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Abstract 

A sense of vision is a prerequisite for a robot to function in an unstructured environment. However. 
real-world scenes contain many interacting phenomena that lead to complex images which are difficult 
to interpret automatically. Typical computer vision research proceeds by analyzing various effects in 
isolation (eg. shading, texture, stereo. defocus). usually on images devoid of realistic complicating 
factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is 
due to the dichotomy of useful representations for these phenomena. Some effects are best described 
in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this 
dichotomy, we present the combined space/frequency repmmtaiion which, for each point in an image, 
shows the spatial fresuencies at that point. Within this common representation, we develop a set of 
simple. natural thwries describing phenomena such as texture, shape, aliasing and lens parameters. We 
show how these theories lead to algorithms for shape hnm texture and for dealiasing image data The 
space/frequency representation should be a key aid in untangling the complex interaction of phenomena 
in images, allowing automatic understanding of real-world scenes. 
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1 Introduction 

In order to function in the real world, robots need to be able to perceive what is around them through a 
visual sense. Unfortunately, the world is very complex, and current approaches to machine vision have not 
proven successful at dealing with this complexity. Because of this, most "real systems" for machine vision 
are actually based on many very specialized assumptions about d e  world; on the other hand, researchers 
doing theoretical work study just one simple phenomenon at a time, but cannot deal with the interactions that 
are always present in realistic scenarios. These circumstances have led to very slow progress in developing 
real vision systems that have generality and a sound theoretical foundation. 

Jn this paper, we examine the area of sparial vision - all of the 2D and 3D geometric factors that combine to 
result in the arrangement of features in the image. The factors of spatial vision include: 

2D Texture: Patterns "painted" on a flat, smooth surface show up as patterns in the image. 

3D Texture: Roughness and topography of the surface interact with lighting to produce additional patterns 
in the image. 

Surface Shape and Perspective: The 3D orientationof a surface causes its patterns to project in a particular 
way onto the image plane. 

Image Resolution: The resolution of d e  sensor induces sampling and aliasing in the image data, sometimes 
even causing noticeable moire patterns. 

Foeus: The optics of the leas induces blurring in the imaging process due to defocus. 

Other Factors: There are numerous other factors we shall not address further in this paper, including some 
whose magnitude is much smaller than the factors listed above (e.g. diffraction), and some that involve 
additional imaging parameters (e.g. shadows, motion blur). 

For each of the above phenomena, there has already been substantial theoretical vision research and some- 
times real systems. However, the theories invariably deal with just one or just two of the above factors; and 
the real systems work by virtue of the highly limiting assumptions that are imbedded within the algorithms, 
such as building in a specific size range of textures to be analyzed. 

The real world is not so well-behaved. Real images exhibit these factors simultaneously, as we illustrate in 
Figure 1. This image, synthetically generated, shows two objects with Brodatz pro661 textures mapped onto 
their surfaces. The textures themselves would pose a diBcult analysis problem even if they were viewed 
frontally, as is usually presumed in research into 2D texture analysis. However, in this scene, d e  textures 
are mapped onto 3D surfaces, one curved and one polyhedral. Thus, the size and spatial relationships among 
the repetitive elements may change across an object or a surface. Because the resolution of the imaging 
sensor is finite, the texture elements or their component features may even become so small that they are 
blurred out of peroeptibility - yet the same texture persists in that place in the real world, even though we 
can't explicitly see and measure it. The texture paUems themselves are not perfectly repetitive and may 
vary, and these variations should not be confused with the other sources of variation across a surface. And, 
this figure doesn't even demonsmte the effects of 3D texture - we mapped the Brodatz intensity patterns 
onto simulated smooth surfaces - or of defocus, which would cause the texture to blur selectively at some 
places in the image. 
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Figure 1: Cylinder and cube with Brodatz textures 

Analyzing such combinations of spatial features is far beyond the capability of current robot vision systems. 
Yet, the real world presents just such interactions, not just on rare occasions, but on virtually every surface in 
every image that we care to analyze. In order to build reliable, g c n d  vision systems, we need to explicitly 
understand, model. and analyze each of these phenomena and their intaactiom. 

Oneoftbeprincipalreasonsfortheslowprogress in thisdireaimis thelackofevenasuitablereprescntation 
thatwouldallowustomodclallofthesespatialphenomenainonefnrmework. Theuseofa singleframework 
is critical, because if each phenomena is described in a different formalism, then their intQactioas become 
combinatorially complex even to describe mathmatically. But, if a single framwork is used, then all of the 
interactions can be naturally expressed within tbe same vocabulary. 

What framework can be used? The spatial/geornetry domain provides elegant descriptions of surface shape 
and perspective, not-so-elegant descriptions of focus and resolution, and, as the 2D texture community has 
shown, poor descriptions of 2D texturc and repelition. The Fourier do- appears elegant for 2D texture. 
focus, and resolution. Unfortunately, the frequency domaia has great problems with 3D surfacc shape, 
multiple surfaces in the sme,  and curved surfaces 01 other sources of local texture variation, because the 
Fourier transform mixes together fresumcy information from all across the image without any notion of 
locality. Obviously, no representation caa be a g a d  basis for spatial vision if it has no concept of locality 
within the image. 

What we seck is a representation for image data that provides frequency data, but does so within the context 
of surfaces and other local neighbohxds of tbe image. There exists a class of representations that does 
just this: the so-called spacelfrequency disbibutions. These have been proposed specifically for analysis 
of 2D textures on h t  surfaces in the past, but as shown above, that is a small part of tbe total problem 
of spatial vision. In this paper, we show that this same class of representations can be used as an elegant 
representation for all of the phenomena described above, in 3D as well as 2D. We concentrate on a particular 
spacelfrequency distribution, the image specfrogram, because it has properties that appear most desirable 
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space (x) -t I 
spectrogram 

Figure 2 Figure 1 with spectrogram of center TOW 

for general robot vision. 

We show the spectrogram of the center scan-line of Figure 1 superimposed in Figure 2. The spectrogram is 
a two-dimensional function of space (horizontal axis) and frequency (vertical axis). Because the underlying 
p a m s  on the two objects are periodic, there are dark frequency peaks in the spectrogram where the objects 
occur. The large, "U'-shaped frequency peak on the left shows that the frequency of the texture pattern 
projected from the cylinder appears higher near the edges than in the middle, as one would expect At the 
extreme edges of the cylinder, the projectad frequency is so high it cannot be adequately reproduced in the 
image. This is shown in the spactrogram as the frequency peak bumping into the Nyquist frequency at the 
top. On the left side of the cube, we see a slowly decreasing fundamental frequency and overtona which 
am likewise decreasing. This decrease conhues to the corner of the cube, where the fundamental and 
harmonics begin to increase as the side recedes into the distance. This is a sample of the kind of analysis 
possible with the spectrogram. 

The remainder of this paper explores in more detail the connections betwan the image spectrogram and the 
3D scene. Although we do not present any "real" vision algorithms, we see to present the space/frquency 
representation as an important, unifying framework for future work in computer vision. Our research is in 
its early stages, so our opinion of the representation remains speculative but optimistic. 

1.1 Previous Work 

Because local spatial frequency analysis is especially well-suite3 to investigating repetitive patterns, most 
of the work similar IO ours bas beem in image texture. There is a large set of work on texture. so much so that 
at least three survey papers have been published on the topic *79]  pVeCSO] PGDOSS]. We will restrict 
our comments to those efforts in which local spatial frequency analysis plays a dominant role. While much 
of the work we review is aimed at analyzing texture, other concerns the issue of image representation. 
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Previous work with windowed Fourier transforms in computer vision reveals some of the potential utility of 
local spatial frequency analysis. Image spectrograms have been used for a variety of image analysis work, 
including texture segmentation and shape from texture. In one method of statistical texture segmentation, 
a small number of features is extracted from windowed Fourier transforms taken over the image. Fourier 
transform methods are frequently included in comparisons of statistical texture segmentation techniques, 
althoughthey are generally outperformedby other methods [DR76]. Bajcsy and Lieberman [BL76] recovered 
information about the shape of textured surfaces by examining the shape and behavior of peaks in windowed 
Fourier transforms over the image. Because they used non-werlapping windows, their analysis was based 
on a coarse sampling in space of the spectrogram. Matsuyama et al. m 8 3 ]  used Fourier transforms 
taken over regions of uniformly dismbuted texture elements in order to find the two spatial vectors which 
characterize the placement of the elements. The Fourier transform has also been considered for calculating 
the point of best focus for an entire image by Horn [Hor68], and for a subsection by Krotkov [Kro87]. 
Pentland uses the Fourier transform for both shape from focus pen851 and shape from shading Ipen881. 

