
Automatically Generating Problems and Solutions for Natural Deduction

Umair Z. Ahmed
IIT Kanpur

umair@iitk.ac.in

Sumit Gulwani
MSR Redmond

sumitg@microsoft.com

Amey Karkare
IIT Kanpur

karkare@cse.iitk.ac.in

Abstract
Natural deduction, which is a method for establish-
ing validity of propositional type arguments, helps
develop important reasoning skills and is thus a
key ingredient in a course on introductory logic.
We present two core components, namely solution
generation and practice problem generation, for en-
abling computer-aided education for this important
subject domain. The key enabling technology is use
of an offline-computed data-structure called Uni-
versal Proof Graph (UPG) that encodes all possi-
ble applications of inference rules over all small
propositions abstracted using their bitvector-based
truth-table representation. This allows an efficient
forward search for solution generation. More inter-
estingly, this allows generating fresh practice prob-
lems that have given solution characteristics by per-
forming a backward search in UPG. We obtained
around 300 natural deduction problems from var-
ious textbooks. Our solution generation procedure
can solve many more problems than the traditional
forward-chaining based procedure, while our prob-
lem generation procedure can efficiently generate
several variants with desired characteristics.

1 Introduction
Natural deduction [Gentzen, 1964] is a method for estab-
lishing the validity of propositional type arguments, where
the conclusion of an argument is actually derived from the
premises through a series of discrete steps. A proof in natu-
ral deduction consists of a sequence of propositions, each of
which is either a premise or is derived from preceding propo-
sitions by application of some inference/replacement rule and
the last of which is the conclusion of the argument.

Significance of Teaching Natural Deduction From a prag-
matic perspective, it helps develop the reasoning skills needed
to construct sound arguments of one’s own and to evaluate
the arguments of others. It instills a sensitivity for the formal
component in language, a thorough command of which is in-
dispensable to clear, effective, and meaningful communica-
tion. Such a logical training provides a fundamental defense

against the prejudiced and uncivilized attitudes that threaten
the foundations of our democratic society [Hurley, 2011].

From a pedagogical perspective, natural deduction is a use-
ful tool in relieving math anxiety that terrifies countless stu-
dents. It is a gentle introduction to mastering the use of logical
symbols, which carries into other more difficult fields such as
algebra, geometry, physics, and economics.

Natural deduction is typically taught as part of an introduc-
tory course on logic, which is a central component of college
education and is generally offered to students from all disci-
plines regardless of their major. It is thus not a surprise that
a course on logic is being offered on various online educa-
tion portals including Coursera [Coursera, ], Open Learning
Initiative [oli, ], and even Khan Academy [kha, ].

Significance of Solution Generation Solution generation
is important for several reasons. First, it can be used to gen-
erate sample solutions for automatically generated problems.
Second, given a student’s incomplete solution, it can be used
to complete the solution. This can be much more illustrative
for a student as opposed to providing a completely different
sample solution to a student. Third, given a student’s incom-
plete solution, it can also be used to generate hints on the next
step or an intermediate goal.

Significance of Problem Generation Generating fresh
problems that have specific solution characteristics is a te-
dious task for the teacher. Automating this has several bene-
fits.

Generating problems that are similar to a given problem
has two applications. First, it can help avoid copyright issues.
It may not be legal to publish problems from textbooks on
course websites. Hence, instructors resort to providing indi-
rect pointers to textbook problems as part of assignments. A
problem generation tool can provide instructors with a fresh
source of problems to be used in their assignments or lecture
notes. Second, it can help prevent plagiarism in classrooms
or massive open online courses since each student can be pro-
vided with a different problem of the same difficulty level.

Generating problems that have a given difficulty level and
that exercise a given set of concepts can help create personal-
ized workflows for students. If a student solves a problem cor-
rectly, then the student may be presented with a problem that



(a)

Rule Name Premises Conclusion
Modus Ponens (MP) p→ q, p q
Modus Tollens (MT) p→ q, ¬ q ¬ p
Hypothetical Syllogism (HS) p→ q, q→ r p→ r
Disjunctive Syllogism (DS) p ∨ q, ¬ p q
Constructive Dilemma (CD) (p→ q) ∧ (r→ s), p ∨ r q ∨ s
Destructive Dilemma (DD) (p→ q) ∧ (r→ s), ¬ q ∨ ¬ s ¬ p ∨ ¬ r
Simplification (Simp) p ∧ q q
Conjunction (Conj) p, q p ∧ q
Addition (Add) p p ∨ q

(b)

Rule Name Proposition Equivalent Proposition
De Morgan’s Th. ¬ (p ∧ q) ¬ p ∨ ¬ q

¬ (p ∨ q) ¬ p ∧ ¬ q
Distribution p ∨ (q ∧ r) (p ∨ q) ∧ (p ∨ r)
Double Negation p ¬ ¬ p
Transposition p→ q ¬ q→¬ p
Implication p→ q ¬ p ∨ q
Equivalence p ≡ q (p→ q)∧ (q→ p)

p ≡ q (p ∧ q)∨ (¬ p ∧ ¬ q)
Exportation (p ∧ q)→ r p→ (q→ r)

Figure 1: (a) Sample Inference Rules. (b) Sample Replacement Rules.

