
Bursty Tracing: A Framework for Low-Overhead Temporal Profiling

Martin Hirzel
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430
hirzel@colorado.edu

Trishul Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052
trishulc@microsoft.com

Abstract

With processor speed increasing much more rapidly than
memory access speed, memory system optimizations have
the potential to significantly improve program perfor-
mance. Unfortunately, cache-level optimizations often re-
quire detailed temporal information about a program’s ref-
erences to be effective. Traditional techniques for obtain-
ing this information are too expensive to be practical in
an on-line setting. We address this problem by describ-
ing and evaluating a framework for low-overhead tempo-
ral profiling. Our framework extends the Arnold-Ryder
framework that uses instrumentation and counter-based
sampling to collect frequency profiles with low overhead.
Our framework samples bursts (sub-sequences) of the trace
of all runtime events to construct a temporal program pro-
file. Our bursty tracing profiler is built using Vulcan, an
executable-editing tool for x86, and we evaluate it on opti-
mized x86 binaries. Like the Arnold-Ryder framework, we
have the advantages of not requiring operating system or
hardware support and being deterministic. Unlike them,
we are not limited to capturing temporal relationships on
intraprocedural acyclic paths since our trace bursts can
span procedure boundaries. In addition, our framework
does not require access to program source or recompila-
tion. A direct implementation of our extensions to the
Arnold-Ryder framework results in profiling overhead of
6-35%. We describe techniques that reduce this overhead
to 3-18%, making it suitable for use in an on-line setting.

1 Introduction

Dynamic optimization can use profile information from
the current execution of a program to decide what and
how to optimize. That is an advantage over static and
even feedback-directed optimization. On the other hand,
dynamic optimization must be more concerned with the
profiling overhead, since the slow-down from profiling has
to be recovered by the speed-up from optimization. A
common way to reduce the overhead of profiling is sam-
pling : instead of recording all the information that may be

useful for optimization, sample a small, but representative
fraction of it.

Sampling typically counts the frequency of individual
events such as calls or loads [3]. However, many dy-
namic optimizations exploit causality between two or more
events. For example, prefetching with Markov-predictors
uses pairs of data accesses [16]; some recent transparent
native code optimizers focus on single-entry, multiple-exit
code regions [6, 13]; cache-conscious data placement dur-
ing generational garbage collection lays out sequences of
data objects [11, 10]. For lack of low-overhead temporal
profilers, these systems usually employ event profilers. But
as Ball and Larus point out, event (node or edge) profiling
may misidentify frequencies of event sequences [7].

The sequence of all events during execution is the trace;
a burst is a subsequence of the trace. Arnold and Ry-
der present a framework that samples bursts [4]. In their
framework, the code of each procedure is duplicated (see
Figure 1). Both versions of the code contain the origi-
nal instructions, but only one version is instrumented to
also collect profile information. The other version only
contains checks at procedure entries and loop back-edges
that decrement a counter nCheck, which is initialized to
nCheck0. Most of the time, the checking code is executed.
Only when nCheck reaches zero, a single intraprocedu-
ral acyclic path of the instrumented code is executed and
nCheck is reset to nCheck0.

The Arnold-Ryder framework has several advantages:
it is implemented without hardware or operating system
support; it is deterministic; its overhead is easy to control.
Let tchecking and tinstrumented be the running times if we
always stay in one version of the code. Then the running
time of the program is

t(nCheck0) =
nCheck0 · tchecking + 1 · tinstrumented

nCheck0 + 1
(1)

Let torig be the running time of the original code.
The overhead is t(nCheck0)/torig − 1, which approaches
tchecking/torig−1 for large nCheck0. We call tchecking/torig−
1 the basic overhead.

A limitation of the Arnold-Ryder framework is that it
stays in the instrumented code only for the time between

1



A

B

original
procedure

(a)

A’

B’

instrumented
code

checking
code

back−
edge
check

entry
check

modified procedure (Arnold−Ryder)

A

B

(b)

Figure 1: Arnold-Ryder framework.

two checks. Since it has checks at every procedure entry
and loop back-edge, a burst captures only one acyclic in-
traprocedural path’s worth of trace. Consider for example
the code fragment:

for(i = 0; i < n; i++)
if(. . .) f();
else g();

The Arnold-Ryder framework would be unable to distin-
guish the traces fgfgfgfg and ffffgggg. But for ex-
ample in a dynamic optimizer based on optimizing single-
entry multiple-exit regions this information may make the
difference between executing optimized code most of the
time or not.