All of these approaches use the Fourier transform over either the whole image or a fairly large region. The 
Fourier transform, however, hides the spatial coherence of the image. Thus, although one can identify 
the component frequencies of an image, their location in the image is a mystery. Large-support Fourier 
transforms tend to smear the G8quency peaks of signals whose frequency is changing (e.g. a periodic 
pattem on a tilted plane) and confound the analysis of signals with spatially distinct subcomponents (e.g. 
two adjacent textures). A solution to this problem is the spacelfrquency representation which shows the 
frequency content of only small, local regions of the signal. 

One popular spacdfrequency representation is the Wigner Distribution (WD), introduced by Wigner for use 
in quantum mechanics. Like the spectrogram, the WD produces a function of both space and frequency 
from a function of space alone. ' An informative introduction to the WD can be found in a three-pad series 
by Claasen and Mecklenbrtiuker [CM80a] [CM80b] [CM8Oc]. Ractically speaking, t h e m  can effectively 
deal with signals whose frequency is changing, giving a clear indication of their instantaneous frequency. It 
has been applied to texture- segmentation by Reed and W&lw [RW90] and to shape from texture by Jau 
and Chin [JCBS]. Both the spectrogram and WJJ are joint representations of space and spatial frequency. 
Such reprexntations are reviewed and compared by Jacobson and Wechsler [JWSS].  A description of the 
WD and our reasons for not using it are presented below in Section 2.2. 

An early effort aimed at creating a joint representation was that of Gabor [Gab46], who proposed the use 
of one-dimensional, Gaussian-modulated sinusoids as basis functions which are maximally compact in both 
time (space) and frequency. Marfelja [Mar801 found that these functions describe the response of visual 
cortex cells. The theory was extended to two dimensions by Daugman [Dau85], who showed that the 
two-dimensional Gabor functions can describe the cells of the visual cortex. Gabor-function filtering has 
been applied to the tasks of texture segmentation by Tumer [Tur86] and Bovik et al. [BCG90], and to optical 
flow extraction by Heeger [Hee88]. Fogel and Sagi FS89J found that Gabor function texture segmentation 
closely paralleled human performance. Most work in image analysis of this type uses the Gabor functions 
as convolution filters, but not as a form of complete image representation. The Gabor functions are a 
complete, but not orthogonal, set of basis functions. Nonorthogonal basis functions complicate the process 
of decomposition, although it has been achieved with a neural network by Daugman [Dau88]. 

Mallat [Ma1891 has developed a theory for the multiresolutionrepresentation of images called an "orthogonal 
wavelet representation". It is composed of a low resolution image and successively higher resolution 
"difference" images which fill in the details of the previous images. The representation falls between the 
space and frequency domains, and gives an idea of the predominant frequencies at every point in the image. 

'We note that much of the work in sp-Bequency representations is prescntcd in terms of time rather than space 
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A significant difference between the wavelet and Gabor representations is that the wavelet representation 
has orthogonal basis functions, making the representation easy to compute. 

1.2 This Paper 

Our work is distinguished from most of that above, not by the particular representation we have chosen, 
but by how we propose to analyze the local spatial frequencies. Most of the work in texture analysis above 
uses just a small set of frequencies, usually for segmentation. Our work demonstrates how a denser set of 
frequencies at each point can be used not only for segmentation, but to chart other space-varying properties 
in the scene. 

In this paper we show how a joint space/frequency representation can be used to effectively examine a 
variety of important phenomena in computer vision. In the next section, we examine two of the most popular 
joint representations - the spectrogram and the Wigner distribution - and we compare their usefulness for 
3D image understandmg. In Section 3 we show how the spectmgram maintains coherence over regions 
of similar texture, even if the texture is changing in frequency. Making this coherence explicit means that 
the spectrogram can be used for segmentation on textures other than just those on a plane viewed frontally, 
which is an implicit limitation in most texture segmentation algorithms. In Section 4 we show how 3D 
object shapes affect the specmgram. W e  examine in detail the spectrogram of a textnre along a line and 
demonstrate how we can accurately extract shape parameters in this simple case. Section 5 shows how 
spatial aliasing (moire patterns) affects the spectrogram. In Section 6 we show how changes in a camera's 
lens parameters (zoom, focus, and aperture) affect the speceogram in a predictable way. The zoom analysis, 
combined with the development on aliasing, leads to an algorithm for dealiasing images of simple textures. 
We examine other issues in Section 7. 

2 SpacelFrequency Representations 

Contiguous texture patterns in a scene normally do not appear as constant frequency patterns in an image, 
because the underlying shape is usually not planar. Even if it were, the frequency would only appear constant 
if the texture were veiwed along the plane's normal. Thus, frequency analysis of texture in nonnivial scenes 
requires a method which can account for changes in frequency with position. This is beyond the ability of 
conventional, large support, Fourier transforms, so other methods have been devised. 

We show two examples of idealized space/frequency representations in Figures 3 and 4. Figure 3-a 
shows a simple sinusoidal wave, and Figure 3-b shows the magnitude of its Fourier m f o r m .  The ideal 
space/frequency representation appears in Figure 3s, and shows that the signal's frequency u is constant 
with respect to the spatial variahlex. Figure 4-a shows two sinusoidal waves in which the higher-frequency 
wave occupies the center quarter of the signal. The Fourier transform of this signal is shown in Figure 4-b. 
Although it shows two pairs of frequency peaks, it does not show where in space the subsignals of corre- 
sponding frequency occur. The structure of the signal is made clear in the space/frequency representation 
of Figure 4-c. which shows that a relatively low-frequency component exists at the ends of the signal in 
question, while a higher-frequency part occurs in the middle one quarter. This localization is the power of 
the space/frequency representation. 

Signals whosefrquency chmngeswithpositionae callednomrarionnry. A simple exampleis cos(Zru&/2). 
The insrumaneuusjkquenq of such a signal is defined as the derivative of the argument with respect to 
the spatial variable - in this example, u s  (in cycles/unit distance). Certain frequency-based, texture 
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Figure 3: (a) Single sinusoid (b) Fourier trans- 
form (c) Space/frequency representation shows 
constant frequency 
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Figure 4 (a) Two sinusoids (b) Fourier transform 
shows only frequency (c) Space/frequency repre- 
sentation shows structure 
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segmentation algorithms [DR76] do not require an accurate estimate of the instantaneous frequency, only 
one which is sensitive to significant differences in frequency. Thus, they can work with only a coarse 
sampling in frequency. In ow work, however, we are concerned with small changes in frequency, due to, 
for instance, surface slope. or variations in zoom, Thus, we require a high resolution, accurate estimate of 
the instantaneous frequency. 

We consider in this section the two primary means of calculating space/frequency representations: the 
spectrogram and the Wigner distribution. A third method is to fit sinusoids to the signal over small windows, 
although it is slow, it leads to high resolution estimates. Both this method and the spectrogram are based on 
the assumption that the signal is locally stationary. The WD relaxes this assumption. 

Our analysis in this section and the rest of this paper will be limited to onedimensional signals. This not 
only simplifies understanding the mathematics, but makes visualization of the representation much easier. 
For a ID signal, the space/frequency representation is twodimensional, while for a 2D signal (an image), 
it is four-dimensional. Our example spectrograms are superimposed on 2D images. In these figures, the 
spectrogram was computed from the center row of the image. We include the entire image to illustrate more 
clearly the various effects we are considering. 