(a)

Step Proposition Reason
P1 x1 ∨ (x2 ∧ x3) Premise
P2 x1 → x4 Premise
P3 x4 → x5 Premise
1 (x1∨x2)∧(x1∨x3) P1, Distribution
2 x1 ∨ x2 1, Simp.
3 x1 → x5 P2, P3, HS.
4 x2 ∨ x1 2, Commutativity
5 ¬¬x2 ∨ x1 4, Double Neg.
6 ¬x2 → x1 5, Implication
7 ¬x2 → x5 6, 3, HS.
8 ¬¬x2 ∨ x5 7, Implication
9 x2 ∨ x5 8, Double Neg.

(b)

Step Truth-table Reason
P1 η1 = 1048575 Premise
P2 η2 = 4294914867 Premise
P3 η3 = 3722304989 Premise
1 η4 = 16777215 P1, Simp.
2 η5 = 4294923605 P2, P3, HS.
3 η6 = 1442797055 1, 2, HS.

(c)

Node Candidate Target Source
Proposition Witness Witness

η4 q2 [q1] [qP1]
η5 q3 [qP2, qP3] [qP2, qP3]
η6 q7 [q6, q3] [q2, q3]

(d)

Step Proposition Reason
P1 x1 ≡ x2 Premise
P2 x3 → ¬x2 Premise
P3 (x4 → x5)→ x3 Premise
1 (x1 → x2) ∧ (x2 → x1) P1, Equivalence
2 x1 → x2 1, Simp.
3 (x4 → x5)→ ¬x2 P3, P2, HS.
4 ¬¬x2 → ¬(x4 → x5) 3, Transposition
5 x2 → ¬(x4 → x5) 4, Double Neg.
6 x1 → ¬(x4 → x5) 2, 5, HS.
7 x1 → ¬(¬x4 ∨ x5) 6, Implication
8 x1 → (¬¬x4 ∧ ¬x5) 7, De Morgan’s
9 x1 → (x4 ∧ ¬x5) 8, Double Neg.

Figure 2: (a) Natural Deduction Proof (with application of inference rules highlighted in bold).
(b) Abstract Proof with truth-tables shown using a 32-bit integer representation.
(c) Steps in converting abstract proof to natural deduction proof. qj denotes the proposition at step j from (a).
(d) Natural Deduction Proof of a similar problem.

is more difficult than the last problem, or exercises a richer
set of concepts. If a student fails to solve a problem, then the
student may be presented with a simpler problem.

Novel Technical Insights Our observations include:

• Small-sized hypothesis: Propositions that occur in edu-
cational contexts use a small number of variables and
have a small size (Fig. 4(a)). The number of such small-
sized propositions is bounded (Fig. 3(a)).

• Truth-Table Representation: A proposition can be ab-
stracted using its truth-table, which can be represented
using a bitvector representation [Knuth, 2011]. (Appli-
cation of inference rules over bitvector representation
reduces to performing bitwise operations.) This provides
two key advantages: (i) It partitions small-sized propo-
sitions into a small number of buckets (Fig. 3(b)). (ii) It
reduces the size/depth of a natural deduction proof tree,
making it easier to search for solutions or generate prob-
lems with given solution characteristics.

• Offline Computation: The symbolic reasoning required
to pattern match propositions for applying inference
rules can be performed (over their truth-table bitvector
representation) and stored in an offline phase. This has
two advantages: (i) It alleviates the cost of symbolic rea-
soning by a large constant factor by removing the need
to perform any symbolic matching at runtime. (ii) It en-
ables efficient backward search for appropriate premises

starting from a conclusion during problem generation,
which we model as a reverse of solution generation.

Contributions We make following contributions.

• We propose leveraging the following novel ingredients
for building an efficient computer-aided education sys-
tem for natural deduction: small-sized proposition hy-
pothesis, truth-table based representation, and offline
computation.

• We present a novel two-phased methodology for solu-
tion generation that first searches for an abstract solution
and then refines it to a concrete solution.

• We motivate and define some useful goals for prob-
lem generation, namely similar problem generation and
parameterized problem generation. We present a novel
methodology for generating such problems using a pro-
cess that is reverse of solution generation.

• We present detailed experimental results on 279 bench-
mark problems collected from various textbooks. Our
solution generation algorithm can solve 84% of these
problems, while the baseline traditional algorithm could
only solve 57% of these problems. Our problem genera-
tion algorithm is able to generate few thousands of sim-
ilar problems and parameterized problems on average
per instance in a few minutes.



(a)

n Total s
1 2 3 4 5

1

∞

2 10 1.3× 102 2.4× 103 4.6× 104

2 4 52 1.5× 103 5.9× 104 2.5× 106

3 6 126 5.8× 103 3.3× 105 2.1× 107

4 8 232 1.4× 104 1.1× 106 9.8× 107

5 10 370 2.9× 104 2.8× 106 3.1× 108

(b)

n Total (22
n

)
s

1 2 3 4 5
1 4 2 4 4 4 4
2 16 4 16 16 16 16
3 256 6 38 152 232 256
4 65536 8 70 526 3,000 13,624
5 4,294,967,296 10 112 1,252 12,822 1,22,648

Figure 3: (a) Number of propositions (not including those with double or more negations) over n variables and size at most s.
(b) Number of truth-tables over n variables and size at most s.

