vary between each
iteration of the algorithm.

In our implementation, we do not rely on precomputation. Instead, the cor-
respondence is calculated on the fly in a recursive algorithm that iterates over all
elements of the tensor. By fixing the rank of the tensor at compile-time, the nec-
essary recursion and most of the loops involved in the calculation can be inlined
using template metaprogramming. The algorithm can be run in two ways such
that elements are either read sequentially and written in an unstructured way, or
vice versa. Benchmark calculations show that the bottleneck is not the calcula-
tion of the location for each element, but the memory bandwidth for unstructured
memory access.

4.3 Interface

4.3.1 Identifying indices

In order to be able to specify contractions and matrix-based operations, a mech-
anism for labeling indices is necessary. Many implementations, such as the one in
Matlab, enumerate the indices and leave it to the user to assert the correct identifi-
cation of the numeric labels. We aim for a simpler and less error-prone procedure,
where at the time of creation of a tensor, the user specifies alphanumeric labels
which can be referred to when specifying contractions.

The obvious choice for these labels would be to use C++ strings. However,
manipulating strings at run-time is rather expensive and may lead to significant
overhead. To avoid this, we use an enum type for the labels. The user can therefore
still write alphanumeric names, but the C++ compiler will convert these labels to
integer numbers at the time of compilation, so that the run-time overhead becomes
negligible. The downside is that the enum containing all possible labels has to be
defined at some early point in the code. To automate this, we use a small Python
script which collects the possible labels from the code and assembles the enum

definition.

4.3.2 Defining tensors

To specify a tensor, the user must provide, for each index, a list of allowed quantum
numbers and their respective dimensions.

1 REGISTER( a , b , c , d , e , b1 , b2 , b3 , in1 , in2 , out ) ;
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A

c

d

a

b
e

B

b1

b2
b3

C

in1 in2

out

A B

C

a

b

out

Figure 4.1: Example of a tensor network, whose implementation is discussed in
the main text.

tensor<double , 5 , grp> A( ( PIndex<grp>(a ,M,C) ,
PIndex<grp>(b ,M,C) ,
PIndex<grp>(c ,M,C) ,
PIndex<grp>(d ,M,C) ,

6 PIndex<grp>(e ,M,C) ) ) ;
tensor<double , 3 , grp>

B( ( PIndex<grp>(b1 ,M,C) ,
PIndex<grp>(b2 ,M,C) ,
PIndex<grp>(b3 ,M,C) ) ) ,

11 C( ( PIndex<grp>( in1 ,M,C) ,
PIndex<grp>( in2 ,M,C) ,
PIndex<grp>(out ,M,C) ) ) ;

Here, M can be an integer or a vector of integers defining the number of states
in each quantum number sector, and C is a list of allowed quantum numbers on
the bond. If M is a scalar, the dimension is assumed to be equal in each quantum
number sector; if C is omitted, a default set of quantum numbers may be used,
if defined by the symmetry group. Of course, both M and C may be different for
each leg, but must match between legs that are to be contracted.

The rank of the tensor is a template parameter, i.e. it has to be specified at
compile time. This is generally not a restriction, as the ranks of all tensors involved
are known at the time of writing the program. Many optimizations of the code
are based on knowing the rank at compile-time; for example, recursive algorithms
that would be used for example for rearranging tensor elements can be optimized
using template meta-programming.

The template parameter grp specifies the symmetry group. This should be a
class that defines the type of charge (quantum number) and the fusion rules for
the charges. For Zq symmetry, the class definition is:
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1 template<int Q> class ZqCharge {
friend ZqCharge operator+(ZqCharge a , ZqCharge b) {

return ZqCharge ( ( a . c +b . c )%Q) ;
}

5 public :
ZqCharge (unsigned int c = 0) : c ( c ) { }
ZqCharge operator−() const {

return c == 0 ? 0 : Q−c ;
}

10 protected :
unsigned int c ;

} ;
template<int Q> class Zq
{

15 public :
typedef ZqCharge<Q> charge ;
stat ic const int q = Q;
stat ic charge f u s e ( charge a , charge b) {

return a+b ;
20 }

} ;

The symmetry therefore has to be specified at compile-time. This allows many
compiler optimizations, since operations on the charges have to be executed very
often.

REGISTER() is a macro that is not evaluated by the C++ compiler, but instead
is used by the aforementioned Python script to identify all possible index names.
The file created by this Python script would look like this:

1 enum Index {
a , b , /∗ . . . ∗/ , out

} ;
inl ine std : : s t r i n g IndexName ( Index idx )

5 {
switch ( idx ) {

case a : return std : : s t r i n g ( ”a” ) ;
// . . .

}
10 }

inl ine Index IndexName ( const std : : s t r i n g &idx )
{

i f ( idx == std : : s t r i n g ( ”a” ) ) return a ;
// . . .

15 }
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Figure 4.2: ...

The IndexName() functions allow the conversion between enum and string, which
is useful for debugging and disk storage purposes.

4.3.3 Specifying contractions

For an example of how to create tensors and specify their contraction, see the small
tensor network shown in Fig. 4.1. The contraction of this network is performed in
two steps, first contracting A and B over the index pairs (c, b1) and (d, b2), and
then contracting the resulting tensor with C over the pairs (e, in1), (b3, in2). The
C++ code to perform this contraction is shown below:

1 tensor<double , 4 , grp> temp ;
tensor<double , 3 , grp> r e s u l t ;
temp . con t ra c t i on ( ( a , b , e , c , d ) ,A,

( b1 , b2 , b3 ) ,B) ;
5 r e s u l t . c on t r a c t i on ( ( a , b , e , b3 ) , temp ,

( in1 , in2 , out ) ,C) ;

An alternative code to perform the same task, which is equivalent at run-time, is:

1 tensor<double , 3 , grp> r e s u l t =
A( ( c , d ) , ( b1 , b2 ) ,B)

( ( e , b3 ) , ( in1 , in2 ) ,C) ;

The main advantage of the second alternative is that the user does not have to
create temporary tensors.

4.3.4 Matrix operations

Tensors can always be converted to matrix by grouping some indexes. While this
function can in principle be called directly by the user, the library is designed in
such a way that matrix operations, like singular value decomposition, can be called
directly without the need to explicitly convert to a matrix.
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1 REGISTER( k ) ;
2 tensor<double , 3 , grp> U;

tensor<double , 2 , grp> S ,V;
int keep=−1;
r e s u l t s .SVD( ( a , b ) , ( out ) ,

SV TO NONE, k , keep , Al lCharges ( ) ,
7 U,V,&S ) ;

Here, SV TO NONE indicates that the singular values should not be multiplied into
the adjacent tensors (other options are SV TO LEFT and SV TO RIGHT), k is the
name for the newly created index on U and V, keep indicates how many singular
values should be kept (where a value of -1 indicates that all should be kept), and
AllCharges() indicates that no truncation of the quantum number sectors should
be performed. S is passed as a pointer so that a default value of NULL can be
passed if the user does not need the singular values. Adapting the code to perform
a truncation below some cutoff weight can easily be done.
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Chapter 5

The accuracy of projected
entangled-pair states

In the previous sections, we have discussed why tensor network states promise to
be a useful tool for studying strongly correlated quantum systems. However, the
arguments are not sufficient to determine whether with the amount of computa-
tional resources available on current machines, a sufficient bond dimension can be
reached to accurately describe the physical properties of interesting systems for
condensed matter theory. In the case of matrix product states, a bond dimension
ranging from several thousands up to tens of thousands is possible, and it has
been demonstrated innumerable times that the method is very accurate for one-
dimensional systems. In the case of PEPS, the bond dimension is limited to at
most a dozen for the PEPS, and even this can only be achieved at the sacrifice of
additional approximations. It is therefore very important to confirm the reliability
and accuracy of PEPS for some models where results are well-known, for example
from quantum Monte Carlo calculations.

In this section, which is based on work published in Refs. [1, 7], we will study
several examples of spin systems without frustration, where results can easily be
compared to known results and Quantum Monte Carlo calculations, which we
perform using the ALPS package [127, 128]. We will first discuss the origin of these
models and why they are relevant test cases for tensor network state methods. We
will then show results for a series of increasingly difficult systems studied without
exploiting symmetries in the simulations. In the last section, we will discuss the
improvement achieved by exploiting symmetries as discussed in Chapter 3.
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5.1 Non-frustrated spin systems

Spin systems arise in two different contexts: as models for magnetic materials, and
as effective models for interacting fermionic or bosonic systems around certain
limits. Historically, they first appeared in the quest for microscopic models for
ferromagnetism. A first phenomenological explanation for magnetism was given
by the molecular field theory of Weiss. In this context the famous Ising model was
invented as a microscopic picture for Weiss’ theory. However, it did not deliver
a satisfying explanation: Ising showed that it does not order in one dimension,
and suggested that this should also be true in higher dimensions [129]. More
importantly, the forces that lead neighboring spins to align in parallel did not
come out of a first principles quantum mechanical calculation, but instead were
merely a postulate.

A big step forward was taken by Heisenberg in [130], where a quantum mechan-
ical treatment of a linear chain of atoms with a single valence electron is given.
The big step forward in this calculation was to consider the magnetic moments to
be localized at the atoms and consider the kinetic term as a perturbation, instead
of taking interactions as perturbation. A presentation that is closer to the modern
notation is given in Ref. [131], where the model is described in terms of diagonal
and off-diagonal terms acting on the representation of the magnetic state in the Sz-
basis. Arguments in favor of ferromagnetic order for higher-dimensional systems
are also discussed. Shortly after, the model was solved in one dimension by the
famous Bethe ansatz [132]. These discussions pertain mostly to the ferromagnetic
case.

A different context in which the antiferromagnetic Heisenberg model is ob-
tained was first realized by Anderson [133], who derives it perturbatively for a
system of localized electrons in a diamagnetic background. This derivation is
closely connected to the derivation from the Hubbard model [134] by perturbing
in t/U at half filling and U =∞. Consider a model of electrons located on N sites
of a regular lattice, where i) there is exactly one electron per site, ii) placing two
electrons of different spin on the same site increases the energy by a large amount
U , and iii) placing two electrons of equal spin on one site is not allowed due to
Pauli exclusion. The Hamiltonian for this system is given by

Hint = U
∑
i

c†i↑ci↑c
†
i↓ci↓, (5.1)

where c†iσ creates a fermion with spin σ at site i.
It is diagonal and the energies can easily be read off; as all spin configurations

have the same energy, the ground state manifold has dimension 2N and contains
all states where each site is occupied by one electron. We now introduce a hopping
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term proportional to t such that electrons can reduce their energy by hopping to
adjacent sites:

Hkin = −t
∑
〈i,j〉

(c†iσcjσ + h.c.) (5.2)

This (partially) lifts the degeneracy between spin states: at second order in pertur-
bation theory, spin configurations where an electron is surrounded only by electrons
of different spin polarization become favorable, since they permit exchanging two
electrons without violating the Pauli exclusion. This leads to an effective antifer-
romagnetic Heisenberg coupling.

A few decades later, the Heisenberg model reappeared, this time in the field of
superconductivity, and again due to a paper by Anderson [135]. Therein, it was
doubted that the Heisenberg model develops magnetic order at zero temperature,
at least under circumstances where frustration enhances the role of quantum fluctu-
ations. Such frustration effects appear for example when taking into account higher
order terms of the aforementioned expansion of the Hubbard model in t/U ; an-
other example are non-bipartite lattices. It was argued that the ground state could
be a resonating valence bond state, where pairs of electrons form singlets. These
singlets were considered candidates for a pairing mechanism in high-temperature
superconductors.

At least for the case of the square lattice Heisenberg model with only nearest-
neighbor interactions, while a rigorous proof of the existence of long-range order is
still missing, there is overwhelming numerical evidence for the existence of antifer-
romagnetic order. The most accurate method to date is Quantum Monte Carlo, e.g.
in Ref. [136]. Recently, accurate results have also been obtained with DMRG [137].
In the presence of frustration, the phase diagram is not fully understood and an
active area of research.

5.1.1 XXZ model in external field

Let us now turn our discussion to a generalized version of the Heisenberg model,
the XXZ model in external field. We consider spin-1

2
particles on the square lattice,

with the Hamiltonian

H =
∑
〈i,j〉

(
Jxy
2

(σ+
i σ
−
j + σ−i σ

+
j ) + Jzσ

z
i σ

z
j

)
+ h

∑
i

σzi (5.3)

where σx, σy, σz denote Pauli matrices and σ+ = σx + iσy, σ− = σx − iσy. By

identifying ai =
σ+
i

2
, a†i =

σ−i
2

, ni =
σzi +1

2
, this model can be mapped (up to a
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Figure 5.1: Schematic phase diagram of the XXZ model for Jxy = 1, h ≥ 0, Jz ≥ 0.
For a description of the phases, see Sect. 5.1.1. The phase diagram is symmetric
with respect to the line h = 0, Jz ≥ 0.

constant) the Bose-Hubbard model in the limit of hard-core bosons, given by

H = −t
∑
〈i,j〉

(a†iaj + a†jai) + V
∑
〈i,j〉

ninj + µ
∑
i

ni, (5.4)

where the parameters are translated as Jxy = − t
2
, Jz = V

4
, h = µ+V

2
.

The phase diagram of this model has been studied to much detail and is well
understood [138, 139, 140]. The schematic phase diagram is shown in Fig. 5.1. In
the full phase diagram, the model as a U(1) symmetry related to magnetization
conservation. At h = 0, there is in addition a Z2 symmetry related to the spin flip
| ↑〉 → | ↓〉. At h = 0 and Jz = Jxy, i.e. for the Heisenberg model, the symmetry
is enlarged to the full SU(2) symmetry. In the following discussion, XY and Z
identify the axes in spin space, not in real space. Three different phases can be
identified:

Paramagnet A large magnetic field forces the system into a paramagnetic state,
where all spins are aligned in the Z-direction. In the bosonic language, it
corresponds to a full or empty state, depending on the sign of the chemi-
cal potential. As no spontaneous symmetry breaking occurs, the system is
gapped. It is short-range correlated and therefore also very weakly entangled.
The magnetization along the field can be used to characterize this phase.
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Antiferromagnet In the antiferromagnetic phase, the coupling in Z-direction
dominates and spins align antiferromagnetically in this direction, which im-
plies that translation symmetry is broken. As the U(1) symmetry is not
spontaneously broken and there are no Goldstone modes, the system has
a gap. Away from the phase transition around h = 0, the state is weakly
entangled. The staggered magnetization in Z direction must be used to char-
acterize this phase. It should not display a staggered magnetization in the
XY plane.

Canted phase This phase interpolates between the paramagnet and the antifer-
romagnet: starting from the paramagnetic phase, the increasing XY coupling
leads to the spins bending down towards each other, hence the name. The
U(1) symmetry of spin rotation in the XY plane is broken and a staggered
magnetization in the XY plane is observed. This leads to gapless modes and
the system is therefore much more strongly entangled than the antiferromag-
netic and paramagnetic phases. In the bosonic model, this phase corresponds
to a superfluid, where particle number conservation is spontaneously broken.

The transition from the paramagnet to the canted-order phase is of second
order; the transition from the canted-order phase to the antiferromagnet is of first
order, as discussed in detail below. The transition at Jz = 0 was studied using
iPEPS in Ref. [83].

5.1.2 The spin-flop transition: iPEPS at a first-order phase
transition

The nature of the transition from the canted order to the antiferromagnetic phase,
referred to as spin-flop transition, was under debate for some time. The existence
of a different type of order on both sides of the phase transition excludes the
possibility of a direct continuous phase transition between the two phases. The
two remaining possibilities are a first-order transition and a series of two continuous
transitions with a very small intermediate phase, where both types of order coexist.
In the bosonic model, this would correspond to a so-called supersolid phase [141,
142], where superfluidity and long-range crystalline order coexist. Early Monte
Carlo simulations [143] indeed seemed to confirm the presence of a small phase
of coexisting order in the hard-core boson model. A few years later, Monte Carlo
simulations were repeated, taking into account the possibility of phase separation
at a first order transition, and found that this is the more likely scenario [144].
This was confirmed in further studies [138, 139, 140].

The iPEPS method is very suitable to first-order phase transitions. Orús et al
[145] studied a phase transition in the anisotropic quantum orbital compass model
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Figure 5.2: Spin-flop transition of the XXZ model. Lines are guides to the eye and
interpolate the results for an iPEPS with bond dimension 2. The QMC results are
taken from Yunoki [140].

and located the transition point using adiabatic time evolution. We will take a
different approach based on the observation that the dynamics close a first-order
phase transition differ fundamentally between simulations on finite lattices and on
infinite lattices with translational invariance.

If the system is taken across the phase transition from phase A to phase B,
phase A becomes meta-stable. Since phase A cannot locally be continuously de-
formed into phase B (assuming pure states), the dominant process by which the
meta-stable state decays is the condensation of finite clusters of phase B (see, e.g.,
Binder [146]), which necessarily breaks translational symmetry. This process is
suppressed by enforcing translational symmetry. The imaginary time evolution
we simulate therefore has a strongly suppressed probability of tunneling from one
phase to the other in the phase coexistence regime where the energy densities of
phase A and B are similar.

We can therefore expect to find only homogeneous systems of one phase in the
vicinity of the transition. By preparing a state deep within one phase and using
this state as initial state for the imaginary time evolution of the Hamiltonian
with different parameters, we can find the energy density of each phase for a
relatively wide space of parameters. The transition point can then be located
to high accuracy as the crossing point of the ground-state energy densities of
the two phases; simultaneously, the existence of this stability allows us to clearly
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Figure 5.3: Convergence of relative errors ∆x = |x(iPEPS)− x(QMC)|/|x(QMC)|
with bond dimension M . Monte Carlo results from [136, 147] are taken as exact.
For the definition of the magnetization refer to the text.

distinguish the nature of the phase transition.
If the coexistence of two different types of order is observed in an iPEPS sim-

ulation, it cannot be due to coexistence of the two phases, i.e. phase separation.
This is in strong contrast to simulations of finite systems, where due to the equal
energy density of the two phases at or close to the transition point, bubbles of one
phase may exist within the other, rendering the interpretation of data difficult.

