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Abstract. Satisfiability modulo theories (SMT) solvers that support quantifier
instantiations via matching triggers can be programmed to give practical support
for user-defined theories. Care must be taken to avoid so-called matching loops,
which may prevent termination of the solver. By design, such avoidance limits
the extent to which the SMT solver is able to apply the definitions of user-defined
functions. For some inputs to these functions, however, it is instead desireable to
allow unadulterated use of the functions; in particular, if it is known that evalua-
tion will terminate.
This paper describes the program verifier Dafny’s SMT encoding of recursive
user-defined functions. It then describes a novel encoding that, drawing on ideas
from offline partial evaluation systems, lets the SMT solver evaluate “safe” func-
tion applications while guarding against matching loops for others.

0 Introduction

The collections of cooperating decision procedures in modern satisfiability modulo the-
ories (SMT [2]) solvers provide a powerful reasoning engine. This power is harnessed
in numerous applications where logical constraints are involved, including program ver-
ification, program analysis, program testing, program synthesis, constraint-based type
inference, and theorem proving. While some of the theories supported (e.g., the theory
of uninterpreted functions) have complete decision procedures, the SMT solver may
support other theories (e.g., integer linear arithmetic) only by semi-decision procedures,
either because of theoretical limitations or because of practical time or space compro-
mises. It would be unreasonable to expect the SMT solver to provide support for all
theories of interest. Luckily, many theories can be axiomatized in the input to the SMT
solver, using logical quantifiers that give some interpretation to otherwise uninterpreted
function symbols.

Quantifier support in an SMT solver was first implemented in Simplify [11], based
on an idea from Greg Nelson’s PhD thesis [25]. The idea is to give each universal quan-
tifier a matching pattern, aka a trigger, that guides the instantiation of the quantifier.
For example, consider the following fragment of input to an SMT solver:
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Fib(0) = 0 ∧ Fib(1) = 1 ∧
∀ n : int { :Fib(n)} • 2 ≤ n =⇒ Fib(n) = Fib(n-2) + Fib(n-1)

where we have written { :M} to use the list of expressions M as the matching pattern for
the enclosing quantifier. This instructs the SMT solver to instantiate the quantifier with
n:=E whenever in its proof search the current set of ground terms includes a subexpres-
sion of the form Fib(E). The approach of using triggers does not, in general, give a
complete decision procedure, but the approach fits well into the SMT approach and has
been used effectively in practice.

Understanding and making good use of matching patterns is a crucial part of the
design of a system built on top of an SMT solver. Using triggers that are too liberal and
hence allow too many instantiations can be a source of inefficiency in the proof search.
A particular worry is that of non-termination among instantiations, a condition known
as a matching loop. Therefore, it is necessary to use triggers to curb instantiations. On
the other hand, using triggers that are too specific can be a source of incompleteness,
since they may prevent instantiations that are needed in the proof. Both of these ex-
tremes are common mistakes.

In this paper, we explain and solve a problem with quantifiers that skirts the edge
between the two extremes. While instantiations must in general be curbed, there are
some instantiations where it is desireable to let the instantiations “run loose”. For ex-
ample, if Fib(k), which matches the trigger, is a ground term in the proof search, then
the resulting instantiation produces two new terms, Fib(k-2) and Fib(k-1), and these
terms also match the trigger. If nothing else is known about the term k, a neverending
series of instantiations n:=k-d, one for each natural number d, could arise. We want to
prevent the proof search from considering all of these, so some curbing is necessary. On
the other hand, if the proof exploration produces a fact like k=12, then we would wish
for the SMT solver to instantiate the quantifier enough times to figure out Fib(k)=144,
as if it used the axiom to compute the value of Fib(12). The problem we solve in this
paper is to find an encoding that provides curbing in the general case and computa-
tion in the case where functions are involved on literals. We do the encoding as part
of the input to the SMT solver, using appropriate matching patterns; no modification
of the SMT solver itself is needed, assuming the SMT solver supports quantifiers via
matching patterns in the first place.