2 Natural Deduction
Let x1, . . . , xn be n Boolean variables. A proposition over
these Boolean variables is a Boolean formula consisting of
Boolean connectives over these variables.

Definition 1 (Natural Deduction Problem) A natural de-
duction problem is a pair ({pi}mi=1, c) of a set of propositions
{pi}mi=1 called premises and a proposition c called conclu-
sion. A natural deduction problem is well-defined if the con-
clusion is implied by the premises, but not by any strict subset
of those premises.

Definition 2 (Natural Deduction Proof) Let I and R be
sets of inference rules and replacement rules respectively.
A natural deduction proof for a problem ({pi}mi=1, c) using
I and R is a step-by-step derivation of conclusion c from
premises {pi}mi=1 by making use of some inference rule from
I or some replacement rule fromR at each step.

Inference and Replacement Rules An inference rule I is
made up of some premises Premises(I) and a conclusion
Conclusion(I). Fig. 1(a) lists down some sample infer-
ence rules. Unlike the inference rules, which are basic argu-
ment forms, a replacement rule is expressed in terms of pairs
of logically equivalent statement forms, either of which can
replace the other in a proof sequence. Fig. 1(b) lists down
some sample replacement rules. Our system does not lever-
age any knowledge of a specific inference/replacement rule.
The only interface that it requires of a rule is the capability to
generate the target proposition from source propositions.

Example 1 Consider the natural deduction problem ({x1 ∨
(x2 ∧ x3), x1 → x4, x4 → x5}, x2 ∨ x5). Fig. 2(a) shows a
natural deduction proof for it with inference rule applications
in bold.

3 Universal Proof Graph
We start out by describing our key data-structure that is used
for both solution and problem generation. It encodes all pos-
sible applications of inference rules over all propositions of
small size, abstracted using their truth-table representation.
Note that a truth-table representation does not distinguish be-
tween equivalent propositions such as q and ¬¬q.

Definition 3 (Truth-Table Bitvector Representation) Let
q be a proposition over n Boolean variable. Its truth-table,
which assigns a Boolean value to each of the 2n possible
assignments to the n Boolean variables, can be represented

using a 2n bitvector [Knuth, 2011]. We denote this bitvector
by q̃.

Definition 4 (Abstract Proof) Let I be a set of inference
rules. An abstract proof tree for a natural deduction prob-
lem ({pi}mi=1, c) is any step-by-step deduction for deriving
c̃ from {p̃i}mi=1 using the abstract version of some inference
rule from I at each step. An abstract version of an inference
rule Ĩ has premises {q̃ | q ∈ Premises(I)} and conclu-
sion q̃′, where q′ = Conclusion(I). An abstract proof A
is minimal if for every other abstract proofA′, the set of truth-
tables derived in A′ is not a strict subset of A.

An abstract proof for a natural deduction problem is
smaller than a natural deduction proof. This is because an ab-
stract proof operates on truth-tables, i.e., equivalence classes
of propositions, and does not need to encode the replacement
steps to express equivalent rewrites within a class. Note that
a natural deduction proof for a given problem over inference
rules I and replacement rulesR can always be translated into
an abstract proof for that problem over I. However, translat-
ing an abstract proof into natural deduction proof depends on
whether or notR contains sufficient replacement rules.

Example 2 Consider the problem mentioned in Example 1
and its natural deduction proof in Fig. 2(a). An abstract proof
for the problem is given by the bold statements in its natural
deduction proof along with interpreting each proposition q as
its truth-table q̃. This abstract proof is shown in Fig. 2(b).

Definition 5 (Size of a Proposition) We define the size
Size(q) of a proposition q to be the number of variable
occurrences in it.

Size(x) = 1

Size(¬q) = Size(q)

Size(q1 op q2) = Size(q1) + Size(q2)

Let Pn,s denote the set of all propositions over n variables
that have size at most s. Fig. 3(a) shows the number of propo-
sitions over n variables as a function of s. Note that even
though the number of syntactically distinct propositions over
n variables is potentially infinite, the number of such propo-
sitions that have bounded size is bounded.

Definition 6 (Size of a Truth-Table) We define the size of a
truth-table t to be the smallest size of a proposition q such
that q̃ = t. We select any such smallest-sized proposition as
the canonical proposition for truth-table .

Let Tn,s denote the set of all truth-tables over n variables that
have size at most s. Fig. 3(b) mentions statistics related to



(a)

n s
2 3 4 5 6

1 2 1
2 32 6 6 2
3 27 61 15 3 2
4 15 34 27 1
5 3 30 20 2
6 7 20 1 1
7 3 7 1
8 2 3 2
9 1 1 1

(b)

n # Edges Time
(hrs.)

1 20 < 1
2 960 < 1
3 14424 < 1
4 68422 < 3
5 207322 < 8

Figure 4: (a) Benchmarks: Total of 339 natural deduction
problems obtained from 5 textbooks [Howard-Snyder et al.,
2008; Bergmann, 2008; vander Nat, 2010; Hurley, 2011;
Cederblom and Paulsen, 2011], distributed across various
partitions defined by number of Boolean variables n and max
size s of each proposition. Note that 82% of the problems
have s ≤ 4 and n ≤ 5.
(b) UPG statistics for s = 4 and n ≤ 5.

the number of truth-tables in Tn,s for various values of n and
s. Note that the cardinality of Tn,s is much smaller than the
cardinality of Pn,s.