The results we obtain for the spin-flop transition are shown in Fig. 5.2. The
results for M = 2 already match very well with the QMC results. The change with
M = 3 is very minor; at h = 1.5, the relative difference between the critical cou-
pling is on the order of 0.1%. A very small M is therefore sufficient to characterize
this phase transition with very good accuracy. Similar results were simultaneously
found in Ref. [84].

5.1.3 Heisenberg and XY model

In the beginning of this chapter, we discussed the relevance of the Heisenberg
model for magnetism and as effective model for interacting fermions. It is clearly a
relevant test case for two-dimensional long-range ordered SU(2) antiferromagnet.
An accurate description has long been sought for, until it was finally obtained
by Quantum Monte Carlo. Due to its large symmetry group, there are three
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Figure 5.4: Magnetization m (cf Eqn. (5.5)). The error increases significantly as
the isotropic Heisenberg model is approached. The restoration of the full SU(2)
symmetry at that point leads to a significant decrease of the magnetization, which
is not correctly captured by iPEPS for the M we considered. Finite size scaling
was performed for the Monte Carlo calculations.

Goldstone modes, which renormalize the magnetization significantly compared to
the classical Neél state. These fluctuations lead to a large amount of entanglement
in the ground state, even though it is an ordered phase. We therefore expect it to
be a difficult test case for tensor network state methods.

The XY model is similar, but has a smaller symmetry group. Its U(1) symmetry
is spontaneously broken, which introduces one Goldstone mode. The fluctuations
away from the Neél state are weaker than in the Heisenberg model, which leaves
the magnetic moment closer to that of the classical Neél state.

In Fig. 5.3, results for the energy and the spontaneous magnetization are
shown, where the magnetization m is defined as (subscript indices denote the site
in the unit cell)

m =
1

2
〈mk〉unit cell (5.5a)

mk =

√ ∑
i=x,y,z

〈σik〉2. (5.5b)

〈σz〉 vanishes for all Jz < Jxy. The data clearly shows that while energies are
captured very well for both models, the large quantum fluctuations away from
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the Néel order, in particular for the isotropic case, are not captured by a PEPS
of small dimension very well, leading to a significant error in the magnetization.
Interestingly, the energy for the Heisenberg model decreases strictly monotonously
with increasing M , while the magnetization does not improve significantly from
M = 3 to M = 4 (this can also be seen in Fig. 5.6). This illustrates that in gapless
models, states with varying physical properties may lie very close to each other
in energy, which impairs the ability of variational simulations to obtain accurate
results.

Figure 5.4 shows the magnetization as the coupling is tuned from the limit of
the XY model to the isotropic Heisenberg model, i.e. Jz is tuned from 0 to Jxy. In
the Monte Carlo data, it is interesting to note that the magnetization drops very
quickly close to the isotropic point. It is in particular this large drop that is not
well described by the PEPS data for small values of the bond dimension, leading
to the large deviation of the magnetization at the isotropic point.

Figure 5.4 shows how the decrease of the magnetization as Jz is tuned from
0 to Jxy is captured by the PEPS; in particular the rapid decrease as the SU(2)
symmetry is restored is not seen in the PEPS calculation.

5.1.4 Dimerized Heisenberg model

It has been demonstrated several times that PEPS on infinite lattices work well
at the quantum phase transition of the two-dimensional Ising model in transverse
field [71, 79]. In these publications, the authors were able to show that the location
of the critical point can be determined with excellent accuracy, and even the critical
exponent for the magnetization can be extracted. However, from an entanglement
point of view, the transition in the Ising model seems particularly simple: the
phases on both sides of the transition are weakly entangled phases, as one phase
is a simple paramagnet, and the other a long-range ordered ferromagnet, which
however only breaks a discrete symmetry and therefore remains gapped.

The study of the Ising model is therefore not sufficient to assess the accuracy
of PEPS for more general classes of phase transitions. To obtain insights about
the accuracy in more challenging situations, we study a phase transition in an
SU(2) symmetric model. We consider a dimerized Heisenberg model given by the
Hamiltonian

H =
∑
〈i,j〉

J 〈i,j〉~σi~σj, (5.6)

where we choose the couplings J 〈i,j〉 inhomogenously according to the pattern
shown on the left in Fig. 5.5. For J ′ = 1, J = 0, the state is made up of isolated
singlets on the strong-coupling bonds; although these dimers are uncorrelated, the
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Figure 5.5: (color online) Different dimerization and unit cell patterns. The pattern
on the left, which we refer to as staggered pattern, is described by a unit cell with
two independent tensors and used for the dimerized Heisenberg model. For J ′ = 0,
the honeycomb lattice is obtained. The second pattern, referred to as columnar
pattern, is used in the frustrated cases, but requires 4 instead of two independent
tensors. The thick, solid bonds carry couplings J ′xy, J

′
z, the dashed lines carry

couplings Jxy, Jz.

state cannot be described at mean-field level. In the limit J = J ′, the isotropic
Heisenberg model is recovered, which, as discussed above, is a strongly entangled
phase that poses challenges to tensor network state methods. Between these limits,
a second-order phase transition occurs. A recent investigation using Quantum
Monte Carlo [148] located the critical point precisely, but raised some questions
about the universality class; for further discussions of this topic, see e.g. Ref. [149].

In Fig. 5.6, the order parameter for the phase transition, the staggered mag-
netization (Eqn. (5.5)) is shown for several values of the bond dimension M ; for
comparison, we show results obtained with Quantum Monte Carlo. The iPEPS
results clearly indicate the presence of a phase transition; the singularity at the
critical point gets sharper as the bond dimension is increased. The location of the
critical point is however not obtained to high accuracy with these simulations, but
a large improvement is seen between M = 3 and M = 4. We have however not
attempted to extrapolate this, as there are too few points to allow a reliable fit.
Also, we have not attempted to extract critical exponents, as this would require
data with much higher accuracy.

In the iPEPS simulation, the antiferromagnetic region is found to be larger
than it should be. This can be attributed to the fact that breaking the SU(2)
symmetry reduces entanglement and is therefore preferred by tensor network state
methods.
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Figure 5.6: (color online) Staggered magnetization of the dimerized Heisenberg
model as a function of the coupling ratio. J/J ′ = 1 corresponds to the isotropic
Heisenberg model, while J/J ′ = 0 corresponds to isolated dimers on every second
horizontal bond.

5.2 Frustrated XY Models

To study the applicability of the iPEPS method to frustrated quantum models, we
have studied a phase transition in the family of models obtained by choosing the
signs of the different couplings as shown in Fig. 5.5 in such a way that the product
around each plaquette is negative, i.e. JJ ′ < 0. The class of models allows a
large degree of freedom in the choice of parameters. In particular, we can choose
full Heisenberg coupling J

〈i,j〉
xy = J

〈i,j〉
z or restrict the coupling to the XY plane,

|Jxy| > 0, Jz = 0.
The case of Heisenberg couplings on the staggered pattern has been studied by

Krüger et al [150] using the Coupled-Cluster Method and Exact Diagonalization.
The authors find a phase transition from the antiferromagnetic state in the non-
frustrated limit to a hexatic phase. Classically, this occurs at a coupling ratio
J ′/J = 1/3; in the quantum model, the antiferromagnetic phase is stable up to
J ′/J ≈ 1.35. While the phase transition is second-order in the classical case, it
is conjectured to be of first order in the quantum case. The hexatic phase for
this pattern however has a large magnetic unit cell which renders it unsuitable
for simulation with an infinite, translationally invariant ansatz. In the following
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Figure 5.7: (color online) Energies for the different bonds and comparison of en-
ergies for the classical and quantum columnar frustrated XY model.

discussion, we will therefore focus on the case of XY coupling and the columnar
configuration with J = −1.

Classical analogues of spin-1
2

systems can be obtained by replacing the quantum
spins with Ising (Z2), XY (O(2)) or Heisenberg (O(3)) spins. Equivalently, one
can consider mean-field solutions of the quantum system since for spin-1

2
degrees

of freedom, the mean-field approximation to a Hamiltonian of the form

H =
∑
〈i,j〉

J 〈i,j〉x σxi σ
x
j + J 〈i,j〉y σyi σ

y
j + J 〈i,j〉z σzi σ

z
j , (5.7)

can be mapped exactly to a classical Hamiltonian for Heisenberg spins. We can
therefore choose to either solve a classical system or perform a mean-field simu-
lation, which we can do simply by minimizing the energy of an iPEPS state with
bond dimension M = 1. In this case, the renormalization procedure described
above reduces to the multiplication with a scalar which cancels for all physical
observables.

The classical system has been studied by Villain [151] and solved for the case
of |J ′| = |J | with Ising and XY spins. For XY spins on the columnar pattern, a
two-fold degenerate hexatic state is found, which exhibits a 2 × 2 site unit cell.
Using numerical mean-field calculations on a 2 × 2 unit cell, we locate a second-
order phase transition from a ferromagnetically ordered state to the hexatic state
at J ′/J = 1/3. Our result for J ′/J = 1 complies with the result by Villain.
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Figure 5.8: (color online) Relative angles between the magnetizations in the XY
plane for the quantum and classical columnar frustrated XY model, which is equiv-
alent to a mean-field solution of the quantum model. Notice that at maximal
frustration, the angles for the classical and quantum case coincide. The transition
is shifted from J ′/J = 1/3 to a larger value of J ′/J ≈ 0.45.

To simulate the quantum system beyond mean-field, we use an iPEPS ansatz
with M = 2 and a 2 × 2 unit cell. The classical ground state is used as initial
state for the iPEPS simulation, since this improves stability and convergence speed
of the algorithm. We measure the energy on each bond and the relative angles
between the spins in the XY plane. For the ferromagnetic configuration, these are
0; for ∠(AC) = ∠(AB) = π,∠(AD) = 0, the state is antiferromagnetic. Between
these limits, a hexatic state is found. Therefore, the angles can be used as order
parameters for the phase transition.

In Fig. 5.7, the energy for each bond and a comparison of the total energy
per site to the classical result is shown. For the non-frustrated case, J ′ = 0,
we can also compare to Quantum Monte Carlo results. The energy found with
iPEPS for M = 2 is E0 = −1.676, while the Monte Carlo results for small lattices
extrapolate to E0 = −1.683(1). The relative error of ∆E = 0.0042 is comparable
to that obtained for the XY model on the square lattice.

We find that the magnetization always remains in the XY plane and is reduced
by quantum fluctuations to a value on the order of m ≈ 0.45; at all points except
the maximally frustrated point J ′ = J , the magnetization is different on the AD
and BC sublattices. The angles as a function of the coupling ratio are shown in Fig.
5.8. They indicate a phase transition analogous to the classical one, which however
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Figure 5.9: (color online) Ground state of the columnar-pattern frustrated model
with Jxy = −1 and J ′xy = 1. Four magnetic unit cells are shown for illustration
purposes. The arrows indicate the magnetization in the XY plane (up to global
rotation). The angles of the quantum ground state are identical to those of the
classical ground state.

is shifted towards a higher critical coupling of around J ′/J = 0.45. This agrees
with previous results indicating that quantum fluctuations stabilize the collinear
order in this class of models.

The state at the point of maximal frustration, |J ′/J | = 1, is shown in Fig.
5.9. The state corresponds directly to Villain’s solution up to a reduction of the
magnetization on each site to m ≈ 0.451. We have cross-checked this result by
starting the simulation with different initial states.

In order to investigate the order of the phase transition, we can study the
stability of a state upon quenches of the parameters that take the system across the
phase transition as discussed in Sect. 5.1.2. In our simulations, we do not observe
such stability of the state, indicating that the transition remains continuous in the
presence of quantum fluctuations.

5.3 The accuracy in the presence of symmetries

In Chapter 3, we have developed a formalism for symmetric tensor networks, i.e.
tensor networks where an Abelian symmetry of the physical Hamiltonian is used
to constrain the form of the tensors that make up the state. However, for two-
dimensional tensor networks like the PEPS, it is not a priori clear that such a
symmetric tensor network will be as accurate as the standard algorithm; this is
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Figure 5.10: The first panel shows how the relative error in the energy decreases
as M is increased, for different choices of the symmetry group. The second panel
shows the same data versus the number of variational parameters in the state (note
the logarithmic scale on both axes). Clearly, the fact that the relative errors are
similar between symmetry groups for a given M shows that reducing the number
of parameters and the computation time by using larger (finite) symmetry groups
does not lead to any loss in accuracy.

in contract to matrix-product states, where this is clear. We therefore need to
establish the accuracy of the method by comparing to known results for some test
cases.

In this section, we discuss the accuracy of symmetric PEPS exploiting U(1)
and Zq symmetry focusing on the isotropic Heisenberg model as a test case. We
obtain results with the simplified update described in Section 2.2.2; the directional
corner transfer matrix is used to extract expectation values.

5.3.1 Finite groups

The results we obtain for the Heisenberg model with finite symmetry groups Z2

and Z3 are shown in Fig. 5.10 as a function of the total bond dimension on the
bonds of the state and as a function of the total number of variational parameters
of the state (note the logarithmic scale in this case). For comparison, we show
results obtained with a non-symmetric PEPS, but with the same simplified update
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n M Mc Parameters Comparison Z2

3 6 2-2-2 2048 5184
5 8 1-2-2-2-1 4800 16384
5 9 1-2-3-2-1 8128 26244
5 10 2-2-2-2-2 10240 40000
5 11 2-2-3-2-2 15680 58564
7 14 2-2-2-2-2-2-2 28672 153664

Table 5.1: The table shows the choices of symmetry-sector dimensions for the U(1)
symmetry in the Heisenberg model. The columns contain i) the number of sectors
associated with quantum numbers Sz = −(n−1)/2 . . . (n−1)/2, ii) the total bond
dimension, iii) the size of each sector, iv) the total number of parameters of the
state, v) the total number of parameters in a Z2-symmetric state with the same
total bond dimension.

scheme. We choose the number of states equal in each sector, hence M = q · n.
We also make the same choice on all bonds of the PEPS. We keep up to 36 states
in the renormalization of the corner transfer matrices.

For n > 1, that is with a non-trivial dimension in each symmetry sector on the
auxiliary bonds, the energies obtained with the symmetric PEPS are comparable to
those obtained without symmetry for the same bond dimension. This demonstrates
that the approximation introduced by restricting the structure of the tensors is
valid and does not affect the accuracy. Since all matrix operations decompose into
q blocks, we can expect a speedup of O(q3) of the algorithm. In terms of the
number of variational parameters, a significant improvement is achieved: with Z2

symmetry, only half the number of variational parameters is necessary. With Zq
symmetry, the reduction is even stronger. This may be advantageous particularly
if a direct energy minimization algorithm is applied instead of the imaginary time
evolution.

In some cases, the energy of the symmetric state falls below the energy of the
non-symmetric state. This must be attributed to trapping in local minima, which
seems more likely in the case of a non-symmetric PEPS with more variational
parameters.

5.3.2 U(1)

While for the finite groups considered so far, we could simply keep all allowed
sectors of the symmetry on each auxiliary bond, some choice must be made for the
infinite group U(1). Furthermore, we have to choose the dimension within each
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Figure 5.11: Relative error in the ground state energy of the 2d Heisenberg model
with a U(1)-symmetric PEPS, as a function of i) the total bond dimension, ii) the
number of parameters. The choice of sectors and dimensions is shown in Table 5.1.
We show results with Z2 symmetry for comparison.

symmetry sector – due to the large number of sectors, it is generally not efficient
to keep it the same in all sectors, as we did for finite groups. However, given the
fast growth of computational cost with the bond dimension, only a few choices are
possible. The choices we considered are listed in the table in Fig. 5.1. It should
be noted that for equal total bond dimension M , a state with more symmetry
sectors of smaller dimension is computationally less expensive since all matrix
computations can be split into more blocks. This allows us to study states with
very large bond dimension up to M = 14, which would be intractable otherwise.

Results obtained with the above choices are shown in Fig. 5.11. The accuracy
for a given bond dimension is worse than with the finite group Z2; even for the
very large bond dimensions studied with U(1) symmetry, the accuracy does not
reach the level of the finite symmetry groups. This is a clear signature that the
approximation we made by imposing a U(1)-symmetric structure on the tensors
and picking only a few allowed sectors of the symmetry limits the accuracy of the
simulations. One has to keep in mind, however, that the number of variational
parameters is reduced much more strongly than in the case of finite groups, as
shown in the last column of Table 5.1.
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Chapter 6

Supersymmetric lattice fermions

The study of supersymmetry has its origins in the field of particle physics, where
it allows the construction of quantum field theories containing both bosonic and
fermionic excitations which are related by the supersymmetry. Such field theories
are considered promising candidates for extensions of the standard model of par-
ticle physics and may solve some of the open problems encountered in the field
today.

At the same time, supersymmetry has found applications in many other fields
of physics. In this chapter, we will study it in a very different context than the
particle physics problems where it was first used. Instead of relativistic quantum
field theories, we will discuss a class of models for interacting lattice fermions which
by construction are supersymmetric. The notion of supersymmetry in this context
will be introduced in Section 6.1.1. Several analytical methods are available only
for supersymmetric models; for an overview of these approaches, see Ref. [152].

The models we study were first suggested in Refs. [153, 154], where the model on
the chain was solved explicitly using the Bethe ansatz. Exploiting the additional
tools that are available due to supersymmetry, further aspects of these models
were understood: Using the Witten index and cohomolgy arguments, the number
of ground states and some of their properties on several two-dimensional lattices
were obtained in [155, 156]. This was used to demonstrate that the models exhibit
surprising properties such as superfrustration [155], an exponential degeneracy of
the ground state which is not lifted by quantum fluctuations. The case of the chain
was analyzed in more detail: in Ref. [157], the authors explore properties of the
ground state for finite systems. The spectrum and its relation to superconformal
field theory was explored in detail in Ref. [158]. Recent advances include the study
of perturbations of the model which preserve supersymmetry, namely staggered
interactions [159, 160, 161].