2.1 The Spectrogram 

The spectrogram of a signal is a series of small-support. Fourier transforms of the signal, each centered 
around a different point of the signal. For a one-dimensional si@f (x), the spectrogram is Sf (x. a ) ,  where 
u is frequency in cycles/unit distance.. S, (x. u )  is an estimate of the power of frequency u at the point x.  The 
continuous spectrogram of the one-dimensional functionf (x) is given by 

where w&) is a window function with support length I .  

The process by which a spectrogram is calculated is shown in Figure 5. To calculate one vertical slice of the 
spectrogramforagivenvalueofx, say~,thesiEnalis~~multipliedby awindow offsetbyx,. Thisproduct 
is Fourier transform&, the magnitude is calculated from the complex values of the Fourier transform; and 
the non-negative half of the magnitudes serve as Sf (xo. u), which is one column of the spectrogram. This 
process is repeated for every x. We only consider the non-negative half of the magnitudes since the Fourier 
transform of a real signal [the only kind we have) is symmemc in magnitude. The discrete version is 
computed using the discrete Fourier transform (DFT), which is discrete in h t h  space. and frequency. The 
window function controls how much of the rest of the signal contributes to the spectrogram at the point x. 
In terms of W/(u) and F(u), the Fourier transforms of w&) andf (x), the speclrogram is 

where "*" is convolution. 

The spectrogram of a two-dimensional functionf (x. y )  is a straightforward extension of the equation above, 
giving a four-dimensional spectrogram. Sf (x. ,y. u .  v), with two spatial variables and two frequency variables. 

There are ongoing questions about the best shape and size of the window w&). Many window shapes are 
considered by Hamis in [Har78]. He illustrates the compromises involved in the selection, and concludes by 
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-. . I  - product of function and window 
v - Fourier transform 

- magnitude of positive half 1 *(')I function 

Figure 5:  Computing the spectrogram 

recommending the 4-sample Blackmau-Harris window. We use the minimum, 4-sample Blackman-Harris 
window, which for a discrete set of n points is given by 

( 2ri ) ( 27 ) ( 2ii 3 k )  
wn(k) =no - ai cos - k +UZCOS - 2 -uagcos ~ 

n - 1  n - 1  n - 1  

fork=0.1  ..... n - 1 and(~.u~.a~.u3)=(0.35875.0.48829.0.14128.0.01168). 

The window size I (or in the discrete case n) affects how much of the signal is included in the Fourier 
transform at each point Equation 1 above shows that the effect of windowing is to convolve the Fourier 
transform of the. signal, F(u). with the Fouricr transform of the. window, Wl(u). This can be thought of as a 
blurring of the signal's spectrum with W/(u). As the width of the window decreases, the width of Wl grows, 
meaning that the spectnrm will be more smeared. Thus, a large window is desirable for a sharp spectrum. 
However, a large window will compromise the localization ability of the specbogram, as it will include 
components of the signal which are distant from the point of interest. In practice, we have found n = 63 to 
be satisfactory on discrete signals of length 512 (one image scan-line). We investigate a more sophisticated 
windowing techniquein Section7.1. 

2.2 Wigner Distribution 

An alternative method of calculating a joint space/frequency representation of a signal is the Wigner 
distribution. The Wignex dishbution has been used in the computer vision community for both texture 
segmmtation@WW] and shape from texture[JC88]. For a one-dimensional functionf (x), the Wigner 
distribution is 
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In words, the way to compute W f ( x .  u) is to first calculate the productf(x + r i  !2)ff(x - 1 1  ;2), which is 
the original signal multiplied by a conjugated version of the original signal flipped around the point x .  
This product is Fourier transformed to get the WD at x .  In practice,f (x )  is first windowed, leading to the 
pseudo-Wiper distribution (PWD) [CM80a]. The open questions pertaining to the window function for the 
specbogram also apply to the PWD. 

The WD generally works best on analytic signals, i t .  signals whose Fourier transforms contain no negative 
frequencies [BoaSS]. It is fairly straightforward to calculate an analytic signal which corresponds to a real 
signal dehed  by samples. Thus, OUT two examples will be for analytic signals. 

The example to which many WD advocates point is the WD of the chirp signalf (x) = &2'ud12. This 
nonstationary, complex sinusoid is the analytic extension of cos(2i;u.+?/2), whose instantaneous frequency 
is u d  (frequency proportional to x). The WD is 

In ( x .  u) space, this is a bridge which tracks at exactly the instantaneous frequency off (x). For any x ,  the 
position of the ridge is at u d ,  which is exactly what we would like to see for this signal. 

Most textures are not simple sinusoids, however. They are, rather, sums of sinusoids in the sense of Fourier 
series. It is desirablethat thejointrepresentation show multiplef~uencypeaks attheconstituentfrequencies 
of the texture. This means that the representation should be linear- that the representation of the sum of two 
sinusoids should be the sum of the representations of the two sinusoids by themselves. Unfortunately, the 
WDisnotlinear. Thatis,Wf+&.u) # Wf(x.u)+W&,u). WeshowinFigure6thespectrogram(ontheleft) 
and the Wiper  distribution (on the right) of a s u m  of two sinusoids. Letf (r) = &"lL and g(x) = 
both constant-frequency, complex sinusoids with frequencies us and ug respectively. We have 

Wf(1.U) = Il(u - Uf). 
Wg(x.u)  = b(u - ug). 

wf+g(x.L1} = w~(x.u)+Wg(x .u)+2cos[2Ti*(u~ - u,)] h ( u - u*). 2 

Thus the WD of a single, complex sinusoid is what we would expect, but the WD of a s u m  of sinusoids has 
a cross term. This term is a E in u at the mean frequency of the two original sinusoids, modulated in x at a 
frequency which is the difference in freqnencies of the two original sinusoids. The WD gives cross terms 
for every pair of constituent sinusoids. The cross  term of the WD is clearly visible in Figure 6. 

The analysis that follows in this paper depends on accurately finding the frequency peaks in the joint 
representation. Noise in some of the images complicates this task. The cross terms introduced by the WD 
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Figure 6: Spectrogram and Wigner dishibution of two summed sinusoids 
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would make it even more difficult to dishguish the true frequency peaks. It is for this reason that we have 
chosen not to use the Wigner distribution. 

The WD is just one member of a more general family of joint representations. Others [CW89][ZAM90], 
may be able to deal with nonstationaxities as well as the W while still suppressing cross terms. However, 
there does not exist a definitivemethod for calculating the space/frequency distribution. 

3 Two-Dimensional Texture Segmentation With the Spectrogram 

It is  oftenthecasethatregionsinanimagecanbegroup~bytheirsimilaritiesintexture. Insegmentingaroad 
image, for example, it may be that the only common feature that the grassy areas share is texture, because the 
intensity and color of the grass in the image may be very merent from shadowed to nonshadowed regions. 
By two-dimensional texture segmentation we mean segmeatation on images with textures whose frequency 
does not change appreciably over the image. The textures must be viewed frontally; this is how almost all 
texture segmentation algorithms are tested. 

The spectrogram of a structured texture shows that the spectrogram gives a clear, easily interpretable 
representation of the texture. and a good idea of the texture’s boundaries. In Figures 7 and 8 we present two 
pairs of textures along with the spectrograms of the rows indicated by the lines across the middle of the 
images. The smaller, left plate in Figure 7 has a sinusoidal intensity pattern, while the larger plate visible 
on the right has a square wave pattern. The left half of the spectrogram shows one peak in frequency which 
is constant with respect to position, as we expect from a sinusoidal intensity pattern. The right half of the 
spectrogram shows the fundamental frequency of the square wave pattern as the dark line n e x  the bottom of 
the spectrogram along with fainter overtones at evenly spaced intervals above. The frequency of the square 
wave’s first harmonic happens to be about equal to the frequency of the sinusoid on the left The sharp 
transition between the two textures produces a short region in the spectrogram where nearly all frequencies 
are present. The light, vertical bars on the right half of the spectrogram are due to the interaction of the 
simulated pixels with the periodic pattern. 