We encountered this problem while using the Dafny program verifier [20], where
occasionally it is necessary to compute or partially evaluate expressions that contain
some literals. For example, we may wish for the SMT solver to compute Fib(12) above.
As another example, given

∀ n : int, t : T •
(n = 0 =⇒ iter(n, t) = t) ∧
(n > 0 =⇒ iter(n, t) = iter(n-1, f(t)))

we may wish for the SMT solver to partially evaluate iter(5,x) as f(f(f(f(f(x))))).
The need for computation also arises when one wants to statically test the outcome of
a given function. For example, one can use Dafny to define the formal semantics of a
language, say some form of the lambda calculus, and one may then want to test that the
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evaluation of a particular term reduces to the expected value. For instance, verifying the
formula

n > 0 =⇒ reduces_to(Appl(Lambda(0, Var(0)), Const(29)), Const(29), n)

is a test that (λx0. x0) 29 reduces to 29 in no more than n reduction steps.
Throughout the paper, we use Dafny as the context for explaining the problem and

solution. What we say is likely to apply to any language or notation with user-defined
functions that in some form are encoded as SMT input. In Sec. 1, we give a primer on
matching patterns in an SMT solver. We describe how Dafny uses matching patterns
to curb instantiation of user-defined functions in Sec. 2. This account of curbing repre-
sents the current encoding used in Dafny, which is more uniform and flexible than its
previously described encodings [20]. In Sec. 3, we then give our encoding that allows
literal arguments to be treated differently. We have implemented our encoding in Dafny
and report on our experience in Sec. 4, through examples that show both full evaluation
of functions and partial evaluation of functions.

1 A Primer on Matching Patterns

A simplified view of the operation of an SMT solver, suitable for our purposes, is the
following. The solver is asked to check the validity of a conjecture P, often of the form
A =⇒ Q where A is a conjunction of axioms and Q is some proof goal. During the proof
search, the proof state at any time is (some bookkeeping information and) a conjunction
of atomic formulas, some of which consist only of ground terms and others of which
are universal quantifiers. The ground terms are represented in an E-graph [25], a data
structure that represents the congruence closure of a set of terms (that is, equalities
between terms, with the built-in knowledge that two terms f(x) and f(y) are equal if
the terms x and y are).

At opportune times, the SMT solver considers the quantifiers in the proof state and
looks in the E-graph for ground terms that match the triggers of the quantifiers. The
matching ground terms are used to instantiate the quantifiers. This yields more formulas
and the proof search continues.

Logically, a universal quantifier holds for all values of the bound variables, but unin-
formed instantiations are not likely to be useful in the proof search. Therefore, matching
patterns are used to limit the instantiations that can take place. Syntactically, a match-
ing pattern is a set of terms whose free variables include all the bound variables of the
quantifier. For example, a possible matching pattern for a quantifier ∀ x,y • . . . (here
and elsewhere, we omit types of bound variables when they are obvious or irrelevant
for the example) is { :f(x),g(x,y)}. It says that the quantifier can be instantiated with
x,y:=E,F in a proof state where the E-graph contains both the terms f(E) and g(E,F).
The terms given in a matching pattern are typically subterms of the body of the quan-
tifier. Since the role of the matching pattern is to limit instantiations, terms that do not
discriminate are not allowed; for example, { :f(x),y} is not a legal trigger for the quan-
tifier above, since it places no constraints on the ground terms that could be used for
y. Since matching is performed in the E-graph, which represents uninterpreted function
symbols in the SMT solver, a matching pattern cannot use symbols that are interpreted
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by some theory; for example, a matching pattern cannot make use of arithmetic inequal-
ities like≤0. One quantifier can contain several matching patterns; a match for any one
of them can cause an instantiation.