The main purpose of this chapter will be to explore the properties of the model
on the square ladder. It has been shown to be critical and is conjectured to be
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Figure 6.1: Spectrum of the supersymmetric harmonic oscillator with quantum
numbers nf , nb. Key feature is the two-fold degeneracy between fermionic (nf = 1)
and bosonic (nf = 0) states for all eigenvalues except the ground state at E = 0.

described by the second N = 2 supersymmetric minimal CFT [156, 152], but this
could not be confirmed numerically to this point. Instead, the spectrum shows
severe discrepancies with the minimal model, for which no explanation has been
found. In this thesis, we apply several approaches to this model in order to confirm
its critical theory.

6.1 Supersymmetric lattice fermions

In the following, we will first introduce the basic notion of supersymmetry by the
example of the supersymmetric harmonic oscillator, where we will closely follow
the description of Ref. [162]. We will then move on to describe a supersymmetric
model of interacting lattice fermions, which will be the focus for the rest of this
chapter.

6.1.1 A single-particle example: the supersymmetric har-
monic oscillator

Consider the standard harmonic oscillator, which, in appropriate units, is given by

H = p2 +
x2

4
[x, p] = i. (6.1)
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Rewriting this into the standard raising and lowering operators, defined by

a =
x

2
+ ip a† =

x

2
− ip [a†, a] = 1, (6.2)

we have

H = a†a+
1

2
. (6.3)

What does it mean to introduce supersymmetry into the harmonic oscillator?
This is rather trivial physically, but nevertheless contains all the formal ingredients
for N = 2 supersymmetry. Let us define the operators

Q = aψ† Q† = a†ψ, (6.4)

where ψ, ψ† are fermionic annihilation and creation operators with the commuta-
tion relations

{ψ, ψ†} = 1 {ψ, ψ} = {ψ†, ψ†} = 0 (6.5)

which commute with the bosonic operators. Consider now the Hamiltonian

Hs = {Q,Q†} (6.6)

= a†a+ ψ†ψ (6.7)

= nb + nf . (6.8)

Its eigenvectors can be written in an occupation number basis |nb, nf〉, where due
to fermionic statistics nf ∈ {0, 1}, and nb ∈ {0, 1, ...} is the normal occupation
number of the harmonic oscillator. The eigenstates are in correspondence to the
eigenstates of the standard harmonic oscillator, |nb, nf〉 = |n〉 ⊗ |f〉, where |n〉 are
the eigenstates of the harmonic oscillator and |f〉 are the occupied and empty state
in the fermionic Hilbert space.

Clearly, for nf = 0, the spectrum of the Hamiltonian Hs is in one-to-one
correspondence to that of the standard harmonic oscillator, up to a shift of 1

2
.

The ground state is non-degenerate, whereas all other eigenvalues are two-fold
degenerate, with one state in each sector of the fermion number:

〈0, 0|H|0, 0) = 0 (6.9)

〈nb, 1|H|nb, 1〉 = 〈nb + 1, 0|H|nb + 1, 0〉 (6.10)

= nb + 1. (6.11)

In addition to the obvious symmetries, [H,nb] = [H,nf ] = 0, Q and Q† are sym-
metries by construction,

[H,Q] = [H,Q†] = 0. (6.12)
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Finally, we have the anticommutation and nilpotency conditions

{Q,Q} = {Q†, Q†} = 0 (6.13)

Q2 = (Q†)2 = 0. (6.14)

Together, Eqns. (6.6), (6.13) and (6.14) form the N = 2 supersymmetric alge-
bra. The characteristic properties of these systems are

. a ground state with E = 0 if supersymmetry is unbroken,

. a two-fold degeneracy of excited states with one state in the ”fermionic”
(here, nf = 1) and ”bosonic” (nf = 0) sector,

. conserved quantities Q, Q†.

Q and Q† are referred to as supercharges. N refers to the number of supercharges,
where in this case Q and Q† are considered separate supercharges despite their
obvious relation.

As indicated above, this is merely a toy model, in particular since the bosonic
and fermionic operators are not at all coupled in the Hamiltonian. Indeed, mak-
ing a single-particle problem supersymmetric is possible whenever the potential
permits a factorization into the form (6.6), which is true for a large class of one-
dimensional potentials. The purpose of this exercise was therefore only to introduce
the formal requirements for N = 2 supersymmetry; in the next section, we will
apply the same construction to a non-trivial model of interacting fermions.

6.1.2 A many-particle model

We will now construct explicitly a model for supersymmetric lattice fermions.
This model was first described in Refs. [153, 154]. Let d†i be a fermionic operator
that creates a ”hard-core fermion”; by hard-core, we mean that it has an infinite
nearest-neighbor repulsion, or equivalently it can only be created if the adjacent
sites are empty. We can define these in terms of normal fermionic operators ci
with the help of a projection operator

Pi =
∏
〈i,j〉

(1− nj), (6.15)

where 〈i, j〉 denotes pairs of nearest neighbors. Note that Pi commutes with cj
and c†j if either i = j or i and j are not nearest neighbors; furthermore, P 2

i = Pi.

The operators d†i are now defined as d†i = c†iPi.
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To obtain a supersymmetric model, we define as supercharges

Q† =
∑
i

c†iPi (6.16)

Q =
∑
i

ciPi. (6.17)

Without the hard-core projection, the supersymmetric HamiltonianH = {Q,Q†}
becomes trivial:

H =
∑
i,j

c†icj +
∑
i,j

cic
†
j (6.18)

=
∑
i

(
c†ici + cic

†
i

)
+
∑
i 6=j

(
c†icj + cic

†
j

)
(6.19)

=
∑
i

(ni + (1− ni)) +
∑
i 6=j

(
c†icj − c†jci

)
(6.20)

=
∑
i

1. (6.21)

With the hard-core projection and i, j nearest neighbors, however,

Pjcjc
†
iPi = 0 (6.22)

Pic
†
icjPj 6= 0, (6.23)

so that the cancellation in the second term of (6.20) does not occur for pairs of
nearest neighbors. One finds that the Hamiltonian in this case is given by

H =
∑
〈i,j〉

(
Pic
†
icjPj + Pjc

†
jciPi

)
+
∑
i

Pi (6.24)

The first term is a hopping term dressed with the hard-core projection; the second
term can be interpreted as a potential term whose precise structure will depend
on the lattice. The Hamiltonian preserves the number of fermions, [H,

∑
i ni] = 0.

We identify states with an odd number of particles as ”fermionic” states, and
”bosonic” otherwise. We will discuss the properties of this model on two specific
lattices, the chain and the square ladder, in Sections 6.3 and 6.4, respectively.

6.2 Conformal field theory

In Section 1.2, we discussed the phenomenon of universality and scale-invariance of
critical systems, which were both explained first by renormalization group theory.
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6.2 Conformal field theory

For two-dimensional classical or one-dimensional quantum systems, conformal field
theory was later established as an extremely powerful theoretical tool, which allows
a very profound understanding of universality and many other aspects of criticality.

Conformal field theory is a widely studied subject and the literature is exten-
sive. In this section, we will review a selection of basic concepts which are relevant
for numerical studies of quantum phase transitions in one dimension. This section
is mostly based on material from Refs. [163, 164].

6.2.1 Conformal symmetry in two dimensions

Conformal transformations are those transformations which leave the angles be-
tween two vectors unchanged. Formally, these are the transformations that change
a metric gµν only by a local scale factor,

g′µν(~r
′) = Ω(~r)gµν(~r). (6.25)

In dimensions d > 2, it can be shown that these transformations are rotations
~r′ = R~r, translations ~r′ = ~r + ~a, dilatations ~r′ = b~r and special conformal trans-
formations, which amount to an inversion, a translation and another inversion.
The group formed by the conformal transformations in d > 2 is therefore finite-
dimensional. In two dimensions, on the other hand, the conformal transformations
are precisely those transformations ~r′ = ~r + ~ε for which

∂1ε1 = ∂2ε2 ∂1ε2 = −∂2ε1. (6.26)

Introducing complex coordinates,

z = r1 + ir2 z̄ = r1 − ir2, (6.27)

one recognizes (6.26) as the familiar Cauchy-Riemann equations, whose solutions
are the analytic functions in C. Therefore, in two dimensions, all analytic functions
z′ = w(z) and z̄′ = w̄(z̄) are conformal transformations!

These form an infinite-dimensional group with the generators

ln = −zn+1∂z (6.28a)

l̄n = −z̄n+1∂z̄ (6.28b)

for n ∈ Z. The commutation relations for these generators are given by

[ln, lm] = (n−m)lm+n (6.29a)

[l̄n, l̄m] = (n−m)l̄n+m (6.29b)

[ln, l̄m] = 0. (6.29c)

A few of these generate easily recognizable transformations:
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. l−1 = −∂z generates translations.

. While l0 alone is not simply to understand, linear combinations can be formed
that generate translations and rotations in the complex plane. Reparametriz-
ing the complex plane by z = reiφ, we have l0 = −1

2
r∂r + i

2
∂φ, and l̄0 anal-

ogous. Therefore, l0 + l̄0 = −r∂r generates dilatations, and i(l0 − l̄0) = −∂φ
generates rotations in the complex plane. These will become important at a
later point.

Conformal field theories are characterized by a set of operators which have
well-defined transformation behavior under the conformal transformations intro-
duced above. We can categorize the operators A(z, z̄) of the conformal field theory
into three groups: pimary, quasi-primary and secondary operators, where primary
operators are a subset of quasi-primary operators. In the following, we will be
concerned with primary and quasi-primary operators, which have a simple trans-
formation law under a conformal transformation z → w(z), z̄ → w̄(z̄):

A(z, z̄)→
(
∂w

∂z

)∆(
∂w̄

∂z̄

)∆̄

A(w(z), w̄(z̄)). (6.30)

Primary operators are those which obey this transformation law under all con-
formal transformations, whereas quasi-primary operators are those which obey it
only for transformations generated by l−1, l0 and l1 (projective conformal transfor-
mation). The numbers ∆, ∆̄ are referred to as conformal weights of the operators,
and x = ∆ + ∆̄ is the scaling dimension of the operator.

This transformation law is sufficient to severely constrain the form of correlation
functions for quasi-primary operators. For example, the two-point functions are
given by

〈φ(z1, z̄1)φ(z2, z̄2)〉 = C

(
1

z1 − z2

)2∆(
1

z̄1 − z̄2

)2∆̄

. (6.31)

At this point, the relation to the heuristic picture of critical systems becomes clear.
A critical system is characterized by a divergent correlation length, i.e. there are
operators whose correlations obey a power-law decay instead of the exponential
decay expected for systems away from criticality. These are precisely the quasi-
primary operators of the CFT, and the conformal weights describe the decay of
these correlation functions. Furthermore, a relationship can be established between
critical exponents of a theory and the conformal weights, but we will not explore
this further in this thesis.

It turns out that the algebra (6.28) has to be extended in order to fully describe
the symmetry of a quantum system governed by a conformal field theory. This
extension depends on a number c, referred to as central charge; it will play a central
role in the following discussion. Unfortunately, discussing the origin of this term
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would go beyond the scope of this thesis. Instead, we now state the main result,
the so-called Virasoro algebra, and then discuss its implications:

[Ln, Lm] = (n−m)Ln+m +
1

12
cn(n2 − 1)δn+m,0 (6.32a)

[L̄n, L̄m] = (n−m)L̄n+m +
1

12
cn(n2 − 1)δn+m,0 (6.32b)

[L̄n, Lm] = 0. (6.32c)

The importance of this algebra lies in the fact that its elements are symmetries
of the fixed-point Hamiltonian of the critical system and all eigenstates of the
conformal field theory are eigenstates of the elements of the Virasoro algebra. Its
representation theory therefore gives a classification of all states of the theory.

We will now move on to discuss three main results: i) the classification of an
important set of CFTs, the minimal models, ii) how the representation theory
of the Virasoro algebra affects the spectra of critical one-dimensional quantum
systems, iii) how the entanglement entropies of critical one-dimensional quantum
systems can be derived from CFT.

6.2.2 Minimal models

As we saw above, the correlation functions of a conformal field theory are described
by the conformal weights of its quasi-primary operators. In the next sections, we
will see that these conformal weights, together with the central charge, permit the
calculation of many other physical quantities as well. The knowledge of the set of
conformal weights and the central charge is therefore sufficient to extract a lot of
information about the behavior of the physical system.

A central result is that under certain conditions, there is only a discrete set
of allowed CFTs, whose central charge and conformal weights can be calculated
from very simple equations. These CFTs are referred to as minimal models due
to their relation to a set of statistical models at their critical point. This is an
extremely powerful result, since it i) helps to identify the CFT underlying some
critical microscopic system, as there is only a restricted number of possibilities,
ii) helps to characterize the physical behavior of a system as soon as it is known
which of the minimal models applies.

For a system without supersymmetry, the unitary CFTs with c < 1 form such
a discrete set [165]. It can be enumerated by an integer m ≥ 2; the central charge
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and the conformal weights are given by

c = 1− 6

m(m+ 1)
(6.33a)

∆ =
[r(m+ 1)− sm]2 − 1

4m(m+ 1)
(6.33b)

where r, s are integers with 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ m. For example, the
critical transverse-field Ising model is described by the m = 3 minimal model,
with conformal weights ∆ = 0, 1/16, 1/2 (not listing degeneracies). As one would
expect, these are the exponents of certain spin correlation functions [166].

For supersymmetric conformal field theories, the Virasoro algebra is extended
to include additional terms. There are two possible extensions, namely the Ra-
mond algebra and the Neveu-Schwarz algebra; these will reappear later as different
sectors of the theory. The minimal series in the case of N = 2 supersymmetry is
([167]) again enumerated by an integer k ≥ 1 and has

c = 3− 6

k + 2
(6.34a)

∆ =
p(p+ 2)− r(r − 2)− 4rα + 2k(1

2
− α)2

4(k + 2)
(6.34b)

for 0 ≤ p ≤ k and r = −p,−p + 2, . . . , p, and α = 0 (α = 1/2) for the Ramond
(Neveu-Schwarz) sector. The first model in this series has c = 1 and conformal
weights ∆ = 0, 1/6 in the Neveu-Schwartz sector; we will revisit this model later
in this chapter.

6.2.3 Relation to finite systems

While it is intuitively clear that a critical system is related to a conformal field
theory – after taking a continuum limit in an appropriate way, and in the thermody-
namic limit – our considerations so far have not lead to an obvious way of relating
the CFT description and a numerical calculation, which is generally performed
for a microscopic Hamiltonian on the lattice, and usually in finite systems. The
only applicable relation would be the constraint on correlation functions (6.31),
which however in practice is not useful on small lattices, and if the microscopic
representations of the quasi-primary operators are not known.

One way to establish a tight relation is by means of a numerical renormalization
procedure like the MERA, which we will discuss in the next section. There are
however also useful relations between the CFT description and properties of the
microscopic system even on small lattices. In the next section, we will describe
a surprising relation between the spectra of microscopic Hamiltonians and the
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conformal weights of the quasi-primary operators. After this, we will turn our
attention to a relation between the entanglement entropy on finite lattices and the
central charge of the CFT. Together, these approaches provide the most powerful
numerical tools for the identification of CFTs.

Consider the following mapping of a coordinate z in the complex plane to a
coordinate w on a cylinder of infinite length,

z = exeiy → w = x+ iy, (6.35)

where x ∈ R and y ∈ [0, 2π) with periodic boundary conditions, y ≡ y+2π. It will
be useful to think of x as time and y as space direction. Dilatations and rotations
in the complex plane are translated into time and space translations:

z′ = eaz → x′ = x+ a (6.36)

z′ = eibz → y′ = y + b. (6.37)

As shown above, L0 +L̄0 generates dilatations in the complex plane, and i(L0−L̄0)
generates rotations. This means that on the cylinder, these operators generate time
and space translations. This suggests a direction connection to physical operators:

L0 + L̄0 ∼ H (6.38)

i(L0 − L̄0) ∼ P. (6.39)

These operators are defined on an infinitely long cylinder of finite circumference.
Our identification of time and space direction already suggests the relation to a 1+1
dimensional quantum system with finite extent (and periodic boundary conditions)
in space dimension, but infinite extent in the (imaginary) time direction, which is
precisely the ground state of a finite one-dimensional lattice system.

Indeed, the fixed point Hamiltonian of the critical system is H = 2π
L

(L0 +
L̄0). For the original microscopic Hamiltonian, subleading corrections are present,
but nevertheless the leading part of the spectrum can be constructed from the
eigenvalues of L0. To this end, we now state some of the main results of the
representation theory in the Virasoro algebra. From a vacuum state, which is
defined by Ln|0〉 = 0, n ≥ −1, states corresponding to primary operators φ can be
created. These are eigenstates of Ln, n >= 0:

Lnφ = 0 (n ≥ 1) (6.40)

L0φ = ∆φ, (6.41)

where ∆ is a conformal weight. Together with the algebra (6.32), this yields the
important result that for a state φnk,...,n1 = L−nk . . . L−n1φ, ni > 0,

L0φ
nk,...,n1 = (∆ + n1 + . . .+ nk)φ

nk,...,n1 . (6.42)
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The energies on a finite system are therefore, up to subleading corrections,

En =
2πv

L

(
∆ + ∆̄ + n

)
(6.43)

for non-negative integers n, and some proportionality constant v which we will not
discuss here.

In most situations, subleading corrections appear at order 1/L1+1, but other
situations are possible, for example the three-state Potts model, with corrections
at 1/L1+0.8 [168], or the Heisenberg chain, where logarithmic terms appear [169].
Such terms may render an analysis based on finite-size spectra quite difficult and
it becomes important to know the precise behavior in order to extrapolate to the
infinite-size limit. Deducing the behavior from numerical data is very challenging.
A simple approach, like performing a numerical fit to the form E = a/L + b/Lc,
with fit parameters a, b, c, is usually not stable. A very useful, but rarely used
procedure is the van den Broeck-Schwarz extrapolation scheme [170, 171]. It was
used to extract the unusual exponent in [168]. We will show examples of its
application below.

