Synthesis of Geometry Proof Problems

Chris Alvin, Louisiana State University

In Collaboration with

Supratik Mukhopadhyay, LSU Sumit Gulwani, Microsoft Research, Redmond
Rupak Majumdar, Max Planck Institute for Software Systems

AAAI '14
Thursday, July 31, 2014

Motivation for Automatic Problem Generation

Difficulties students face with their mathematics education:

- Limited textbook problems,
- Overcoming absences and reteaching,
- Variance of time to mastery (slow or fast), and
- Acquiring problems using personally-designed criteria.

Difficulties teachers face educating students:

- Efficiently develop supplementary materials,
- Write multiple versions of exams, and
- Differentiate instruction effectively.

Why Geometry Domain?

- Problem synthesis techniques have been restricted to mostly algebraic domains. [Wolfram-Alpha, Gulwani et al. AAAI '12, etc.]
- Reasoning about diagrams is non-trivial.
- Automatic theorem proving is well-studied, but basic geometry solution and problem synthesis have yet to be explored.

Question Answered

Can we synthesize (other) geometry proof problems (and their solutions) from a figure together with a set of properties true of that figure?

Our Contributions

- We formalize the notion of a geometry proof problem.
- We present a technique for generating proof problems over a geometric figure in a system we call GeoTutor.
- Our semi-automated approach takes a figure, analyzes, and generates problems within a few seconds.
- Supports queryable problem properties.

Textbook Problem

If $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

Demonstration

Solution

Internal Representation: Hypergraph

Geometric deductions can be written as logical propositions such as $P_{1}, P_{2}, \ldots, P_{k} \vdash P_{n}$ as evidenced below with the SAS congruence axiom.

We will use a directed hypergraph with edges being many-to-one.

Definition: Geometry Proof Problem

Definition

Let Fig be a figure and let Axioms be a set of geometry axioms. A geometry proof problem over (Fig, Axioms) is a pair (assumptions, goals), where the assumptions and goals are sets of explicit facts about Fig such that

- an assumption is not a goal,
- the implicit facts of Fig, assumptions, and Axioms imply each goal in the set of goals using first-order reasoning.

Observe that a problem (and solution) is then a path in the hypergraph.

Problem Synthesis Example

Consider the following statement; we call it the Midpoint Theorem.

If segment $A B$ has midpoint M, then $2 A M=A B$ and $2 M B=A B$.

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal) Between ($M, A B$):

Midpoint($M, A B$):
$A M+M B=A B:$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal) Between ($M, A B$):

Midpoint($M, A B$):
$A M+M B=A B:$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal) Between ($M, A B$):

Midpoint($M, A B$):
$A M+M B=A B:$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal) Between ($M, A B$):

Midpoint($M, A B$):
$A M+M B=A B:$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
(S): Between ($M, A B$)
(G) $A M+M B=A B$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
(S): Between ($M, A B$)
(G) $A M+M B=A B$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
(S): Between ($M, A B$)
(G) $A M+M B=A B$
$A M=M B:$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
(S): Between ($M, A B$)
(G) $A M+M B=A B$
$A M=M B:$
(S): Midpoint($M, A B$)
(G) $A M=M B$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

Generated Problems (Hashed by Goal)
Between ($M, A B$):
Midpoint($M, A B$):
$A M+M B=A B:$
(S): Between ($M, A B$)
(G) $A M+M B=A B$
$A M=M B:$
(S): Midpoint($M, A B$)
(G) $A M=M B$
$2 A M=A B:$
$2 M B=A B:$

Problem Synthesis: Midpoint Theorem

```
Generated Problems (Hashed by Goal)
Between ( \(M, A B\) ):
Midpoint( \(M, A B\) ):
\(A M+M B=A B:\)
    (S): Between ( \(M, A B\) )
    (G) \(A M+M B=A B\)
\(A M=M B:\)
    (S): \(\operatorname{Midpoint(M,AB)~}\)
    (G) \(A M=M B\)
\(2 A M=A B:\)
    (S): Between \((M, A B), \operatorname{Midpoint}(M, A B)\)
    (P): \(A M+M B=A B\)
        \(A M=M B\)
    (G) \(2 A M=A B\)
\(2 M B=A B:\)
```


Interesting Geometry Proof Problem

Definition

A geometry problem (assumptions, goals) over (Fig, Axioms) is interesting if the set of assumptions is minimal.

Interesting vs. Uninteresting

Assume:
Solution

- $A D=B C$,
- $A B \| C D$, and
- $A C \| B D$.

Goal: Prove $A B C D$ is a rectangle.

The assumptions are minimal to prove the goal; this problem is interesting.

Interesting vs. Uninteresting

Assume:

- $A D=B C$,
- $A B \| C D$,
- $A C \| B D$, and
- $m \angle A C D=90^{\circ}$

Goal: Prove $A B C D$ is a rectangle.

Adding assumption $m \angle A C D=90^{\circ}$ results in an uninteresting problem.

Strict Geometry Proof Problem

Definition

An interesting problem is strict if the set of goals is minimal.

Strict vs. Non-Strict

Assume:

- $A D=B C$,
- $A B \| C D$, and
- $A C \| B D$.

Goal: Prove $A B C D$ is a rectangle.

Since there is a single goal, the problem is vacuously strict.

Strict vs. Non-Strict

Assume:

- $A D=B C$,
- $A B \| C D$, and
- $A C \| B D$.

Goals: Prove $\angle A B D$ is supplementary to $\angle B D C$ and $A B C D$ is a rectangle.

Adding a goal not in the solution path results in a non-strict problem.

Complete Geometry Proof Problem

Definition

An interesting geometry problem (assumptions, goals) over (Fig, Axioms) is complete if the implicit facts of Fig, assumptions, and Axioms defines all explicit facts of the figure.

Complete vs. Interesting

Assume $A D=B C, A B \| C D$, and $A C \| B D$.
Goal: Prove quadrilateral $A B C D$ is a rectangle.

Complete

Interesting, Not Complete

The quadrilateral on the right is a square, alas, we cannot strengthen beyond a rectangle since no information is provided about congruent sides.

Evaluation Methodology

The corpus contained 110 figures and 155 textbook problems from textbooks in India and the United States.

Each textbook problem is defined as a triple: $T=<F_{T}, A_{T}, G_{T}>$ where:

- F_{T} denotes the set of intrinsic properties of the figure,
- A_{T} denotes the assumptions as stated in the textbook, and
- G_{T} the set of goals as stated in the textbook.

Our synthesis is sound if the respective set of generated interesting (or complete) problems contains the original problems stated in the textbook.

Results

Figures	110
Strictly Complete Textbook Problems	45
Strictly Interesting Textbook Problems	65
Ave. Generated 1-Goal Problems	37
Ave. Generated 2-Goal Problems	443
Time (secs / figure)	4.7

Table: Cumulative Results of Synthesis

Thank you for your attention. Any questions?