Definition 7 (Universal Proof Graph (UPG)) An (n, s, I)
Universal proof graph (UPG) is a hyper-graph whose nodes
are labeled with truth-tables from Tn,s and edges are labeled
with an inference rule from I.

Algorithm We now describe our algorithm for computing
the (n, s, I)-UPG. The algorithm makes use of functions
Eval, EvalS, and Size, which are defined later.

1. The node set of (n, s, I)-UPG is Tn,s, i.e., the set of all
truth-tables of size s. We compute Tn,s by enumerating
all propositions q of size s over n variables and adding q̃
to the node set. During this computation, we also main-
tain a reverse mapping called Canonical that maps
each truth-table to a canonical proposition.

2. The edge set computation involves adding the follow-
ing hyper-edge E for each inference rule I ∈ I and
each state ρ that maps each free variable in I to a
truth-table in Tn,s: The ith source node of the hyper-
edge is Eval(pi, ρ) and the target node is Eval(q, ρ),
where pi is the ith premise in Premises(I) and q =
Conclusion(I). We add this edge only when (i)
Size(EvalS(q, ρ)) ≤ s and Size(EvalS(pi, ρ)) ≤
s (for all i), and (ii) EvalS(q, ρ) and EvalS(pi, ρ)
(for all i) can be rewritten into the corresponding
canonical propositions using the given set of replace-
ment rules. This optimization avoids adding too many
edges that result from too involved reasoning on large-
sized propositions–which is something that our re-
placement rule finding engine will fail to do. Each
hyper-edge E is annotated with the set of all tuples
([EvalS(p1, ρ), . . . ,EvalS(pn, ρ)],EvalS(q, ρ)) ob-
tained from any inference rule I and any state ρ that
yields E . This set is referred to as PTuples(E).

The function EvalS(q, ρ) substitutes each free variable x
in q by Canonical(ρ(x)). The function Eval is as follows:

Eval(q1 ∧ q2, ρ) = Eval(q1, ρ) & Eval(q2, ρ)

Eval(q1 ∨ q2, ρ) = Eval(q1, ρ) ‖ Eval(q2, ρ)
Eval(¬q, ρ) = ∼ Eval(q, ρ)

Eval(x, ρ) = ρ(x)

Here &, ‖,∼ denote bitwise-and, bitwise-or, and bitwise-not
operators respectively.

Key Ideas of the Algorithm Note that the naive approach
to computing the node set (by enumerating all truth-tables
and filtering out truth-tables with size at most s) has two key
challenges: It is not easy to identify whether a given truth-
table has small size. Furthermore, the total number of truth-
tables over n variables is huge (22

n

). Instead we compute Tn,s
by enumerating all small propositions one by one.

Similarly, note that the naive approach to computing the
edge set (by enumerating over all possible tuples of source
nodes and target node, and identifying if a given inference
rule is applicable) has two key challenges: It is not easy to
identify whether a given inference rule is applicable at the
truth-table representation, and the number of such tuples is
huge. Instead we enumerate all edges corresponding to a
given inference rule by enumerating over all possible appli-
cations of that rule.

Results Fig. 4(b) describes the number of edges of UPGs
and the time taken to compute them for various values of
n ≤ 5 and s = 4. We chose s to be 4 since most problems
in practice have s ≤ 4 (See Fig. 4(a)). We experimented with
n ≤ 5 since it allows use of standard 32-bit integer for bitvec-
tor representation of a truth-table.

4 Solution Generation
In this section, we discuss how to generate a solution (i.e., a
natural deduction proof) to a natural deduction problem.

A naive approach to generating a minimal natural deduc-
tion proof would be to perform a breadth-first search starting
from premises pi and applying some inference or replacement
rule at each step to generate a new proposition until the con-
clusion is reached. We refer to this as the Traditional algo-
rithm. We next present our two-phase UPG-based algorithm
that first computes an abstract proof using the UPG and then
extends it to a natural deduction proof.

Algorithm Given the problem ({pi}mi=1, c), with n vari-
ables and max proposition size s, a set I of inference rules,
and a setR of replacement rules, we do the following:

1. Compute an abstract proof for the problem ({pi}mi=1, c).
This is done by performing a forward search for conclu-
sion c̃ starting from {p̃i}mi=1 in (n, s, I)-UPG. We do a
breadth-first search to compute a minimal abstract proof.