Figure 8 shows the same two plates with Brodatz textures superimposed The complexity of the Brodatz 
images makes the spectrognlms messier, but the representation is still easy to interpret. The white band 
at the bottom of the spectrogram has been zeroed to eliminate low frequency intensity variations due to 
lighting. We see that the scan l i e  of the canvas texture on the left is close to sinusoidal since it has only one 
significant frequency component The screen texture on the right has a lower fundamental frequency than 
the canvas as well as some overtones. 

There have been many efforts aimed at 2D texture segmentation using windowed Fourier transforms. for 
instance [Gra73] and Wi761. These algorithms usually proceed by picking some set of features from Fourier 
spaceandthenclusteringusing eaditio~lpanemracognitiontahniques. Themethod hasbeen compared to 
others both empirically IwDR76]pR76] and theoretically [CH80]. While the Fourier features performed 
adequately, they were outperformed by other statistical texture measures. 

The advantages of Fourier texture measures over other statistical texture measues come from the variety of 
textures it can manage and the ease with which it can be extended to textures which are viewed obliquely. 
For structural textures, the Fourier transform approach requires no feature detection. Windowed Fourier 
eansforms can be used for purely statistical textures, because Fourier transforms can bring out statistical 
coherence. In all textures. the spectra remain coherent over changes in shape, which means that the 
method can be smoothly extend4 to non-frontally viewed textures. In addition, the spectrogram is a 
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Figure 7: Two plates with sinusoidal and square wave gratings 

Figure 8 Two plates with Bmdatz t e x m s  
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powerful framework for analyzing many other scene phenomena and can be used to extract intrinsic scene 
characteristics. These intrinsic parameters provide another, more reliable basis for segmentation. 

4 Three-Dimensional Shape and the Spectrogram 

Texture is an important indication of 3D shape, and the connection has been studied extensively in computer 
vision. However, past efforts at exploiting this connectionhave been based on either the detection of explicit 
features or the computation of local statistics. The features and statistics are normally conceived in an ad 
hoc manner for the specific mask of shape extraction. The spectrogram is a more natural choice for this kind 
of analysis, because the projected, local spatial frequencies on a textured surface change with the surface's 
depth and orientation, and because it is simple to account for other phenomenabesides shape such as aliasing, 
defocus, and lens parameters. 

In Figure 9 we show a plate receding into the distance with a sinusoidal intensity pattem superimposed. 
The spectrogram of the center scan l i e  shows that the projected frequency increases as the plate recedes. 
This scene illushates the effect of a vanishing line. Both the plane (from which the plate is taken) and the 
spectrogram asymptotically approach a line. The plane's asymptote is its vanishing line in the image. The 
corresponding frequency rises to infinity as it nears the vanishing line, as shown in the sketch of the ideal 
spectrogram. Before the plate reaches this point, the fresuency has so grown that the actual spectrogram 
shows aliasing (see Section 5), which is the "fuzz" just to the left of the asymptote. The ideal spectro,pm 
has no upper bound on frequency. 

Figure 10 shows two plates meeting at a convex comer, each with a sinusoidal intensity pattem. The 
spectrogram shows how the projected pattern increases in frequency as the plates recede. 

In Figures 11 and 12 we show the plates of Figures 7 and 8 rotated around a vertical axis. Both the 
fundamental frequencies and the overtones show the same effects of the change in orientation. In the 
following discussion, we describe how to quantitatively extract shape information from the spectrograms of 
textured surfaces by calculating the effect of depth and orientation on the spatial frequencies of the texture 
pattern. 

4.1 Mathematical Formulation 

The coordinate system and other quantities are defined as in Figure 13. The pinhole of a pinhole camera 
is placed at the origin of the right-handed (xm . yu, . zu,) coordinate system, looking along the - 2 3 ~  axis. 
Objects are projected onto the image whose axes are (x. y). The pinhole-to-sensor distance is d, meaning that 
point(X3D. y3D.  zm) willbeprojectedonto the image plane at the point (x.y) = (e. $1 under perspective. 
There is a surface in front of the camera whose depth is given by the function C ( X ~ D .  ym). Superimposed on 
the surface is an intensity pattern given by g(s. r), where (s. t )  ax. coordinates of a coordinate system on the 
surface. We will ignore the y a ,  y, and r coordinates, in effect cxmhhg our attention to the X3D-23D plane 
&D = 0) and a 1D image plane in x .  

On thex3D-z3opIane,alineruns infrontofthecamerawhoseequationisxjD sinfl+qDcos B = -p.  Wewill 
suppose that this line bas a periodic pattern g(s) superimposed on it. We will find the perspective projection 
of this pattern onto the image plane. and then calculate the instantaneous frequency of the projection so we 

'In terns of uaditiond shhapc-fmm-texerre notation (cf. WitSl]), the rilt angle he= 1s always zero because we rn workins in 
only W o  dimensions. while is like the slant angle cxceptptthar the slant angle cannot be negative and H can k. 
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ideal spectrogram 
(sketch) 

Figure 9: Plate with sinusoidreceding to vanishing point 
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Figure 1 0  ' b o  plates with sinusoids forming a convex comer 
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I 

Figure 11: Two rotated plates with sinusoidal and square wave gratings 
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Figure 12: Two rotated plates with Brodatz textures 
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Figure 13: Geometry of 1D image formation through pinhole 
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can apply the spectrogram. We will find that the instantaneous frequency is a function of the orientation 
of the line, meaning that the spectrogram can be use to determine this parameter. Points on this line are 
parameterized by s, where s = 0 occurs at d e  intersection of the line and its perpendicular to the origin. 
Given an s. we have 

(X3D. Z3D) = (-/)Sin B + s cos 8. - p  cos B - s sin 8)  

which projects to 

- p s i n o  + s m s  H 
pcosH+ssinH ' 

x = d  

Solving for s, we have have the position along the line for a givenx on the image plane: 

Suppose that the line has superimposed on it a periodic reflectance pattern given by g(s) = c o s ( Z ~ u ~ s ) ,  such 
that the frequency of the pattern along the l i e  is uj. If the pattern is projected onto the image plane, we can 
write the equation of the projected pattern by replacing the s in cos(2r;uls) with the equivalent value of s 
given in terms of x in quation 3. Thus, the projected pattern on the image plane will be given by 

1 d sin 8 + xcos H 
cos[2r;urs(x)l= cos 

x ~ m S - d c o ~ 8  

The instantaneous frequency. ~ ( x ) ,  of cos[Zjrurs(x)] is defined in the signal processing literature to be the 
derivative of the argument with respect to x, which is 

The peak frequency in the spectrogram of the projected cosine will occur at approximately this frequency. 
In a computer vision application, the known quantities in Equation 4 are d (the pinhole-to-sensor distance), 
x (the pixel position), and U ( X )  (the instantaneous frequency from the spectrogram). The unknowns are 
UI (the frequency of the paUem along the line), and p and 6, (the parameters of the line). Since ut and p 
occur as a product in Equation 4, they cannot be distinguisbedfrom each other. This is a manifestation of a 
familiar effect a small object (high frequency) at a small distance is indistinguishable from a large object 
(low frequency) at a large distance. Thus, we treat the product urp as a single unlmown. With B as the other 
unknown, we can solve Equation 4 for H and u p  if we have two or more measurements of (x. u(x)). The 
result is a space/freqnency formulation of the shape-from-texture paradigm. 

