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Abstract

Moggi's computational lambda calculus is a metalanguage for denotational semantics

which arose from the observation that many di�erent notions of computation have the

categorical structure of a strong monad on a cartesian closed category. In this paper we

show that the computational lambda calculus also arises naturally as the term calcu-

lus corresponding (by the Curry-Howard correspondence) to a novel intuitionistic modal

propositional logic. We give natural deduction, sequent calculus and Hilbert-style presen-

tations of this logic and prove strong normalisation and conuence results.

1 Introduction

The computational lambda calculus was introduced by Moggi (1989; 1991) as a

metalanguage for denotational semantics which more faithfully models real pro-

gramming language features such as non-termination, di�ering evaluation strate-

gies, non-determinism and side-e�ects than does the ordinary simply typed lambda

calculus. The starting point for Moggi's work is an explicit semantic distinction

between computations and values. If A is an object which interprets the values of

a particular type, then T (A) is the object which models computations of that type

A. For example, to model non-termination we might take A to be some complete

partial order (cpo) and T (A) to be the lifted cpo A

?

.

For a wide variety of notions of computation, the unary operation T (�) turns

out to have the categorical structure of a strong monad on an underlying cartesian

closed category of values. This observation, which was also made by Spivey (1990)

in the special case of computations which can raise exceptions, suggests a more uni-

�ed and abstract view of programming languages. Having unearthed this common

structure, we hope �rstly to be able to design general purpose metalanguages and

logics for reasoning about a range of programming language features and secondly

to be able to modularise the semantics of complicated languages by studying the

ways in which di�erent monads can be combined. Work along these lines has been

done by Crole (1992) and Pitts (1990). The computational lambda calculus is the
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syntactic theory which expresses this semantic idea of notions of computation as

monads|it corresponds to cartesian closed categories with strong monads in just

the same way that the simply typed lambda calculus with products corresponds to

cartesian closed categories.

Whilst Moggi's work was initially aimed at structuring the semantics of program-

ming languages, it has also (by a rather pleasing interplay of theory and practice)

had a considerable impact on the pragmatics of writing functional programs. Wadler

and others have shown that monads provide an elegant way to structure functional

programs which perform naturally imperative operations, such as dealing with up-

datable state or engaging in interactive input/output (Wadler, 1990; Wadler, 1992;

Gordon, 1994).

This paper looks at (an extension of) Moggi's computational lambda calculus

from a logical perspective. Using the Curry-Howard correspondence `the other way

round' we derive a logic which we term CL-logic. This consists of (propositional)

intuitionistic logic plus a curious possibility-like modality 3, corresponding to the

computation type constructor. On a purely intuitive level, and particularly if one

thinks about non-termination, there is certainly something appealing about the

idea that a computation of type A represents the possibility of a value of type A.

CL-logic is interesting in its own right, and appears to have been discovered

independently at least three times. Soon after completing an early draft of this

work, we found that Curry (1952) had briey considered just such a system in

the early 50s. More recently, and with completely di�erent motivations (hardware

veri�cation), Fairtlough and Mendler (1995) have come up with sequent calculus

and Hilbert-style presentations of CL-logic.

2 Computational Lambda Calculus

The computational lambda calculus, which Moggi refers to as �ML

T

, is a typed

lambda calculus whose types are closed under terminal object, binary products,

function spaces and the computation type constructor T . For the purposes of this

paper, we shall consider immediately a slight extension which also includes coprod-

uct types. The natural deduction typing rules for this version of �ML

T

are shown

in Figure 1.

Intuitively, if e is a value then val(e) is the trivial computation that immediately

evaluates to e. The let construct allows a computation to be evaluated to a value

within the context of another computation: (let x( e in f) denotes the computation

which �rst evaluates e to some value c:A and then proceeds to evaluate f [c=x].