6.2.4 Conformal field theory and entropy

Another very well-known result from conformal field theory is the relation between
the entanglement entropy in a one-dimensional system and the central charge of a
related conformal field theory. If we denote the entanglement entropy between a
block of l contiguous sites in an infinite system and the rest of the system as S(l),
we have for the entropy of this block [33]

S(l) ∼ c

3
log l. (6.44)

This relation has proven be extremely useful in two ways:

. It has helped to identify the appropriate CFT description of many one-
dimensional microscopic Hamiltonians. To obtain the central charge, one
calculates the entanglement entropy for half of a finite chain of length L,
which will approximately be

SL ∼
nc

6
logL, (6.45)

where n = 1 for open and n = 2 for periodic boundary conditions. For
reasonably large systems, which can be simulated with the DMRG method,
such a fit often gives accurate results for the central charge.

. It has been useful in understanding where tensor network state methods can
be used successfully, as their cost is related to the scaling of the entanglement
entropy with system size.

97



6.2 Conformal field theory

In this chapter, we will make use of this relation in the first sense, namely to
numerically identify the conformal field theories describing two supersymmetric
lattice models.

Equation (6.45) only holds approximately. Many subleading corrections are
known and will be discussed now. A precise relation for finite systems is given in
Ref. [34], which also includes several generalizations. For our purpose, the relevant
result is the scaling of entanglement entropy for a block of l sites at the end of a
finite system of length L, which is

S(l) =
c

3
log

(
L

π
sin

πl

L

)
+ S0 (6.46)

for periodic systems, and

S(l) =
c

6
log

(
2L

π
sin

πl

L

)
+ S0 (6.47)

for open systems. In the constants S0, we have summed up several universal and
non-universal contributions, which are not relevant for the purpose of this thesis
and will not be discussed further.

Two possible ways of obtaining the central charge from the entropies are pos-
sible:

. For a given system size, one can perform a fit of sub-system entropies to
Eqns. (6.46) and (6.47). Usually, this should be performed for several system
sizes, as additional sub-leading corrections may affect the central charge for
smaller systems.

. Alternatively, if results for a large number of system sizes are available, the
entropy at the center of the chain can be fit to Eqn. (6.45). In some cases,
this will suffer less from sub-leading corrections and may therefore be more
accurate; this is particularly true if calculations are performed only for open
systems, where oscillatory corrections are often present.

Both of these approaches can be advantageous in certain situations, and we will
indeed find examples for both in the following sections.

An important correction to (6.47) was first observed numerically in Ref. [172]
and later explained analytically in Refs. [173, 174]. The authors of [172] consider
the XY chain, which maps exactly onto free fermions and is described by a CFT
with central charge c = 1. When introducing open boundary conditions, they find
an oscillating term in both the bond energies and the entropies. The magnitude
of the correction to the entropies is well fit by

Sc(l) ∼
(
L

π
sin

πl

L

)−K
, (6.48)
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so that the entropy becomes SXY(l) = S(l) +α(−1)lSc(L) with the S(l) of (6.47),
and some fit parameter α. K is the Luttinger parameter, which in this case takes
the value K = 1.

A heuristic explanation for the existence of such an oscillatory part is the
tendency of the antiferromagnetic spin chains to form local dimers, i.e. for two
adjacent sites to form a (maximally entangled) singlet, which by entanglement
monogamy implies that they are less entangled to their other neighbors. When
using open boundary conditions, a finite amount of such dimerization leading to
alternating terms in the bond energies and entropies will occur for any system size.

6.2.5 Relation to the MERA

The scale-invariant MERA is an explicit representation of a numerical renormal-
ization group transformation, which, for the scale-invariant MERA, reaches a fixed
point. In this section, we will discuss how to relate the fixed-point RG transforma-
tion to the central charge and scaling dimensions of the conformal field theory that
describes this fixed point. This relation was first demonstrated in Refs. [95, 96].

From the descending superoperator, the fixed-point reduced density matrix ρfp

is obtained, and the corresponding entropy S(ρfp) = −∑λα log2 λα is calculated,
where the λα are eigenvalues of ρfp. Due to the structure of the fixed-point reduced
density matrix, which is an object of rank 4, it is possible to take the trace over
half of the system to obtain ρfp

1/2, and the corresponding entropy S(ρfp
1/2). The

central charge is then obtain using (6.45) as

c = 3
(
S(ρfp)− S(ρfp

1/2)
)
. (6.49)

Since the ansatz is constructed directly in the thermodynamic limit, none of the
corrections to the entropy on finite systems that were discussed in the previous
section are relevant in this situation.

Obtaining the scaling dimensions is based on the transformation properties of
quasi-primary operators (6.30). For a global rescaling of coordinates, w(z) = bz
and w̄(z̄) = bz̄, they should transform as

A(z, z̄)→ b∆+∆̄A(w(z), w̄(z̄)). (6.50)

To relate this to the scale-invariant MERA, two key insights are necessary:

. The superoperators of the scale-invariant MERA are a coarse-graining trans-
formation which rescales distance by a factor b (b = 3 for the ternary MERA).
This connection can be made more explicit by considering the transformation
properties of two-point correlators as calculated from the ternary MERA.
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. The eigenvectors of the ascending superoperator are operators that, under
the RG transformation, are mapped back to themselves, i.e. obey a trans-
formation law of the form (6.50). The eigenvalues are precisely the prefactor
b∆+∆̄.

We therefore must diagonalize (using some iterative, non-Hermitian diagonaliza-
tion procedure such as the Arnoldi algorithm) the ascending superoperator and
obtain its eigenvalues λα; the scaling dimensions are then given by

(∆ + ∆̄)α = − log3 λα, (6.51)

In the limit of an exact representation of the state by the MERA, one could expect
to find all quasi-primary descendants; in practice, not all correlation functions of
the system can be represented with a finite number of parameters and only the
primary fields and a few descendants are found. The eigenvectors of the ascending
superoperator are microscopic representations of the quasi-primary fields of the
CFT; however, as the scale-invariant ansatz is usually applied not directly to the
Hamiltonian, but on top of a few translationally invariant layers of the MERA,
they cannot easily be related to operators on the original Hilbert space on lattice
L0. It is also possible to extract the coefficient (C in Eqn. (6.31)) for two-point
correlation functions, but we will not explore this possibility in the following.

An intriguing feature of the MERA is that these results can be obtained from an
ansatz for the ground state of the infinite system directly, as opposed to performing
fits to finite-size data. The results should therefore not be affected by finite-size
corrections and be much more useable as ”black box” to extract information about
the critical theory.

6.3 Chain

We now turn to a discussion of the model described in Section 6.1.2 on two specific
lattices, the chain and the ladder. Placing the model on the chain, the following
Hamiltonian is obtained:

H =
∑
i

(1− ni−1)(c†ici+1 + c†i+1ci)(1− ni+2) (6.52)

+
∑
i

nini+2 +
∑
i

(1− 2ni)

The potential term takes the form of a next-nearest neighbor repulsion and a
chemical potential.

The spectrum of the supersymmetric model on the chain as well as its contin-
uum limit is well understood [153, 154, 158]. It is described by the first N = 2
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supersymmetric minimal model, with

c = 1 (6.53)

∆(Neveu-Schwarz) = 0,
1

6
,
1

6
(6.54)

∆(Ramond) =
1

24
,

1

24
,
3

8
. (6.55)

Finite chains with periodic boundary conditions correspond to the Ramond sector
of the field theory, while the Neveu-Schwarz sector is obtained with anti-periodic
boundary conditions, i.e. if the fermion picks up a phase π when hopping around
the circle. For chains of length L = 3j + p, p ∈ {−1, 0, 1}, the ground state has
N = j fermions. With periodic boundary conditions, it is two-fold degenerate for
chains of length L = 3j and unique otherwise. With open boundary conditions,
only the Ramond sector of the theory is realized and the zero-energy ground state
is unique for for all lengths except L = 3j + 1, where no zero-energy ground state
exists.

In Figure 6.2, we show the finite-size spectrum of the supersymmetric chain for
several chain lengths, and extrapolated to the thermodynamic limit. The Hamilto-
nian was diagonalized using a Jacobi-Davidson method, which is able to extract the
degeneracies of the levels. The spectrum for each system size is separately rescaled
to match the lowest non-vanishing level of the conformal tower E ′ = 2h − c/12.
For the Neveu-Schwarz sector, the ground state is scaled to E ′ = −1/12; in the
Ramond sector, the first excited state is scaled to E ′ = 6/8 − 1/12 = 2/3. The
extrapolation to L = ∞ was performed using van den Broeck-Schwartz approxi-
mants. The extrapolated spectrum nicely matches the expectation from conformal
field theory.

In the following, we will first discuss results for the entropy of the open and
periodic chain. Similar results have been shown previously, e.g. in [158]. As most
important new result, we will obtain a heuristic expression for the oscillatory part
of the entropy for open chains. Furthermore, we will discuss results obtained with
the MERA directly for the infinite system.

6.3.1 Entropy

To obtain the entropies for large system sizes, we have simulated the model on
chains with periodic and open boundary conditions using the DMRG method. As
the standard DMRG method is formulated for a Hilbert space with tensor-product
structure, the hard-core constraint cannot easily be implemented on the level of
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Figure 6.2: Rescaled energies for finite chains of the supersymmetric lattice model.
The energy have been rescaled such that the lowest non-vanishing energy matches
the expected levels. Points on the left are obtained with periodic, those on the right
with anti-periodic boundary conditions. + indicates a doubly degenerate level,
x a non-degenerate level. Extrapolations are performed with van den Broeck-
Schwartz approximants as discussed in the text. The labels on the energy axis
indicate whether the state occurs in the Neveu-Schwartz sector, corresponding to
anti-periodic boundary conditions, or the Ramond sector, which corresponds to
periodic boundary conditions.
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Figure 6.3: Subsystem entropies for periodic chains with L = 3j−1, N = j, and j
up to 32 (L ≤ 95). In the top panel, crosses indicate the numerical data, while the
lines indicate fits according to (6.46), where at most 1/8 of the sites at the ends
of the chain were discarded.
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the state. We therefore add a penalty term to the Hamiltonian, given by

Hp = p
∑
i

nini+1 (6.56)

with p > 0. Numerically we find that a small value p ∼ 1 . . . 5 is sufficient to
suppress violations of the hard-core constraint. A Jordan-Wigner transformation
(cf. Eqn. (2.29)) is used to map the system to a spin system; the only term with
a non-trivial sign is the hopping around the boundary in the periodic case.

For the case of periodic boundary conditions, we also use standard DMRG
methods, i.e. we treat the system as an open system with a long-range interaction
term connecting the leftmost and rightmost sites. We run the simulations at fixed
truncation error, but limit the bond dimension to M = 1000. In many simulations,
in particular for open chains, this limit is not reached in the simulation, indicating
that our results should be very accurate. We can confirm convergence of the
results by checking that the ground state energy is close to E = 0; generally, a
deviation smaller than 10−8 is obtained, which can be attributed to the numerical
accuracy of the eigensolver we use. We have also calculated the densities on each
site (one-point function) and compared against known results [158].

For periodic boundary conditions, the entropies are very accurately described
by the simple expression (6.46). Results for chains of length L = 3j−1 and N = j
for j up to 32 are shown in Fig. 6.3. For the fit, we have discarded at most 1/8
of the points at the ends of the chain to remove effects due to corrections for very
small block sizes. For small systems, subleading corrections lead to significant
corrections of estimate for the central charge, but for the larger system sizes, very
accurate fits are obtained.

For open boundary conditions, strong oscillating corrections to the entropy ap-
pear, which make simple fits such as (6.47) impossible. In our case, the oscillations
display a three-sublattice structure, which is symmetric around the center for one
sublattice, but asymmetric for the other two. This resembles the structure of the
density [157, 158]. A reasonable fit is obtained by combining three correction terms
similar to the one used in [172]:

f1(l) = S0 +
1

6
log

(
2L

π
sin

πx

L

)
(6.57a)

f2(l) = α1

(
L

π
sin

πx

L

)−1/3

(6.57b)

f3(l) = α2

(
L

π
sin

πx

2L

)−1/3

. (6.57c)
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Figure 6.4: Subsystem entropies for all three sublattices of an open chain of length
L = 108 (crosses). The lines illustrate the terms of Eqn. (6.57), where the red
lines are f1(l) + f2(l) + f3(l) and f1(l) + f2(l) + f3(L− l), i.e. reflected around the
center of the chain. Plus signs indicate a fit to (6.59).

The first term coincides with (6.46) for c = 1. The subsystem entropies for the
three sublattices are then well described by:

lmod 3 = 0 : S(l) = f1(l) + f2(l) (6.58a)

lmod 3 = 1 : S(l) = f1(l) + f2(l) + f3(l) (6.58b)

lmod 3 = 2 : S(l) = f1(l) + f2(l) + f3(L− l). (6.58c)

Fixing the central charge at c = 1 leaves three fit parameters, S0, α1 and α2. An
example is shown in Fig. 6.4.

In [174], such corrections were analyzed in a more general way and we can
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Figure 6.5: Fits of the entropy for bonds close to the center of the chain to (6.45).
i = 0 corresponds to the center of the chain.

adapt Eqn. (70) from that paper for our situation to find:

S1(l) =
1

6

[
4(L+ 3)

π
sin

(
π(2l + 3)

2(L+ 3)

)
| sin k′F |

]
+ c′1 (6.59a)

− 4a1 sin (k′F (2l + 2))

[
4(L+ 3)

π
sin

(
π(2l + 3)

2(L+ 3)

)
| sin k′F |

]−1/3

(6.59b)

k′F =kF
L

L+ 2
+

π

2(L+ 2)
(6.59c)

kF =π/3 (6.59d)

Free parameters in this case are a1 and c′1. An example is also shown shown in
Fig. 6.4. While this expression make the three-sublattice structure less apparent,
it achieves even better agreement with the numerically obtained data.

We have also performed the fit according to the second scheme described in
Section 6.2.4, i.e. fitting the entropies for sites on the three sublattices close to the
center of the chain according to the form (6.45). Noticing that for fixed l/L, the
oscillating terms of both (6.57) and (6.59) take a much simpler form, we can take
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these into account by performing a fit to

S(L/2) = S0 +
c

6
logL+ αL−1/3, (6.60)

where α is an additional fit parameter related to the fit parameters in (6.58). Our
results are shown in Fig. 6.5. The fact that the accuracy for i = 0 is worse is
related to the behavior of the coefficients α1, α2 in (6.58): we find that α2 is much
larger than α1 and has less finite-size corrections. Therefore, (6.60) works better
in cases where the correction due to α2 is present.

6.3.2 MERA

The Hamiltonian on the chain (6.52) has a four-point term consisting of a hopping
from i to i+ 1 and the corresponding projection operators on sites i− 1 and i+ 2.
Incorporating this directly into the MERA is computationally not favorable, as it
will lead to a broader light cone and therefore increase the computational cost.
We therefore join several sites of the physical chain to a block, which will serve as
effective physical site in the MERA simulation. This has several advantages:

. For a block size larger than 3, all operators become nearest-neighbor opera-
tors.

. Similar to DMRG, the MERA is based on a Hilbert space with tensor-product
structure. We therefore again have to use the penalty term (6.56) to enforce
the hard-core constraint. The constraint can be enforced explicitly within
the block by keeping only those states which form valid configurations, which
improves convergence significantly.

. Since the lowest level of the MERA structure we use groups three sites into
one, the bond dimension for the lowest level is limited to 23 = 8 without
blocking. By blocking L sites, we can increase this to 23L, which may lead
to better convergence.

Since the fermions are spinless and the construction of our MERA is in the ther-
modynamic limit immediately, a fermionic exchange sign does not have to be taken
into account and the system can be treated like a spin system.

For our simulations, we use the ternary MERA structure (cf. Fig. 2.21). We
use a Z2 subgroup of the particle number conservation to speed up simulations.
In the following results, we will denote the bond dimension of the MERA we
use as χ; by this, we will refer to the total bond dimension. We keep the size
of the symmetry sectors equal for all bonds except the physical ones. On finite
systems, the model on the chain displays a three-sublattice translational structure.
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Figure 6.6: Scaling dimensions obtained from a MERA with l layers and total
bond dimension χ exploiting Z2 symmetry. The line indicates the first few of the
exactly known scaling dimensions and degeneracies.

Parameters Central charge c
l = 1, χ = 8 0.996
l = 3, χ = 12 1.018
l = 5, χ = 16 1.016

Figure 6.7: Central charge obtained from a MERA simulation of the supersym-
metric model on the chain. Parameters correspond to those of Fig. 6.6.

However, since we group three physical sites into one site of the MERA, we expect
to find a translationally invariant state after convergence.

Starting from a random initial state, we increase both the number of indepen-
dent layers l below the scale-invariant MERA and the bond dimension step by
step, taking the last state as initial state which is expanded by inserting random
isometric transformations. The central charge is accurate already for a small bond
dimension. The scaling dimensions, however, become much more accurate as we
take more layers and a higher bond dimension into account, as shown in Fig. 6.6.

For supersymmetric CFTs, it can be expected that only one sector of the
theory is realized by the MERA. As a variational method, it should realize the
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lowest-energy state of the theory; in the case of the first minimal model, this is the
vacuum occurring in the Neveu-Schwarz sector. Indeed we find that the MERA
reproduces accurately the scaling dimensions expected in the Neveu-Schwarz sector
of the CFT.

6.4 Square ladder

After studying the well-understood case of the supersymmetric model on the chain,
we move on to a quasi-one-dimensional lattice, the square ladder. It is believed
to be critical as well, and an attempt to determine its critical theory was made
in [156, 152]. It was conjectured to be described by the second minimal N = 2
superconformal field theory, which has central charge c = 1.5 and scaling dimen-
sions

∆(Neveu-Schwarz) = 0,
1

8
,
1

8
,
1

4
,
1

4
,
1

2
(6.61)

∆(Ramond) =
1

16
,

1

16
,

1

16
,

5

16
,

9

16
,

9

16
. (6.62)

However, no consistent interpretation of the data in terms of a CFT was obtained.
We therefore revisit this model and attempt to extract information about the
critical theory based on the same numerical tools that we have successfully applied
to the case of the chain.

We first compare this against the central charge extracted from entanglement
entropy data obtained with DMRG. We then perform exact diagonalization for
larger systems to check whether the discrepancy between numerics and the minimal
model is due to finite-size corrections. We also check whether the densities (one-
point function) for open ladders agrees with theoretical expectations. Finally, we
discuss results obtained using the MERA.