2. Concretize the abstract proof to a natural deduction
proof. This is done by generating a set of candidate
propositions for each node η in the abstract proof tree in



Total Avg Abstract Num. of % Success Avg time Avg time
Steps Steps (j) problems Traditional UPG (sec) Trad. (sec)

1 0.6 18 100 0.0 0.0
2 0.9 21 100 0.0 0.2
3 0.9 25 100 0.0 0.9
4 1.2 23 70 0.0 1.2
5 1.8 16 69 0.1 0.2
6 2.0 19 47 0.1 0.6
7 1.7 14 71 0.9 0.6
8 1.9 20 70 1.2 0.3
9 2.0 14 29 0.2 1.9

10 2.7 6 33 0.2 1.5
11 2.5 6 17 1.9 0.0
12 2.6 10 60 4.4 2.0
13 2.7 6 33 3.0 0.1
14 3.0 2 50 0.4 4.4
15 3.1 8 13 2.9 0.1
16 2.6 8 38 1.0 0.4
17 2.8 6 17 2.2 0.1
19 3.3 3 33 3.0 0.1
20 2.0 2 0 0.3 -
21 4.0 1 100 6.4 8.7
22 3.0 2 0 1.4 -
23 3.0 1 0 4.3 -
24 2.0 1 100 1.3 0.1
25 4.0 1 0 8.7 -
27 4.0 1 0 9.3 -

Figure 5: Solution Generation Results (with timeout of 10
sec): Performance of Traditional Algorithm on problems that
UPG-based algorithm could solve grouped by total steps in
overall proof. Last column shows average over only those
problems that Traditional Algorithm could solve.

a topological order as follows. For each premise node,
this set contains only the corresponding premise. Let
E be the hyper-edge from the UPG whose target node
yielded η, and let ([q1, . . . , qn], q) ∈ PTuples(E). If
for each ith child node of η, any of the candidate propo-
sitions q′i associated with it can be rewritten to qi, then
q is added as a candidate proposition for η. The rewrit-
ing of a proposition to another one is attempted by per-
forming a bounded breadth-first search over transitive
applications of replacement rules from R. [q′1, . . . , q

′
n]

is called the source-witness tuple for q and [q1, . . . , qn]
is called the target-witness tuple for q.

3. The natural deduction proof is now obtained by itera-
tively selecting a source proposition and a target propo-
sition for each node in reverse topological order. These
propositions are obtained respectively from the source-
witness tuple and target-witness tuple of the parent node.
Each node is then replaced by a series of replacement
rules that convert the source proposition into the target
proposition.

Example 3 Fig. 2(c) briefly outlines how the above algo-
rithm generates the natural deduction proof in Fig. 2(a) from
the abstract proof in Fig. 2(b). Column “Candidate Proposi-
tion” shows one of the candidate propositions produced by
step 2 of the algorithm (and identified by step 3 of the algo-
rithm) along with the corresponding source/target witnesses.

Results We tried our UPG-based algorithm over the 279
benchmark problems (Fig. 4(a)) that have n ≤ 5 and s ≤ 4.
These problems were picked across 21 different exercise sets,
each requiring use of a specific set I of inference rules.
We obtained (n, s, I)-UPG as

⋃
I∈I

(n, s, {I})-UPG instead of

having to compute the UPG for each given subset I from
scratch. Our tool was able to generate an abstract proof for
88% of these problems. Among these 88% problems, our tool
was able to concretize the abstract proof to a natural deduc-
tion proof for 96% instances, thereby achieving an overall
success rate of 84%. In contrast, the overall success rate of
the traditional algorithm is 57%.

Fig. 5 shows the distribution of the 84% problems that the
UPG-algorithm is able to solve with respect to the number of
total steps required to solve them. Col. “% Success” shows
that the traditional algorithm is unable to several of these
problems that have larger number of steps. Col. 2 shows that
the (average) number of steps of the abstract proof is signif-
icantly smaller than the total number of steps in Col. 1—this
partly explains the higher success rate of the UPG-based algo-
rithm. There are a small number of instances where the tradi-
tional algorithm works better than the UPG-based algorithm.
This happens when the traditional algorithm is able to find an
overall shorter proof that has more number of abstract steps
than the proof found by the UPG-based algorithm (which has
smallest number of abstract steps, but involves significantly
large number of replacement steps).

The UPG-based algorithm does fail to solve certain prob-
lems. This is because it restricts its search to those proofs
all of whose propositions have size s ≤ 4. However, for
certain problems, proofs involve intermediate propositions
whose size is greater than 4. (Note that this can happen even
if the premises and conclusion have size at most 4.)

5 Problem Generation
We now show how to generate fresh problems that have a
given solution characteristic. The key algorithmic insight here
is to model problem generation as reverse of solution gener-
ation, and the needed backward search is enabled due to the
UPG. We consider two goals, that of producing similar prob-
lems and parameterized problems.

5.1 Similar Problems
Definition 8 (Similar Problems) We say that two problems
Q1 and Q2 are similar if they entail a similar minimal ab-
stract proof tree. Two abstract proof trees are similar if they
involve exactly the same order of inference rule applications.

Generating similar problems can help address copyright
and plagiarism issues as discussed in Section 1.

Algorithm Let P be a problem with n variables and max-
imum proposition size s and that needs to be solved using
inference rules I. Our algorithm for generating problems that
are similar to P involves the following steps.