The equational theory of �ML

T

comprises the usual �� equalities of the simply

typed lambda calculus with coproducts, together with the following three extra

axioms:

let x( (val(e)) in f = f [e=x] (1)

let x( e in (val(x)) = e (2)

let x

0

( (let x( e in f) in g = let x( e in (let x

0

( f in g) (3)
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�; x:A ` x:A

� ` �: 1

�; x:A ` e:B

� ` �x:A:e:A! B

� ` e:A! B � ` f :A

� ` e f :B

� ` e:A � ` f :B

� ` (e; f):A�B

� ` e:A�B

� ` fst(e):A

� ` e:A�B

� ` snd(e):B

� ` e:A

� ` inl

A+B

(e):A+B

� ` e:B

� ` inr

A+B

(e):A+B

� ` e: 0

� ` r

A

(e):A

� ` e:A+B �; x : A ` f :C �; y : B ` g:C

� ` case e of inl(x)!f j inr(y)!g:C

� ` e:A

� ` val(e):TA

� ` e:TA �; x:A ` f : TB

� ` let x( e in f : TB

Fig. 1. Natural Deduction Presentation of the Computational Lambda Calculus

Here are some examples of di�erent notions of computation, all of which �t this

general scheme:

Non-Determinism. Take T (A)

def

= }(A) with

val(e)

def

= feg

(let x( e in f)

def

=

[

x2e

f:

Exceptions. Take T (A)

def

= 1 +A with

val(e)

def

= inr

1+A

(e)

(let x( e in f)

def

= case e of inl(�)!inl

1+A

(�)j inr(x)!f:

Continuations. Take T (A)

def

= (A! R)! R with

val(e)

def

= �k:A! R:k e

(let x( e in f)

def

= �k:B ! R:e (�x:A:f k):

In each case, not only do the constructs have the right types, but the three equations

above are also easily seen to hold.

A simple fact about �ML

T

, which we shall use later, is that substitution is well-

typed:

Lemma 1 (Substitution)

If � ` e:A and �; x:A ` f :B then � ` f [e=x]:B.
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3 Propositional CL-Logic

In this section we use the Curry-Howard correspondence to derive a natural de-

duction logic from Moggi's original presentation of �ML

T

. We shall also consider

sequent calculus and axiomatic formulations of the same logic and will sometimes

subscript turnstiles with one of N,S or H to indicate which system is meant.

3.1 Natural deduction formulation of CL-logic

Using the Curry-Howard correspondence (Howard, 1980), we can simply take Moggi's

original presentation (given in Figure 1) and erase the terms to produce a logic.

Each type constructor corresponds to a logical connective as follows:

Constructor Connective

1 >

0 ?

� ^

! �

+ _

T 3

Hence we derive the logic, called propositional CL-logic, given in `sequent-style'

natural deduction form in Figure 2.

Identity

�; A ` A

(>

I

)

� ` >

�; A ` B

(�

I

)

� ` A � B

� ` A � B � ` A

(�

E

)

� ` B

� ` A � ` B

(^

I

)

� ` A ^B

� ` A ^ B

(^

E

)

� ` A

� ` A ^B

(^

E

)

� ` B

� ` A

(_

I

)

� ` A _B

� ` B

(_

I

)

� ` A _B

� ` ?

(?

E

)

� ` A

� ` A _B �; A ` C �; B ` C

(_

E

)

� ` C

� ` A

(3

I

)

� ` 3A

� ` 3A �; A ` 3B

(3

E

)

� ` 3B

Fig. 2. Natural Deduction Formulation of CL-logic
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3.2 Sequent calculus for CL-logic

We can use the well-known correspondence between natural deduction and sequent

calculus proof systems to derive systematically a sequent calculus formulation of

CL-logic. This is given in Figure 3.

Identity

�; A ` A

� ` B B;� ` C

Cut

� ` C

(?

L

)

�;? ` A

(>

R

)

� ` >

�; A ` C

(^

L

)

�; A ^B ` C

�; B ` C

(^

L

)

�; A ^B ` C

� ` A � ` B

(^

R

)

� ` A ^B

�; A ` C �; B ` C

(_

L

)

�; A _B ` C

� ` A

(_

R

)

� ` A _ B

� ` B

(_

R

)

� ` A _B

� ` A �; B ` C

(�

L

)

�; A � B ` C

�; A ` B

(�

R

)

� ` A � B

�; A ` 3B

3

L

�;3A ` 3B

� ` A

(3

R

)

� ` 3A

Fig. 3. Sequent Calculus for CL-logic

Proposition 2

The sequent calculus and natural deduction presentations of CL-logic are equiva-

lent, i.e.