4.2 

To demonstrate the use of Equation 4, we will determine parameters of the two plates in Figure 1 1 based on 
the spectrogram of the center row. We simplify the spectrogram to u(x), the dominant frequency, determined 

Extracting Shape from the Spectrogram 
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Figure 14: Peak frequencies from spectrogram of Figure 11 

by finding the maximum value in each column of the spectrogram. These values are shown in Figure 14 as 
the doued, stairsteplike l i e .  The stairstep effect is due to the limited resolution of the DFT, which is in 
turn due to the limited size of the window used to calculate the spextrop .  This low resolution means that 
many adjacent points will appear to have equal instantaneous hquencies. If the instantaneous frequency 
of two adjacent points is equal, it implies that the surface is pwpendicular to the line of sight, which is 
usually not the case. Thus, we calculate a "subpixel" value of the instantaneous frequency which gives better 
resolution than the raw DFT. We calculate the subpixel estimate by fitting a quadratic to the peak value and 
its two vertical neighbors and then finding the maximum of the quadratic. This is done for each column 
in the spectrogram. The higher resolution estimate is shown as the solid l i e  in Figure 14. As a point of 
reference, we show the actual instantaneous frequencies (calculated from Equation 4) as the dash-dot line 
in the same figure. The estimate based on the spectrogram seems to consistently underestimate the actual 
fkquency, and we are currently investigating the reason. 

Each pair of ( x .  u(x)) values from the high-resolution spectrogram estimates can be used to calculate a value 
of (urp. 0). In order toreduce the efkts of the wavering in the instantaneousfnquencies, we calculate each 
(up. H) using five pairs of ( x .  u(x))'s placed symmetrically around the point of interest. We then segment 
the regions by histograming the ( u ~ p .  6's. manually picking the peaks, and classifying each (ulp. P )  pair by 
finding which peak it is closest to. 
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Figure 15: Segmentation of center row of rotated, ptterned plates 

The resulting segmentation is shown in Figure 15. The bar a m s s  the middle of the image indicates the 
regions, and we show the dominant instantaneous frequencies below. This segmentation works not only 
in spite of tbe chauging frequencies across similar regions, but because of the changing frequencies as 
dictated by the mathematical projection of a single 3D plane onto a 2D image. In con@ast to traditional 
region-grouping methods, note that this segmentation is based on reasoning about the uniformity of intrinsic 
properties of the scene, not merely the uniformity of a property in the image. In this sense, it is based on the 
"model coherence" approach developed for color image segmentation [SKKN90]. 

W i t h t h e ~ ~ o n s s e ~ , w e ~ ~ a t e t h e ~ s t f i t  (u~p.8)fromEquaSlon4basedonth~region's(x. u(x))'s 
using a gradient descent, minimization routine. The resula arc shown in Table 1. W e  know the actual values 
of the parameters from the graphics routine used to generate the images. In this example the errors are quite 
Small. 

We performed the same analysis for the textured plates in Figure 12. The results of the segmentation are 
shown in Figure 16. This segmentation is not as good as for the other set of plates. Much of the error occurs 
near the boundaries of the plates where the Fourier transform window contains only part of one of the textures 
or some of both. The other misclassilied areas occur in regions where the instantaneous frequency value has 
unusual dips or wiggles. Possible solutions to this problem are using a speceal estimator which accounts for 
noise, or averaging the dominant frcquencies from the specwgmm of neighboring points. Also, using a 
variable-sized window as described in Section 7.1 may help alleviate the problem. The performance figures 
in Table 1 are based on a manual (perfect) segmentation of the instantaneous frequencies for the rotated, 
textured plates of Figure 12. The line parameters were calculated with the same gradient descent method 
used for the plates in Figure 11. 



Figure 1 6  Segmentation of center row of rotated, textured plates 

From Figure 11 
Periodic Pattern 

semi-automatic sementation 

From Figure 12 
Brodatz Textures 

manual seementation 

I 

i 

calculated 
error 

Table 1: Actual and calculated line parameters 

172.92 49.759 39.31 -59.720 141.37 50.820 48.27 -58.850 
-2.4% -0.25' -2.4% 0.28' -7.1% 0.82' 2.7% 1.15' 

21 



4.3 Other Shapes 

This method could be extended to other shapes in two different ways. Above we presented a method in which 
the instantaneous frequencies are fit to a lmown class of shapes (limes) in order to derive the parameters 
of the shape. The parameters were those which best fit Equation 4, which describes the instantaneous 
frequencies on a line. Other equations could be derived which relate instantaneous frequencies to any 
parameterized shape. Given some a priori knowledge of the shapes in the scene, the spectrogram peaks 
(as well as ovenones) could be used to instantiate the shapes' parameters. Alternatively, a program could 
calculate local surface normals by using the instantaneous frequencies from a small neighborhood along 
with an equation which relates frequency and surface normal. 

Although this method and results are meant to be only illustrative, they show the power of the spectrogram 
for reasoning about the effects of 3D shape in images. The spectrogram is a simple, natural method of 
quantifying the relationship between texture and shape, and it requires no feature detection except for 
finding fresuency peaks. 

5 Aliasing 

Aliasing occurs when a signal is sampled at a rate less than twice its maximum frequency, causing lower- 
frequency artifacts to appear in the sampled signal. This phenomenon can oftm be seen on television in 
images of periodic patterns like striped clothes, automobile grills, or tall buildings. In two dimensional 
imaging, these artifacts are called moire punernr, and they can lead to insidious problems in machine vision, 
e.g. stereo matching errors [Mat89]@. 117). This is because the patterns Cannot be detected in single 
images without detailed apriori knowledge of the scene, meaning that in most situations there is no hope of 
recovering the b e  signal, 

The DFT of such a signal does not give a true indication of the original signal's frequency content The DFT 
can only show frequencies up to and including the Nyquistfrequcncy (one halfof the sampling frequency). 
Frequencies higher than the Nyquist frequency are "aliased down" into lower frequencies of the DFT. 

This is illustrated in Figure 17, which shows a plate with a sinusoidal intensity pattern rotated to the right. 
Beginning at the left of the plate, the spect~ogram shows that the instantanmu frequency is rising as the plate 
recedes into the distance. At a little less than halfway across the spectrogram, the peak frequency has risen 
to the top of the spectrogram, which corresponds to the Nyquist frequency. Although the actual frequency 
on the image plane continues to rise, it appears to decrease after the Nyquist rate has been exceeded. In this 
region of the image, moire patterns begin to appear as lower-frequency variations caused by the beating of 
the signal frequency against the sampling frequency. There is another "bounce" on the spectrogram after the 
apparent peak frequency has fallen to zero. This bouncing would continue if the plate were longer. If the 
signal had overtone frequencies, these will bounce also, although not at the same places as the fundamental 
or other overtones. This is shown in Figure 18, which is a plate whose intensity pattern is the s u m  of two 
sinusoids. Below we examine the mathematics of the bouncing frequencies and show how the spectrogram 
provides an elegant basis for analyzing these artifacts. 
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image shows moire patterns after second 
true pattern after f m t  bounce bounce 
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Figure 17: Plate with sinusoid showing aliasing 
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5.1 Bouncing Frequencies 

In this section we discuss the mathematics of aliasing and how it produces bouncing in the spectrogram. We 
will demonstrate the effect using a simple cosine wave, although the ideas are generally applicable. The 
effect is most easily visualized in the Fourier domain, so we will develop the equations in the spatial and 
spatial frequency domains in parallel. 

Suppose d e  original, continuous signal is a cosine of frequency uo cycles per unit distance. 

Its Fourier transform is two delta functions placed symmetrically around the frequency origin. 

Sampling at a frequency of u, is modeled as multiplication by a series of h ' s  spaced at intervals of 1 /us. The 
sampled signal,f,, is 

The corresponding operation in the Fourier domain is convolution w i d  the Fourier transform of the space- 
domain b's. 

hl. 

