
Multi-Monitor Mouse
Hrvoje Benko Steven Feiner

Department of Computer Science, Columbia University
 500 West 120th Street, 450 CS Building, New York, NY

 {benko, feiner}@cs.columbia.edu

ABSTRACT
Multiple-monitor computer configurations significantly
increase the distances that users must traverse with the
mouse when interacting with existing applications, resulting
in increased time and effort. We introduce the Multi-
Monitor Mouse (M3) technique, which virtually simulates
having one mouse pointer per monitor when using a single
physical mouse device. M3 allows for conventional control
of the mouse within each monitor's screen, while permitting
immediate warping across monitors when desired to in-
crease mouse traversal speed. We report the results of a
user study in which we compared three implementations of
M3 and two cursor placement strategies. Our results suggest
that using M3 significantly increases interaction speed in a
multi-monitor environment. All eight study participants
strongly preferred M3 to the regular mouse behavior.

Author Keywords
Multi-monitor, mouse pointer, interaction technique.

ACM Classification Keywords
H.5.2. [User Interfaces]: Graphical User Interfaces, Input
Devices and Strategies.

INTRODUCTION
Increased display size and resolution and the proliferation
of multiple-monitor display configurations have signifi-
cantly extended the amount of desktop space available to
computer users. However, increased desktop space forces
users to move their mouse cursor over larger distances. To
compensate, users can increase pointer speed or accelera-
tion, which have drawbacks pointed out by Baudisch et al.
[3]. In addition, tiling several displays in a row often results
in one dimension (typically width) being drastically larger
than the other, causing excessive “clutching” when travers-
ing multiple displays with a mouse.

While the operating system considers the multi-monitor
desktop as one seamless environment, previous research by
Grudin [6] clearly suggests that users treat multi-monitor
systems as means of partitioning their desktop space. This
is primarily due to the physical gaps between monitors, but
differences in resolution, size, and apparent mouse speed
can also contribute towards this mental partitioning. As
Grudin points out, users have a tendency to distribute tasks

among monitors, treating them as separate, but connected,
spaces, and only rarely do they straddle an application win-
dow across multiple physical displays.

This research inspired us to create Multi-Monitor Mouse
(M3), a pointer interaction technique that warps the pointer
between screens in a multi-monitor system configuration.
M3 simulates having one independent mouse pointer per
screen, using a single physical mouse device.

RELATED WORK
Improving target acquisition across multiple monitors has
been explored in context with eliminating warping effects
caused by mismatched monitor alignment and differing
screen resolutions with mouse ether [1], as well as avoiding
the need to cross the bezels by bringing the targets closer to
the current cursor location with drag-and-pop [2]. Baudisch
et al. also proposed visual enhancements, such as high-
density cursor [3], that increase visibility of cursors at high
speeds. Interactions that warp the pointer closer to a target
location have previously been explored on a single monitor
in combination with eye gaze (e.g., [8] and MAGIC point-
ing [9]) or hand gestures (e.g., flick [5]). Zhai, Smith, and
Selker compared one- and two-handed techniques for com-
pounding tasks of scrolling and pointing [10].

MULTI-MONITOR MOUSE
We have implemented M3 as a Windows application that
runs in the background, minimized to the system tray.
When M3 is launched, it reads the system’s information
about the size, number and relative location of attached
screens and forms a corresponding set of virtual frames to
represent the screens. When the user issues a frame switch
command, M3 warps the mouse pointer to the new frame
(screen). The new location of the cursor is signaled to the
user by invoking the “mouse sonar” animation around the
pointer (Figure 1b), a built-in Windows option that en-
hances pointer visibility. Otherwise, pointer movement is

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

Figure 1: a) Using standard pointer movement to move
between monitors from S to T. b) M3 warps the cursor
(dashed line) to the next screen, reducing the distance trav-
ersed by conventional mouse movement. “Sonar” circles
are displayed to increase cursor visibility.

completely unaffected by M3. (For example, the user is still
free to move the pointer across screen boundaries by physi-
cally moving the mouse, but now has the option of directly
warping to a different screen.)

M3 segments the pointer space according to screen space
divisions, thus allowing for pointer warping across screens.
While the techniques presented in this paper have been ap-
plied to switching between screens in a multi-monitor con-
figuration, the same techniques, without modification, can
be applied to any desktop space by dividing it into a set of
virtual rectangular frames. These frames can be of arbitrary
number and size, and can even overlap. For example, a
large high-resolution monitor could be divided into several
virtual frames, each containing the windows for one appli-
cation. M3 would in this case switch the mouse pointer be-
tween different applications.