As an example, suppose we want to define in the SMT input a function ff that
applies a particular function f twice. Function ff’s defining axiom is the following:

∀ x • ff(x) = f(f(x))

It is instructive to consider different choices of triggers for this quantifier.
Probably the best trigger for this quantifier is { :ff(x)}, because it will in effect

make ff into something of a macro—as soon as an ff term arises among the ground
terms, it will become equated with its definition. It is useful to think of quantifier in-
stantiations as having a direction. The direction implied by the trigger { :ff(x)} is to go
from a higher-level function ff to a more primitive function f. Such a direction is also
what one would have in mind when designing effective input for a term rewriting system
(e.g., Maude [7]), but note that term rewriting systems and macros replace a source term
with a target term, whereas instantiating a quantifier conjoins the instantiated quantifier
body to the proof state.

Suppose there is a number of interesting properties that hold for values in the func-
tional image of ff, but not necessarily for all values in the functional image of f. Then,
we may want to produce ff terms whenever possible and to axiomatize the other prop-
erties in terms of ff. For this purpose, { :f(f(x))} may make a suitable trigger. Note
that this trigger goes in the other direction from { :ff(x)}.

Let us consider what may happen if we choose the trigger to be { :f(x)}. Suppose
a proof state contains the ground term f(k). It will cause the quantifier to be instan-
tiated for x:=k, giving us (an equality between) two new terms, ff(k) and f(f(k)).
The existence of the latter among the ground terms now gives rise to the instantiation
x:=f(k) and before we know it, the SMT solver will spend all its time instantiating the
quantifier with longer and longer terms x:=f(f(. . .f(k). . .)). This situation is known
as a matching loop and is one that we want to avoid1.

For a larger example that highlights typical trigger considerations and gives guid-
ance on trigger design, see [22].

2 User-defined Functions and Curbing in Dafny

Dafny is a programming language that includes support for specifications and proofs.
This built-in support makes the language suitable for reasoning about imperative and
functional programs as well as some formalized mathematics. Dafny programs are
translated into the Boogie intermediate verification language, which the Boogie veri-
fication engine then turns into input for the SMT solver Z3 [0,19]. For our purposes in
this paper, the most relevant part of the Dafny language is its (possibly recursive) user-
defined functions, and we consider their translation into axioms for the SMT solver.

0 Because of this restriction, adding a new theory to the SMT solver comes at the considerable
expense of not being able to match on its symbols.

1 Boogie code for the matching loop example discussed here: http://rise4fun.com/Boogie/
mH23.

http://rise4fun.com/Boogie/mH23
http://rise4fun.com/Boogie/mH23
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Let us give some motivation by considering an example. Suppose we want to encode
as SMT input a Dafny function that defines triangle numbers:

function Triangle(n : nat) : nat
{

if n = 0 then 0 else n + Triangle(n-1)
}

To encode this for the SMT solver, we introduce a function Triangle on the integers
and supply an axiom like this:

∀ n : int • 0 ≤ n =⇒
Triangle(n) = if n = 0 then 0 else n + Triangle(n-1)

How do we want this quantifier to be triggered? Whenever a proof search involves a
term Triangle(k) for some subterm k, then it seems useful to instantiate the quantifier
with n:=k, so we may consider the straightforward trigger { :Triangle(n)}. However,
such a trigger would lead to a matching loop, because lacking any information about k,
the SMT solver would explore both branches of the if expression, and the successive
exploration of the else branch would lead to new instantiations of the quantifier2.

To curb such instantiations, the Dafny verifier adds an extra parameter to the SMT
encoding of the function. Borrowing a recent name from discussions about co-induction
in the type-theory community, we will refer to this parameter as “fuel”. The fuel param-
eter specifies how many unrollings of the function we want to allow the SMT solver to
do. Note, the value of the function does not actually depend on the fuel parameter; it is
used only to control the SMT solver’s instantiations.