1. Generate a minimal abstract proof A for P by perform-
ing a forward breadth-first search in the (n, s, I)-UPG.



Premises Conclusion j Num. of Time
problems min:sec

x1 ∨ x2, x3, (x3 ∧ (x1 ∨ x2))→ ¬x4, ¬x5 → x4 ¬¬x5 3 21849 42:42
x1, (x1 ∧ x2)→ (x3 ∧ x4), x2, x4 → x5 x5 4 9290 30:28
¬x1, (¬x1 ∧ ¬x2)→ (x3 → x4), ¬x2, x4 → x5 x3 → x5 3 5306 17:56
¬(x1 ∧ x2), (x1 → ¬x2)→ (¬x3 ∧ ¬x4), x5 ∨ (x3 ∨ x4) x5 2 4001 5:56
x1 → (x2 → x3), ¬(x2 → x3), ¬x4 ∨ x1 ¬x4 2 2908 0:06
x1 → (x2 → (x3 ∨ x4)), x2 ∧ x1, ¬x4 x3 2 2353 0:14
¬x1 → x2, x1 → x3, ¬x3, x2 → x4 x4 ∨ x5 4 1248 5:17
(x1 → x2) ∧ ¬x3, (¬x1 → x5) ∨ x3, (¬x2 → x5)→ x4 x4 5 274 1:18
(x3 ∨ x2)→ ¬x1, x4 ∨ x1, x2 x4 3 122 0:02
x1 ∨ (x2 ∧ x3), x1 → x4, x4 → x5 x2 ∨ x5 3 516 1:52

n m j I Num. of Time
problems min:sec

2 2 1 MP 4 0:00
2 2 2 Simp, MP 6 0:02
3 3 2 DS, HS 145 0:00
3 3 3 DD, MT, Conj 188 0:00
3 2 4 Simp, Conj, MP 279 0:09
4 2 3 Simp, MP, 2060 1:52
4 3 3 Conj, MP, HS 6146 1:29
4 4 3 HS, MP 18132 9:52
5 3 2 Simp, MP 5628 8:04
5 3 2 HS, DS 5838 7:39

(a) (b)
Figure 6: Problem Generation Statistics.
(a) Number of similar problems generated and time taken to generate them for a few representative selection of problems
(shown along with the number of inference steps j).
(b) Number of (n,m, s, j, I)-problems generated and time taken to generate them for few choices of n,m, j, I (as obtained
from a representative selection of problems) and s = 4.

Premise 1 Premise 2 Premise 3 Conclusion
x1 ≡ x2 x3 → ¬x2 (x4 → x5)→ x3 x1 → (x4 ∧ ¬x5)
x1 ∧ (x2 → x3) (x1 ∨ x4)→ ¬x5 x2 ∨ x5 (x1 ∨ x4)→ x3
(x1 ∨ x2)→ x3 x3→ (x1 ∧ x4) (x1 ∧ x4)→ x5 x1→ x5
(x1 → x2)→ x3x3 → ¬x4 x1 ∨ (x5 ∨ x4) x5 ∨ (x2 → x1)
x1 → (x2 ∧ x3) x4 → ¬x2 (x3 ≡ x5)→ x4 x1 → (x3 ≡ ¬x5)

Premise 1 Premise 2 Premise 3 Conclusion
(x1 → x3)→ x2 x2 → x3 ¬x3 x1 ∧ ¬x3
x3 → x1 (x3 ≡ x1)→ x2¬x2 x1 ∧ ¬x3
(x1 ≡ x3) ∨ (x1 ≡ x2)(x1 ≡ x2)→ x3¬x3 x1 ≡ x3
x1 ≡ ¬x3 x2 ∨ x1 x3 → ¬x2x1 ∧ ¬x3
x3 → x1 x1 → (x2 ∧ x3) x3 → ¬x2¬x3

(a) (b)
Figure 7: Some automatically generated problems.
(a) 5 (out of 516) new similar problems generated from the last problem in Fig. 8(a).
(b) 5 (out of 145) new parameterized problems generated from the parameters in the 3rd row in Fig. 8(b) (namely, n = 3,
m = 3, s = 4, j = 2, I = {DS,HS}).

2. Find matches of A in the (n, s, I)-UPG using a back-
tracking based backward search. Replace each truth-
table node in the match by its canonical proposition.

Results Fig. 8(a) presents statistics on the number of sim-
ilar (but well-defined) problems that we produced from var-
ious problems and the time taken to produce them. We re-
moved all trivial replacements that correspond to replacing a
variable by any other variable or its negation. In Fig. 7(a), we
show 5 (out of 516) new similar problems generated for the
last problem in Fig. 8(a), which is the same problem from Ex-
ample 1. Fig. 2(d) shows a solution for the first new problem
in Fig. 7. Observe that the abstract version of this solution
(i.e., the bold steps) are similar to the abstract version of the
solution for the original problem, which is shown in Fig. 2(a).

5.2 Parameterized Problems
Definition 9 ((n,m, s, j, I)-problem) A (n,m, s, j, I)
problem is one that has (i) m premises involving n variables
and of size at most s, and (ii) that has a minimal abstract
proof that involves j steps and makes use of only and all
inference rules from set I.

Generating parameterized problems can be used to generate
personalized workflows as discussed in Section 1.

Algorithm The algorithm for generating (n,m, s, j, I)-
problems that have n variables and maximum proposition

size s involves performing a backtracking based backward
search in (n, s, I)-UPG to find appropriate matches. To gen-
erate a concrete problem, we replace each truth-table node in
the match by its canonical proposition.