This paper describes our enhancements to the Arnold-
Ryder framework.

• We extend the Arnold-Ryder framework to sample
longer bursts (Section 2), making it more useful for
temporal profiling. (Arnold and Ryder actually men-
tion this possibility, but do not report trying it out.)

• We report experiences with our extended framework
on x86 binaries (Section 3). Arnold and Ryder had
implemented their framework in the JIT compiler of
the Jikes RVM1 for Java class files [1], we have imple-
mented it with Vulcan for x86 binaries [20]. Among
other things, this gives us language-independence.

• We reduce the basic overhead (Section 4). Out of the
box, our extended Arnold-Ryder framework has a ba-
sic overhead of 6-35% in our setting, we reduced it to
3-18% by eliminating checks. We eliminate redundant
checks on procedure entries by analyzing recursive cy-
cles, and eliminate checks from loops that do not yield
interesting profile information.

1The Jikes RVM is an open source research virtual machine for
Java that was formerly called Jalapeño.

2 Profiling Longer Bursts

A burst of the Arnold-Ryder framework begins at a check
(procedure entry or loop back-edge) and extends to the
next check: it captures one intraprocedural acyclic path.
We extended the framework so that bursts can extend over
multiple checks, possibly crossing procedure boundaries.
This way, we obtain interprocedural, context-sensitive,
and flow-sensitive profiling information.

Our extension is to make the Arnold-Ryder framework
symmetric (see Figure 2). While in the checking code,
we decrement nCheck at every check. When it reaches
zero, we initialize nInstr with nInstr0 (where nInstr0 �
nCheck0) and go to the instrumented code. While in the
instrumented code, we decrement nInstr at every check.
When it reaches zero, we initialize nCheck with nCheck0

and go to the checking code. Figure 3 shows the logic of
a check. Note that in the common case (we were in the
checking code and stay there), the check is basically the
same as in the original Arnold-Ryder framework. Compar-
ing the common case of Figure 3 in this paper to Figure
3 in [4], we see that the fast path consists of a decrement
and a conditional branch in both cases.

A

B

original
procedure

(a)

A’

B’

instrumented
code

checking
code

back−
edge
check

entry
check

modified procedure (longer bursts)

A

B

(b)

Figure 2: Long-burst extended Arnold-Ryder framework.

The extended framework still does not require any
hardware or operating system support, it is still deter-
ministic, and the profiling overhead is still easy to control.
Equation 1 becomes

t(nCheck0,nInstr0) =
nCheck0·tchecking+nInstr0·tinstrumented

nCheck0+nInstr0

(2)

The overhead depends on the sampling rate r =
nInstr0/(nCheck0+nInstr0). For a low sampling rate r, the
overhead approaches the basic overhead tchecking/torig− 1.

Our extended framework can accidentally transition to
the wrong version of the code on a procedure return. Let

2



// fast path, executed on every check
nCheck−−;
if(nCheck 6= 0) goto targetchecking; // we were in checking code and stay there
// fall-through to remainder of check, executed infrequently
nCheck = 1;
if(nInstr == 0){

nInstr = nInstr0;
goto targetinstrumented; // transition from checking to instrumented code

}
nInstr−−;
if(nInstr 6= 0) goto targetinstrumented; // we were in instrumented code and stay there
nCheck = nCheck0;
goto targetchecking; // transition from instrumented to checking code

Figure 3: Logic of a check.

us say the checking code of f calls g; it pushes a return
address in the checking code on the stack. Let us say g
does a regular transition to the instrumented code and
then returns to f . We have accidentally transitioned from
the instrumented code to the checking code. Note that
the mistake will be corrected at the next check, and that
we have at most one accidental transition per return after
the regular transition. This situation could theoretically
lead to irregularities in how many profile events there are
per burst, and it could make the profiling overhead deviate
from Equation 2. We measured both and found that re-
turns to the wrong version of the code were not a problem
in practice.