M3 FRAME SWITCH ALTERNATIVES
We have experimented with several switch designs. Two of
the final four designs (mouse button and keyboard switches)
require only standard computer peripherals, thus making
them easy for most computer users to adopt. The other two
(head orientation and mouse location switches) support
more direct switching, but require extra equipment.

Mouse Button Switch
The mouse button switch command is issued by pressing
one of the two side buttons (XButtons) on the five-button
Microsoft IntelliMouse Explorer mouse. Since multi-
monitor configurations are typically side-by-side arrange-
ments, we decided to map the top side button to advance the
frames forward (clockwise), and the bottom side button to
advance the frames backward (counterclockwise). This de-
cision is technically arbitrary, but we believe that it has
ecological validity in that it mimics the behavior of the
mouse itself when those side buttons are pushed: Pushing
the top button would tend to rotate the whole mouse clock-
wise, while pushing the bottom button would have a coun-
terclockwise effect. The virtual frames form a loop, making
it possible to cycle through all the screens using just one of
the buttons.

Keyboard Switch
The keyboard switch is modeled after a built-in Windows
task-switch command (ALT+TAB). We mapped the for-
ward frame switch to the ALT+“~” key combination, and
backwards to ALT+SHIFT+“~”. As with the mouse button
switch, looping is supported and it is possible to use just
one key combination to switch among all screens. This
mode, although implemented, was not evaluated in our tests
because of its similarity to mouse button switch.

Head Orientation Switch
By observing the work of several individuals in a multi-
display environment, we noticed that a user’s head position
does not change much, but their head orientation changes
continuously, depending upon the screen on which they are

working. At a constant working distance from the user, the
larger the screens, the larger the horizontal angle subtended
by each screen that can be reliably measured with an abso-
lute orientation sensor. We outfitted a pair of headphones
with a 3DOF orientation sensor (InterSense InertiaCube2)
and measure the user’s head orientation to determine the
screen at which they are looking. When the user turns their
head towards another screen, the head orientation switch
performs a frame switch.

While 6DOF tracking combined with eye-gaze tracking
would reduce errors, we wanted to design a minimally inva-
sive switch that would perform well with minimal calibra-
tion time. We have noticed that while eye gaze alone is
sometimes used to glance at another screen, users tend to
align their head with a monitor when performing tasks on
its screen (especially with the larger, 24" diagonal, monitors
we used), which supports our head orientation switch solu-
tion. In general, our technique is similar to MAGIC point-
ing [9], insofar as it warps the pointer to the area “in focus”
(in our case, a screen), followed by fine selection by mouse
movement alone. However, while MAGIC pointing warps
the pointer within one screen whenever the eye gaze
changes, we warp only across frame boundaries and leave
all mouse manipulation within a single screen unchanged.

Mouse Location Switch
The last switching method we implemented is based on the
idea that every screen could have a corresponding mouse-
pad. The user still manipulates only one physical mouse,
but physically placing the mouse on a different pad warps
the cursor to the screen corresponding to that pad. We im-
plemented mouse location switch using a touch-sensitive
surface (MERL DiamondTouch table) on which the user
can define any axis-aligned rectangle as a pad for a given
screen. To aid the user in remembering the locations of the
virtual mouse pads, we provided paper mouse-pad cutouts
to be placed on the surface (Figure 2). Since the table oper-
ates through electrostatic coupling, the mouse is wrapped in
aluminum foil to allow it to be tracked by the Diamond-
Touch surface when held by the user.

M3 POINTER-PLACEMENT STRATEGIES
In addition to deciding on how to trigger the frame switch,
there are several possibilities for where to warp the mouse
cursor in the target frame after the frame switch has oc-

Figure 2: M3 test setup consisting of four monitors and four
corresponding “mouse pads” used by mouse location
switch. The background is set to an inactive spreadsheet
image to simulate a typical noisy working environment.

curred. After some preliminary experimentation, three
strategies emerged as plausible candidates: fixed location,
frame-relative, and frame-dependent.

Fixed-Location Placement Strategy
Our initial implementation of M3 used the single fixed-
location placement strategy of always warping the cursor to
the center of the next frame (Figure 3a). While the center
location is somewhat arbitrary, it does ensure that the
maximum mouse traversal distance after the frame switch
will always be at most half of the frame’s diagonal. This
can be beneficial if users distribute their tasks equally
around the center, which is often the case with active work-
ing windows. However, it can be a nuisance when the target
is located near an edge, which is the case for some frequent
selection tasks, such as accessing the taskbar. In our current
M3 implementation, it is possible to select any fixed loca-
tion as the warping target, as long as that location is avail-
able on all frames.