Results Fig. 8(b) presents statistics on the number of well-
defined (n,m, s, j, I)-problems produced for certain values
of (n,m, j, I) as obtained from some existing problems and
s = 4. As before, we do not count those duplicate problems
that can be obtained by replacing a variable by any other vari-
able or its negation. In Fig. 7(b), we show 5 (out of 145) new
problems generated for n = 3, m = 3, s = 4, j = 2, and
I = {DS,HS}, which corresponds to the parameters in the
third row in Fig. 7(b).

6 Related Work
Natural Deduction Several proof assistants have been de-
veloped for teaching natural deduction: MacLogic [Dyckhoff
et al., ], Symlog [Frederic D. Portoraro, 1994], Jape [Bor-
nat, ], Hyperproof [Barwise and Etchemendy, 1994], Pan-
dora [Broda et al., 2007], Proof Lab [Sieg, 2007], and
ProofWeb [Wiedijk and van Raamsdonk, 2007]. These tools
basically differ in how proofs are visualized, (notably whether
proofs are trees or sequences), whether both forward and
backward reasoning are supported, the availability of global,
tactical and strategic help and debugging facilities, and proof
checking. [Van Ditmarsch, 1998] provides a nice survey of



these tools. We discuss few notable ones below.
Pandora is a Java based tool that allows the user to reason

both forwards and backwards, checking the rule application at
each stage and providing feedback. Proof Lab makes use of
the AProS algorithm and can additionally search for proofs
as well using a combination of forward chaining, backward
chaining, and contradiction. In contrast, we focus on generat-
ing proofs without contradiction, thereby staying true to what
the original problem asks for.

ProofWeb makes use of a state-of-the-art proof assistant
Coq [Coq Development Team, 2006], which allows encod-
ing of various tactics for proof generation. However, none
of these systems present any performance results as we do.
More significantly, this paper makes an orthogonal point,
namely how to speed up search 1, whether forward/backward
and with/without contradiction, by using offline computation
(which exploits the small formula sized hypothesis) and a
two-staged proof generation strategy that first computes an
abstract proof and then the natural proof. These optimizations
also pave way for generating fresh problems that is not ad-
dressed by any of these existing tools.

Problem Generation [Singh et al., 2012] describes a prob-
lem generation technology for generating problems that are
similar in structure to a given algebraic identity proof prob-
lem. The underlying technology leverages continuity of the
underlying domain of algebraic expressions, and uses ex-
tension of polynomial identity testing to check the correct-
ness of a generated problem candidate on a random input. In
contrast, the domain of Boolean expressions is highly non-
continuous or discrete, and hence requires a different tech-
nology of checking the correctness or well-formedness of a
problem candidate on all inputs. Furthermore, unlike [Singh
et al., 2012], our technology also enables solution generation.

[Andersen et al., 2013] describes a problem generation
technology for procedural domain, which includes problems
commonly found in middle-school math curriculum such as
subtraction and greatest common divisor computation. The
underlying technology leverages test input generation tech-
niques [Tillmann and de Halleux, 2008] to generate problems
that explore various paths in the procedure that the student is
expected to learn. In contrast, we address problem generation
for conceptual domain, where there is no step-by-step deci-
sion procedure that the student can use to solve a problem,
but it requires creative skills such as pattern matching.

Solution Generation [Gulwani et al., 2011] describes a
solution generation technology for ruler/compass based geo-
metric construction problems. It is based on search techniques
like ours with some interesting similarities and differences.
It performs a forward breadth-first search (like ours) by re-
peatedly applying ruler/compass operations to reach the de-
sired output geometric object from input geometric objects.
It represents a geometric object using a concrete represen-
tation, which constitutes its probabilistic hash, in order to

1Though we demonstrate this in the context of forward search
without contradiction, our methodology is applicable more broadly.

avoid symbolic reasoning. We also avoid symbolic reason-
ing, but by using an abstract hash (i.e., truth-table represen-
tation). Since inference rules cannot be directly applied on
the abstract hash, we resort to leveraging offline computation
(UPG)—this also provides the additional benefit of generat-
ing problems with given solution characteristics.

7 Conclusion
Computer-aided instruction can raise the quality of education
by making it more interactive and customized. We have pro-
vided the core building blocks, namely problem generation
and solution generation, for the classic subject domain of nat-
ural deduction taught in an introductory logic course. This
can free instructors from the burden of creating and generat-
ing sample solutions to assignment problems. An instructor
can create few interesting seed problems and our tool can au-
tomatically generate variants of these problems with similar
difficulty level. Our tool is not only indispensable in MOOCs
(Massive Open Online Courses) settings, but is also useful for
traditional classroom settings.

While this paper focuses on problem generation and solu-
tion generation, another important component of computer-
aided education is automated feedback generation [Singh et
al., 2013] and grading [Alur et al., 2013]. We are working
on extending our solution generation technology to complete
partial proofs or fix buggy proofs submitted by students. We
next plan to deploy our tool in a real course and perform user
studies to measure the productivity impact of various work-
flows around our tool. The data collected can also help im-
prove the effectiveness of problem recommendation and hint
generation. For example, once we have statistical data about
perceived problem difficulty, we can use machine learning
techniques that can learn correlations between problem dif-
ficulty features and perceived difficulty, and use it to build a
better problem recommendation tool.