3 Profiling x86 Binaries

Arnold and Ryder implemented their framework with the
Jikes RVM [1]. They compile Java class files to PowerPC
and insert the checks at compile-time. We implemented
our version of the framework with Vulcan, an executable
editing tool for x86 [20]. We compile C and C++ programs
to x86 and insert the checks into the binary (at post-link
time). Our framework has the advantage of requiring ac-
cess only to the executable but suffers from the disadvan-
tage that the compiler cannot optimize the checks.

Arnold and Ryder observe basic overheads from 0.5-
8.4%, the average over all benchmarks is 3.6%. Our imple-
mentation of the extended Arnold-Ryder framework yields
basic overheads from 5.6-35.3% (see Figure 6), the aver-
age over all benchmarks is 15.9%. In their setting, the
basic overhead seems low enough for dynamic optimiza-
tions, whereas in our setting, it is too high.
There are at least two reasons for this discrepancy. First,
Java programs already have higher overhead from the
runtime system and from the larger semantic gap that
the compiler must bridge. The overhead of the checks
is smaller when compared to an already slower program.

Second, in Arnold and Ryder’s setting, the JIT compiler
does register allocation and instruction scheduling for the
checks.

Our experiences show that the extended Arnold-Ryder
framework is general enough for use in various settings, but
in our setting, its basic overhead is too high for dynamic
optimization.

4 Decreasing the Overhead: Fewer
Checks

As discussed in the previous section the basic overhead of
our extended Arnold-Ryder framework is too high for dy-
namic optimization. The framework has checks at all pro-
cedure entries and loop back-edges to insure that the pro-
gram can never loop or recurse for an unbounded amount
of time without executing a check. If this were not the
case, sampling could miss too much profiling information
(when the program spends an unbounded amount of time
in the checking code), or the overhead could become too
high (when the program spends an unbounded amount of
time in the instrumented code).

We want to reduce the basic overhead by executing
fewer checks, but still guarantee that the program never
spends an unbounded amount of time without executing a
check. Note that thread-yield points, gc-safe points, and
asynchronous-exception points have similar requirements.
For all of these, we want to execute as few checks as possi-
ble to reduce overhead, but must guarantee that the time
between checks is bounded. Little is said about these prob-
lems in the literature. The rest of this section discusses
techniques for eliminating checks at procedure entries and
loop back-edges.

3



4.1 Eliminating Checks at Procedure En-
tries

Figure 4 shows a static call-graph: a directed graph G =
(N,E) where the nodes N are procedures and there is an
edge (f, g) ∈ E iff the code of f contains at least one direct
call to g. We want to insert checks on procedure entries so
that the program cannot recurse for an unbounded amount
of time without executing a check. In other words, we want
to find a minimum set C ⊆ N of nodes such that every
cycle in the graph contains at least one of them. This
problem is NP-hard (you can reduce Vertex-Cover to
it).

substitute

check

match

expand

main

join

delete_digram

insert_after

~symbols

Figure 4: A call-graph.

We approximate a good set C ⊆ N of procedures f to
put entry-checks on:

C =
{
f ∈ N | ¬is leaf(f) ∧

(
is root(f)∨
addr taken(f)∨
recursion from below(f)

)}
(3)

You never need a check on entry to a leaf procedure
(a procedure that calls nothing), since it cannot be part
of a recursive cycle. Otherwise, we put a check on entry
to every root (a procedure that is only called from the
outside world) to make sure we start off in the right version
of the code; we put a check on entry to every procedure
whose address is taken, since it may be part of recursion
with indirect calls; and we put a check on entry to every
procedure with recursion from below. A procedure f has
recursion from below iff it is called by a procedure g in the
same strongly connected component as f that is at least
as far away from the roots. The distance of a procedure f
from the roots is the minimum length of the shortest path
from a root to f .