� `

N

A , � `

S

A:

Proof

This follows by inductively de�ning proof translations in both directions between

the two systems. One natural deduction can correspond to many di�erent sequent

proofs.

Having arrived at CL-logic via the computational lambda calculus, we were some-

what surprised to discover that this kind of possibility modality had actually been

considered over forty years ago by Curry (1952). However, Curry was dismissive of

this formulation:

\The referee has pointed out that for certain kinds of modality it [the introduction rule

for 3] is not acceptable . . . because it allows the proof of

3A;3B ` 3(A ^B)

He has proposed a theory of possibility more strictly dual to that of necessity. Although

this theory looks promising it will not be developed here".
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It is easy to see that 3A;3B ` 3(A ^ B) (which is more typical of necessity

modalities) is provable in our logic, and this has some surprising consequences. If

3A is to be understood as \A is possible" and, furthermore, we were to try to add

negation to our logic, then the following sequent

3A ^3:A ` 3(A ^ :A)

would be provable, though intuitively wrong (the antecedent might be true while the

consequent appears always to be false!). Clearly this theorem is undesirable in a logic

trying to capture the general notion of possibility, but whilst our choice of notation

is therefore questionable, the logic we have presented is certainly consistent.

3.3 Hilbert system for CL-logic

To complete our presentation of CL-logic, we give a Hilbert-style formulation, shown

in Figure 4. This is the most common way of presenting modal logics and the modal-

ity axioms given here, though slightly unusual, were derived from the natural de-

duction formulation of the logic following a procedure given by Hodges (1983). The

following two results about our Hilbert system follow by straightforward induction:

Proposition 3 (Deduction Theorem)

If �; A `

H

B then � `

H

A � B.

Proposition 4

The natural deduction and axiomatic presentations of CL-logic are equivalent, i.e.

� `

N

A , � `

H

A:

It should be noted that Fairtlough and Mendler (1995) have also (independently)

proposed a Hilbert-style presentation of CL-logic (which they dub PLL, for Propo-

sitional Lax Logic), although they give three axioms

y

for the modality, which they

write as  since it has aspects of both possibility and necessity. These are

R : A �A;

M : A �A and

F : (A � B) � (A � B)

This alternative axiomatisation of the logic is equivalent to that given in Figure 4

in that the axioms of each system are theorems in the other.

4 Normalisation

We now turn to the question of how to normalise proofs in CL-logic, that is, what

equalities we want to have on proofs. Both the natural deduction and the sequent

calculus formulations of the logic have an associated normalisation procedure, and

y

The categorically minded reader will recognise these axioms as the unit, multiplication

and functoriality axioms for a monad.
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Axioms A � A

A � B � A

(A � B) � ((A � (B � C)) � (A � C))

A � (B � A ^B)

A ^B � A

A ^B � B

A � >

A � A _B

B � A _ B

(A � C) ^ (B � C) � (A _B � C)

? � A

A � 3A

3A � ((A � 3B) � 3B)

Rules

Identity

�; A ` A

Axiom (A one of the axioms above)

� ` A

� ` A � B � ` A

Modus Ponens

� ` B

Fig. 4. Hilbert System for CL-logic

we shall consider each of these in turn. As we shall show, one of the major advantages

of our logical approach to computational types is that Moggi's three term equalities

for �ML

T

are not arbitrary|they arise as natural proof-theoretic consequences of

the normalisation (or cut-elimination) process.

4.1 Normalisation of Natural Deductions

The principal kind of normalisation step on natural deductions is a � reduction.

This consists of removing the `detour' which arises when a logical connective is in-

troduced and then immediately eliminated. We consider only the modality introduc-

tion/elimination pair as the others are standard (see, for example, Gallier (1993)).

If we have (3

I

) followed by (3

E

) then the derivation looks like

�

�

�

A

(3

I

)

3A

[A]

�

�

�

3B

(3

E

)

3B

which normalises to

�

�

�

[A]

�

�

�

3B:

Natural deduction systems can also give rise to a secondary form of normalisation

step. These occur when the system contains elimination rules which have a minor

premiss (Girard calls this a `parasitic formula'). In general, when we have such a
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rule, we want to be able to commute the last rule in the derivation of the minor

premiss down past the rule, or to move the application of a rule to the conclusion

of the elimination up past the elimination rule into to the derivation of the minor

premiss. The only important cases are moving eliminations up or introductions

down. Such transformations are called commuting conversions. The restriction on

the form of the conclusion of our (3

E

) rule (it must be modal) means that the rule

gives rise to only one commuting conversion, viz.