The ground state on the square ladder occurs at quarter filling, i.e. at fermion
number N = L/2. The number of ground states can be calculated also for the
case of the square ladder. It is expected that for periodic boundary conditions,
the zero-energy ground state is three-fold degenerate for even lengths, and unique
otherwise. With anti-periodic boundary conditions, the ground state is unique and
has E < 0, which approaches 0 as L is increased.

To confirm that the system is indeed critical, we check whether the energies
of excited states with one and two fermions added or removed vanish; this is
equivalent to confirming that the charge gap vanishes. We calculate the energies
of the ground state in different particle number sectors using DMRG for system
sizes between L = 20 and L = 100 and extrapolate to L→∞ using a polynomial
in 1/L. Our results confirm quite accurately that such charge excitations are
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gapless. A similar analysis can be performed for a few excited states in a particle
number sector obtained by exact diagonalization; while the system sizes we can
study are much smaller in this case, an extrapolation still strongly suggests that
the energies vanish as 1/L.

6.4.1 Entropy

We attempt to confirm the value of c = 1.5 for the central charge by calculat-
ing subsystem entropies with DMRG and performing the same analysis that we
have done for the chain. To improve convergence for large systems, it turns out
to be necessary to join several physical sites into a block and enforce the hard-
core constraint exactly by keeping only allowed configurations. While usually the
Jordan-Wigner transformation for a ladder should introduce additional signs, the
hard-core constraint makes all signs trivial except for terms hopping around the
boundary.

The unknown central charge and the large finite-size corrections make it diffi-
cult to conjecture an expression analogous to (6.58) for the ladder. We therefore
resort to the other two approaches, namely (anti-)periodic systems that do not
display oscillatory behavior, and fitting the entropy at the center of the system as
a function of the total system size.

We first discuss the results obtained for anti-periodic boundary conditions
shown in Fig. 6.8. We have simulated systems of length up to L = 86 using
up to M = 2400 states. As the system becomes highly entangled, M = 2400 is not
sufficient to reach convergence in the number of states for the largest system sizes,
but can serve as a very good estimate. Finite-size corrections are clearly much
more relevant than in the case of the chain. As opposed to open systems or blocks
embedded in an infinite system, there is currently no theoretical understanding of
such corrections to the entropy for periodic systems. We therefore cannot extract
with certainty a value for the central charge from this data. While they naively
seem to indicate a central charge c ∼ 1.6, this result would be highly unexpected;
a more plausible explanation are additional terms in the entropy whose origin is
not understood.

For open systems, we repeat our analysis of the entropy of block size l = L/2
and l = L/2 + 1 as we did for the chain. Since we have no expression for the
oscillating part, we attempt to take them into account by performing a fit to

S(L/2) = S0 +
c

6
logL+ αLb. (6.63)

Note that we have introduced an additional fit parameter, b. For open systems,
we can access quite large system sizes and therefore reliably extract the exponent.
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Figure 6.8: Entropy fits for the square ladder with antiperiodic boundary condi-
tions.

Results are shown in Fig. 6.9, where we also show a fit to the simple form S(L/2) =
S0 + 1.5

6
logL. Again results indicate a central charge larger than c = 1.5, as none

of the lines collapse to a straight line with slope 1.5 even for large system sizes;
instead, even for the more accurate case i = 1, the slope appears to increase for
larger system sizes.

6.4.2 Finite-size spectra

To illustrate the problem observed with the square ladder, consider Fig. 6.10, which
shows the spectrum of the square ladder for lengths L = 8, . . . , 24. The Hilbert
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Figure 6.9: Entropy fits for open ladders. Crosses indicate numerical data; solid
lines indicate a fit to (6.63); dashed lines indicate a fit to S0 + 1.5
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logL. The data

do not collapse onto a straight line with slope 1.5/6 even for the largest system
sizes.

space of the largest system contains roughly 300 million states, which was diago-
nalized using the Lanczos algorithm; for the smaller systems, the Jacobi-Davidson
algorithm was used which requires more memory but permits the determination of
degeneracies. Both algorithms are implemented in the ALPS library [8]. The spec-
tra were rescaled so that the lowest non-vanishing energy matches the expected
value for the second N = 2 supersymmetric minimal theory and levels were ap-
proximated using van den Broeck-Schwartz approximants, which we have shown
to be reliable in the case of the chain.

Consider first the Ramond sector, corresponding to periodic boundary condi-
tions: The first important observation is that a state at E ′ = 1 is missing, and
none of the higher states appear to come down in energy to yield E ′ = 1 after ex-
trapolation. For the next levels, E ′ = 3/2 and E ′ = 2, the finite-size extrapolation
of some excited levels appears to match, albeit with a rather steep extrapolation.
Between these levels, we find a large number of additional states for which we have
no consistent interpretation.

In the Neveu-Schwarz sector, a similar picture is found. The level E ′ = 3/8 is
missing completely, and agreement for E ′ = 7/8 and E ′ = 9/8 is not good; only
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Figure 6.10: Rescaled spectra for the square ladder. Results in the Ramond sector
(periodic BCs) are shown in the top panel, Neveu-Schwarz sector (antiperiodic
BCs) in the bottom panel. Lines are guide to the eye. We have introduced some
”level crossings” between L = 8 and L = 12 to improve the extrapolation.

113



6.4 Square ladder

0.000 0.005 0.010 0.015 0.020 0.025
L−1

0

20

40

60

80

E
·L

−3 −2 −1 0 1 2 3
δ

0

10

20

30

40

50

e(
δ)

e(δ)

α = 4.911 β = −1.67

Figure 6.11: Extrapolation of the ground state energy in different particle number
sectors.

E ′ = 11/8 is matched well after extrapolation. Again, a large number of states are
found which cannot be attributed to any level of the CFT.

A different approach is to study the ground state energy when doped away
from the ground state at quarter filling. Since the ground state energy for different
quantum number sectors can be reliable calculated with DMRG for much larger
system, this approach may suffer less from finite-size corrections. Field theoretical
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arguments indicate that the ground state energy should behave like

E = aECFT/L+ subleading terms (6.64)

ECFT = δ2 + 2m0δ, (6.65)

where δ = N−L/2 is the doping away from quarter filling, and m0 some constant.
For the infinite-size limit of E(δ) · L, which we will denote as e(δ), we expect to
find

e(δ) = αδ2 + βδ. (6.66)

Performing this analysis for finite systems reveals that the energies are not
symmetric around δ = 0: while a good fit can be obtained for δ < 0 and δ > 0
separately, a single fit does not seem to describe the behavior [152]. To understand
whether this behavior is due to finite-size corrections or persists in the thermo-
dynamic limit, we perform DMRG simulations for the ground state energy with
various particle numbers for system sizes of up to L = 120. In order to reach con-
vergence, we must again group several sites into a block and enforce the constraint
on the Hilbert space exactly.

With the energies we obtain, we perform a fit to the form

E(δ) · L = e(δ) + b(δ)/L+ c(δ)/L2 + d(δ)/L3 (6.67)

for each value of δ. We find that with all terms included, a symmetric behavior
of e(δ) is obtained to good accuracy; our results are shown in Fig. 6.11. Such a
collapse is not observed if any of the terms are omitted, which indicates that finite-
size corrections, even to higher orders, are very relevant in this problem. We also
point out that this finite-size scaling ansatz is not justified by rigorous arguments,
but instead merely a conjecture; as we discussed earlier, many other subleading
correction terms are conceivable and may lead to better results.

6.4.3 Density

The one-point function or local density for open chains was first calculated using
number-theoretical methods by Beccaria et al in [157]. The density oscillates
exhibiting a characteristic three-sublattice structure with an amplitude that decays
away from the ends of the chain. The authors performed finite-size scaling of the
data and found good agreement with

〈ni〉 − 1/3 = f+((i− k+)/L̃)L̃−ν imod 3 = 2 (6.68a)

〈ni〉 − 2/3 = f−((i− k−)/L̃)L̃−ν
′

imod 3 = 1 (6.68b)

where L̃ = L/3 + 1 and k± = (L ± 1)/2. The best data collapse is observed for
ν = ν ′ = 0.33(2), which suggests a relation to the scaling dimension ∆ + ∆̄ =
1/6 + 1/6 = 1/3 which is found in the first supersymmetric minimal model.
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This relation was made more precise in [158], where the density was related to
the one-point function of an operator in the conformal field theory, whose expec-
tation value for open chains could be calculated and was found to agree with the
results of Beccaria et al.

A similar behavior is found in the more general setting of Luttinger liquids.
In Ref. [175], density oscillations of open systems are discussed for charge-density
wave (CDW) states and Luttinger liquids. For CDW states, translational sym-
metry is broken in the thermodynamic limit. Open boundary conditions, which
break translational invariance also on finite systems, will then induce an oscillation
with an amplitude that decays slowly to a finite value in the center of the system.
In Luttinger liquids, translational symmetry is not broken in the infinite system,
but boundaries also cause oscillations. Their decay is found to be related to the
Luttinger liquid parameter K, which is the exponent of the slowest-decaying cor-
relation function and hence directly related to the conformal weights. For finite
systems, the authors of [175] obtain the expression

ni ∼
1

LK
cos(2πni+ β)

sin(πi/L)K
, (6.69)

where n determines the wavelength of oscillations. This is clearly reminiscent of
the expression obtained in [158] for the case of the supersymmetric chain. Also,
this expression suggests a scaling ansatz of the form (6.68) with K = ν.

We now apply these methods to results for the square ladder, which we have
obtained numerically using DMRG simulations of open ladders of lengths between
L = 20 and L = 100. The densities on the both chains are equal, and we observe
a Z2 structure of the density on the rungs, i.e. different densities on even and odd
rungs. For the finite-size scaling, we therefore modify the ansatz Eqn. (6.68) and
use

〈ni〉 − 〈nk〉 = f±((i− k)/L)L−ν (6.70)

where i enumerates rungs, k = L/2 and f± applies to odd and even rungs, re-
spectively. 〈nk〉 approaches 1/4 in the thermodynamic limit. Eqn. (6.69) and the
analogy to the chain also suggest an expression for the FSS ansatz functions f±.
We expect good agreement with

f± = ±C sin(πx′)

cos(πx′)K
, (6.71)

where we have defined x′ = (i−k)/L and C is a fit parameter. The role of sin and
cos is interchanged with respect to (6.69) due to a shift of π/2 in the parameters.
Based on (6.69), we expect that the exponent K equals ν and ν ′ and that it is
found to be one of the scaling dimensions of the CFT.
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Figure 6.12: Finite-size scaling of the density for open square ladders (crosses) and
fit to (6.71) (solid black lines). i indicates the rung. Different colors indicate data
for different system sizes, where we have excluded system sizes L < 50. The fit is
restricted to −0.4 < x′ < 0.4.

Our results for the finite-size scaling are shown in Fig. 6.12. For ν = ν ′ =
K, we observe both good data collapse away from the boundaries of the system
and good agreement with (6.71). This suggests the presence of a quasi-primary
operator with scaling dimension ∆ + ∆̄ = 1/2, which is indeed present in the
second supersymmetric minimal model.

Instead of performing finite-size scaling and a fit of the FSS ansatz functions
separately, a similar result can be obtained by fitting to finite systems directly
using an appropriately adapted expression. We find good agreement also in this
case, as shown in Fig. 6.13. Such an expression for finite systems can, analogous
to the chain, be derived directly from the CFT [176]. We find excellent agreement
with the numerical data; also, after an appropriate change of variables, it coincides
with (6.70) and (6.71).

6.4.4 MERA results

We have also simulated the model on the square ladder using the MERA. We again
use a ternary MERA and group several physical sites into one site for the MERA
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Figure 6.13: Fit of an adapted form of Eqn. (6.71) to the density profile of an open
ladder of length L = 100. The crosses indicate numerical data; the green and blue
line show the fit for the two branches imod 2 = 0, 1.

to properly accommodate the operators, which involve up to 8 sites on 4 rungs in
the case of the square ladder. The minimum number of sites we have to group in
this case is 6 sites, corresponding to 3 rungs.

This leads to a subtlety when attempting to exploit particle number conser-
vation: as the filling should be 1/4, the reduced density matrix for such a block
of 6 sites should have the most relevant contributions for states with a fractional
particle particle number n = 1.5. Therefore, in this particular setup, although the
Hamiltonian preserves particle number, we cannot easily use a U(1) or Z2 invariant
ansatz, as this would require us to use a basis with fractional particle numbers on
some bonds. Indeed we find empirically that using a Z2 invariant ansatz leads to
a wrong filling.

However, in the case of the square ladder, there is an additional Z2 symmetry
which is not a subgroup of the U(1) particle number conservation, but instead
related to the Z2 symmetry between the two chains that form the ladder. Consider
the operator

gZ2 = exp (iπ(nu − nl)) , (6.72)

where nu and nl are the particle number operators on the upper and lower chain,
respectively. This operator commutes with the Hamiltonian and we can choose
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a basis of its eigenstates for the three allowed states on a rung where the state
with no fermions forms the irreducible representation labelled + and the other two
states, with one fermion on either the upper or lower site, form the irreducible rep-
resentation labelled −, which has dimension 2. Using this basis, we can construct
the Z2 symmetric version of the MERA following the description of Chapter 3.

We have performed simulations for a MERA with bond dimension up to χ = 20
and two independent layers below the scale-invariant ansatz. With such an ansatz,
we are able to reproduce a central charge in the vicinity of c = 1.5. However, we
do not obtain scaling dimensions smaller than 1, which would indicate that no
relevant operators are present in the theory. This seems extremely unlikely and
must be taken as indication that the bond dimension is not sufficient to accurately
capture correlation functions.
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Chapter 7

The SU(3) Heisenberg model

7.1 The model

Recent advances in experiments on cold atomic gases have raised interest in sys-
tems consisting of several flavors of interacting fermions, which can be realized for
example as different hyperfine states of alkali atoms [177] or nuclear spin states of
ytterbium [178] or alkaline-earth atoms [179]. A model Hamiltonian to describe
such systems is the N -flavor fermionic Hubbard model given by

H = −t
∑
〈i,j〉

∑
α

c†iαcjα + U
∑
i

∑
α,β

niαniβ, (7.1)

where α, β run over the different flavors, 〈i, j〉 runs over pairs of nearest neighbors
on the lattice and i runs over all sites of the lattice.

The two-flavor case corresponds to the spin-1
2

Hubbard model (cf. Section 5.1).
It is generally accepted that the ground state at half filling, i.e. when each lattice
site is occupied by exactly one fermion, is an antiferromagnetic Mott insulator.
The transition to a Mott insulator has recently been observed in experiments on
cold atoms [180, 181]; the observation of the antiferromagnetic spin order is still
open. As discussed in Section 5.1, the spin-1

2
Heisenberg model is believed to be a

good low-energy model for the spin degrees of freedom.
For the more general case N > 2, it is expected that at certain fillings, Mott

insulating states will also emerge [182, 183]. However, the spin order (or flavor
order) in this case is not understood yet. This has raised interest in generalizations
of the spin-1

2
Heisenberg model, namely SU(N) Heisenberg models. Analogous to

the N = 2 case, these are obtained as second-order expansion of the above N -
flavor fermionic Hubbard model in t/U at a filling such that each site is occupied
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Figure 7.1: Proposed three-sublattice order for the SU(3) Heisenberg model on the
square and triangular lattice. The triangular lattice is obtained from the square
lattice by adding couplings along the dashed bonds shown above. Blue boxes
indicate the sites that are pinned to a specific flavor in our simulations in order to
explicitly break SU(3) symmetry.

by exactly one particle. The Hamiltonian is

H =
∑
〈i,j〉

∑
α,β

|αiβj〉〈βiαj| (7.2)

where the first sum runs over pairs of nearest neighbors and the second sum over
flavors. In this chapter, we will focus on the case of the SU(3) Heisenberg model,
where α, β ∈ {A,B,C}.

The same model is obtained for a particular choice of the couplings of the spin-1
bilinear-biquadratic model (cf. Eqn. (8.13)):

H =
∑
〈i,j〉

[
cos θ(~Si · ~Sj) + sin θ(~Si · ~Sj)2

]
, (7.3)

For a discussion of physical realizations of this model, we refer to [184]. At θ = π/4,
the two models are equivalent up to a shift and rescaling of the energy. In the
remainder of this chapter, we will use the convention of (7.2).

In a pioneering work, Papanicolao [185] studied the phase diagram of this
model on the square lattice as a function of θ and proposed that the case θ = π/4
corresponds to a phase transition from the antiferromagnetically ordered phase
(adiabatically connected to the purely bilinear case) to a ”semi-ordered phase” for
which the semiclassical arguments presented do not predict the order, but only
some constraints which can be fulfilled by several different orders.
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The situation changes for the closely related case of the triangular lattice
(equivalent to introducing a coupling on one of the diagonals of each plaquette
of the square lattice), where semi-classical arguments already suggest a three-
sublattice ordering as depicted in Fig. 7.1. The stability of this order against
quantum fluctuations was confirmed in [184].

For the square lattice, this three-sublattice ordering is one of the candidate
ground states obtained from semiclassical arguments, but a number of other pos-
sibilities have been explored as well [186, 187, 177, 188]. Recent results strongly
indicate that the same type of three-sublattice order is stabilized by quantum
fluctuations [189], however, the mechanism is very different: in the case of the
triangular lattice, the order is obtained already from semi-classical arguments and
quantum fluctuations only renormalize local moments, which is a situation similar
to that of the SU(2) Heisenberg model on bipartite lattices. In the case of the
square lattice, on the other hand, it is suggested that the order is selected only by
quantum fluctuations.

In this chapter, we aim to confirm the presence of a three-sublattice order by
means of combining two tensor network state algorithms, namely the projected
entangled-pair states on infinite lattices and finite-lattice density matrix renor-
malization group calculations. The iPEPS simulations referred to in this chapter
were performed by Philippe Corboz.

