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Why Synthesis from I/O?

I/O examples are easy to specify

Non-expert users can specify I/O 
behaviour

• See, e.g., FlashFill for Excel, Smartphone scripts, etc.

• Desired programs are usually simple
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Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))
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Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations

employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Inputs:
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results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
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In the third alternation, new programs are generated, but none of our goals
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Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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can apply length (the recursive call) on the input values (program P1), but
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Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
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get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
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P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

AND node

Goal Graph (GG):

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
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3
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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2
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P5 = isEmpty(P1) → 〈T,F,F〉

3
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P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5 P8

Pr

〈0,1,2〉

〈T,F,F〉 〈?,1,2〉〈0,?,?〉
cond then else

goal

P2P5

if isEmpty(i)
then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8
P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations
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for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
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representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
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〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
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this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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are solved.
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for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.
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ing components to programs found for the heuristic value 1. Note that Escher
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this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
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results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
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representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
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this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
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representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
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in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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2
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3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...

Only allow calls satisfying well-founded relation 
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h Program Pi
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P2 = zero → 〈0,0,0〉

2
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Use I/O values to simulate recursive call

Recursive Program Synthesis 937

h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

...

Only allow calls satisfying well-founded relation 

But what if there isn’t 
such an I/O pair?

Query the user for new 
examples!

(too long for 15 min talk)
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

One iteration later:
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h Program Pi

1
P1 = i → 〈[],[2],[1,2]〉
P2 = zero → 〈0,0,0〉

2
P3 = tail(P1) → 〈err,[],[2]〉
P4 = inc(P2) → 〈1,1,1〉
P5 = isEmpty(P1) → 〈T,F,F〉

3
P6 = length(P3) → 〈err,0,1〉
P7 = tail(P3) → 〈err,err,[]〉

4 P8 = inc(P7) → 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
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representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
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this obviously results in a non-terminating program (namely, the program let
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get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
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results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).
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this obviously results in a non-terminating program (namely, the program let
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get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
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employed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthe-
sizing a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉
for inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let
length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.
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Escher: Recap
Forward Search

• Apply component to all synthesized programs

• Heuristic-based search

Conditional Inference
• Uses goal graph to synthesize conditionals

• Conditionals synthesized on demand

Recursive call synthesis
• Use I/O specification

• Query user for more output values if needed
14



Implementation

Prototype implementation of Escher

• Pluggable components

Experimented with:

• integer, list, and tree manipulating programs
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Escher w/o 
ObsEquiv

w/o 
GoalGraph

w/o 
OE+GG

collect_leaves 0.04 0.09 68.9 81.8

count_leaves 0.06 0.2 9.3 12.3

hbal_tree 1.5 MEM TIME MEM

nodes_at_level 10.74 MEM TIME MEM

(tree manipulating programs)

Time in seconds
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Novel synthesis techniques
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Questions?

How can we synthesize loops?

Integration with SMT-based search

Applications of Escher in eduction

• e.g., for interacting with students

Theoretical under-pinnings

• e.g., see Madhusudan [CSL’11] 
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