� A deduction of the form

�

�

�

3A

[A]

�

�

�

3B

(3

E

)

3B

[B]

�

�

�

3C

(3

E

)

3C

commutes to

�

�

�

3A

[A]

�

�

�

3B

[B]

�

�

�

3C

(3

E

)

3C

(3

E

):

3C

Clearly, the disjunction and falsity elimination rules also introduce commuting con-

versions but these follow the usual pattern which is well-described in several places

(e.g. Girard (1989)).

4.2 Reduction Rules for Terms

Both the principal reductions and the commuting conversions on derivations induce

corresponding reduction steps on the terms of �ML

T

in the usual way. The �-

reduction rules on terms are shown in Figure 5, whilst the interesting case of the

commuting conversions induces the reduction rule

let x( (let y ( u in v) in f !

c

let y ( u in (let x( v in f):

Note particularly that two of the three equations for �ML

T

which we listed in x2

appear as reduction rules, and that these were essentially forced just by the shape

of the introduction and elimination rules in the logic. The remaining equation is

the � (uniqueness) rule for the computation type constructor, which we will discuss

in x5.

Proposition 5 (Subject Reduction)

If � ` e : A and e!

�c

e

0

then � ` e

0

: A.

Proof

Induction and Lemma 1.
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(�x:u)v !

�

u[v=x]

fst(u; v) !

�

u

snd(u; v) !

�

v

case inl(e) of inl(x)!f j inl(y)!g !

�

f [e=x]

case inr(e) of inl(x)!f j inl(y)!g !

�

g[e=y]

let x( val(u) in v !

�

v[u=x]

Fig. 5. �-reduction rules for terms

4.3 Strong normalisation

In this section we examine the process of normalisation on natural deduction proofs

in CL-logic (or, equivalently, the reduction process on terms of �ML

T

), and show

that it always terminates. This strong normalisation result is stronger than many

others in that it applies to the full !

�c

reduction relation, rather than just to

the !

�

relation. We will �nd it convenient to work with the term calculus �ML

T

,

rather than the logic, simply for reasons of space.

Strong normalisation proofs usually use variants of Tait's reducibility method

(Tait, 1967); the extension of Tait's method to commuting conversions as well as �-

reductions is due to Prawitz (1971). It is possible to use Prawitz's technique to give

a proof of strong normalisation for �ML

T

(the �rst draft of this paper contained

such a proof), but the proof is long, complicated and unenlightening. Instead, we

will use a translation argument like that previously used by Benton (1995b) to show

strong normalisation for the linear term calculus.

If we wish to show strong normalisation for a language L

1

, and we already know

that strong normalisation holds for another language L

2

, then it su�ces to exhibit

a translation (�)

�

:L

1

! L

2

such that 8e; f 2 L

1

:e !

1

f ) e

�

!

+

2

f

�

, where !

1

and !

2

are the one-step reduction relations in L

1

and L

2

respectively. This is be-

cause any in�nite reduction sequence in L

1

would then induce an in�nite reduction

sequence in L

2

, contradicting strong normalisation for that language. Here we will

take L

1

to be the computational lambda calculus, with the !

�c

reduction relation

obtained by taking the precongruence closure of the rules shown in Figure 5 (along

with the commuting conversions), and L

2

to be the simply typed lambda calculus

with coproducts and the usual !

�c

reduction relation. Note that L

2

is just the

largest sublanguage of L

1

which does not contain the T type constructor or either

of the let and val constructs.

Proposition 6

L

2

, the simply typed lambda calculus with coproducts and the !

�c

reduction

relation, is strongly normalising.