F,(u) = F(u) * u, 2 6(u - ius) 
is-=. 

x 1 
2 

= - [E(u + u,) + E(u - UJ]  * u s  1 N u  - ius) 
s--T 

Fs(u), d e  Fourier domain version of the sampled cosine wave, is illustrated in Figure 19-a. It consists of the 
Fourier transform of the cosine repeated at intervals of us, the sampling frequency. These repeated Fourier 
transforms are called specrral orders. Spectral order os E {. . . - 2. -1.0.1.2.. .} is centered at frequency 
O&,. 

In order to recover an estimate of the original signal from the samples, the Fourier domain representation 
is multiplied by a rectangle function to extract one repetition of the repeated transforms. (It is also scaled 
by 6 to recover the original amplitude.) The rectangle function, also shown in Figure 19-a, is cut off at 
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the positive and negative Nyquist frequencies. This corresponds to interpolation with a sinc function in the 
spatial domain. Thus, the reconstructed signal becomes 

where sinc(x) = F. 
In the Fourier domain, 

where 

is a rectangle with support length b. 

As shown in the top graph of Figure 19, if luol < ?, the original cosine can be recovered exactly. We 
illustrate in both Figure 19 and 20 what happens as the frequency of the original signal rises past the Nyquist 
frequency. Figures 19ad show "side views" of the situation for various. increasing values of uo from d e  
top down. The horizontal arrows indicate which direction d e  6's will move with increasing u,. Figure 20 
shows a "top view" as u, increases linearly from left to right. The spectrogram has been shaded. The four 
vertical cuts in this figure correspond to the four situations shown in Figure 19. 

In Figure Wb, the cosine's frequency has exceeded the Nyquist rate, and 6's from neighboring spectral 
orders have moved into the the interpolation rectangle. We show how the various 6's correspond with the 
dashed lines drawn from graph to graph. The apparent effect of a rise in uo is a bounce in frequency, which 
is more apparent in Figure 20. Just as the outgoing 6's leave the interpolationrectangle, incoming 6's enter, 
moving toward the frequency origin. These two incoming 6's continue past each other, producing another 
bounce in apparent frequency, as shown in Figure 1 9 s .  When these 6's leave, they are replaced by two 
more, as in Figure 19-d, and the process continues on and on. This process causes the apparent bouncing in 
the spectrogram illustrated in Figure 20. 

In Table 2 we illustrate with equations what is happening in each of d e  four subfigures of Figure 19. We 
label each situation with os, the spectral order which contributes the 6 in the positive half of the interpolation 



0 

Figure 19: Aliasing causing bouncing, u, is increasing from the top graph down 
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Figure 20: Aliasing causing bouncing, uo is increasing from left to right 
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UO 1 0s 1 frequency domain reconstruction space domain reconstruction 1 
0 uo < U r  '2 ' 0 1  f Iriu+u,l+Nu- Us\! I ~ ~ ~ r 2 ~ ~ ~ i  

Table 2 Analytic expressions of Figure 19 

window in frequency space. In (a), 0, = 0, and the cosine's frequency is below the Nyquist frequency. so 
the reconstruction is true to the original signal. In @) the reconstruction is based on one ? from each of 
the two closest neighboring specrral orders, and or = +l. The reconsbucted signal is cos[2ii(u, - u&]. 
Since u, 5 us in this case, an increase in u, (the original signal's frequency) will cause a decrease io the 
frequency of the reconstructed signal. In (c) no new 6's are introduced. but the two 6's pass each other. 
Thus, in (c) us = -1. The reconstructed signal is cos[2.si(-us + u,)x], which is the same as case @) (because 
cos(-t) = cos(f)). However, in (c) u. 2 us, so an increase in u, causes an increase in the frequency of the 
reconstructed signal. The transition from (c) to (d) is l i e  the transitionfrom (a) to (b), thus the frequency of 
the reconshcted signal decreases again with increasing uo. Ji general. the frequency of the reconstructed 
cosine is given by 

i fo*=o 
o,u, - sgn(o,)u, otheiwise (5)  

where or is the spectral order contrihting a E to the positive half of the interpolation function, us is the 
sampling frequency, and 

-1 i f x < o  

+1 i f x  > 0. 

5.2 Unfolding the Spectrogram 

Of course, it would be better to have no aliasing in the spectrogram. We could then get an accurate idea of 
the true signal at every point. We can think of the spectrogram as a distorted. windowed version of an ideal, 
space/frequency representation - the ideal spectrogram. The ideal spectrogram's frequency axis extends 
from zero to infinity, and it does not suffer from aliasing. We can %e from the analysis in the previous 
subsection that the actual spectrogram of a simple sinusoid whose frequency is changing is a folded version 
of the ideal spectrogram. This is illustrated in Figure 21. The folds occur at positive, integer multiples of the 
Nyquist frequency, u,,'2. In the ideal spectrogram, the frequency peak continues to grow with the frequency 
of the underlying signal, while in the actual spectrogram aliasing causes the apparent frequency to bounce 
between zero and the Nyquist frequency. 
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Figure 21: Folding the ideal spectrogram to show aliasing 

Figure 22 Unfolded version of spechuogram in Figure 17 

In Figure 22 we show an unfolded vtrsion of the spcctrogram in Figure 17. The unfolded specbgram gives 
a hue indication of the signal's frequency, even beyond the Nyquist limit. Unfolding the spectrogram of a 
signal with overtones, l i e  that in Figure. 18, would not be as simple. Multiple peaks in the same column 
may wme from different folds of the ideal spectrogram. The key is to determine which fold a given peak 
came from. In the next section. we pmpose an algorithm for this based on computer-controlled zooming of 
the lens. 

6 Lens Parameters and the Spectrogram 

Much research in "activevision"conccrnstbecontrolofthethnc1~panunet~: mom, focus,andapenure. 
We show in this section how these parameters af€ect the spectrogram, which in turn providu new insights 
into how they affwt the image. This point of view leads to algorithms which let us deduce intrinsic scene 
parameters by purposefully altering the lens settings. 
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Figure 23: Effect of zooming on imaged signal 

6.1 Zoom 

6.1.1 How Zoom Affects the Spectrogram 

In equifocul camera lenses (such as most one-much zoom lenses) a change in zoom can be modeled as 
simply a change in magnification. We can imagine the situation in Figure 23-a where the section of the 
signal which falls on the center window of the spectrogram extends from 2 to $. We will arbitrarily call the, 
magnification here one, and we will say that the entire portion of the signal seen by the camera is of lengthl. 
Both I and L are measured on the image plane. If there are. n pixels in the spectrogram window, the sampling 
frequency is pixelsperunitdistance,maldngtheNyquistfrequency 9. Since the spectrogram extends 
in frequency from zero to the Nyquist frequency, the spectrogram resulting from this signal will cover the 
region indicated by the short, wide box in Figure 24. 

If the magnification M is changed, a larger or smaller portion of the original signal will be contained by 
each window. In Figure 23-b we have indicated the effect of an increase in magnification, showing how a 
smaller pari of the signal is now imaged. The section of the signal which falls on the central window now 
extends from & to &. and the entire signal seen by the camera covers & to &. The magnified window 
is spread out over the same number of pixels as before, so the Nyquist frequency is now Nq pixels per 
unit distance. 

The spectropm after the magnification change is shown in Figure 24. For an increase in magnification, the 
spectrogram covers more in frequency but less in space. The "area" of d e  spectrogram (actually a unitless 
quantity, "spatial dynamic range") is 'w and is independent of the magnification. Thus for changes in 
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U' u = M(n-l)/(Zl) 

u = (n-1)/(21) 

-L/2 -L/(2M) 

6.12 Dealiasing With Zoom Changes 

spectrogram of 
zoomed image 

spectrogram of 
original image 

'X 
L/(2M) L/2 

A slight change in mom can be used to iind the true, unaliased frequency of a sinusoid, because aliased 
frequencies from merent spectral orders respond differently to changes in magnification. Since image 
textures can be decomposed into simple sinusoids, we could use two images taken at slightly different zoom 
settings to dealias texture images. 