7.2 Methods

Our DMRG simulations are performed based on mapping the two-dimensional
system to a chain following the pattern shown in Fig. 2.3. We will generally refer
to the extent in the horizontal direction as length, and in the vertical direction
as width of the system. The Hamiltonian preserves the number of particles for
each flavor separately, which would suggest three U(1) symmetries, but due to the
constraint that nA + nB + nC = 1 on each site, only two U(1) symmetries remain,
which we exploit in our simulations. We use the single-site optimization scheme
explained in Section 2.1.1 augmented by the improvement suggested in [61].

In practical calculations, it turns out that convergence is much harder to reach
than for other ordered systems such as the spin-1

2
Heisenberg model. This applies

in particular to the case of the square lattice, where a simple mean-field state
(M = 1 limit) is not necessarily a good starting point for the simulation. We
therefore use several different random initial states and increase the bond dimen-
sion very quickly with the number of sweeps in order to avoid trapping in local
minima. Together with the large number of operators and the large amount of
entanglement we observe, this restricts our simulations to relatively small system
sizes. Nevertheless, we can access much larger systems than exact diagonalization
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with sufficient accuracy.
Due to the technical difficulties, we do not attempt high-accuracy extrapo-

lations of the data. Instead, we repeat simulations for a large number of bond
dimensions M in the range M = 800 to M = 4800 in order to obtain an estimate
of how well results are converged with respect to the bond dimension; also, we
use the three best points to perform a linear extrapolation, but this data must be
taken with caution.

We expect that in the thermodynamic limit, the SU(3) symmetry is sponta-
neously broken. If an appropriate basis is chosen (i.e. after an appropriate SU(3)
rotation), one flavor becomes stronger on each site, i.e.

nα > nβ = nγ α, β, γ ∈ {A,B,C}. (7.4)

In this case, we can define the local moment

〈m〉 =
3

2

(
max

α=A,B,C
〈nα〉 −

1

3

)
, (7.5)

which should acquire a finite value in the range 〈m〉 ∈ [0, 1].
As the PEPS simulations are carried out on an infinite lattice, spontaneous

symmetry breaking can occur and therefore the moment can be measured directly.
On finite systems, the symmetry is never broken spontaneously and one would
conventionally use the relation

〈nα〉2 = lim
d→∞

(〈nα,inα,i+3d〉 − 〈nα,i〉〈nα,i+3d〉) (7.6)

to extract information about the moments. This however requires large systems
and very accurate estimates for the correlation functions, which are hard to obtain
from a DMRG simulation in two dimensions. We therefore follow the prescription
of Refs. [137, 55] and break SU(3) symmetry explicitly by introducing fields at
the boundaries of the system. The local moments can then be measured locally,
preferably on sites far away from the pinning fields. The pinning fields also fix the
direction of the symmetry breaking to be along the basis vectors.

We introduce a column of pinned sites at each end of the system, as shown in
Fig. 7.1. We choose the system sizes such that the unpinned sites form a square,
i.e. the system size including pinned sites is (L + 2) × L. Pinning is done with a
flavor-specific chemical potential of magnitude 1. In addition, such pinning fields
reduce the entanglement in the system. Simulations were performed for both open
and cylindrical boundary conditions.

An important question when performing finite-size DMRG simulations is the
appropriate choice of boundary conditions. From an entanglement point of view,
open boundary conditions appear favorable; also, these will have fewer long-range
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operators in the mapping to a chain. From a physical point of view, on the other
hand, periodic boundary conditions are often preferred as they eliminate boundary
effects. A compromise suggested e.g. in [137] is to use cylindrical boundary con-
ditions. In the example of the mapping of Fig. 2.3, boundary conditions would be
chosen open along the horizontal and periodic along the vertical direction. From
an entanglement point of view, this offers the advantage that entanglement is not
too strongly affected by growing the system in the horizontal direction. When
growing the system in the vertical direction, on the other hand, the entanglement
growth due to the area law implies an exponentially growing cost regardless of the
boundary conditions.

Physically, such boundary conditions are compatible with the approach of pin-
ning two columns, which preserves translational invariance in the vertical direc-
tion. In order not to frustrate the three-sublattice order, such boundary conditions
should only be chosen for systems whose width is a multiple of three. For other
system sizes, shifted cylindrical boundary conditions can be used. For example,
for a system of width 5, the bottom site of column i must be connected to the top
site of column i+ 1 to obtain a system without additional frustration.

7.3 Results

7.3.1 Boundary conditions and pinning fields

Fig. 7.2 shows the bond energies of a (6 + 2)× 6 system simulated with open and
cylindrical boundary conditions. The magnetizations we obtain in the two cases are
vastly different: in the case of open boundary conditions, a finite and relatively
large moment is observed, while in the case of cylindrical boundary conditions,
extrapolating in M suggests a vanishing moment.

For an explanation of this behavior, consider Fig. 7.3, which shows the energy
per site for open and periodic chains as a function of the system length. For peri-
odic boundary conditions, the limiting value is approached from below, while for
open boundary conditions, it is approached from above; also, finite-size corrections
are also particularly strong in the case of periodic chains. The system therefore
prefers to form a state consisting of a product of chains which wrap the periodic
boundary conditions in the vertical direction, which is clearly visible in the strong
anisotropy of the bond energies in the lower panel of Fig. 7.2. A similar pattern
emerges for other widths when shifted cylindrical boundary conditions are used.

Another subtlety occurs for systems sizes for which the pattern of our pinning
fields allows two different ordered states. For these cases, at a sufficiently large
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Figure 7.2: Bond energies (horizontal: blue, vertical: red) for a (6 + 2)× 6 system
where two columns at each side are pinned. Top panel: Open boundary conditions.
Bottom panel: Cylindrical boundary conditions. Both simulations were performed
with M = 4800 states. In the case of cylindrical boundary conditions, the local
moments almost vanish.
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Figure 7.5: Left panels: Energy and local moment of the SU(3) Heisenberg model
on the square lattice extrapolated to M →∞ for several system sizes (cf. Fig. 7.7).
The energies shown as black circles are the total energies of the system, i.e. in-
cluding pinning fields; green diamonds are the bulk energy estimates obtained as
described in the text. Right panels: iPEPS data for various values of the bond
dimension M . The energies should correspond to the bulk energy estimates of the
DMRG results.

bond dimension, a superposition of both types of order will occur and lead to a
significant decrease of the local moment (except on sites where the two types of
order coincide) and a significant increase of the entropy. In these cases, we pin
two additional sites to uniquely select the order. The effect on the entropy can be
seen for the (5 + 2)× 5 system in Fig. 7.4.

7.3.2 Energy and local moment

In Figs. 7.7 and 7.8, we show the finite-M values for the energy and magnetization
for the square and triangular lattice on systems of size (5 + 2) × 5 to (8 + 2) × 8
with bond dimensions in the range from M = 800 to M = 4800. Extrapolations
are performed by a linear fit to the best three points in M−1. The energies shown
include contributions from the pinning fields. For odd system sizes, the magne-
tization is measured at the central site of the system; for even system sizes, the
magnetization is averaged over the four sites that make up the central plaquette
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Figure 7.6: Results for the triangular lattice, analogous to those of Fig. 7.5.

of the system.
To estimate the energy per site in the bulk of the system, i.e. free of boundary

and pinning effects, we calculate the (interaction) energy separately on each bond
on the lattice and proceed as follows:

. In the case of the square lattice and even system sizes, we average over the
four bonds surrounding the central plaquette of the system.

. In the case of the square lattice and odd system sizes, we average over four
central plaquettes.

. In the case of the triangular lattice and odd system sizes, we average over
the bonds adjacent to the central site.

. In the case of the triangular lattice and even system sizes, we average over
four sites at the center of the system.

Figures 7.5 and 7.6 show our estimates for the local moment and energies on
finite systems with open boundary conditions in comparison with data obtained for
infinite systems using the iPEPS method. The results shown were obtained with
the simplified update scheme described in Section 2.2.2 and expectation values
were extracted with a variant of the corner-transfer matrix method [93].

Comparing the estimates for the bulk energy, we find good agreement between
the methods on both lattices. Finite-size corrections of the DMRG results are
small for this quantity, which suggests that we can take the value for the largest
system size as estimate for the thermodynamic limit. In the case of iPEPS, ground
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state energies converge quickly with the bond dimension M .
While both methods confirm the presence of a three-sublattice order for the

triangular and the square lattice, a quantitative comparison of the local moment
is challenging. In the case of the square lattice, finite-size corrections of the local
moments are very mild, but not systematic. We can therefore only take the value
for the largest system, which is 〈m〉 ≈ 0.37, as estimate. The iPEPS data show
a significant drop of the magnetization for large values of the bond dimension;
however, it is not clear to what extent this may be an artefact of the update
method or other technical aspects. Results for the largest bond dimensions are
compatible with a magnetic moment on the order of 〈m〉 ≈ 0.3 . . . 0.4, which is
consistent with the DMRG data.

In the case of the triangular lattice, the finite-size corrections of the DMRG
data are stronger but also more systematic and seem to point at a local moment
on the order of 〈m〉 ≈ 0.5. This is consistent with the iPEPS data, which do not
show the significant decrease of the local moment that was observed in the case
of the square lattice. A higher value for the local moment than in the case of the
square lattice is also expected from other, semi-classical arguments.
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Figure 7.7: Finite-M data and extrapolation for several system sizes of the SU(3)
Heisenberg model on the square lattice. Extrapolation is performed by a linear fit
in M−1 to the three largest values of M available. For (5 + 2)× 5 and (8 + 2)× 8,
two additional sites were pinned to select a unique order.
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Figure 7.8: Finite-M data for the triangular lattice. No additional pinning is
required in this case as the additional interaction terms select the order uniquely.
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Chapter 8

Indistinguishability

In this chapter, which is based on work published in Refs. [2, 9], we will discuss
an approach to identify phases and phase transitions in situations where simple
order parameters are either not known, or do not exist. Such a situation commonly
occurs for models exhibiting topological order [11], where local order parameters
do not exist. Examples which we study are the AKLT model [190] or the Toric
code [191]. Our approach will be useful in situations where the existence of a local
order parameter is not excluded, but its precise form is unknown.

A related problem is confirming the relevance of some effective model to the
description of a more complicated model, or, similarly, checking whether some
variational ansatz is able to capture the essential physics of a more complicated
state. For this purpose, it is useful to have a measure confirming that the ground
state of the effective and the realistic model share the same physical properties.
Defining such a measure in cases where order parameters are not known is again
a difficult problem, and no general solution is known.

Currently, several approaches exist to address such problem:

. To check variational ansatz states, comparing the energy to the full solution
is a useful measure of quality. However, many interesting physical systems
are characterized by a competition of several ground states, which may have
similar energies but vastly different physical properties. The energy alone
cannot serve as measure of quality in such cases.

. A widely used approach, which is also useful for detecting phase transitions,
is the fidelity (overlap). In the context of phase transitions, it was first
applied in Ref. [192].

. For detecting quantum phase transitions, the entanglement entropy is a use-
ful measure [193, 194]. Its scaling with system size changes at a phase tran-
sition, which leads to a peak if a parameter is tuned across the transition for
a given system size.
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In the following, we investigate a measure for assessment of ansatz wavefunc-
tions that allows for a clear identification of a particular phase. We refer to this
measure as indistinguishability I. It has origins in quantum state discrimina-
tion [195, 196, 197]. We demonstrate the use of this indistinguishability measure
by application to the assessment of ansatz wavefunctions for the ground state
of several different models: i) the transverse Ising chain, ii) the spin-one bilinear-
biquadratic Heisenberg chain, and iii) the Toric code. The first example provides a
simple test of the approach while the latter allows us to exploit its power to analyze
a challenging and rich model whose solution has not yet been fully characterized.

The measure is particularly well suited for tensor network state methods that
can easily obtain the reduced density matrices. For our calculations on one-
dimensional systems, we use the iTEBD method described in Section 2.1.2, from
which we obtain the ground state in the form of a matrix-product state.

8.1 Indistinguishability

Given two states ΨA and ΨE and corresponding reduced density matrices ρ
(n)
A , ρ

(n)
E ,

which have support on n sites, we define the indistinguishability In(A,E) as the
probability of error in distinguishing the two states with an n-particle measure-
ment:

In(A,E) =
1

2
− 1

4
Tr|ρ(n)

E − ρ
(n)
A | (8.1)

where Tr|O| is the trace norm of O [195, 196, 197]. The last term in Eqn. (8.1) is
a well known statistical distance measure, the Kolmogorov distance between two
probability distributions. When In(A,E) is zero, the states are distinguishable and
the ansatz wavefunction ΨA is clearly a bad approximation to ΨE. However, when
it is non-zero, there is a finite probability that an n-particle measurement can not
distinguish the ansatz from the numerical wavefunction, implying that the ansatz
provides a good description of the state up to n-particle correlators. In(A,E) = 1/2
corresponds to maximum indistinguishability, implying identical states.

Since the measure is defined in terms of reduced density matrices, the state
indistinguishability implicitly scans all correlators with up to n particles, to yield
a single number that quantifies the ability of an optimally chosen set of n-particle
correlators to distinguish two states [195, 196]. 1 − In gives the probability that
an optimally chosen correlation function involving at most n particles will be able
to distinguish the two states.

An important question is how n has to be chosen to reliably distinguish states.
We will encounter situations where a fixed n is sufficient independent of the total
system size N , but also a situation where n has to scale with N in order to reliably
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distinguish the states. In cases where a small constant value of n ∼ O(1) suffices
to characterize the correlators (i.e., two states can be distinguished locally), we
define In to be intensive in N . Such two states belong to the same n-particle
correlator class if In remains finite in the thermodynamic limit (i.e., as N →∞).
On the other hand, if two states can not be distinguished locally and therefore n
needs to scale with N , we define In to be extensive. In this situation, we use the
scaling of n with N to identify correlator classes [2]. The precise scaling behavior
of n with N (e.g., n ∼ O(N) or n ∼ O(

√
N)) provides us with a key feature to

reliably distinguish phases.

8.1.1 Quantum Chernoff bound

In some situations, it may be more useful to consider the scaling of the indistin-
guishability with the total system size instead of the value for fixed n and N . The
scaling to the thermodynamic limit can be quantified in terms of the quantum
Chernoff bound (QCB). Assuming that on sufficiently large scales, a translation-
ally invariant ground state can be regarded as a tensor product of subblocks (or
copies), a recent result [198] for the indistinguishability of many copies of the
system shows that we should expect an exponential dependence for large n, i.e.
In ∼ exp(−nξCB), where the QCB can be identified in the thermodynamic limit
from

ξlim
CB = − lim

n→∞
log(In)/n (8.2)

with n = N/2. A remarkable relation [198] connects the QCB directly to the
reduced density matrices of finite blocks, namely

ξlim
CB ≡ ξρCB (8.3)

with
ξρCB = − log min

0≤s≤1
Tr
[
(ρ

(n)
A )s(ρ

(n)
E )1−s

]
, (8.4)

thereby allowing a direct evaluation in terms of the reduced density matrices ρ
(n)
E

and ρ
(n)
A . Using either of these expressions for the QCB we can then identify

correlator classes in the thermodynamic limit: small values of ξCB correspond to
large values of In and indicate a successful ansatz.

8.1.2 Calculating I using matrix-product states

Our simulation uses an MPS approximation to a state in the full spin Hilbert
space. We choose a representation that is closely related to the canonical form
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Figure 8.1: Top: Schematic of the matrix product decomposition of a four-site
lattice. The circles indicate sites, i, with an applied tensor, Γ[i], and the diamonds
denote bonds which carry Schmidt coefficients, λ[i], on the ith bond. The shading
indicates a decomposition into left and right subsystems described by a renormal-
ized basis |lα〉 and |rα〉 of eigenvectors of the respective reduced density matrices.
Bottom: Schematic depicting an overlap of two matrix product states. The top
line corresponds to a state A (e.g., an ansatz state) in the matrix product rep-
resentation while the bottom line corresponds to a second state E (e.g., an exact
state).

of an infinite matrix product state introduced in Section 2.1.3. The coefficients
c({σi}) of the expansion of the state in the σz-basis,

|Ψ〉 =
∑
{σi}

c({σi})|σ1〉 . . . |σN〉 (8.5)

are given as a product of matrices:

c({σi}) =
∑

α1,...,αN

Γ[1]σ1
α1

λ[1]
α1

Γ[2]σ2
α1α2

λ[2]
α2
. . .Γ[N ]σN

αN
, (8.6)

where α indexes the auxiliary state space (of size M), Γ are rank three tensors
that must be determined, and the coefficients λ are the Schmidt eigenvalues of a
bipartite splitting of the system at that site, i.e. they are equal to the eigenvalues
of the reduced density matrices obtained by such a splitting. In the following we
denote MPS states as |Ψ〉 = (Γ

[i]σi
αiβi

, λ
[i]
βi

).
As was discussed before, the accuracy of the MPS approximation depends

on the decay of these eigenvalues and can be controlled by tuning the matrix
dimension M . In the case of the Ising model in a transverse field, the Schmidt
coefficients are found to decay very quickly. We therefore perform our calculations
with a matrix size M = 100 and up to N = 64 spins. Imaginary time evolution is
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used to project into the ground state. We apply a first-order Trotter decomposition
with an initial time-step dτ = 0.05, which is decreased to dτ = 0.0001 during the
simulation. Trotter errors are therefore negligible. In what follows an ”exact”
state (E) refers to an MPS approximation to the exact ground state.

Once the ground state has been found, we must obtain the density matrix in a
common, orthonormal basis {|va〉} for both the ansatz and exact states. We first
join the two bases by concatenating Schmidt coefficients and the tensors blockwise,
i.e. for two states |Ψ〉 = (Γ

[i]σi
αiβi

, λ
[i]
βi

), |Ψ̃〉 = (Γ̃
[i]σi
αiβi

, λ̃
[i]
βi

) we have |Ψ̂〉 given by

Γ̂
[i]σ
αβ =

{
Γ

[i]σ
αβ α, β ∈ {1, . . . ,M}

Γ̃
[i]σ
α−M,β−M α, β ∈ {M + 1, . . . , 2M} (8.7)

λ̂[i]
α =

{
λ

[i]
α α ∈ {1, . . . ,M}
λ̃

[i]
α−M α ∈ {M + 1, . . . , 2M}. (8.8)

We define the overlap matrix of two sets of states |wm〉 = (Γ
[i]σi
αβ , λ

[i]
β ) and |w̃m〉 =

(Γ̃
[i]σi
αβ , λ̃

[i]
β ) describing some part of the system (bottom panel, Fig. 8.1), which are

taken to be the Schmidt eigenvectors of a bipartite decomposition of the system:

〈w̃α′n|wαn〉 =
∑
F
(∏

i

Γ̃
[i]σi
α′iα
′
i
λ̃

[i]

α′i

∏
i

Γ[i]σi
αiαi

λ[i]
αi

)
, (8.9)

where the summation runs over all orthogonal spin configurations and F indicates
the summation over all remaining indices. This allows us to find a transformation
that we can use to orthonormalize the basis of |Ψ̂〉 for a specific bipartition.