Since matching is performed in the E-graph, it is important that non-zero fuel values
be recognizable structurally, with no theory reasoning and without interpreted symbols
like 0 and +. Thus, we make use of Peano arithmetic (that is, unary arithmetic) and
provide the following declarations in the SMT input:

type Fuel
function Z() : Fuel
function S(Fuel) : Fuel

These declarations can be thought of as an inductive datatype like

datatype Fuel = Z | S(Fuel)

but we do not bother to say anything about Z and S, beyond fact that they are functions
with the given signatures.

We can now encode the Dafny function Triangle. We declare it in the SMT input
as follows:

function Triangle(fuel : Fuel, n : int) : int

Next, we produce three axioms. The “synonym” axiom that says that the value of the
fuel parameter is irrelevant:

2 http://rise4fun.com/Boogie/Agsl

http://rise4fun.com/Boogie/Agsl
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∀ fuel : Fuel, n : int • { :Triangle(S(fuel), n)}
Triangle(S(fuel), n) = Triangle(fuel, n)

The “definition” axiom encodes the function body:

∀ fuel : Fuel, n : int • { :Triangle(S(fuel), n)} 0 ≤ n =⇒
Triangle(S(fuel), n) = if n = 0 then 0 else n + Triangle(fuel, n-1)

Finally, the “consequence” axiom states properties that come from the signature and
specification of the function:

∀ fuel : Fuel, n : int • { :Triangle(S(fuel), n)} 0 ≤ n =⇒
0 ≤ Triangle(S(fuel), n)

This encoding provides curbing because the matching patterns will cause the quantifiers
to be instantiated only when the fuel parameter is non-zero (more precisely, when it has
the form S applied to something) and because recursive (and mutually recursive) calls
in the right-hand side of the definition axiom use a smaller fuel value than the left-hand
side.

The verifier translates other Dafny uses of the function with some default value for
the fuel parameter. In Dafny, this default value is usually 1 (that is, S(Z())), but it is 2 in
certain proof-obligation positions (like when a user-supplied assertion or postcondition
needs to be verified). Although we currently do not provide it as a feature, the default
fuel value could in principle be set by the user, globally or for particular functions or
particular proof obligations.

We end this section with an example that both illustrates the technique and serves as
a segue to the next section. Consider a lemma that proves, by induction, that Triangle(n)
is at least twice as big as n, provided n is at least 3. In Dafny, this is done as follows:3

lemma TriangleProperty(n : nat)
ensures 3 ≤ n =⇒ 2*n ≤ Triangle(n);

{
if n ≤ 3 {
assert Triangle(3) = 6; // the crucial property of the base case

} else {
TriangleProperty(n-1); // invoke the induction hypothesis

}
}

The “postcondition” of the lemma, given by the ensures clause, states the conclusion
of the lemma. The body of the lemma is some code, where all control paths are verified
to lead to the postcondition. The recursive call to TriangleProperty essentially obtains
the inductive hypothesis, applied for n-1.

To detail the proof obligations for this lemma, we view the lemma as a pre/post-
condition pair and write the following pseudo code (which is representative of what the
intermediate form in Boogie will look like):

3 We ignore the fact that Dafny has some support for automatic induction [21] and here give the
proof explicitly.
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assume 0 ≤ n; // assume precondition of lemma
if n ≤ 3 {
assert Triangle(S(S(Z())), 3) = 6; // fuel = 2

} else {
assert 0 ≤ n-1; // check precondition of call
// assume postcondition of call :
assume 3 ≤ n-1 =⇒ 2*(n-1) ≤ Triangle(S(Z()), n-1); // fuel = 1

}
// check postcondition of lemma :
assert 3 ≤ n =⇒ 2*n ≤ Triangle(S(S(Z())), n); // fuel = 2

Note that the fuel argument is passed in as 2 in proof-obligation positions and as 1
elsewhere. The verification condition for this pseudo code is the following first-order
formula, which is given to the SMT solver:

0 ≤ n =⇒
(n ≤ 3 =⇒ Triangle(S(S(Z())), 3) = 6) ∧ // check then branch
(3 < n =⇒ 0 ≤ n-1) ∧ // check else branch (trivial)
// prove the postcondition from what is learnt in both branches :
( (n ≤ 3 ∧ Triangle(S(S(Z())), 3) = 6) ∨
(3 < n ∧ 0 ≤ n-1 ∧ (3 ≤ n-1 =⇒ 2*(n-1) ≤ Triangle(S(Z()), n-1)))
=⇒ 3 ≤ n =⇒ 2*n ≤ Triangle(S(S(Z())), n))

To prove the postcondition of the lemma, there are two cases. If n = 3, the post-
condition follows from what is learnt from the then branch. If 4 ≤ n, the postcondition
follows from the definition axiom and the induction hypothesis. In more detail, since
the fuel parameter of the last call to Triangle has the form S(. . .), the definition axiom
is triggered and thus the final inequality becomes:

2*n ≤ n + Triangle(S(Z()), n-1)

This inequality follows from what is learnt from the else branch (that is, the induction
hypothesis).

As we just saw, we had more fuel than necessary to complete the proof of the post-
condition in this example. But what about the proof of the then branch? The fuel sup-
plied in its call to Triangle is enough for two instantiations of the definition axiom,
which reduces the proof goal to:

3 + 2 + Triangle(Z(), 1) = 6

Since there is no fuel left, the SMT solver is unable to complete this proof (so a ver-
ification error will be reported to the user). In this next section, we describe how we
extend the encoding to handle cases like this.

3 Enabling Computation

We enable computation by allowing unfolding steps that do not decrease the fuel pa-
rameter in chosen cases, picked at compile time. Dafny generates SMT input that allows
unfolding for two kinds of function applications: (a) when all function arguments are
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known to be constants, and (b) when all arguments that are part of the decreasing mea-
sure for termination (maintained internally by Dafny) are constants. In the first case,
the result of the function application is known to be a constant as well. In the second
case, the result is not necessarily a constant, but evaluation (via E-matching for the in-
stantiations) is still guaranteed to terminate. Dafny propagates which expressions will
definitely evaluate to constants and uses this information for further unfolding deci-
sions; a technique known as binding-time analysis in the context of partial evaluation
[17].

Our encoding for computation relies on an identity function, provided in the SMT
input, to mark constant expressions as “literals”:

function Lit<T>(x : T) : T { x }

For each user-defined function, we add extra “computation” axiom(s) that trigger
on literal argument(s) and that do not consume any fuel. For the Triangle function, we
provide the following extra axiom:

∀ fuel : Fuel, n : int • { :Triangle(fuel, Lit(n))}
0 ≤ n =⇒
Triangle(fuel, Lit(n)) =
if n = 0 then 0 else n + Triangle(fuel, Lit(n-1))

To enable computations, the Dafny compiler wraps all concrete values, such as 2,
with the Lit marker. The compiler also lifts simple operations on literal expressions:
Lit(x)+Lit(y) becomes Lit(x+y), since adding two constant values will produce a
constant again. This lifting mechanism is also what enables recursive computations,
since Triangle(fuel, Lit(n)-Lit(1)) becomes Triangle(fuel, Lit(n-1)). Note
that the variable n is wrapped as a literal expression Lit(n) because it is a formal
parameter fixed as a literal in the trigger of the axiom.

For computations to be composable, we also Lit-wrap each function application on
all literal arguments. Hence, Triangle(fuel, Lit(3)) is tagged as a constant expres-
sion Lit(Triangle(fuel, Lit(3))). This propagation of binding-time information is
essential to enable computation on nested expressions, such as Triangle(Triangle(3))
in Dafny.

Finally, a word of caution: we don’t always want to compute. The SMT solver can
prove Fib(1000)6=1000 on its own without computing Fib(1000), but if we provide a
“computation” axiom for Fib and give it too much importance, then the solver hangs
instead. We resolve this tension by giving a low priority to the “computation” axioms.
Also, as a small tweak that matters in practice, we also let if-then-else expressions act
as a “barrier” for literals, so that we unwrap any top-level literals following the if, then
or else expressions. This is why the computation axiom above does not return Lit-
wrapped expressions.

