Synthesis of Geometry Proof Problems

Chris Alvin, Louisiana State University

In Collaboration with

Supratik Mukhopadhyay, LSU Sumit Gulwani, Microsoft Research, Redmond Rupak Majumdar, Max Planck Institute for Software Systems

AAAI '14 Thursday, July 31, 2014

Motivation for Automatic Problem Generation

Difficulties students face with their mathematics education:

- Limited textbook problems,
- Overcoming absences and reteaching,
- Variance of time to mastery (slow or fast), and
- Acquiring problems using personally-designed criteria.

Difficulties teachers face educating students:

- Efficiently develop supplementary materials,
- Write multiple versions of exams, and
- Differentiate instruction effectively.

Why Geometry Domain?

 Problem synthesis techniques have been restricted to mostly algebraic domains. [Wolfram-Alpha, Gulwani et al. AAAI '12, etc.]

• Reasoning about diagrams is non-trivial.

• Automatic theorem proving is well-studied, but basic geometry solution and problem synthesis have yet to be explored.

Question Answered

Can we synthesize (other) geometry proof problems (and their solutions) from a figure together with a set of properties true of that figure?

< A >

Our Contributions

- We formalize the notion of a geometry proof problem.
- We present a technique for generating proof problems over a geometric figure in a system we call *GeoTutor*.
- Our semi-automated approach takes a figure, analyzes, and generates problems within a few seconds.
- Supports queryable problem properties.

Textbook Problem

If $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.

3

Demonstration

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Example

Solution

D

Chris Alvin, Louisiana State University In Co

Internal Representation: Hypergraph

Geometric deductions can be written as logical propositions such as $P_1, P_2, \ldots, P_k \vdash P_n$ as evidenced below with the SAS congruence axiom.

We will use a **directed hypergraph** with edges being *many-to-one*.

Definition: Geometry Proof Problem

Definition

Let Fig be a figure and let Axioms be a set of geometry axioms. A **geometry proof problem** over (Fig, Axioms) is a pair (*assumptions*, *goals*), where the *assumptions* and *goals* are sets of explicit facts about Fig such that

- an assumption is not a goal,
- the implicit facts of Fig, *assumptions*, and Axioms imply each goal in the set of *goals* using first-order reasoning.

Observe that a problem (and solution) is then a path in the hypergraph.

Problem Synthesis Example

Consider the following statement; we call it the *Midpoint Theorem*.

If segment AB has midpoint M, then 2AM = AB and 2MB = AB.

- < ∃ →

Problem Synthesis: Midpoint Theorem

Thursday, July 31, 2014 12 / 21

Problem Synthesis: Midpoint Theorem

Thursday, July 31, 2014

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thursday,

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thursd

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thursd

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thurs

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thurse

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thurs

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thursd.

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems Thu

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems T

Problem Synthesis: Midpoint Theorem

Chris Alvin, Louisiana State University In Co Synthesis of Geometry Proof Problems

Interesting Geometry Proof Problem

Definition

A geometry problem (*assumptions*, *goals*) over (Fig, Axioms) is **interesting** if the set of *assumptions* is minimal.

Interesting vs. Uninteresting

Assume:

- AD = BC,
- $AB \parallel CD$, and
- *AC* || *BD*.

Goal: Prove *ABCD* is a rectangle.

< ロト < 同ト < ヨト < ヨト

3

The assumptions are minimal to prove the goal; this problem is *interesting*.

Interesting vs. Uninteresting

Assume:

- AD = BC,
- *AB* || *CD*,
- $AC \parallel BD$, and
- $m \angle ACD = 90^{\circ}$
- Goal: Prove ABCD is a rectangle.

< ロト < 同ト < ヨト < ヨト

3

Adding assumption $m \angle ACD = 90^{\circ}$ results in an *uninteresting* problem.

Strict Geometry Proof Problem

Definition

An interesting problem is **strict** if the set of *goals* is minimal.

∃ ► < ∃ ►</p>

3

Strict vs. Non-Strict

Assume:

- AD = BC,
- $AB \parallel CD$, and

R

- *AC* || *BD*.
- Goal: Prove ABCD is a rectangle.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Since there is a single goal, the problem is vacuously strict.

Strict vs. Non-Strict

Assume:

- AD = BC,
- $AB \parallel CD$, and
- *AC* || *BD*.

Goals: Prove $\angle ABD$ is supplementary to $\angle BDC$ and ABCDis a rectangle.

イロト 不得下 イヨト イヨト

- 3

Adding a goal not in the solution path results in a *non-strict* problem.

Complete Geometry Proof Problem

Definition

An interesting geometry problem (*assumptions*, *goals*) over (Fig, Axioms) is **complete** if the implicit facts of Fig, *assumptions*, and Axioms defines all explicit facts of the figure.

Complete vs. Interesting

Assume AD = BC, $AB \parallel CD$, and $AC \parallel BD$. Goal: Prove quadrilateral ABCD is a rectangle.

The quadrilateral on the right is a square, alas, we cannot strengthen beyond a rectangle since no information is provided about congruent sides.

Evaluation Methodology

The corpus contained 110 figures and 155 **textbook problems** from textbooks in India and the United States.

Each textbook problem is defined as a triple: $T = \langle F_T, A_T, G_T \rangle$ where:

- F_T denotes the set of intrinsic properties of the figure,
- A_T denotes the assumptions as stated in the textbook, and
- G_T the set of goals as stated in the textbook.

Our synthesis is **sound** if the respective set of generated interesting (or complete) problems contains the original problems stated in the textbook.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Results

Figures	110
Strictly Complete Textbook Problems	45
Strictly Interesting Textbook Problems	65
Ave. Generated 1-Goal Problems	37
Ave. Generated 2-Goal Problems	443
Time (secs / figure)	4.7

Table: Cumulative Results of Synthesis

<ロ> (日) (日) (日) (日) (日)

3

Thank you for your attention. Any questions?

- < ∃ →

< 行

3