
Recursive Program 
Synthesis

Aws Albarghouthi (UToronto), Sumit Gulwani (MSR), 
and Zachary Kincaid (UToronto)

CAV 2013
Saint Petersburg, Russia



Program Synthesis

2

MagicSpecification Program



Program Synthesis

2

MagicSpecification Program



What are your Dreams?

3

MagicSpecification Program



What are your Dreams?

3

MagicSpecification Program
First-order Logic



What are your Dreams?

3

MagicSpecification Program
First-order Logic

Temporal Logic



What are your Dreams?

3

Magic Program
First-order Logic

Temporal Logic
I/O Examples



Why Synthesis from I/O?

I/O examples are easy to specify

4



Why Synthesis from I/O?

I/O examples are easy to specify

Non-expert users can specify I/O 
behaviour

• See, e.g., FlashFill for Excel, Smartphone scripts, etc.

• Desired programs are usually simple

4



Contribution

5

EscherI/O Examples Recursive
Program



Contribution

5

EscherI/O Examples Recursive
Program

User



Contribution

5

EscherI/O Examples Recursive
Program

Parameterized by a set of building blocks (operations)
integers, lists, trees, etc.

User



Contribution

5

EscherI/O Examples Recursive
Program

Parameterized by a set of building blocks (operations)

Novel search-based synthesis technique
integers, lists, trees, etc.

User



Contribution

5

EscherI/O Examples Recursive
Program

Parameterized by a set of building blocks (operations)

Novel search-based synthesis technique
integers, lists, trees, etc.

User

No templates required



High Level View

6

Forward Search



High Level View

6

Forward Search

I1 In. . .



High Level View

6

Forward Search

I1 In. . .

O1. . .On



High Level View

6

Forward Search

I1 In. . .

O1. . .On

P1 Pn
. . .



High Level View

6

Forward Search Conditional Inference

I1 In. . .

O1. . .On

P1 Pn
. . .

I1

O1

+

I2

O2

P1 P2



High Level View

6

Forward Search Conditional Inference

I1 In. . .

O1. . .On

P1 Pn
. . .

I1

O1

+

I2

O2

P1 P2 =

if (     )

else

C
P1

P2



High Level View

6

Forward Search Conditional Inference

I1 In. . .

O1. . .On

P1 Pn
. . .

I1

O1

+

I2

O2

P1 P2 =

if (     )

else

C
P1

P2



High Level View

6

Forward Search Conditional Inference

I1 In. . .

O1. . .On

P1 Pn
. . .

I1

O1

+

I2

O2

P1 P2 =

if (     )

else

C
P1

P2

Recursive call synthesis
Reuse I/O as recursive call 
specification or query user 



Example

Synthesize list length from examples:

7



Example

Synthesize list length from examples:

7

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Inputs:



Example

Synthesize list length from examples:

7

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Inputs:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:



Ex: Forward Search

8

Components: inc, isEmpty, tail, zero



Ex: Forward Search

8

Components: inc, isEmpty, tail, zero

Programs of size 1:



Ex: Forward Search

8

Components: inc, isEmpty, tail, zero

Programs of size 1:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Forward Search

8

Components: inc, isEmpty, tail, zero

Programs of size 1:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Forward Search

8

Components: inc, isEmpty, tail, zero

Programs of size 1:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

matches output for first input
Recall outputs                     

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Conditional Inference

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:



Ex: Conditional Inference

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:



Ex: Conditional Inference

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Goal Graph (GG):

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:



Ex: Conditional Inference

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Goal Graph (GG):

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:



Ex: Conditional Inference

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

AND node

Goal Graph (GG):

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:



Ex: Conditional Inference

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

AND node

Goal Graph (GG):

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Outputs:

“Backward” search



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:

Programs of size 2:



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:

Programs of size 2:



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:

Programs of size 2:



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:

Programs of size 2:



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:

Programs of size 2:



Ex: Forward Search 2

10

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Programs of size 1:

Programs of size 2:

Satisfies one of our goals



Ex: Conditional Inference 2

11

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Conditional Inference 2

11

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Conditional Inference 2

11

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

if (       )

else

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...

Only allow calls satisfying well-founded relation 



Ex: Forward Search 3

12

Programs of size 2

Programs of size 3

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...

Only allow calls satisfying well-founded relation 

But what if there isn’t 
such an I/O pair?

Query the user for new 
examples!

(too long for 15 min talk)



Ex: Conditional Inference

13

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

One iteration later:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Conditional Inference

13

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

One iteration later:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.



Ex: Conditional Inference

13

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

One iteration later:

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Synthesized program:



Escher: Recap
Forward Search

• Apply component to all synthesized programs

• Heuristic-based search

14



Escher: Recap
Forward Search

• Apply component to all synthesized programs

• Heuristic-based search

Conditional Inference
• Uses goal graph to synthesize conditionals

• Conditionals synthesized on demand

14



Escher: Recap
Forward Search

• Apply component to all synthesized programs

• Heuristic-based search

Conditional Inference
• Uses goal graph to synthesize conditionals

• Conditionals synthesized on demand

Recursive call synthesis
• Use I/O specification

• Query user for more output values if needed
14



Implementation

Prototype implementation of Escher

• Pluggable components

Experimented with:

• integer, list, and tree manipulating programs

15



Experiments

16

Escher w/o 
ObsEquiv

w/o 
GoalGraph

w/o 
OE+GG

collect_leaves 0.04 0.09 68.9 81.8

count_leaves 0.06 0.2 9.3 12.3

hbal_tree 1.5 MEM TIME MEM

nodes_at_level 10.74 MEM TIME MEM

(tree manipulating programs)

Time in seconds



Experiments

17

(#components sensitivity: mult)

Escher: 0.7s
with all components



Experiments

17

(#components sensitivity: mult)

0

10

20

30

40

0 1 2 3 4 5

Sketch sensitivty
SAT-based synthesis [ASPLOS’06]

NUMBER OF EXTRA COMPONENTS

T
IM

E 
(S

)

Escher: 0.7s
with all components



Experiments

17

(#components sensitivity: mult)

0

10

20

30

40

0 1 2 3 4 5

Sketch sensitivty
SAT-based synthesis [ASPLOS’06]

NUMBER OF EXTRA COMPONENTS

T
IM

E 
(S

)

Had to supply Sketch with high-level conditional

Escher: 0.7s
with all components



Conclusion

18

EscherI/O Examples Recursive
Program

User



Conclusion

18

EscherI/O Examples Recursive
Program

User

Interactive



Conclusion

18

EscherI/O Examples Recursive
Program

User

Interactive
Highly-customizable



Conclusion

18

EscherI/O Examples Recursive
Program

User

Interactive
Highly-customizable

Novel synthesis techniques



Questions?

How can we synthesize loops?

19



Questions?

How can we synthesize loops?

Integration with SMT-based search

19



Questions?

How can we synthesize loops?

Integration with SMT-based search

Applications of Escher in eduction

• e.g., for interacting with students

19



Questions?

How can we synthesize loops?

Integration with SMT-based search

Applications of Escher in eduction

• e.g., for interacting with students

Theoretical under-pinnings

• e.g., see Madhusudan [CSL’11] 

19



Thank You