4 Experience

We re-iterate the necessity of the fuel parameter with a complete Dafny example 4

which correctly verifies using the encoding described in Sec. 2 but enters a matching
4 http://rise4fun.com/Dafny/EHGl

http://rise4fun.com/Dafny/EHGl
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loop when the fuel parameter is ignored. The example proves the equivalence of the
recursive and iterative definitions of the factorial function.

function Factorial(n : nat) : nat
{

if n = 0 then 1 else n*Factorial(n-1)
}
function FactorialIter(n : nat, acc : nat) : nat
{

if n = 0 then acc else FactorialIter(n-1, acc*n)
}
function Factorial’(n : nat) : nat
{

FactorialIter(n, 1)
}
lemma lemmaFactorialStep(n : nat, acc : nat)

ensures acc*Factorial(n)=FactorialIter(n, acc);
{
}
lemma theoremFactorialEquiv(n : nat)

ensures Factorial(n)=Factorial’(n);
{

lemmaFactorialStep(n, 1);
}

This example demonstrates that curbing is sometimes essential when proving uni-
versally quantified theorems in Dafny. Now, we show that controlled relaxation of the
curbing, described in Sec. 3, is also very important in practice.

Just like one would write tests in conventional languages, in Dafny, one can write
out examples with their expected results, with the hope that they will be automatically
verified. Thanks to our novel encoding that enables computation, this hope is now often
materialized.

For example, in an implementation of the simply typed lambda calculus5, we may
wish to check that λ(x : T ).λ(f : T → T ).f (f (x )) has type T → (T → T ) → T .
This example now verifies automatically, but with the old encoding, which used curbing
everywhere, it required 5 intermediate statements to verify (we use a direct encoding of
variable names as numbers):

lemma example_typing()
ensures has_type(map[], tabs(0, TBase,

tabs(1, TArrow(TBase, TBase),
tapp(tvar(1), tapp(tvar(1), tvar(0)))))) =

Some(TArrow(TBase, TArrow(TArrow(TBase, TBase), TBase)));
{

var c := extend(1, TArrow(TBase, TBase), extend(0, TBase, map[]));
assert find(c, 0) = Some(TBase);

5 http://rise4fun.com/Dafny/IxqUu

http://rise4fun.com/Dafny/IxqUu
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assert has_type(c, tvar(0)) = Some(TBase);
assert has_type(c, tvar(1)) = Some(TArrow(TBase, TBase));
assert has_type(c, tapp(tvar(1), tapp(tvar(1), tvar(0)))) =

Some(TBase);
}

We now illustrate the utility of generating a computation axiom which triggers
merely when decreasing formal parameters are literals. Even when the typing context
is left abstract, Dafny automatically verifies type-checking of the example λ(f : T →
T ).f (f (x )) provided a context with at least (x : T ) :

lemma example_typing_m(m : map<int,ty>)
requires 0 in m ∧ m[0]=TBase;
ensures has_type(m, tabs(1, TArrow(TBase, TBase),

tapp(tvar(1), tapp(tvar(1), tvar(0))))) =
Some(TArrow(TArrow(TBase, TBase), TBase));

{
}

Even though the context m is not a literal, computation is possible because only the
term parameter is part of the decreasing measure of the has_type function, and that
argument is a literal in this example application.

Here is another example 6, inspired by an exercise in the Coq textbook, Software
Foundations [27]. This example shows that our encoding of computation plays well
with function applications in complex expressions.

datatype Nat = O | S(Nat) // Peano numbers
function plus (n : Nat, m : Nat) : Nat
{
// . . .