The reduced density matrices can now be computed using

ρred
a,b =

∑
α,β,t

λαλβ〈va|lα〉〈lβ|vb〉〈rt|rα〉〈rβ|rt〉. (8.10)

|rα〉 and |lα〉 denote states obtained from a right and left partitioning of the lattice
(top panel, Fig. 8.1). The sum over states |rt〉 traces out the right N − n sites.

8.2 Indistinguishability for quantum phase tran-

sitions

8.2.1 Ising chain in transverse field

We first apply the indistinguishability measure to the simplest model with a quan-
tum phase transition, the ferromagnetic transverse Ising model:

HIs = −
∑
i

σxi σ
x
i+1 − h

∑
i

σzi . (8.11)
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Figure 8.2: (color online) Indistinguishability IN/2(A,E) plotted as a function of
magnetic field h for the one-dimensional transverse quantum Ising model for several
different system sizes, N , and two different ansatz states, A = F , (ferromagnetic,
href = 0, black lines) and A = P (paramagnetic, href = 2, blue lines). The
inset plots the crossing point of IN/2(F,E) and IN/2(P,E), with ΨP evaluated for
href = 100, versus N−1. A straight line fit yields a quantum critical point at
hcr = 0.999(1) as N →∞, in agreement with standard results.

Here σαi , α = x, y, z are the Pauli matrices and the sites i are located on an N -
site chain with open boundary conditions. The model displays a quantum phase
transition at h = 1.

Physically motivated ansatz wavefunctions can be defined for Eqn. (8.11) by
noting that for h > 1 the ground state is a paramagnet with exponentially decaying
correlators, 〈σx0σxj 〉 ∼ exp (−j/ξ), while for h < 1 the ground state is in the
ferromagnetically ordered phase with long range order, 〈σx0σxj 〉 ∼ m2 for j → ∞,
where m is the spontaneous magnetization. On the ferromagnetic side the exact
h → 0 ground state (one of the two degenerate ground states) is given by: ΨF =∏

i | ↑〉i, while on the paramagnetic side in the limit h→∞ we have: ΨP =
∏

i | →
〉i. Without relying on the explicit behavior of any correlation functions, we will
show using In that for h 6= 1 the wavefunctions fall into two distinct correlator
classes that are defined by the above ansatz states for the limiting cases. In thus
allows an efficient test of the accuracy of ansatz states in reproducing all n-particle
correlation functions of the exact state, without explicit calculation of these. We
further show that the location of the transition can be accurately identified.

138



Indistinguishability

We focus here on calculations for large values of n that will allow us to analyze
the scaling of In when this is an intensive quantity. Thus we consider n = N/2,
where the total number of spins N varies. The indistinguishability In=N/2 of the
numerically obtained ground state of Eqn. (8.11) was computed with the ferromag-
netic and paramagnetic ansatz states ΨF and ΨP. It is convenient to represent the
ansatz states by numerically obtained states calculated with the MPS formalism
for appropriate reference values of transverse field h. Thus we define ΨE(h) to be
a numerically exact state calculated with the MPS formalism for a transverse field
h. For the ferromagnetic ansatz we use ΨF = ΨE(href = 0). The paramagnetic
ansatz ΨP can be well represented by ΨE(href) for large values of href. For most
calculations with ΨP it is sufficient to use href = 2 but larger values of href will be
used when extracting information about the phase transition.

The calculated indistinguishabilities IN/2(F,E) and IN/2(P,E) are shown in
the main panel of Fig. 8.2 as a function of h for several system sizes. For h . 1,
we find IN/2(F,E) large with a weak decay with N . In contrast, we find here a
strong suppression of IN/2(P,E) as N → ∞, implying that an optimally chosen
correlator of up to N/2 particles will not successfully distinguish the exact state
from ΨF

A but will successfully distinguish the exact state from the paramagnetic
state for large enough N . For h & 1, we find the reverse situation.

We can use In to accurately identify the phase transition point, hcr. We search
for the critical point by finding the h at which IN/2(F,E) = IN/2(P,E) and ex-
trapolating to the thermodynamic limit. The inset of Fig. 8.2 shows a linear
extrapolation in 1/N that agrees with the known solution, hcr = 1.

We compute the QCB for each of the two phases in the transverse Ising model
to demonstrate that the existence of two distinct correlator classes can also be
found via the scaling exponent of In. Fig. 8.3 plots the QCB versus h evaluated
with two different methods. The dotted lines plot the finite size extrapolation of
ξlim

CB for both a ferromagnetic (href = 0, black) and antiferromagnetic (href = 2,
blue) ansatz. The remaining lines show how the data collapse towards this line
for several discrete N values. We see that the scaling exponent, ξCB, correctly
identifies correlator classes on either side of the critical point. Precise location
of the critical point from the QCB is complicated by the need to extrapolate an
exponent and the associated numerical error. Location from the scaling of In as
in Fig. 8.2 is more direct and appears more robust in this case.

The critical point can be defined in terms of the indistinguishability as the
unique point in parameter space that, for a given ansatz wavefunction, separates
regions characterized by dramatically different scaling of In. As demonstrated
above, both the direct evaluation of In and evaluation of the QCB allow the critical
point between two phases to be located as the point where the indistinguishability
measures for the two different ansatz functions are equal. To further characterize
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Figure 8.3: (color online) The quantum Chernoff bound versus magnetic field
using the extrapolation of indistinguishability, ξlim

CB, (dotted line) and the reduced
density matrices directly, ξρCB, (solid, dashed and dot-dashed). A suppression of
ξCB indicates success for the ferromagnetic, F, black lines (paramagnetic, P blue
lines) ansatz for h . 1 (h & 1). The inset plots shows a log plot of IN/2(F,E)
versus N for several h to show an abrupt change in scaling near h = 1.

the critical point for finite sized systems we can define an indistinguishability
susceptibility for In(href, h) by

χIn = lim
h→±href

dIn (ΨE(href),ΨE(h))

dh

= lim
ε→0

0.5− In(ΨE(href),ΨE(href ± ε))
±ε . (8.12)

Eqn. (8.12) should coincide with the maximum of the derivative of In(href, h) for a
given href. Our direct calculations of In show that for the transverse Ising model,
the critical point can be identified with a peak in χIN/2 versus h.

8.2.2 Spin-1 bilinear-biquadratic chain

We now apply our distinguishability measure to analyze a richer model with
ground states characterized by more complicated correlators, namely the bilinear-
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Figure 8.4: Indistinguishability versus θ for the bilinear-biquadratic Heisenberg
model, Eqn. 8.13, with N = 36 and n = 18. Distinct correlator classes sur-
round 5 different reference states for which IN/2 = 1/2: the ferromagnetic (solid),
quadrupolar (dot-double dashed), Haldane (dot-dashed) and dimerized (dashed)
phases. The AKLT point (double dot-dashed) at θ = tan−1(1/3) appears within
the Haldane phase.

biquadratic Heisenberg chain defined by

Hbl−bq =
∑
i

[
cos θ(SiSi+1) + sin θ(SiSi+1)2

]
, (8.13)

where S is the spin-1 operator and θ a parameter. A growing body of analytical
and numerical work has shown that this model hosts a variety of ground state
phases (for a review see Ref. [199] and references therein).

An integrable point [190, 200] at θAKLT = tan−1 1/3 has a particularly simple
form for the exact ground state that belongs to a class of VBS wavefunctions related
to the Laughlin ansatz state [201]. The VBS state at θAKLT can be written as
ΨVBS =

∏
i(a
†
ib
†
i+1− b†ia†i+1)|0〉, where a and b annihilate Schwinger bosons defined

by Sx+iSy = a†b, Sz = (a†a−b†b)/2, and a†a+b†b = 2. ΨVBS characterizes a state
with exponentially decaying local correlators. The AKLT state is also characterized
by hidden, long-ranged chain correlators [202]. Notably, this state does not break
translational symmetry. On a finite chain with open boundary conditions, a four-
fold degeneracy appears which is related to open spin-1/2 degrees of freedom at
the ends of the chain.

We address the phases of this model from the point of view of ansatz states by
taking five specific values of θ as reference points to capture the various possible
phases. In particular, we choose θref = π for the ferromagnetic (F) phase, θref =
0.4π for the quadrupolar (QP) phase, θref = 0 and θref = θAKLT for the Haldane
phase (corresponding to the Heisenberg and AKLT states) and θref = −π/2 for the
dimerized phase. In addition to these ansatzes defined by the ground states of the
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Figure 8.5: Indistinguishability susceptibility, Eqn. 8.12, computed for the bilinear-
biquadratic chain, Eqn. 8.13. Here we use N = 36, 72, n = N/2 and ε = 0.02 for
the relevant part of the phase diagram. The peaks indicate phase transitions. In
the case of discontinuous transitions, peaks remain finite only due to the discretiza-
tion of the values of href.

Hamiltonian Eqn. (8.13) for the five reference θ values, we shall also consider a trial
wave function for a fully dimerized state, obtained at θ = −π/2 with a modified
Hamiltonian that results from omitting all even-bond terms in Eqn. (8.13).

Since, with the exception of the AKLT state, analytic forms for the ground state
wave function at these reference points are not known, the ansatz wavefunctions are
obtained by numerical solution for the ground state of Eqn. (8.13) at the reference
values of θref. These numerical solutions ΨA are generated with the matrix product
approach of Section 8.1.2 at θref, just as the exact solutions ΨE are generated at
arbitrary values of θ. We then calculate the indistinguishability measure, IN/2, for
system sizes N = 24 . . . 72 with open boundary conditions. Due to this choice of
boundary conditions, we need to take N as a multiple of 3 in order to be able to
capture correlations at k = 2π/3 which are important in the quadrupolar phase.

A typical result, for N = 36, is presented in Fig. 8.4, which shows IN/2 as a
function of θ for the five different correlator classes defined by the above values
of θref. The general variation of IN/2 for each correlator class is consistent with
what is known about the phase boundaries in this system [199, 202, 203], but
also reveals several remarkable features: First, the ferromagnetic ansatz is seen to
be indistinguishable from the exact ground state over a wide range of θ values,
θ ≤ −3π/4 and θ ≥ +π/2, with sharp, possibly first order, transitions signaling
disappearance of the ferromagnetic state at θ = π/2 and −3π/4. Second, the
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ground state of the Heisenberg point at θ = 0 is in the same correlator class as the
AKLT state, supporting suggestions that there is a finite range of θ over which
the ground state has the symmetry of the AKLT state [202]. Third, although the
indistinguishability for href in the Haldane phase drops quickly as the dimerized
phase is approached (θ → −π/4), the signature of the phase transition does not
appear as strongly as the alternative Haldane to quadrupolar transition (θ →
+π/4) for this system size.

Additionally, we have calculated the n = N/2 indistinguishability susceptibil-
ity, Eqn. 8.12, for this model with N = 36 and N = 72 (Fig. 8.5). The sharp
transitions from the ferromagnetic state are reflected in large peaks in the suscep-
tibility; the height of these peaks is controlled only by the discretization of the θ
values. These sharp peaks at θ = π/2 and −3π/4 are consistent with the possi-
bility of first order transitions out of the ferromagnetic phase. A well-pronounced
transition also appears between the Haldane and the quadrupolar phase, with a
pronounced shift due to finite size effects. The indistinguishability susceptibility
is thus sensitive to the difference between first order and continuous phase transi-
tions, with the latter showing finite size shifts due to the divergence of the intrinsic
length scales.

We note that, in contrast to the clear signatures for transitions from the ferro-
magnetic phase and from the Haldane to quadrupolar phase, the transition from
the dimerized phase to the Haldane phase is only very weak at these system sizes.
A small peak does emerge at N = 72, but for N = 36 the peak corresponding
to the transition appears considerably flattened out, almost to a plateau, and is
also considerably shifted in location. To understand this behaviour, we analyzed
the fully dimerized ansatz state derived at θ = −π/2 with the omission of all
even-bond terms in Eqn. (8.13), as described above. Fig. 8.6 (b) shows that
the indistinguishability for this ansatz state is relatively small, never exceeding
0.25, implying that this fully dimerized ansatz only poorly describes the dimer-
ized phase of Eqn. (8.13), even in the proximity of the maximally dimerized point
around θ/π = −0.5. Our results thus confirm that there are strong fluctuations
away from a simple state consisting entirely of products of dimers and that it is
therefore difficult to precisely characterize the nature of the ground state in this
parameter region.

To analyze the degree of dimerization we define a dimerization order parameter:

D =
1

N

∑
bond i

|Hi −Hi+1| (8.14)

with Hi = [cos θ(SiSi+1) + sin θ(SiSi+1)2]. In these units, the fully dimerized state
is characterized by D = 2.63. We can then demonstrate the degree of dimerization
by direct evaluation of Eqn. 8.14. This is plotted in Fig. 8.6 (c), which shows a
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Figure 8.6: Analysis of the dimerized phase. (a) MPS ground state for θ = −π/2
as the reference state. For small system sizes, the reference state remains a good
ansatz state far beyond θ/π = −0.25 into the Haldane regime. (b) IN/2 for a
strongly dimerized reference state obtained for θ = −π/2 by omitting even-bond
terms from the Hamiltonian, Eqn. (8.13). The indistinguishability remains small
even around the maximally dimerized point near θ/π = −0.5, indicating that a
product of dimers only poorly characterizes the system. (c) Dimerization order
parameter (Eqn. (8.14)) for three system sizes. The dimerization remains finite
far towards the AKLT point, rendering the Haldane and dimerized phases hard to
distinguish on small length scales.
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finite dimerization far into the Haldane regime. For the smallest system sizes, the
dimerization order parameter vanishes only at the AKLT point. This is due to the
explicit breaking of translational symmetry induced by our use of open boundary
conditions as well as to our restricted system sizes. We therefore expect that the
weak peak in the susceptibility at N = 72 should become more pronounced with
larger system sizes or with periodic boundaries.

8.3 Indistinguishability in the Toric Code

8.3.1 Review of the Toric Code

The toric code Hamiltonian was constructed as an exactly soluble model with a
topologically ordered ground state and anyonic excitations [191, 204]. We briefly
review the model and discuss its symmetry properties. The model is given by:

HT = −
∑
v

∏
j∈v

σxj −
∑
p

∏
j∈p

σzj , (8.15)

where the σj denote Pauli matrices at sites j on the bonds of the square lattice.
The first product is over the four sites surrounding the vertex v while the second
product is over the four sites around each plaquette p.

When placed on a torus, the model possesses two distinct one-dimensional Z2

symmetries. The operators
∏

j∈w′ σ
x
j and

∏
j∈w σ

z
j both commute with HT where

w′ is a loop along vertices and w is a loop along bonds. These one-dimensional
operators form closed loops around either cycle of a torus. They can be used to
classify topological ground state sectors.

The ground state of the toric code is then given as the equal-amplitude super-
position of vortex-free states:

|Ψi〉 =
∑
|ξ〉∈χi

fi|ξ〉, (8.16)

where χi are four spaces of such vortex-free configurations distinguished by the
expectation value of the operator

∏
i∈w σ

z
i for two in-equivalent non-contractible

loops w1, w2 wrapping around the torus in two different directions. fi is a nor-
malization factor which is equal for all sectors. By a vortex-free configuration, we
mean a basis state |ξ〉 for which

∏
i∈δp σ

z
i = +1 for all plaquettes δp.

8.3.2 Computed Indistinguishability

Given the above ground states of the toric code, we can analytically compute
the indistinguishability between two topologically distinct sectors. We consider a

145



8.3 Indistinguishability in the Toric Code

0 0.2 0.4 0.6 0.8
 c

0

0.25

0.5

I n

L = 3

L = 4

L = 5

L = 6

L = 7

Figure 8.7: (Color online) Plot of the n-particle indistinguishability versus c = n/N
for several different system sizes computed using Monte Carlo selection of random
but contiguous collections of spins for the toric code on a two-dimensional periodic
lattice with N = 2L2 spins. The graph shows data collapse and a linear scaling
of n with system size, N , in contrast to a N1/2 scaling for properly chosen spins
(Eq. 8.17).

square lattice L with spins located on L bonds along each dimension to give a total
of N = 2L2 sites. A block Q of n sites is chosen for calculating In. The remaining
sites in the lattice are denoted as R, i.e., L = Q∪R.

To compute In we must find %QA and %QB , the reduced density matrices on a
subset Q ⊂ L for two different states A and B, respectively. From Eq. 8.16 we
find that the matrix elements of %QA − %QB are given by:

〈vQ|%QA − %QB |wQ〉
=
∑
|uR〉

f 2
{ ∑
|ξ1〉,|ξ2〉∈χA

〈vQuR|ξ1〉〈ξ2|wQuR〉

−
∑

|ξ1〉,|ξ2〉∈χB

〈vQuR|ξ1〉〈ξ2|wQuR〉
}

=
∑
|uR〉

f 2
{
δA(|vQuR〉)δA(|wQuR〉)

−δB(|vQuR〉)δB(|wQuR〉)
}
. (8.17)

Here, the states |uR〉 are all basis states on the sublattice R, and δA(|φ〉) = 1 if
|φ〉 ∈ span(χA), 0 otherwise.