Consider for example Figure 5 and assume there are
no indirect calls. The only root is main, the only

leaf is delete digram. With a breadth-first search, we
find the distances from the root to the other nodes.
The only non-trivial strongly connected component is
{check,match, substitute}. Only the procedure check has
recursion from below, since it is called by substitute which
is further away from main. If there is a check on entry to
every procedure in C = {main, check}, the program can-
not recurse indefinitely without executing checks.

substitute

check

match

expand

main

join

delete_digram

insert_after

~symbols

4

3

2

1

0

3

2

1

3

Figure 5: An analyzed call-graph.

The recursion from below heuristic guarantees that
there is no recursive cycle without a check and breaks the
ties to determine where in the cycle to put the check (simi-
larly to back-edges in loops). We break ties so that checks
are as far up in the call-stack as possible. This should
reduce the number of dynamic checks.

4.2 Eliminating Checks at Loop Back-
Edges

Static optimizers do a good job for tight inner loops. A
dynamic optimizer that tries to complement a static opti-
mizer may often find the profiling information from tight
inner loops of little interest. At the same time, checks at
the back-edges of tight inner loops can become extremely
expensive. For example, when you prefetch based on hot
data streams [8], loops that compare or copy arrays should
not have checks. They are easy to optimize statically, the
check on the back-edge is almost as expensive as the loop
body, and the loop body contains too little work to overlap
with the prefetch.

We define k-boring loops as loops with no calls and at
most k profiling events of interest. We do not instrument
either version of the code of a k-boring loop, and we do not
put a check on its back-edge. This way, we never spend an
unbounded amount of time in instrumented code. We may
spend an unbounded amount of time in uninstrumented

4



code without executing a check, but if the k-boring hy-
pothesis holds we do not miss interesting profiling infor-
mation. In some of our experiments, the quality of the
profile actually improved when we skipped 4-boring loops:
we measured the quality of a profile by its ability to de-
tect hot data streams, and eliminating k-boring loops helps
sampling more interesting events.

We considered other techniques for eliminating checks
on loop back-edges. If you can prove that a loop has only
a small, fixed number of iterations, it does not need a
check on the back-edge. Likewise, if you can prove that a
loop body will always execute a check, the loop does not
need a check on the back-edge. Another technique would
be to combine the loop counter with the profiling counter;
if they are linearly related, you do not need to update
the profiling counter and can still execute checks via a
predicate on the loop counter. Because they are hard to
implement on binary code and their benefits are unclear,
we did not implement any of these ideas.

5 Experimental Evaluation

This section answers three questions: How much overhead
does our profiling framework incur? What is the qual-
ity of temporal profiles collected with our bursty tracing
technique, and how does this relate to the sampling rate
and length of bursts? How do our techniques for reducing
framework overhead affect the quality of profiles?

5.1 Overhead

We measured the effectiveness of our techniques for re-
ducing the overhead of the extended Arnold-Ryder frame-
work on a 1000MHz Pentium III with 512MB of RAM.
The benchmarks are x86 binaries compiled with full opti-
mization; note that procedure inlining and loop unrolling
also reduces the number of checks. We did every run three
times and took the geometric mean of the running times.

The profiling overhead depends on the basic overhead
and the sampling rate. Let torig be the running time of the
original code and tchecking and tinstrumented be the running
times if we always stay in one version of the code. Then
given a sampling rate r = nInstr0/(nCheck0 +nInstr0) our
framework has the overhead

overhead(r) = basic overhead + r · tinstrumented − tchecking

torig

(4)
The basic overhead is due to the checks used to imple-

ment the profiling framework. The other component is
mainly due to the instrumentation doing the actual profil-
ing and scales linearly with the sampling rate. Since we are
interested in the overhead of the general profiling frame-
work as opposed to the overhead of the specific profiling
task, we present numbers for the basic overhead only.