Suppose as above that we have a 1 -D image of a cosine of frequency u. cycles/pixel sampled at a rate of us 
cycles/pixel. The cosine may be sampled above or below the Nyquist rate. Referring to Figure 20, we can 
see there. will be only one spectral order connibuting a E to the spectrogram (because the spectrogram only 
shows positive frequencies up to u,/2). The apprent frequmcy of the unmapified (M = 1) signal, u l ,  is 
given by Equation 5,  Le. 

$0, = 0 u1= { ua 
O&, - sgU(oS)u, otherwise. 

If the lens is zoomed slightly such that the magnification is changed to M, the sampling frequency (measured 
in cycles/pixel of the unmagnified image) will be Mu, cycles/pixel, where us is the sampling frequency on 
the unmagnified image. The apparent frequency of the cosine will then be 

u 2 = {  uo ifos=o 
osMus - sgn(o,)u, otherwise. 

We can eliminate uo from Equations 6 and 7 by subtracting. Solving this difference for 0, gives 

(7) 
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Figure 25: Horizontally split image of aliased plate and magnified aliased plate 

We note that this equation applies for both o3 = 0 and os f. 0. Thus. the difference in apparent frequency 
between the two images is proportional to the speckd order 0- After solving foro,, we can use Equation 6 
or 7 to solve for tio. which is the true frequency of the si@. The dealiasing does not require the solution 
of a correspondence problem. since the two signals are related by a simple difference in magnification. 

An implicit assumption herc is that Q~ remains the same in both images. This will be true for small changes 
in magnification unless the 6 is very close to either e x m e  of the interpolation window and the zoom change 
causes it to be replaced by another h. 

We have applied this -que to the image of the receding plate in figure 17. We show a split version of 
the image in Figure 25. On the top is the unmagnifed image, and on the bottom is the same image magnified 
by M = 1.075. It is easily seen how the moire patterns shift. Figure 26 shows the "subpixel" frequency peaks 
from the spectrograms of the center rows of the two images. The frequency data from the magnified image 
has been adjusted so it is shown in tQms of the space and fnsuency units of the unmagnified image. The 
dotted line shows the dealiased f q u e u c y  based m the technique outlined above. Except for the glitches at 
the frequency extremes. the figure shows comctly the dcaiiasad siquency. Thus, the spectrogram has been 
dealiased without detailed a priori knowledge of the scene. 

6.2 Focus and Apertum 

Changes in the lens' focus and aperture wmbiie to change the point spread function @ s f )  of the lens, which 
can be easily visua l id  with the -gram. me psf is a function which can be convoluted with an idea1, 
sharp signal to model the effects of blur.) In general, points in sharper focus will show more high frequencies 
than if they are blurred. A smaller a p a e  tends to have the same gmeral effect as sharper focus. In fact, in 
the pinhole model we have been using (Figure 13), the aperture is infinitesimally small, meaning that every 
point in the scene is in perfect, sharp focus. 

We will generalize the pinhole model by introducing a single, thin lens with a variable aperture as shown in 
Figure 27. The ape- of the lens is (I, the focal leu@ of the lens is b, and the distance to the image plane 
remains d. We can appmximate the de& of focus and aperture with gmmemc optics. Each point in the 
scene with a different value of 2 3 ~  will be in sharp focus at only one point behind the lens. This point, 2 ,  

is given by the Gaussian Lens Law: + -& = 8 .  If the image plane is not at the proper distance behind 
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Figure 27: Geometry of 1D image formation through thin lens 
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the lens. i.e. d i i ,  the point will be spread into a blur circle. Using geometric optics, the radius of the blur 
circle is given by 

A point can be out of focus by having the image plane in front of or behind the pint  of best focus. The 
equation above applies to both cases. r ( z 3 ~ )  goes to zero when a i & = i ,  which is a restatement of 
the Gaussian Lens Law above. In the one-dimensional imaging case illustrated here, the shape of the blur 
"circle" is actually a rectaugle of width 2&~) .  Thus, the point spread function of the 1D camera system is 

where we have normalized so the area under the recto is one. 
the Fourier transform of h: 

The corresponding transfer function, H ,  is 

H(u . ZY)) = sinc [ Z U ~ ( . Z ~ ~ ) ]  

In order to calculate the effect of h(x. 2 3 ~ )  on the specEogram, we suppose there exists a functionf (x) which 
is an unblurred, pinhole projection of the scene. The new image, f dx) ,  taking into account the point spread 
function, is a convolution of the unblurred image with h. Thus, 

where !he ZY) is the one corresponding to < on the image plane. This equation holds for changes in the 
camera's aperture. It does not apply for change in the focus distance d. because this causes a change in 
magnification as well as a change in the point spread function. 

The point spread function h is nor space-invariant, because it depends on the depth of the surface. This 
means that its effect cannot be described accurately by multiplication in the fresuency domain. If h were 
space-invariant, e.g. due to integratiug over the surface of tbe pixels, then the effect on the spectrogram 
wouldbe simpletodescribe. each windowedFourier t fom wddbemultipliedby theFouriertransform 
of the point spread function. This is also approximately true for the space-variant point spread function if 
the surface depth varies slowly and/or the window used for the spectrogram is small. Then we have 

~ f ~ ( w . u )  = I [ ~ - J ~ - T v ~ ( . ) ]  * F { U )  * ~ ( U . z x ] * .  

where is a representative depth value for the region centered at x, andF(u) is the Fourier transform of the 
unblurred image. Each windowed Fourier transform has associated with it its own transfer function which 
depends on the approximate depth of the region within the window. 

'?his psf ignoms three optical effects. One is diffraction, whose mapimde is much smaller than &focus effects in typical TV 
images. The second is the fact that points which are occluded in the pinhole image can actuaUy be seen by pans of the lens in an 
image wiIh a finite apermn. The third is that, by normalizing lbc area of the psf to me, we are ignoring the most obvious effect of 
a changein aperture: a change in the overall brighmesr of the image. 
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This is the approximation used for most depth from focus and depth from defocus algorithms in computer 
vision. Following Krotkov's [Kro87] depth from focus algorithm, the spectrogram can be used as a criterion 
function to calculate the point of best focus over several images taken at different focus settings. The setting 
closest to perfect focus is the one which gives the most high frequency energy in the spectrogram at that 
point. Knowing this setting along with a precalibrated table of focus distances. the depth to all poinis in the 
scene can be calculated. Pentland [Pen851 uses a spectrogram, essentially, to calculate depth from defocus 
based on only two focus settings. He uses the two spectrograms to calculate directly the depth to each scene 
point by calculating the width of the psf. 

Formulating the effects of the psf in t e r n  of the spectrogram is a ~ t u r a l  way to reason about the space- 
variant nature of the transfer function. For example, it reveals how precisely each point can be focused. 
Points in the scene with no high frequencies will never show high frequencies no matter how well they are 
focused, meaning that a focusing criterion function based on frequency would not be sensitive to such points. 
Another issue is the separation of the space-invariant part of the psf (due to, say. pixel averaging and the 
camera electronics) from the space variant part. It may be that the space-invariant psf is so large that depth 
effects are insignificant. 

7 Other Issues 

7.1 Variable Window Size 

A constant window size for the spec~ogram means that the Fourier transforms cover a different number of 
wavelengths of each constituent frequency. That is, a window size I over a signal of frequency u covers lu 
wavelength or periods of the signal. In detecting repetitions at different frequencies, it makes intuitive sense 
that the detector window should cover a predetermined number of wavelengths rather than a predetermined 
length or area. This intuition is based on the feeling that a texture pattern is one comprised of some 
minimum number of similar elements rather than some minimum sized region. The conventionally defined 
spectrogram uses a constant window size. which means that for higher frequency signals, more wavelengths 
of the signal will be included in the window than for lower f?equency signals. Thus the localization (spatial 
resolution) of the conrtun!-window speczmgmm is effectively reduced at higher frequencies, because the 
window is spread out over more wavelengths. 

We propose adding another dimension to the spectrogram which indicates the window size 1. We define the 
3D spectrogram given by 

which coven all possible (positive) window sizes. 