Proof

This was proved by Prawitz (1971).
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The translation (�)

�

is simply to instantiate the generic monad operations of

the computational lambda calculus with the speci�c case of the exceptions monad

which we mentioned earlier. We start by de�ning the translation of L

1

types to L

2

types:

1

�

def

= 1

0

�

def

= 0

(A4B)

�

def

= A

�

4B

�

(for 4 2 f�;+;!g)

(TA)

�

def

= 1 +A

�

Next we de�ne the translation of L

1

terms to L

2

terms:

�

�

def

= � x

�

def

= x

(�x:A:e)

�

def

= �x:A

�

:e

�

(e f)

�

def

= e

�

f

�

(fst(e))

�

def

= fst(e

�

) (snd(e))

�

def

= snd(e

�

)

(e; f)

�

def

= (e

�

; f

�

) (r

A

(e))

�

def

= r

A

�

(e

�

)

(inl(e))

�

def

= inl(e

�

) (inr(e))

�

def

= inr(e

�

)

(case e of inl(x)!f j inr(y)!g)

�

def

= case e

�

of inl(x)!f

�

j inr(y)!g

�

(val(e))

�

def

= inr(e

�

)

(let x( e in f)

�

def

= case e

�

of inl(z)!inl(z)j inr(x)!f

�

The following two lemmas are both easy inductions:

Lemma 7

If � `

�ML

T

e:A then �

�

`

L

2

e

�

:A

�

.

Lemma 8

The (�)

�

translation commutes with substitution: for any terms e; f of �ML

T

and

for any variable x, (e[f=x])

�

= e

�

[f

�

=x].

Proposition 9

For any terms e; f of the computational lambda calculus, if e!

�c

f then e

�

!

+

�c

f

�

.

Proof

This is proved by induction on the derivation of the fact that e !

�c

f and uses

Lemma 8. The induction cases are the rules (which we have not explicitly given)

which make !

�c

into a precongruence and these all follow trivially from the com-

positional nature of the translation.

Corollary 10 (Strong Normalisation)

The calculus �ML

T

with the !

�c

reduction relation is strongly normalising.

Proof

By Propositions 9 and 6.
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4.4 Conuence

Given the property of strong normalisation it is relatively straightforward to show

conuence. We employ Newman's lemma (Klop, 1992), which states that if a re-

duction system is weakly conuent and strongly normalising then it is conuent.

We �rst need the following simple facts.

Lemma 11

1. If u!

�c

u

0

then u[v=x]!

�

�c

u

0

[v=x]

2. If u!

�c

u

0

then v[u=x]!

�

�c

v[u

0

=x]

We are now able to show weak conuence.

Proposition 12 (Weak Conuence)

If t!

�c

t

0

and t!

�c

t

00

then there exists a term s such that t

0

!

�

�c

s and t

00

!

�

�c

s.

Proof

This is proved by considering all critical pairs. The cases where the redexes are

disjoint are trivial. If the redexes overlap, the proof uses Lemma 11 and congruence

properties of the reduction relation.

Corollary 13 (Conuence)

The reduction relation !

�c

is conuent.

4.5 Cut Elimination

Corresponding to the normalisation process for natural deductions, there is also

a simpli�cation process for sequent calculus proofs, which consists of removing

applications of the Cut rule. We shall not examine the cut elimination procedure

in detail here, but merely state the result:

Theorem 14 (Cut Elimination)

There is a procedure which, given a sequent calculus proof � of a sequent � ` A in

CL-logic, yields a proof �

0

of the same sequent in which there are no occurrences

of the Cut rule.

Proof

This was �rst proved by Curry (1952). The proof is a minor extension of the stan-

dard proof for ordinary propositional intuitionistic logic (see Gallier (1993), for

example).

Furthermore, we can annotate sequent calculus proofs with �ML

T

terms|the

term associated with a sequent proof is the term annotating the corresponding

natural deduction (so di�erent sequent calculus proofs may be annotated with the

same term). If one does this then all the term equalities of Figure 5 also arise from

the cut elimination process (though some cut elimination steps do not a�ect the

term at all).
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5 �-equalities

Each of the type constructors of �ML

T

also has an associated �-equality as well

as � and commutation equalities. We have already seen that the latter two classes

of equalities follow as direct consequences of the proof theory of CL-logic and we

now try to explain the �-equalities in the same spirit. This seems to work out

most naturally if we use a multiplicative (disjoint contexts), rather than an additive

(shared contexts) presentation of the sequent calculus. Given such a presentation,

the traditional �-equality associated with the function-space constructor arises from

reducing the derivation

x:A ` x:A y:B ` y:B

(!