The SAT solving and theorem proving communities have
focused on solving large-sized problem instances in a rea-
sonable amount of time. In contrast, this paper innovates by
developing techniques for solving small-sized instances in
real time. The small-sized assumption allows use of offline
computation and use of bitvector data-structures to allevi-
ate the cost associated with symbolic reasoning. This paves
way for some new applications, namely generation of human-
readable proofs, and problem generation. We believe that
some of the ideas presented in the paper might also be more
broadly applicable. Breaking proof search in two parts (ab-
stract proof and its refinement) is a general concept that might
apply to other proof generation settings. Our modeling of
problem generation as reverse of solution generation is a gen-
eral concept that might apply to problem generation in other
subject domains.

Acknowledgments
Umair Z. Ahmed was partially supported by a grant from Mi-
crosoft Research, India. We would like to thank Adam Smith
and the anonymous reviewers for their valuable feedback on
previous drafts of this paper.



References
[Alur et al., 2013] Rajeev Alur, Loris D’Antoni, Sumit Gul-

wani, Dileep Kini, and Mahesh Viswanathan. Automated
grading of dfa constructions. In IJCAI, 2013.

[Andersen et al., 2013] Erik Andersen, Sumit Gulwani, and
Zoran Popovic. A trace-based framework for analyzing
and synthesizing educational progressions. In CHI, 2013.

[Barwise and Etchemendy, 1994] Jon Barwise and John
Etchemendy. Hyperproof. CSLI Publications, 1994.

[Bergmann, 2008] Merrie Bergmann. The Logic Book.
McGraw-Hill, 5th edition, 2008.

[Bornat, ] Richard Bornat. Jape.
http://www.cs.ox.ac.uk/people/bernard.sufrin/personal/
jape.org.

[Broda et al., 2007] K. Broda, J. Ma, G. Sinnadurai, and
A. Summers. Pandora: A reasoning toolbox using natural
deduction style. Logic Journal of IGPL, 15(4):293–304,
2007.

[Cederblom and Paulsen, 2011] Jerry Cederblom and David
Paulsen. Critical Reasoning. Wadsworth Publishing, 7th
edition, 2011.

[Coq Development Team, 2006] Coq Development Team.
The Coq proof assistant reference manual: Version 8.1.
2006.

[Coursera, ] Coursera. Introduction to Logic.
https://www.coursera.org/course/intrologic.

[Dyckhoff et al., ] Roy Dyckhoff, Neil Leslie, Tom Peil-
lon, Brenda Rapley, Luis Pinto, Andrew Adams, Chris-
tian Urban, Jacob Howe, and Others. MacLogic.
http://www.cs.st-andrews.ac.uk/ rd/logic/mac.

[Frederic D. Portoraro, 1994] Robert E. Tully Frederic
D. Portoraro. Logic with Symlog; Learning Symbolic
Logic by Computer. Prentice Hall, Englewood Cliffs
USA, 1994.

[Gentzen, 1964] G. Gentzen. Investigations into logical de-
duction. American philosophical quarterly, 1(4):288–306,
1964.

[Gulwani et al., 2011] Sumit Gulwani, Vijay Anand Kor-
thikanti, and Ashish Tiwari. Synthesizing geometry con-
structions. In PLDI, 2011.

[Howard-Snyder et al., 2008] Frances Howard-Snyder,
Daniel Howard-Snyder, and Ryan Wasserman. The Power
of Logic. McGraw-Hill, 4th edition, 2008.

[Hurley, 2011] Patrick J Hurley. A Concise Introduction to
Logic. Wadsworth Publishing, 11th edition, 2011.

[kha, ] Khan Academy. Logical Reasoning.
https://www.khanacademy.org/math/geometry/logical-
reasoning/.

[Knuth, 2011] Donald E. Knuth. The Art of Computer Pro-
gramming, Volume 4A: Combinatorial Algorithms, Part 1.
Addison-Wesley Professional, 2011.

[oli, ] Open Learning Initiative. Logic & Proofs.
http://oli.cmu.edu/courses/free-open/logic-proofs-course-
details.

[Sieg, 2007] W. Sieg. The apros project: Strategic thinking
& computational logic. Logic Journal of IGPL, 15(4):359–
368, 2007.

[Singh et al., 2012] Rohit Singh, Sumit Gulwani, and Sriram
Rajamani. Automatically generating algebra problems. In
AAAI, 2012.

[Singh et al., 2013] Rishabh Singh, Sumit Gulwani, and Ar-
mando Solar-Lezama. Automated feedback generation for
introductory programming assignments. In PLDI, 2013.

[Tillmann and de Halleux, 2008] Nikolai Tillmann and
Jonathan de Halleux. Pex-white box test generation for
.NET. In TAP, pages 134–153, 2008.

[Van Ditmarsch, 1998] H. Van Ditmarsch. User interfaces in
natural deduction programs. User Interfaces, 98:87, 1998.

[vander Nat, 2010] Arnold vander Nat. Simple formal logic.
With common-sense symbolic techniques. London: Rout-
ledge, 2010.

[Wiedijk and van Raamsdonk, 2007] C.K.F. Wiedijk and
M.H.F. van Raamsdonk. Teaching logic using a state-of-
the-art proof assistant. PATE, page 33, 2007.