The 3D spectrogram is a great deal of data which is highly redundant. The eonstant-window spectrogram, 
Sf@. u) ,  is a slice of Sf(x.  u. r) with 1 = constant. The problem with a constant 1 is that, as we mentioned 
above, the number of wavelengths included in the window varies with frequency. A more reasonable slice 
through the 3D spectrogam is to have I s I / u ,  which means that the window width will shrink with 
decreasing wavelength. This tends to make the spectrogram scale-invariant, in that the detector window will 
cover a constant number of elements of a given wavelength independent of their spacing frequency. We call 
this the ~wriuble-window spectrogram. 
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Figure 28: Constant window (top) vs. variable window (bottom) spect~ogram 
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Figure 2 9  Intensity profile to be matched 

We show an example of the thevariable-window spectrogram in the bottom half of Figure 28, which can be 
compared to the uaditional, constant-window spectrogram in the top half of the same Ewe.  The variable- 
window spectrogram has window size I = 10i'u. One notable aspect of the variable-window spectrogram 
is the large spreading of the higher frequencies. This is due to the familiar effect in Fourier analysis of a 
smaller spatial domain window giving more spread in the frequency domain. Thus, the variable-window 
spectrogram provides greater spatial resolution at a cast of frequency resolution. The spreading of the 
high frequencies leads us to a conjecture that a nonlinear sampling in frequency may be appropriate for the 
variable-window spectrogmm. In the case of I x 1 / u ,  the ftequency sampling interval should get larger as 
the frequency increases. 

The 3D Gabor energy specrrwn (c$ [ J W S S J )  of a 1D signal is just the 3D spectrogram with a Gaussian 
window. Gabor functions are Gaussian modulated sinusoids and are maximally compact in both space and 
frequency. SinceGaussianshaveinfinitesupport,thewindowlen~linthe3Dspectro~isreplacedby r ,  
the standard deviation of the Gaussian window. Although Gabor functions have proven popular in computer 
vision applications, we have chosen not to use the Gabor energy spectrum because other, 6nnite-support 
windows give better resolution in the frequency domain. 

7.2 Repetition and Image Matching 

Image matching is important for 3D stereo and motion sequence analysis. In these tasks. matches are found 
by shifting one image to match the other; the amount of shift needed at each point reveals the 3D suucture of 
the scene. If a portion of the image is uniform with no features, then matching is impossible; if features are 
present, a match can be obtained. In the ideal case of a step intensity edge. a match can be made with a N t e  
precision. Usually. heuristic measures of potential precision are used, such as finding "feature points". But 
here, as in other spatial vision tasks, the spectrow is useful to quantify this effect. The match precision 
available at any point in the image is limited by the highest spatial frequency present at that point. This is 
illustrated in Figure 2 9  a narmw bump or step edge can be matched with greater precision than the shallow, 
broad bump in the signal. This is reflected in the higher spatial frequency content for the more precise 
features, as shown in Figure 30. The figure shows an 'mage whose scanlines are. all identical to the intensity 
profiIe shown in Figure 29. On top is the variable-window spect~ogram of one scanline, which shows that 
the step edge and narrow bump have higher spatial frequencies than the broad bump, and would therefore 
give higher precision matches. This spectro,gam has window size I = 5/u. 

The specbogram also provides insight about another aspect of image matching: False matches. One of the 
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Figure 30: Spectmpm and repeatogram for image matching 
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hardest problems in motion or sterea vision is to know whether a potential feature. match is a real, dependable 
correspondence, or whether it is a false match with a different feature in the other image. For example. in 
Figure 29 above, the right side shows several bumps closely spaced -if there were a large uncertainty in the 
displacement between images, the wrong bumps might be matched with each other. 

There is a clear relationship between false match potential and frequency content, for a false match must be 
characterized by a repetition in the image signal at the corresponding scale. Yet, each bump in the group 
on the right of the figure has the same profile as the isolated bump just to their left. So, the distinction 
must be more complex than just examination of the spectrogram at each point. The key is that false match 
potential implies not just high frequency content, but a real repetition of the image data, which means 
frequency content thatpersists over more than one wavelength of the underlying sinusoid. Thus, to detect 
false matches (or image structure repetition in general), one must search the spectrogram for frequency 
content that persists over long intervals in the spatial dimension. 

Torepresenttbis,weproposeanewtransform wecall therepeatogram. whichisderivedfromthespectrogram 
as follows: At each point x and frequency u ,  the repeatogmm R(x. u) is the minimum magnitude of the 
spectrogram over an interval centered atx and extending for k/2 wavelengths of the underlying sinusoid on 
either side of x, i.e. 

We call this the k-repeatogram, and note that for k 2 1.5, there must be at l e s t  two relative maxima or two 
relative minima of the underlying sinusoid within the interval of examination; for k 2 2, there must be at 
least two of each. In general, where R(x. u) is high, a real repetitive shucture exists in the image, with period 
1 /u pixels wide. 

For a spectrogram with a nonzero window size, these considerations must be modified slightly, because a 
window can contain part of a repetition before. it is actually centered on the repetition. Specifically, for 
a window of length I and a repetition over the range [x1.~2], the s p c c t r o v  will show a reaction to the 
repetitionovertherange [XI -1 /2 .~2+1 /2 ] .  Thematteris furthercomplicatedby thefactthatmostwindows, 
including our window in Equation 2, drop off toward z e f ~  at their ends, meaning that the spectrogram will 
be fairly insensitive to the repetition until the window is almost centered over the repetition. The effect of 
these complicating factors is that the choice of k for the k--repeatogram is dependent on the window size and 
shape. 

Figure. 30 shows, in the bottom half, the 4-repeatogram for the profile in Figure 29. As seen in this figure, 
the repeatogram makes it quite clear that the features on the right of the signal exhibit real repetition, while 
the isolated bump of the same shape does not. 

W~th the repeatogram and the spectrogram, we therefore have a powerful pair of tools for predicting the 
accuracy and precision of matching displaced images. At any point, the highestsignificantfrquency content 
in the spectrogram tells how precise a match can possibly be obtained, the highest frequency with significant 
content in the repeatogram tells the maximum displacement search window size that can be tolerated before 
there is a danger of obtaining a false match. 
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8 Conclusion 

For now, we have developed several useful theories for computer vision based on space/frequency represen- 
tations rather than to bringing any one of the techniques described above to completion. Our work thus far 
has shown the versatile power of the image spectrogram rather than demonstrating any end-to-end analysis. 
Our goal has becn to assess the potential for this kind of approach to vision rather than try to build specific 
programs to analyze this or that p d c u l a r  phenomena. We have presented a few experimental results, but 
they are meant to be suggestive rather than definitive algorithms. Instead, we wish to point out the breadth 
of this approach to low-level spatial vision, and in particdar its potential contribution for: 

General Vision: As an alternative to haditional edge-finding and region-grouping methods, which are 
known to be very brittle and noisy. The spBCtrogram also captures the 3D shape and 2D texture 
characteristics of surfaces. 

MatchingProblems: As a way of showing specifically what displacement of stereo or motion can be 
tolerated for reliable matching at each point in the image. 

Active Lens Control: As a way of formulating the constraints and goals for purposeful zoom, focus and 
aperture. 

This line of investigation, obviously, is far from complete. In particular, we see challenges in the analysis of 
complex textures such as the Brcdatz patterns rather than simple sinusoid and square waves; expressing the 
relationship between 3D surface texture, radiometry (lighting and reflection), and 2D image texture: and the 
development of effective algorithms to compute and analyze the spectrogram. It may also turn out that the 
spectrogram is primarily useful not as a representation to use in the vision system itself, but rather as a way 
of understanding the theory behind an implementation that uses, for example, a small set of Gabor functions 
instead. In any event, we believe that the powa of the space/frequency distribution will make it possible to 
develop far more comprehensive methods for low-level spatial vision than the current, limited, techniques 
allow. 
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