L

)

x:A; f :A! B ` fx:B

(!

R

)

f :A! B ` �x:fx:A! B

to the derivation

Identity:

f :A! B ` f :A! B

We can similarly obtain the �-rules for ^ and _ as consequences of (roughly) sim-

plifying a right rule applied to the identity, followed by a left rule to an identity on

the compound proposition. Following this general pattern, the �-rule for T can be

obtained by reducing the derivation

x:A ` x:A

T

R

x:A ` val(x):TA

T

L

z:TA ` let x( z in val(x):TA

to the derivation

Identity;

z:TA ` z:TA

and this does indeed yield exactly the second of the three equalities on �ML

T

terms

which we listed in x2. Thus we can now see the full theory of �c�-equality for �ML

T

as a natural consequence of the proof theory of CL-logic.

It is worth stating here a fact which is essentially folklore for those working in

categorical logic, but remains little known in other communities.

z

Reading o� the

�-rules for the T type and the coproduct from the categorical model yields not just

the standard rules but more general rules. For example the more general �-rule for

the T type is

let x( e in f [val(x)=z] =

�

T

f [e=z]:

Given the �-rules, these extended rules are su�cient to derive the commuting con-

versions. For example, the commuting conversion for the T type (as described in

x4.1)

let x

0

( (let x( e in f) in g = let x( e in (let x

0

( f in g)

z

For example, the more general �-rule for the coproduct is given by Crole (1993).
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can be derived

let x

0

( (let x( e in f) in g

� (let x

0

( (let x( z in f) in g)[e=z]

=

�

T

let x( e in ((let x

0

( (let x( z in f) in g)[val(x)=z])

� let x( e in (let x

0

( (let x( val(x) in f) in g)

=

�

let x( e in (let x

0

( f in g):

This technique can be applied to most connectives which have a parasitic formula.

When considering reductions, rather than equality, however, it is still advantageous

to separate commuting conversions from �-rules, particularly as the more general

equational rules are non-local.

6 Categorical Models

Since the computational lambda calculus was originally derived from categorical

considerations (Moggi, 1989), we already know that a categorical model is a carte-

sian closed category (CCC) with a strong monad. For completeness we shall sketch

these categorical de�nitions.

De�nition 1

A monad over a category C is a triple (T; �; �), where T : C ! C is a functor, and

�: Id

:

! T and �:T

2

:

! T are natural transformations which satisfy the following

diagrams:

T

2

A

T

3

A

TA

T

2

A

?

T�

A

-

�

TA

?

�

A

-

�

A

T

2

A

TA T

2

A

TA

?

�

TA

?

�

A

-

T�

A

-

�

A

@

@

@

@

@

@

@

@

@R

id

De�nition 2

A strong monad over a category C with �nite products is a monad (T; �; �), together

with a natural transformation �

A;B

:A � TB ! T (A � B), satisfying 4 coherence

conditions (for the details, see Moggi (1989), for example).

De�nition 3

A CL-model is a cartesian closed category with �nite coproducts and a strong

monad.

Figure 6 outlines the way in which �ML

T

is modelled in a CL-model. As one

would expect, any CL-model validates all the � equalities as well as those arising

from �-reductions and commuting conversions. The prototypical computer science

example of a CL-model is the category of !-cpos (not necessarily with a bottom)

with continuous maps and the lifting monad.
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Identity

��A

�

2

�!A

(1

I

)

�

!

�!1

��A

e

�!B

(!

I

)

�

cur(e)

���!B

A

�

e

�!B

A

�

f

�!A

(!

E

)

�

he;fi

��!B

A

�A

ev

�!B

�

e

�!A �

f

�!B

(�

I

)

�

he;fi

��!A�B

�

e

�!A�B

(�

E

)

�

e

�!A�B

�

1

�!A

�

e

�!A�B

(�

E

)

�

e

�!A�B

�

2

�!B

�

e

�!0

(0

E

)

�

e

�!0

!