Figure 6 shows the basic overhead tchecking/torig − 1,
where tchecking is obtained by setting nCheck0 = ∞ and
nInstr0 = 1, and torig is the running time of the original,
unmodified binary.
The “orig” bar of each group shows the basic overhead
when we have a check at every procedure entry and loop
back-edge. Bars EL,EC,EN show how much removing pro-
cedure entry checks reduces the overhead; note that elim-
inating all entry checks is not a practical alternative, but
gives a limit for how much can be gained by eliminat-
ing entry checks. Bars L4,L10,LN show how much remov-
ing loop back-edge checks reduces the overhead; note that
eliminating all back-edge checks is not a practical alter-
native, but gives a limit for how much can be gained by
eliminating back-edge checks. The last bar EC+L4 shows
the remaining basic overhead for our preferred version of
the extended Arnold-Ryder framework.
The numbers show that our techniques significantly reduce
the basic overhead of our extended Arnold-Ryder frame-
work. With the exception of 305.espresso, the basic over-
head seems low enough for dynamic optimizations.

5.2 Case Study: Hot Data Streams

Being based on instrumentation, our profiling framework is
flexible enough to support various different profiling tasks.
We used it for finding hot data stream profiles [8]. This
Section describes hot data stream profiles and a way to
compare them.

For hot data stream profiling, the instrumented code
records data references (dynamic executions of loads or
stores). A data stream is a subsequence of the data refer-
ence trace that exhibits regularity. If the regularity mag-
nitude of a data stream exceeds a predetermined thresh-
old, it is called a hot data stream. The regularity magni-
tude of a data stream is the part of the trace it accounts
for. Given a data stream v, the regularity magnitude is
v.heat = v.length ∗ v.frequency, where v.frequency is the
number of non-overlapping occurrences of v in the trace.
We set the heat threshold such that all hot data streams
together account for 90% of all traced data references.

A hot data stream profile is a set of hot data streams
and their regularity magnitudes. We measure the quality
of a profile by computing its overlap with the profile of
the trace of all data references [9]. Let P and Q be two
hot data stream profiles. The overlap for each hot data
stream is the minimum of its contribution to P and Q,
possibly zero if it appears only in one profile. For example,
if v.heatP = 3% and v.heatQ = 4%, then overlap(v, P,Q) =
3%. The overlap of profiles P and Q is the sum of the
overlaps for all hot data streams, i.e.

overlap(P,Q) =
∑

v∈P∪Q
min{v.heatP , v.heatQ} (5)

Since object addresses will change from one run to another,

5



or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

40

35

30

25

20

15

10

5

0

181.mcf

% basic overhead

252.eon 300.twolf 305.espresso boxsim

all checks intact
no checks on entry to leaf procedures
call−graph technique
no checks on entry to any procedures
4−boring loop technique
10−boring loop technique

call−graph and 4−boring loop techniques
no checks on any loop back−edges

orig
EL
EC
EN
L4
L10

EC+L4
LN

Figure 6: Basic overhead for various overhead reduction techniques.

we consider two hot data streams to be the same if they
have the same access signature, which is the ordered list
of instruction PCs that generated the reference sequence.
This methodology follows Chilimbi’s paper on the stability
of temporal data reference profiles [9]. Our overlap corre-
sponds to “exact overlap” in that paper. Note that be-
cause we want long streams for optimization, we measure
overlap on streams of length 10-40, whereas [9] measures
overlap on streams of length 2-100.

5.3 Profile Quality

We evaluate how longer bursts improve the quality of tem-
poral profiles using the profiling task of detecting hot data
streams as an example (see Section 5.2).

Figure 7 shows the overlap of the hot data stream pro-
files found by sampling (using different nCheck0:nInstr0)
with the hot data stream profile found by collecting the
complete trace of all data references. The higher this
overlap, the higher the quality of the sampled profile.
The bars can be grouped by the sampling rate, which
is proportional to the overhead in Equation (4): bars
20:1, 200:10, 1000:50 correspond to a 5% sampling rate,
bars 100:1, 1000:10, 5000:50 correspond to a 1% sampling
rate, and bars 200:1, 2000:10 correspond to a 0.5% sam-
pling rate. For the bars 20:1, 100:1, 200:1 we sample only
bursts of length one (nInstr0 = 1), which yields profiles
corresponding to the original Arnold-Ryder framework but
for the eliminated checks.
Figure 7 shows that when the bursts are longer, the quality

of the profile improves given a fixed allowance of overhead.
In some cases, longer bursts even improve the profile qual-
ity over profiles obtained with higher overhead, but shorter
bursts.