The above expression shows that if Q supports two in-equivalent loops w1, w2,
all sectors can be distinguished, as expected. If it only supports one such loop, only
half of the sectors can be distinguished. If it does not wrap around the boundary,
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no sectors can be distinguished. In is always either 0 or 1/2. The above explicit
calculation therefore shows that for a wisely chosen Q, such that it wraps the
boundary (w1, w2 ∈ Q), correlators of size n = O(

√
N) are sufficient to reliably

distinguish topological sectors.
We now ask how many measurements on randomly chosen spins are needed to

distinguish topological sectors of the toric code. For simplicity, we consider only
the case of distinguishing two sectors, i.e., we look for clusters wrapping around
the torus in one non-trivial way. We seek the probability Π(p) that a fraction p of
randomly chosen sites forms a cluster that wraps around the boundary. This is the
problem of percolation with periodic boundary conditions. For this problem, it is
well-known that a critical pc exists such that in the thermodynamic limit, Π = 1
for p > pc and Π = 0 otherwise. The critical behavior is in fact identical to that of
standard percolation with free boundary conditions [205, 206]. These well-known
results from percolation theory indicate that in order to distinguish sectors of the
ground state based on purely randomly chosen sites, a cluster size n ∼ O(N) is
necessary.

A different situation occurs if we choose sites randomly, but as a contiguous
blocks. The probability for a contiguous cluster of size n to wrap around the
boundary, which we denote as %, is given by:

%(n) =

∫ 1

pc

dp δ(NP (p)− n), (8.18)

where P is the probability for one site to lie in the percolating cluster for a com-
pletely random choice of sites. We then have In = (1− %(n))/2. We do not expect
a sharp transition to appear in this quantity because there is a finite but expo-
nentially small probability for a random block of size n ≥

√
N to wrap around the

boundary.
Scaling theory dictates that the behavior of P in the thermodynamic limit and

in the critical region is governed by P ∼ (p−pc)β. The divergence of the correlation
length is described by ξ ∼ (p − pc)−ν ; however, on finite systems this is bounded
by L and therefore (p − pc) ∼ L−1/ν . We then have P ∼ L−β/ν or, equivalently,
a critical cluster size nc ∼ L2−βν = LD, where D is the fractal dimension. If one
were to grow only one cluster in the system, the probability for this cluster to
percolate should increase rapidly at n ∼ O(LD). In two dimensions, the value of
D is 91/48. We can therefore expect that a contiguous cluster of size

n ∼ O(L91/48) (8.19)

is sufficient to distinguish two sectors of the ground state.
To verify the above statement we compute In explicitly using a direct-sampling

Monte Carlo method. We draw the configurations of a cluster with n connected
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sites from a uniform distribution and measure the probability for such a cluster to
support a loop wrapping around the boundary, P (loop) = %(n). The results of In
versus linear scaling ratio:

c =
n

N
, (8.20)

for several L are shown in Figure 8.7. The data collapse beyond a regime where
finite-size effects are relevant, which agrees with the expected scaling n ∼ O(LD).
The difference between L91/48 and L2 is too small to be distinguished numerically.

We have thus shown that the indistinguishability reveals the size of the op-
erators required to identify topological sectors. For suitably chosen blocks we
find n = O(

√
N) whereas randomly chosen sites lead to n = O(N). In the case

where a random, but contiguous choice of sites is made, the necessary block size is
n = O(L91/48). In thus yields topologically relevant information without requiring
a precise identification of the non-local symmetries defining each sector.
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Chapter 9

Conclusion and outlook

9.1 Projected entangled-pair states

In the first part of this thesis, we have applied projected entangled-pair states on
infinite lattices to a series of models for which we can compare to accurate results
obtained with Quantum Monte Carlo. We have confirmed that the iPEPS method
can be applied with excellent accuracy to first-order phase transitions using the
example of the spin-flop transition in the hard-core boson model. The stability
of a homogeneous system across the phase transition allows us to determine the
nature of the phase transition and locate it very accurately. We expect that this
will prove to be useful for applications where phase separation and coexisting order
are hard to distinguish based on finite-size simulations.

The isotropic Heisenberg model and the phase transition in the dimerized
Heisenberg model prove to be difficult test cases for tensor network state algo-
rithms. The accuracy we obtain with the current computational resources is not
comparable to that obtained with Quantum Monte Carlo simulations. This is
due to large quantum fluctuations around the mean-field limit, which are hard to
capture in a low-entanglement approximation.

To improve upon these results, we have developed a general formalism for intro-
ducing Abelian symmetries into tensor network state algorithms. The formalism
relies only on properties of irreducible representations of the symmetry group and
allows a generic implementation for a large class of symmetries. The formalism
can be applied to any tensor network state algorithm; in this thesis, it was imple-
mented in both projected entangled-pair states and the multi-scale entanglement
renormalization ansatz. For the case of MPS, it is equivalent to the conventional
approach.

Since the implementation requires additional approximations, benchmark cal-
culations confirming the validity of the approach are required. This is particularly
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9.1 Projected entangled-pair states

important in the case of U(1) symmetry, where restrictions on the allowed quantum
numbers have to be introduced. In order to assess the validity, we have applied
our method to the spin-1

2
Heisenberg model on an infinite square lattice with the

symmetry groups Zq for q = 2, 3 and U(1).
Our results for the finite groups show that no accuracy is lost due to the

symmetric decomposition of tensors. At the same time, the number of variational
parameters and the computational effort is significantly reduced. We therefore
expect that exploiting these symmetries will become very useful in the context of
tensor networks states.

In the case of the continuous symmetry group U(1), we were able to achieve
much larger bond dimensions. Nevertheless, the accuracy does not reach the level
that can be obtained with finite symmetry groups. We expect, however, that if a
sufficiently large number of symmetry sectors is taken into account, the accuracy
will eventually become comparable to the non-symmetric case. Further research
is required to understand this, in particular how this behaves for different models
such as bosonic models with particle number conservation. Also, a scheme that
reliably picks the relevant symmetry sectors on the auxiliary bonds and in the
environment tensors without strong dependence on the initial state may be very
useful.

For a frustrated model on the square lattice, we have shown that the method
converges to results that agree with expectations based on mean-field simulations
and previous results obtained using the Coupled-Cluster Method. Whereas the
applicability of path integral Monte Carlo methods to such systems is limited by
the sign problem, the accuracy of iPEPS is only limited by the entanglement of
the ground state and frustration does not introduce additional difficulties. We
therefore expect that the method will become a valuable tool for such systems.

We expect that PEPS, along with other tensor network state methods, will
become a valuable tool for studying frustrated spin systems and fermionic systems
where few reliable methods are available. For example, recent results in Ref. [104]
indicate that iPEPS is competitive with the best known variational states for
the two-dimensional t-J model. In that study, iPEPS and DMRG results were
combined to increase confidence in the results. This will likely be a widely used
approach in the future, as the different approximations – well-understood con-
vergence with the bond dimension, but a limitation to finite and relatively small
systems in the case of DMRG and few available bond dimensions, but no need for
finite-size extrapolation in the case of iPEPS – can complement one another. In
this thesis, such a combination of techniques was applied to the SU(3) Heisenberg
model in Chapter 7.
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9.2 Supersymmetric lattice fermions

Using a variety of numerical approaches, we have explored criticality in a model
of interacting fermions on the chain and square lattice. The case of the chain
is well-understood and served as a case study to accumulate experience with our
numerical approaches. We demonstrated that the MERA is able to accurately find
the central charge and scaling dimensions and confirm that the continuum limit
of this model is described by the first N = 2 supersymmetric minimal model. For
finite systems, we obtained an expression for the oscillatory part of the entropy
due to open boundary conditions, which we confirmed for a wide range of system
sizes.

In the case of the square ladder, on the other hand, the model poses serious
challenges to our numerical approaches. Matching the spectrum obtained from
exact diagonalization to the second minimal model has turned out to be difficult,
as only few levels are obtained accurately, but many additional levels appear for
which no explanation in terms of the minimal model can be found.

The reliability of fits to finite-size entropies for open and periodic systems is
impaired by large subleading corrections, which cannot be accounted for as an
analytical form is not known. Such strong finite-size corrections for the entropy
are highly unusual and to our knowledge have not been observed previously. In
Ref. [173], several cases for unusual corrections are discussed, but a numerical
analysis for a specific model is still open; also, their results do not apply directly
to finite systems. It is therefore still open whether the corrections we obtain are
connected to those of Ref. [173].

Some evidence in favor of the second minimal model as appropriate theory for
the ladder was found studying the density (one-point function) on open ladders.
Our numerical results are in good agreement with the hypothesis that the density
is a quasi-primary operator with conformal weight 1/4. A strong tie to the minimal
model can be established by an explicit calculation of the density on open ladders,
which gives excellent agreement with numerical results.

Applying the MERA to the case of the square ladder has turned out to be
challenging. Simulations are rendered difficult by the large number of sites that
have to be grouped in order to accommodate the operators. Also, the bond dimen-
sion we reach does not seem to be sufficient to accurately describe the correlation
functions and therefore extract the scaling dimensions. Nevertheless, a value of
the central charge close to c = 1.5 was confirmed.

Several directions for future research suggest themselves: Understanding the
finite-size corrections of the block entropies for finite systems may help to explain
the deviation from the expected central charge. This will be useful in a more
general context as finite-size entropy calculations are increasingly being used as
tool to determine the central charge for critical one-dimensional systems. The
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problem can also be tackled from a very different side by analyzing the phase
diagram of the model under perturbations. The only known perturbation that
does not break supersymmetry is staggering of the couplings. For the case of the
chain, this has been analyzed in detail; a similar analysis for the ladder appears
as natural route to understand its critical behavior.

9.3 The SU(3) Heisenberg model

We have studied the SU(3) Heisenberg model using two different approaches,
namely projected entangled-pair states on infinite lattices and density-matrix renor-
malization group on finite lattices. Using this combination of techniques, we were
able to understand the ground state both in the thermodynamic limit and on finite
systems. In particular, the DMRG simulations allowed us to understand the effect
of the boundary conditions on the order.

Both approaches clearly confirm the presence of a characteristic three-sublatt-
ice order. On small systems, this order may be suppressed by taking periodic or
cylindrical boundary conditions as a state made up of isolated chains of length 6
becomes energetically favorable. We therefore use open boundary conditions to
extract quantitative results.

Both methods suggest a local moment between 30 % and 40 % of the saturation
value in the case of the square lattice, and close to 50 % in the case of the triangular
lattice. Agreement between the methods is good for both the energy and local
moments. The DMRG results can therefore be taken as confirmation of the iPEPS
result, which is obtained on infinite lattices and is therefore free of uncertainties
due to boundary and finite-size effects, but displays a strong dependence on the
value of the bond dimension.

Our results also underline the usefulness of finite-size DMRG calculations for
two-dimensional systems, which, despite of their exponential scaling in the width
of the system, allow the investigation of much larger system sizes than exact diago-
nalization. This effect is even more pronounced in the case of models with a larger
physical dimension where exact diagonalization is limited to very small systems,
while DMRG simulations do not necessarily suffer equally.

9.4 Indistinguishability

In many situations, numerically obtained wavefunctions have to be compared
against ansatz wavefunctions or wavefunctions obtained for a different effective
model or a different set of parameters. We have introduced the indistinguisha-
bility as a means of comparing wavefunctions if simple local order parameters do
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not exist or are unknown. The indistinguishability In quantifies the ability of any
set of n-particle correlators to distinguish two states, with a value In > 0 in the
thermodynamic limit showing that two states lie in the same correlator class and
a value In = 0 indicating that they lie in different classes. The scaling to the ther-
modynamic behavior was discussed and it was shown that the quantum Chernoff
bound provides an effective means of analyzing the scaling behavior from small
systems.

We first applied the method to two one-dimensional examples, the well-known
Ising chain in transverse field, and the spin-1 bilinear-biquadratic chain. We com-
pare physically motivated ansatz wavefunctions for the various phases of these
models against numerically obtained wavefunctions and show that the phase bound-
aries can be accurately obtained from the indistinguishability. Furthermore, we
define the indistinguishability susceptibility as additional measure to locate quan-
tum phase transitions.

Secondly, we have applied the indistinguishability for a model which exhibits
topological order, the Toric code. We have considered the question of how many
sites n are necessary to reliably distinguish the different degenerate ground states
of the Toric code in a system with a total of N sites. We find that if the sites
are carefully chosen, n ∼ O(

√
N) is sufficient, while for a randomly chosen (but

contiguous) block of spins, n ∼ O(N) is required.
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[66] R. Orús and G. Vidal, “Infinite time-evolving block decimation algorithm
beyond unitary evolution,” Phys. Rev. B 78, 155117 (2008)

[67] G. Sierra and M. A. Martin-Delgado, “The Density Matrix Renormaliza-
tion Group, Quantum Groups and Conformal Field Theory,” Preprint(1998),
arXiv:cond-mat/9811170

[68] Tomotoshi Nishino and Kouichi Okunishi, “A Density Matrix Algorithm for
3D Classical Models,” Journal of the Physical Society of Japan 67, 3066–
3072 (1998)

[69] T. Nishino, K. Okunushi, Y. Hieida, N. Maeshima, and Y. Akutsu, “Self-
consistent tensor product variational approximation for 3D classical models,”
Nucl. Phys. B 575, 504–512 (2000)

161

http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://arxiv.org/abs/cond-mat/9811170
http://dx.doi.org/10.1143/JPSJ.67.3066
http://dx.doi.org/10.1016/S0550-3213(00)00133-4


BIBLIOGRAPHY

[70] Y. Nishio, N. Maeshima, A. Gendiar, and T. Nishino, “Tensor Product
Variational Formulation for Quantum Systems,” Preprint(2004), arXiv:cond-
mat/0401115
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[112] G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher, “Quantum-information
analysis of electronic states of different molecular structures,” Phys. Rev. A
83, 012508 (Jan 2011)

[113] David A. Huse and Veit Elser, “Simple Variational Wave Functions for Two-
Dimensional Heisenberg Spin-1/2 Antiferromagnets,” Phys. Rev. Lett. 60,
2531–2534 (1988)

[114] A. W. Sandvik and G. Vidal, “Variational Quantum Monte Carlo Simula-
tions with Tensor-Network States,” Phys. Rev. Lett. 99, 220602 (2007)

[115] Germán Sierra and Tomotoshi Nishino, “The density matrix renormalization
group method applied to interaction round a face Hamiltonians,” Nuclear
Physics B 495, 505 – 532 (1997)

[116] J. Dukelsky, M. A. Mart́ın-Delgado, T. Nishino, and G. Sierra, “Equivalence
of the variational matrix product method and the density matrix renormal-
ization group applied to spin chains,” EPL (Europhysics Letters) 43, 457
(1998)

165

http://dx.doi.org/10.1063/1.478295
http://dx.doi.org/10.1007/978-1-4020-8707-3_4
http://dx.doi.org/10.1007/978-1-4020-8707-3_4
http://dx.doi.org/10.1524/zpch.2010.6125
http://dx.doi.org/10.1524/zpch.2010.6125
http://dx.doi.org/10.1103/PhysRevB.68.195116
http://dx.doi.org/10.1063/1.1824891
http://dx.doi.org/10.1063/1.2883976
http://dx.doi.org/10.1063/1.2883976
http://dx.doi.org/10.1103/PhysRevA.83.012508
http://dx.doi.org/10.1103/PhysRevLett.60.2531
http://dx.doi.org/10.1103/PhysRevLett.99.220602
http://dx.doi.org/10.1016/S0550-3213(97)00217-4
http://dx.doi.org/10.1016/S0550-3213(97)00217-4
http://dx.doi.org/10.1209/epl/i1998-00381-x


BIBLIOGRAPHY

[117] Wada Tatsuaki, “Interaction-round-a-face density-matrix renormalization-
group method applied to rotational-invariant quantum spin chains,” Phys.
Rev. E 61, 3199–3206 (2000)

[118] Wada Tatsuaki and Tomotoshi Nishino, “Interaction-round-a-face density-
matrix renormalization-group method,” Computer Physics Communications
142, 164 – 167 (2001)

[119] Ian P. McCulloch and Miklos Gulácsi, “Density Matrix Renormalisation
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decompositions in the presence of a global symmetry,” Phys. Rev. A 82,
050301 (2010)

[127] F. Alet et al., “The ALPS project: Open Source Software for Strongly Cor-
related Systems,” Journal of the Physical Society of Japan 74, 30–35 (2005)

[128] A.F. Albuquerque et al., “The ALPS project release 1.3: Open-source soft-
ware for strongly correlated systems,” Journal of Magnetism and Magnetic
Materials 310, 1187–1193 (2007)

[129] Ernst Ising, “Beitrag zur Theorie des Ferromagnetismus,” ZS. f. Physik 31,
253–258 (1925)

166

http://dx.doi.org/10.1103/PhysRevE.61.3199
http://dx.doi.org/10.1103/PhysRevE.61.3199
http://dx.doi.org/10.1016/S0010-4655(01)00305-8
http://dx.doi.org/10.1071/PH00023
http://dx.doi.org/10.1209/epl/i2002-00393-0
http://dx.doi.org/10.1103/PhysRevLett.100.240603
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.82.132411
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevB.83.115125
http://dx.doi.org/10.1103/PhysRevA.82.050301
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1007/BF02980577


BIBLIOGRAPHY

[130] W. Heisenberg, “Zur Theorie des Ferromagnetismus,” ZS. f. Physik 49, 619–
636 (1928)

[131] F. Bloch, “Zur Theorie des Ferromagnetismus,” ZS. f. Physik 61, 206–219
(1930)

[132] H. Bethe, “Zur Theorie der Metalle,” ZS. f. Physik 71, 205–226 (1931)

[133] P. W. Anderson, “New Approach to the Theory of Superexchange Interac-
tions,” Phys. Rev. 115, 2 (1959)

[134] J. Hubbard, “Electron Correlations in Narrow Energy Bands,” Proc. R. Soc.
276, 238 (1963)

[135] P. W. Anderson, “The Resonating Valence Bond State in La2CuO4 and Su-
perconductivity,” Science 235, 1196–1198 (1987)

[136] A. W. Sandvik, “Finite-size scaling of the ground-state parameters of the
two-dimensional Heisenberg model,” Phys. Rev. B 56, 11678 (1997)

[137] Steven R. White and A. L. Chernyshev, “Neél Order in Square and Trian-
gular Lattice Heisenberg Models,” Phys. Rev. Lett. 99, 127004 (Sep 2007)
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