�!A

�

e

�!A

(+

I

)

�

e

�!A

inl

�!A+B

�

e

�!B

(+

I

)

�

e

�!B

inr

�!A+B

�

e

�!A+B ��A

f

�!C ��B

g

�!B

(+

E

)

�

hid;ei

���!�� (A+B)

�

=

(��A) + (��B)

[f;g]

��!C

�

e

�!A

(T

I

)

�

e

�!A

�

�!TA

�

e

�!TA ��A

f

�!TB

(T

E

)

�

hid;ei

���!�� TA

�

�!T (��A)

Tf

�!T

2

B

�

�!TB

Fig. 6. Modelling the computational lambda calculus

Theorem 15 (Moggi)

CL-models provide a sound and complete interpretation of the computational lambda

calculus.

7 Kripke Models

The semantics most commonly assigned to modal logics are possible-world, or

Kripke models. They provide interpretations of provability but not proofs, unlike

categorical models. For completeness we provide a de�nition of a Kripke-style model

which is sound and complete for CL-logic. Similar models have been considered by

Fairtlough and Mendler (1995).

De�nition 4

A CL-Kripke model is a tuple (W;V;�; R; j=), where W is a non-empty set of

possible worlds; V is a map which assigns to every propositional variable p a subset

V (p) � W ; R and � are partial orders on W ; j= is a relation between worlds and

formulae such that for all w 2W

� w j= p i� w 2 V (p)

� w j= >

� w j= ? i� 8p:w j= p

� w j= A ^ B i� w j= A and w j= B

� w j= A _ B i� w j= A or w j= B

� w j= A � B i� 8v � w:v j= A implies v j= B

� w j= 3A i� 8v � w:9u:vRu and u j= A.
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We also require that the two relations are hereditary

� If w j= p and w � v then v j= p,

� If w j= A and wRv then v j= A.

Theorem 16

` A i� 8w:w j= A.

Proof

By standard Henkin constructions (see, for example, Van Dalen (1986)).

It is an interesting question to ask how these Kripke models are related to the

categorical models of the previous section. Indeed there appears to be more than one

way to approach the question. One approach is given by Alechina et al. (1997), who

demonstrate a natural method of �nding a CL-Kripke model within a (categorical)

CL-model.

8 Conclusions

We have shown that Moggi's computational lambda calculus, which was initially

arrived at from a purely categorical perspective, with no thoughts of proof the-

ory, actually corresponds via the propositions-as-types analogy to an intuitionistic

modal logic. Whilst CL-logic is rather odd from the point of view of traditional

work in modal logic (in particular, the modality has aspects of both possibility and

necessity), it seems natural and well-behaved. Further evidence that CL-logic is in-

deed a `naturally occurring' logic comes from the fact that both Curry (1952) and

Fairtlough and Mendler (1995) have also discovered it. Fairtlough and Mendler's

work is particularly interesting because, although they discuss the same logic, their

motivation and methodology is rather di�erent from ours. They are interested in

the speci�cation and veri�cation of hardware and noted that a general weakened no-

tion of correctness: `correctness up to constraints' can help one to reason about the

real-life behaviour of circuits (e.g. the fact that gates only stabilise some time after

their inputs are changed) without having completely to model such low-level de-

tails. Their logic PLL seems useful in proving properties of circuits under a number

of di�erent notions of constraint, which is very reminiscent of the way in which the

computational lambda calculus is an useful metalanguage for describing a number

of di�erent notions of computation.

Our logical reconstruction of �ML

T

shows how the equational axioms which were

initially imposed on the calculus are actually consequences of the proof theory of

the logic. We have also extended the class of interesting constructive logics for

which there is a perfect three-way correspondence between logic, term calculus and

categorical models. This is part of an ongoing project of ours, see (Benton et al.,

1992; Bierman & de Paiva, 1996). In fact, there is a close relationship between CL-

logic and intuitionistic linear logic. Any linear category (model for intuitionistic

linear logic, see (Benton et al., 1992; Bierman, 1995)), gives rise to a CL-model

as a subcategory of the category of algebras for the ! comonad. Whilst this is

interesting, not all CL-models arise in this way because the monad part of the
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model is always a commutative strong monad. More discussion of the relationship

between intuitionistic linear logic and CL-logic may be found in (Benton, 1995a;

Benton & Wadler, 1996), but there is still scope for further work looking at whether,

for example, CL-logic is more closely associated with a non-commutative variant of

intuitionistic linear logic.
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