Figure 8 shows the impact of our overhead reduction
techniques on the profile quality. It shows the overlap
of the hot data stream profile found by sampling using
nCheck0:nInstr0 = 1000:50 with the hot data stream pro-
file found by collecting the complete trace of all data ref-
erences.
The “orig” bar of each group shows the overlap when we
have a check at every procedure entry and loop back-
edge. Bars EL,EC,EN show how removing procedure entry
checks affects the overhead; note that eliminating all en-
try checks is not a practical alternative, but gives a limit
for how much impact eliminating entry checks can have.
Bars L4,L10,LN show how much removing loop back-edge
checks affects the overhead; note that eliminating all back-
edge checks is not a practical alternative, but gives a limit
for how much impact eliminating back-edge checks can
have. The last bar EC+L4 shows the overlap for our pre-
ferred version of the extended Arnold-Ryder framework.
Comparing bars “orig” and EC+L4, we see that except for
305.espresso, our preferred settings either have no effect
on accuracy or improve accuracy. By eliminating profiling
in certain portions of the program, we spend more time
sampling the more interesting parts. This simultaneously
reduces noise and gives more information about the inter-
esting portions of the program, leading to a higher quality
profile.

6



50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50
00

:5
0

10
00

:5
0

20
00

:1
0

10
00

:1
0

20
0:

10
20

0:
1

10
0:

1
20

:1

50

40

30

20

10

0

181.mcf 252.eon 300.twolf 305.espresso boxsim

% overlap
60

Figure 7: Overlap of hot data streams when sampling with different nCheck0 : nInstr0.

6 Related Work

The goal of our profiling framework is to work with low
overhead and yet find causality in the profile. In this sec-
tion, we review both low-overhead profilers and profilers
that discover causality of events instead of just counting
events independently.

6.1 Low-overhead Profilers

One way to reduce the overhead of profiling is to do
most of the work in hardware, possibly in parallel to
the main computation. Techniques range from config-
urable performance counters that can trigger software in-
terrupts [3, 12] over selection and compression [19] to
programmable co-processors [15, 23]. Hardware profilers
are typically instruction-oriented: they count instructions
with certain characteristics. The more sophisticated the
hardware profiler, the less work remains to be done in soft-
ware, so that a wide variety of profiling tasks can be done
with low overhead. The draw-back is that stock hardware
does not yet have sophisticated profiling support built in.

Another way to reduce the overhead of profiling is com-
pression. It is safe for profile compression to lose informa-
tion, but the results must be a summary of the original
data that allows immediate and fast extraction of the rele-
vant information. Compression techniques that fit this bill
range from counting, hashing, and other hardware prepro-
cessing (e.g. [19]) to induction of hierarchical grammars
[17].

Finally, a common way to reduce the overhead of profil-
ing is sampling. Hardware sampling is typically counter-
based. In DCPI and ProfileMe, a sample is taken via an
interrupt when one of the hardware performance counters
of the Alpha processor overflows [3, 12]. In stratified sam-

pling, events are hashed and hits for each hash bucket are
counted; when the counter for a hash bucket overflows,
the event that caused the overflow is taken as a sample
[19]. The relational profiling architecture [15] and Zilles
and Sohi’s co-processor for profiling [23] use sampling to
reduce the number of events that their special hardware
must analyze, so that it can better keep up with the main
processor.
Software sampling typically uses events that happen in-
frequently but regularly. The Jikes RVM takes samples
on thread switches [1]. In ephemeral profiling, profil-
ing is enabled from a timer interrupt and disappears on
counter overflow [21]. Harris collects information relevant
for prefetching by sampling objects whose allocation leads
to an overflow of the local allocation buffer [14]. Whaley
uses the operating system sleep function to disable the pro-
filer thread between taking samples of the call-stack [22].
Arnold and Sweeney suggest sampling based on global or
individual method counts as an alternative for this [5]. The
Arnold-Ryder framework samples using counters in checks
at all procedure entries and loop back-edges [4]. We also
sample using counters in checks, but place checks in fewer
places than Arnold and Ryder to reduce the overhead of
sampling.