}
function mult (n : Nat, m : Nat) : Nat
{
// . . . in terms of plus

}
function factorial(n : Nat) : Nat
{
// . . . in terms of mult

}
function toNat(n : nat) : Nat
{

if n=0 then O else S(toNat(n-1))
}
lemma test_factorial1()
ensures factorial(toNat(3))=toNat(6);

{

6 http://rise4fun.com/Dafny/NRFA

http://rise4fun.com/Dafny/NRFA
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}
lemma test_factorial2()
ensures factorial(toNat(5))=mult(toNat(10),toNat(12));

{
}

With the previous encoding of user-defined functions that implements curbing with-
out computation, proving test_factorial2 would be very tedious and require many
intermediate steps.

4.0 Limitations

Since we need to make the computation axioms low priority to avoid hanging computa-
tions, we also prevent some larger (tractable) computations. This is a matter of degree:
we certainly don’t want to allow Fib(1000) but what about Fib(40)?

We chose to make unfolding decisions at compile time, when generating SMT input
in Dafny, as opposed to delegating to the SMT solver to make such decisions on-the-fly,
at run time – in particular, we chose not to provide the SMT solver with any axioms that
would create fresh applications of the Lit marker. Clearly, such a static binding-time
analysis is approximate by nature and cannot always deduce that an expression will
evaluate to a constant. Hence, we definitely miss some easily computable expressions,
as we show next. We extend the previous sample code with an example that Dafny
cannot auto-verify:

function returnFst(a : nat, b : nat) : nat
{

if b=0 then a else returnFst(a, b-1)
}

lemma test_factorial_indirect(n : nat)
ensures factorial(toNat(returnFst(5, n)))=mult(toNat(10),toNat(12));

{
}

Note that we use a convoluted definition of returnFst. Otherwise, the function
would be inlined by the Dafny compiler, and the example reduced to test_factorial2.
The problem here is that the Dafny compiler does not detect that returnFst(5, n) is
in fact equivalent to 5, and hence fails to recognize at compile time that the argument
to factorial is indeed a literal. Interestingly, it is enough guidance for verification to
provide this fact:

lemma eqReturnFst(a : nat, b : nat)
ensures returnFst(a, b)=a;

{
}
lemma test_factorial_indirect_ok(n : nat)

ensures factorial(toNat(returnFst(5, n)))=mult(toNat(10),toNat(12));
{
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eqReturnFst(5, n);
}

We leave a closer investigation of online techniques to future work, where the SMT
solver would make unfolding decisions on the fly. The benefit would be an increase
in precision, but in general, ensuring termination is harder in an online setting. We
conjecture that the additional information about termination measures that is available
in Dafny could be put to use here as well, possibly at the expense of a more involved
encoding.

5 Related Work

Partial Evaluation Partial evaluation [17] denotes a class of program transformations
that aim to pre-compute parts of a program that do not depend on dynamic input values.
The result of partial evaluation is a residual program, where expressions that only de-
pend on statically known values are evaluated to constants. Partial evaluation is usually
applied to improve performance, as the residual program performs less work. In our
case, we are interested in the simplification aspect: in a verification context, evaluating
an application of a user-defined function means that we can directly reason about the
result value and need not reason about the function definition.

Partial evaluation comes in two flavors: online [4,28,29] and offline [6,8,14,15]. In
an online setting, decisions whether to evaluate or to residualize an expression are made
on the fly. If a function is called with only static arguments, the function will be evalu-
ated. If a subset of the arguments is static, a specialized function may be generated. A
well-known problem in online partial evaluation is that it is difficult to ensure termina-
tion (and even a terminating computation might take a long time). The second flavor of
partial evaluation is offline. Here, a binding-time analysis first classifies each expression
as static or dynamic. A second pass then evaluates all expressions classified as static.