Frame-Relative Placement Strategy
Frame-relative placement works by translating the pointer
to the next frame at the same location relative to the new
frame’s upper left corner as it was relative to its old frame’s
upper left corner (Figure 3b). This strategy essentially col-
lapses the entire available space into one frame of mouse
movement and is the only strategy we implemented in
which the effect of pointer movement prior to the frame
switch will not be negated by the switch itself.

Frame-Dependent Placement Strategy
If all frames are considered as completely independent
spaces, the system can remember the last location of the
cursor in each frame and warp the incoming cursor to that
location. Thus, the last position of the cursor when the user
warps out of the frame, becomes the starting location when
the user eventually warps back to that frame (Figure 3c).
This frame-dependent placement strategy, while preferred
by some initial test users in the two-monitor setup, was not
formally evaluated for four monitors, due to its increasing
difficulty as the number of frames increases. This is pre-
sumably due to the memory load imposed on the user hav-
ing to remember each frame’s cursor position.

USER STUDY
Eight right-handed participants (6 male, 2 female, ages 23–
32), all unfamiliar with the techniques, participated in a
target-selection experiment, with a counterbalanced within-
subject design. We decided to test regular unassisted mouse
interaction (CTRL mode) with three M3 frame-switch
modes: mouse button (MB), head orientation (HEAD), and
mouse location (ML). We tested each switch mode using
two pointer-placement strategies: frame-relative (FR) and
center fixed-location (C). This resulted in a total of seven
different conditions. Each user was allowed to familiarize
themselves with all mouse behaviors, and performed a
block of 10 practice trials before completing the block for
each condition. Each block consisted of five trials for each

of three different start-target distances and two directions
(right and left) for a total of 30 movements per block.

Our hypothesis was that participants would acquire targets
faster when using M3 relative to the control mode as the
number of screen bezels that needed to be crossed in-
creased. In addition, we speculated that the users would be
faster using the frame-relative strategy rather than the cen-
ter fixed-location strategy because of the utility of move-
ment prior to the frame switch in the former strategy.

The experiment was conducted on a Dual Xeon (2.6GHz,
2GB RAM) computer running Windows XP, with four
monitors tiled in a horizontal arrangement, driven by two
ATI Radeon 9800 and 9000 graphics cards. All four moni-
tors were Samsung SyncMaster 240T (24" diagonal,
1920×1200 resolution, 60Hz refresh), for a total desktop
space of 7680×1200 pixels. The monitors were arranged in
a semicircle of 80cm radius, with 12cm horizontal separa-
tion (including bezels) between each monitor’s display, and
the user was seated in the center to ensure equal distance
and viewing angle to all monitors (Figure 2). Thus, each
display occupied a 35° horizontal viewing angle with 8°
separation. The mouse speed was set to the medium setting.

The task was based on a Fitts’ Law target acquisition task
[7], but without any variation of start and target sizes (fixed
at 30 pixels square). To eliminate target discovery over-
head, we presented the participant with both start and target
buttons at the same time, asked them to locate both before
starting a trial, and recorded the time it took between click-
ing on the start button and clicking on the target button. We
selected distances of 2134, 4047, and 5956 pixels, such that
each required crossing one, two, or three bezels, respec-
tively. To eliminate strategy bias, each target was located
exactly halfway between the center of the screen and the
frame-relative location of the start button on that target
screen (Figure 4). The direction varied between left-to-right
and right-to-left.

Figure 3: Traversing between S, T1 and T2 locations using
different M3 pointer placement strategies: a) fixed-location
(center), b) frame-relative, c) one of many possible frame-
dependent scenarios. Dashed lines indicate warping; solid
lines indicate conventional movement.

Results
Movement times were first cleared by removing outliers
(movement times more than two standard deviations larger
than the mean for each condition), which accounted for less
than 3.5% of all the trials. All data analysis was performed
on a median movement time for each participant, distance,
direction, and condition combination. We performed a 7
(Condition) × 2 (Direction) × 3 (Distance) ANOVA, with
our subjects as a random variable. There were significant
main effects for all three factors. The Direction factor con-
tained a significant main effect, F(2,14)=82.72, p<<0.001:
transitioning left-to-right was on average 0.2s faster than
going right-to-left, which is consistent with previous re-
search showing that right-handed users performed mouse
movements faster from left-to-right than from right-to-left
when using their right hand [4].