6.2 Causality Profilers

To reduce overhead, profiling typically abstracts the in-
formation available about the executing program. A com-
mon abstraction is to give up flow sensitivity: the profile
abstracts from the order in which the instructions of the
program were executed. A related abstraction is to give
up context sensitivity: the profile of a routine abstracts
from the calling context in which it was executed. When

7



or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

all checks intact
no checks on entry to leaf procedures
call−graph technique
no checks on entry to any procedures
4−boring loop technique
10−boring loop technique

call−graph and 4−boring loop techniques
no checks on any loop back−edges

orig
EL
EC
EN
L4
L10

EC+L4
LN

or
ig

E
L

E
C

E
N

L
4

L
10

L
N

E
C

+
L

4

0

181.mcf 252.eon 300.twolf 305.espresso boxsim

10

20

30

40

50

% overlap60

Figure 8: Overlap of hot data streams for various overhead reduction techniques.

both abstractions are used together, profiling events are
viewed in isolation, and optimizations that exploit causal-
ity between events lack crucial information. Hence, various
recent papers describe alternative abstractions that do not
give up causality in the profile.

Ball and Larus describe an efficient technique for finding
how frequently each acyclic path through the control flow
graphs of individual procedures is executed [7]. This pro-
vides intraprocedural optimizers with important control
flow information beyond edge profiles.

A number of profilers inspect the state at the moment
when the profile is taken to infer information about the
recent past to gain some limited causality information.
DCPI and ProfileMe inspect the state of the main pro-
cessor to find instructions that are simultaneously in flight
and to correlate instructions with events like misprediction
stalls [3, 12]. They describe the guess-work done in soft-
ware to recover missed information. ProfileMe also uses
the global branch history available in the processor to cap-
ture temporal relationships [12].
Ammons et al. describe the calling context tree, a repre-
sentation that captures context-sensitive information, and
describe how to combine it with flow sensitive informa-
tion for intraprocedural acyclic paths [2]. Whaley [22] and
Arnold and Sweeney [5] show how to find approximations
to the calling context tree with low overhead by sampling
call stacks.

To summarize, the two main software techniques for
temporal profiling are profiling intraprocedural acyclic
paths [7] and finding the calling context tree [2]. Intrapro-
cedural acyclic paths capture flow-sensitive information,
but miss temporal relationships between events that are
separated by a procedure entry or a loop back-edge. Call-
ing context trees capture context-sensitive information,
but miss information across non-trivial sequences of calls
and returns.

Larus describes whole program paths that contain more
complete flow- and context-sensitive control relationships
[17]. Larus uses the Sequitur algorithm [18] to compress
the profile information, and shows how to find hot sub-
paths on the compressed representation. Chilimbi uses
similar techniques to capture flow- and context-sensitive
data relationships [8]. These techniques deal with the lim-
itations of intraprocedural acyclic paths and calling con-
text trees for temporal profiling, but at the cost of a much
higher overhead.

Our bursty tracing profiler is intended for use in com-
bination with Larus’s and Chilimbi’s profile representa-
tion and analysis techniques. We reduce their overhead
by sampling, thus making them practical for dynamic op-
timization. The case study in Section 5.2 is an example
for combining our bursty tracing technique with Chilimbi’s
representations and abstractions of data reference profiles.

8



7 Conclusions

This paper describes our enhancements to the Arnold-
Ryder framework that make it suitable for low-overhead
temporal profiling. We extended it to sample longer bursts
that may span procedure boundaries. This enables us to
collect temporal profiling information that is interproce-
dural and context-sensitive. We implemented it for x86
binaries. This enables us to use it for a different class of
applications. We reduced its basic overhead. This made
it practical for dynamic optimizations on x86 binaries to
use temporal profiling information. We are working on a
dynamic optimizer that improves data cache behavior by
detecting and prefetching hot data streams found with our
profiler.

Acknowledgements
The authors thank Andy Edwards for his competent and
patient help with our questions about x86 and Vulcan,
and the anonymous referees for their detailed and critical
feedback.

References

[1] Bowen Alpern et al. The Jalapeno virtual machine.
IBM Systems Journal, 2000.