In our case, evaluation is a special case of proof search in an SMT solver. Concep-
tually, evaluation corresponds to unfolding of functions and simplifying. On the SMT
level, unfolding means instantiation of the corresponding quantifier. Without further di-
rections, the SMT solver will make decisions online, whether or not to unfold quantifier
definitions, based on heuristics like a global instantiation depth. Since the SMT solver
knows nothing about user-defined functions apart from their axiomatization, it cannot
know whether a particular function will terminate or not, and if unfolding is profitable.
On the Dafny level, however, this kind of information is readily available. Our encoding
serves the purpose of communicating this information to the solver. In essence, we im-
plement a classic offline partial evaluation scheme. We perform a simple binding-time
analysis to identify static expressions within Dafny. We tag those expressions with a
Lit(.) marker, and we emit axioms that direct the SMT solver to unfold functions if
they are called with Lit(.) arguments. But we also get some of the effects of an on-
line scheme, because the SMT solver may end up combining results from our simple
binding-time analysis. For example, given the Dafny program snippet

var y := 12;
assert y ≤ k ∧ k < y + m ∧ m = 1 =⇒ Fib(k) = 144;
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our simple binding-time analysis will classify only 12 as “static”. But after the SMT
solver’s theory reasoning concludes k = y = 12, that “static” classification is in effect
transferred to k, and thus the term Fib(k) will be fully evaluated.

A different approach is taken by the Leon verification system [18]. Instead of map-
ping user-defined functions to quantifiers and invoking the SMT solver only once, Leon
invokes the solver interactively, while successively unfolding function definitions in the
solver input. This is an example of a practical online approach, but crucially one that
circumvents the brittle solver heuristics.

Computation in Proof Assistants Many interactive proof assistants rely on computa-
tions. For example, uses of Coq [5] and PVS [26] routinely need computation as part
of type checking. These computations are not set up using trigger-based quantifiers, but
are instead based on custom tactics or other heuristics or mechanisms.

Quantifiers and Triggers The SMT solver Simplify [11] was the first to give compre-
hensive support of trigger-based quantifiers. As DPLL(T)-style architectures became
popular, experimental SMT solvers [13,23] and mature SMT solvers [1,3] also added
support for quantifiers. For our purposes, the efficient implementation of matching in
the SMT solver Z3 [10] took quantifier support to a heightened level [9].

More information about how triggers work can be found in the descriptions of Sim-
plify [11] and Z3 [10], as well as in Michał Moskal’s PhD thesis [24]. Dross et al.
have studied a logical semantics for triggers [12]. Leino and Monahan [22] convey the
artform of typical trigger design through a particular example.

Curbing by Constructor Cases In the current version of Dafny, curbing is achieved as
we have described in Sec. 2. In a previous version, functions whose body consisted of
a match expression would get translated “Haskell style” into one axiom per constructor
case. Inspired by VeriFast [16], this translation attempts to curb instantiations by in-
cluding the name of a constructor in each trigger, which means that the axioms will not
be applied unless it is already known which case applies. However, we have found that
we no longer need that translation for curbing, and in fact our current curbing allows
more examples to be verified.

6 Conclusions

Proper attention to the design of matching triggers is crucial for any tool that wants to
harness the power of an SMT solver with trigger-based quantifiers. The Dafny program
verifier simultaneously uses two techniques to encode the user-defined functions that it
has to reason about. While one technique curbs instantiations and thus limits the use
of function definitions, the other technique is designed to give unadulterated use of
the function definitions. The first technique is useful because many inductive program
proofs need only one unfolding of functions, and the curbing prevents matching loops
in the SMT solver. The other technique is useful because it allows the SMT solver to
perform computations and partial evaluations, and axioms are set up in such a way that
they apply only when the function arguments are literals. The two techniques come
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together automatically in Dafny, and there is no need for users do anything special to
obtain the benefits.

Using our design, we have profited from the use of computation in Dafny. For ex-
ample, we have transcribed into Dafny examples from two chapters of the Coq-based
Software Foundations book by Pierce et al. [27], which uses many examples to test the
given definitions. Our design and implementation of the two simultaneous techniques
in Dafny now make it possible to benefit from computation while doing proofs within
the comfort of the automation provided by an SMT-based program verifier.

Acknowledgments We thank Nik Swamy for useful comments on an earlier draft of this
paper.
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