The mean movement times across Condition, F(6,42)=3.88,
p<0.01, are shown in Figure 5(a). The interaction of Dis-
tance and Condition (Figure 5b) also had significant effects,
F(12,84)=9.509, p<<0.001. As predicted, in all cases the
FR strategy outperformed the C strategy by an average of
0.1s, which we believe is due to the C strategy discarding
pointer movement prior to the frame switch. Of the M3
modes using the FR strategy, MB (1584ms) was the fastest
compared with CTRL (1906ms), presenting a 17% im-
provement in performance. MB was followed by HEAD
(1698ms) and ML (1710ms), which were both significantly
faster than CTRL. It is interesting to notice that for the
shortest distance (2134 pixels) there were no significant
differences between movement times across conditions. All
of the M3 performance gains come from time saved when
traversing two bezels or more, with the biggest gains (up to
29%) being present at the largest distance (5965 pixels).

In the post-experiment questionnaire, all subjects strongly
preferred some M3 mode to the CTRL condition, and 6 out
of 8 users preferred the FR strategy over the C strategy.
While 7 out of 8 users preferred the MB mode over all the
other modes, some mentioned that they would actually pre-
fer a combination of HEAD and MB modes, in which the
screen switch is triggered with the mouse button, but the
cursor warps directly to the screen at which they are look-
ing. This combination would resolve the “Midas touch”
issue of pure HEAD mode, and also eliminate the multiple
clicks necessary to switch across more than one screen.

CONCLUSIONS
Our user study confirmed that M3 can improve target acqui-
sition performance in multi-monitor systems; as predicted,
the effect was higher with increased distance and FR strat-
egy. Subjective evaluations show a strong preference for
M3 over regular mouse pointing, and we believe that the
performance advantage could significantly increase with
experience. In future work, we would like to evaluate addi-
tional M3 modes and strategies, as well as implement a hy-
brid mouse button + head orientation switch mode.

ACKNOWLEDGMENTS
This work is funded in part by NSF Grant IIS-01-21239,
ONR Contract N00014-04-1-0005, and a gift from Mitsubi-
shi Electric Research Labs.

REFERENCES
1. Baudisch, P., Cutrell, E., Hinckley, K. and Gruen, R., Mouse Ether:

Accelerating the Acquisition of Targets Across Multi-Monitor Displays.
CHI '04 Extended Abstracts, ACM Press (2004), 1379–1382.

2. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P.,
Bederson, B. and Zierlinger, Z., Drag-and-Pop and Drag-and-Pick:
Techniques for Accessing Remote Screen Content on Touch- and Pen-
operated Systems. Proc. INTERACT '03, (2003), 57–64.

3. Baudisch, P., Cutrell, E. and Robertson, G., High-Density Cursor: A
Visualization Technique that Helps Users Keep Track of Fast-Moving
Mouse Cursors. Proc. INTERACT '03, ACM Press (2003), 236–243.

4. Boritz, J., Booth, K.S. and Cowan, W.B. Fitts's Law Studies of Direc-
tional Mouse Movement. Proc. of Graphics Interface (1991). 216–223.

5. Dulberg, M.S., Amant, R.S. and Zettlemoyer, L.S., An Imprecise
Mouse Gesture for the Fast Activation of Controls. Proc. INTERACT
'99, IOS Press (1999), 375–382.

6. Grudin, J., Partitioning Digital Worlds: Focal and Peripheral Awareness
in Multiple Monitor Use. Proc. CHI '01, ACM Press (2001), 458–465.

7. MacKenzie, I.S. Fitts' Law as a Research and Design Tool in Human-
Computer Interaction. Human-Computer Interaction, 7 (1992). 91–139.

8. Sibert, L.E. and Jacob, R.J.K., Evaluation of Eye Gaze Interaction.
Proc. CHI '00, ACM Press (2000), 281–288.

9. Zhai, S., Morimoto, C. and Ihde, S., Manual and Gaze Input Cascaded
(MAGIC) Pointing. Proc. CHI '99, ACM Press (1999), 246–253.

10.Zhai, S., Smith, B.A. and Selker, T., Dual Stream Input for Pointing
and Scrolling. CHI '97 Extended Abstracts, ACM Press (1997).

Figure 4: Start (S) and target (T) button layout in our user
study. To eliminate strategy bias, T is located at the half-
way point between the warping locations for frame-relative
(fr) and center fixed-location (c) strategies. Control path
(ctrl) is also shown.

Figure 5: Aggregated movement times (ms) with 95% con-
fidence intervals: a) Condition factor, b) Interaction of
Distance and Condition.

b)

a)