[2] Glenn Ammons, Thomas Ball, and James Larus. Ex-
ploiting hardware performance counters with flow and
context sensitive profiling. In Programming Lan-
guages Design and Implementation (PLDI), 1997.

[3] Jennifer Anderson et al. Continuous profiling: Where
have all the cycles gone? ACM Transactions on Com-
puter Systems (TOCS), 1997.

[4] Matthew Arnold and Barbara Ryder. A frame-
work for reducing the cost of instrumented code. In
Programming Languages Design and Implementation
(PLDI), 2001.

[5] Matthew Arnold and Peter Sweeney. Approximating
the calling context tree via sampling. Technical Re-
port RC-21789, IBM Research, 2000.

[6] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. Dynamo: A transparent dynamic optimiza-
tion system. In Programming Languages Design and
Implementation (PLDI), 2000.

[7] Thomas Ball and James Larus. Efficient path profil-
ing. In International Symposium on Microarchitecture
(MICRO), 1996.

[8] Trishul Chilimbi. Efficient representations and ab-
stractions for quantifying and exploiting data refer-
ence locality. In Programming Languages Design and
Implementation (PLDI), 2001.

[9] Trishul Chilimbi. On the stability of temporal data
reference profiles. In Parallel Architectures and Com-
pilation Techniques (PACT), 2001.

[10] Trishul Chilimbi, Bob Davidson, and James Larus.
Cache-conscious structure definition. In Programming
Languages Design and Implementation (PLDI), 1999.

[11] Trishul Chilimbi and James Larus. Using generational
garbage collection to implement cache-conscious data
placement. In International Symposium on Memory
Management (ISMM), 1998.

[12] Jeffrey Dean et al. Profileme: Hardware support
for instruction-level profiling on out-of-order proces-
sors. In International Symposium on Microarchitec-
ture (MICRO), 1997.

[13] Dean Deaver, Rick Gorton, and Norm Rubin. Wig-
gins/Redstone: An on-line program specializer. In
Hot Chips, 1999.

[14] Timothy Harris. Dynamic adaptive pre-tenuring. In
International Symposium on Memory Management
(ISMM), 2000.

[15] Timothy Heil and James Smith. Relational profil-
ing: Enabling thread-level parallelism in virtual ma-
chines. In International Symposium on Microarchi-
tecture (MICRO), 2000.

[16] Doug Joseph and Dirk Grunwald. Prefetching using
Markov predictors. In International Symposium on
Computer Architecture (ISCA), 1997.

[17] James Larus. Whole program pahts. In Programming
Languages Design and Implementation (PLDI), 1999.

[18] Craig Nevill-Manning and I.H. Witten. Identifying
hierarchical structure in sequences: a linear-time al-
gorithm. Journal of Artificial Intelligence Research,
(7):67–82, 1997.

[19] S. Subramanya Sastry, Ratislav Bod́ık, and James
Smith. Rapid profiling via stratified sampling. In
International Symposium on Computer Architecture
(ISCA), 2001.

[20] Amitabh Srivastava, Andrew Edwards, and Hoi Vo.
Vulcan: Binary transformation in a distributed en-
vironment. Technical Report MSR-TR-2001-50, Mi-
crosoft Research, 2001.

[21] Omri Traub, Stuart Schechter, and Michael Smith.
Ephemeral instrumentation for lightweight program
profiling. Technical report, Harvard University, 2000.

[22] John Whaley. A portable sampling-based profiler for
Java virtual machines. In Java Grande, 2000.

9



[23] Craig Zilles and Gurinder Sohi. A programmable
co-processor for profiling. In International Sympo-
sium on High Performance Computer Architecture
(HPCA), 2001.

10


	Introduction
	Profiling Longer Bursts
	Profiling x86 Binaries
	Decreasing the Overhead: Fewer Checks
	Eliminating Checks at Procedure Entries
	Eliminating Checks at Loop Back-Edges

	Experimental Evaluation
	Overhead
	Case Study: Hot Data Streams
	Profile Quality

	Related Work
	Low-overhead Profilers
	Causality Profilers

	Conclusions

